Sergey Mikhailov

Selected Papers

2021-2024

Mikhailov, S. E.  (2024) On Solonnikov Parabolicity of the Evolution Anisotropic Stokes and Oseen PDE Systems. In: Tbilisi Analysis and PDE Seminar. TAPDES 2023. Duduchava, R., Shargorodsky, E., Tephnadze, G. (eds) Trends in Mathematics, vol 7. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62894-8_15, PDF

Ayele, T.G., Demissie, B.M., Mikhailov, S.E. (2024) Boundary-Domain Integral Equations for Variable-Coefficient Helmholtz BVPs in 2D. J. Math. Sci. 1-26, https://doi.org/10.1007/s10958-024-06993-6, PDF

Mikhailov, S. E. (2024) Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier-Stokes Equations: I. Weak Solution Existence. Mathematics, Vol. 12(12), 1817, 1-27, https://doi.org/10.3390/math12121817, PDF

Mikhailov, S. E. (2023) On Maximum Principles for Weak Solutions of Some Parabolic Systems. In: Integral Methods in Science and Engineering, C. Constanda et al.(eds.), Springer, Chapter 18, 219-227, https://doi.org/10.1007/978-3-031-34099-4_18, PDF

Mikhailov, S.E. (2023) Stationary Anisotropic Stokes, Oseen and Navier-Stokes Systems: Periodic Solutions in $\R^n$. Math. Methods in Applied Sciences, Vol. 46, 10903-10928, https://doi.org/10.1002/mma.9159, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2022) Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces, Calculus of Variations and PDEs, Vol. 61, Article No. 198, https://doi.org/10.1007/s00526-022-02279-4, 47p., PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2022) On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces, J. Mathematical Analysis and Appl., Vol. 516, 126464, 28p., DOI: 1016/j.jmaa.2022.126464, PDF

Mikhailov, S.E. (2022) Periodic Solutions in $\mathbb R^n$ for Stationary Anisotropic Stokes and Navier-Stokes Systems. In: Integral Methods in Science and Engineering, C. Constanda et al.(eds.), Springer, Chapter 16, 227-243. https://doi.org/10.1007/978-3-031-07171-3_16, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2021) Layer potential theory for the anisotropic Stokes system with variable L symmetrically elliptic tensor coefficient, Math. Methods in Appl. Sci., Vol. 44, 9641-9674, DOI: 10.1002/mma.7167, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2021) Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition, Discrete and Continuous Dynamical Systems, Vol. 41, 4421-4460, doi:10.3934/dcds.2021042, PDF

Mikhailov S.E., Portillo C.F. (2021) Boundary-domain integral equations equivalent to an exterior mixed BVP for the variable viscosity compressible Stokes PDEs, Communications on Pure & Applied Analysis, Vol. 20, 1103-1133, http://dx.doi.org/10.3934/cpaa.2021009, PDF

2016-2020

Mikhailov S.E., Portillo C.F. (2020) Analysis of boundary-domain integral equations based on a new parametrix for the mixed diffusion BVP with variable coefficient in an interior Lipschitz domain, J. Integral Equations and Appl, Vol. 32, 59-75. https://projecteuclid.org/euclid.jiea/1593050451, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2020) Variational approach for layer potentials of the Stokes system with Lsymmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, https://arxiv.org/abs/2002.09990, 1-53, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2020) Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier-Stokes systems with Lstrongly elliptic coefficient tensor, Complex Variables and Elliptic Equations, Vol. 65, 109-140, DOI: 10.1080/17476933.2019.1631293, PDF

Fresneda-Portillo C., Mikhailov S.E. (2019) Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Communic. Pure and Appl. Analysis, Vol. 18, 3059-3088, DOI: http://dx.doi.org/10.3934/cpaa.2019137, PDF

Ayele T.G., Dufera T.T., Mikhailov S.E. (2019) Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Mixed BVP in 2D. In: Analysis, Probability, Applications, and Computation, K.-O. Lindahl et al. (eds.), Springer Nature Switzerland AG, ISBN 978-3-030-04459-6, 467-480, doi:10.1007/978-3-030-04459-6_45, PDF

Dufera T.T., Mikhailov S.E. (2019) Boundary-domain integral equations for variable coefficient Dirichlet BVP in 2D unbounded domain. In: Analysis, Probability, Applications, and Computation, K.-O. Lindahl et al. (eds.), Springer Nature Switzerland AG, ISBN 978-3-030-04459-6, 481-492, doi:10.1007/978-3-030-04459-6_46, PDF

Kohr M., Mikhailov S.E., Wendland L.W. (2019) Newtonian and single layer potentials for the Stokes system with L coefficients and the exterior Dirichlet problem, In: Analysis as a Life. S. Rogosin and A.O. Celebi, eds., Springer (Birkhäuser), ISBN 978-3-030-02650-9, 237-260, DOI: 10.1007/978-3-030-02650-9_12, PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2018) Singular localised boundary-domain integral equations of acoustic scattering by inhomogeneous anisotropic obstacle, Math. Methods in Appl. Sci. Vol.41, 8033-8058, DOI: 10.1002/mma.5268, PDF

Hakim L., Mikhailov S.E. (2018) A history-dependent cohesive zone model in elastic and visco-elastic materials under constant and variable loading, Int. J. Mechanical Sci., Vol. 144, 518-525, DOI: 10.1016/j.ijmecsci.2018.05.032, PDF.

Mikhailov S.E. (2018) Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Boundary Value Problems, Vol. 2018:87, 1-52, DOI: 10.1186/s13661-018-0992-0, PDF.

Gutt R., Kohr M., Mikhailov S.E., Wendland W.L. (2017) On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., Vol. 40, 7780-7829, DOI: 10.1002/mma.4562, PDF.

Ayele T.G., Dufera T.T., Mikhailov S.E. (2017) Analysis of boundary-domain integral equations for variable-coefficient Neumann BVP in 2D, In: Integral Methods in Science and Engineering, Vol.1 Theoretical Techniques.  C. Constanda et al, eds. Springer (Birkhäuser): Boston, ISBN 978-3-319-59384-5, Chapter 3, 21-33, DOI: 10.1007/978-3-319-59384-5_3, PDF.

Mikhailov S.E., Portillo C.F. (2017) A new family of boundary-domain integral equations for the mixed exterior stationary heat transfer problem with variable coefficient, In: Integral Methods in Science and Engineering, Vol.1 Theoretical Techniques.  C. Constanda et al, eds. Springer (Birkhäuser): Boston, ISBN 978-3-319-59384-5, Chapter 19, 215-226, DOI: 10.1007/978-3-319-59384-5_19, PDF.

Chkadua O., Mikhailov S.E., Natroshvili D. (2017) Localized boundary-domain singular integral equations of Dirichlet problem for self-adjoint second order strongly elliptic PDE systems, Math. Methods in Appl. Sci., Vol. 40, 1817-1837, DOI: 10.1002/mma.4100. PDF

Kohr M., Mikhailov S.E., Wendland W.L. (2017) Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds, J. Math. Fluid Mech., Vol. 19, 203-238, DOI: 10.1007/s00021-016-0273-6. PDF

Kohr M., Lanza de Cristoforis M., Mikhailov S.E., Wendland W.L. (2016) Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., Vol. 67: 116, 30p. DOI: 10.1007/s00033-016-0696-1. PDF

2011-2015

Mikhailov S.E. (2015) Analysis of Segregated Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet and Neumann Problems with General Data, arXiv:1509.03501, 1-32. http://arxiv.org/abs/1509.03501

Hakim L., Mikhailov S.E. (2015) Integral equations of a cohesive zone model for history-dependent materials and their numerical solution, Quarterly J. Mech. Appl. Math., Vol. 68, 387-419, doi: 10.1093/qjmam/hbv013PDF

Mikhailov S.E., Portillo C.F. (2015a) A New Family of Boundary-Domain Integral Equations for a Mixed Elliptic BVP with Variable Coefficient, In: Proceedings of the 10th UK Conference on Boundary Integral Methods, University of Brighton, UK, 13-14 July 2015 (Edited by P. Harris), ISBN 978-1-910172-05-6, 2015, 76-84. PDF

Dufera T.T., Mikhailov S.E. (2015) Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet BVP in 2D, In: Integral Methods in Science and Engineering: Theoretical and Computational Advances.  C. Constanda and A. Kirsh, eds., Springer (Birkhäuser): Boston, ISBN 978-3-319-16727-5, 163-175, DOI: 10.1007/978-3-319-16727-5_15, PDF

Mikhailov S.E., Portillo C.F. (2015b) BDIE System to the Mixed BVP for the Stokes Equations with Variable Viscosity, In: Integral Methods in Science and Engineering: Theoretical and Computational Advances.  C. Constanda and A. Kirsh, eds., Springer (Birkhäuser): Boston, ISBN 978-3-319-16727-5, 401-412, DOI: 10.1007/978-3-319-16727-5_34, PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2013a) Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients, Integral Equations and Operator Theory (IEOT), Vol. 76, 2013, 509-547, DOI 10.1007/s00020-013-2054-4. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2013b) Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Analysis and Applications, Vol.11, 2013, No 4, 1350006(1-33), DOI: 10.1142/S0219530513500061. PDF

Mikhailov S.E. (2013) Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math. Analysis and Appl., Vol. 400, 2013, 48-67. PDF

Grzhibovskis R., Mikhailov S., Rjasanow S. (2013) Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D, Comput. Mech., Vol. 51, 495-503, DOI: 10.1007/s00466-012-0777-8. PDF

Mikhailov S.E., Mohamed N.A. (2012) Numerical solution and spectrum of boundary-domain integral equation for the Neumann BVP with variable coefficient, International J. Computer Math., Vol. 89, 2012, 1488-1503, DOI: 10.1080/00207160.2012.679733. PDF

Mikhailov S.E. (2011) Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Analysis and Appl., Vol. 378, 324-342. PDF

Mikhailov S. E., Namestnikova I. V. (2011) History-sensitive accumulation rules for life-time prediction under variable loading, Archive of Applied Mechanics, Vol. 81, 1679-1696. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2011a) Localized direct segregated boundary-domain integral equations for variable-coefficient transmission problems with interface crack, Mem. Differential Equations Math. Phys., Vol. 52, 17-64. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2011b) Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks, Numerical Meth. for PDEs, Vol. 27, 121-140. PDF

Ayele T.G., Mikhailov S.E., (2011) Analysis of Two-Operator Boundary-Domain Integral Equations for Variable-Coefficient Mixed BVP, Eurasian Math. J., Vol. 2, 2011, No 3, 20-41. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2011c) Analysis of some localized boundary-domain integral equations for transmission problems with variable coefficients, In: Integral Methods in Science and Engineering: Computational and Analytic Aspects. C. Constanda and P. Harris, eds., Springer (Birkhäuser): Boston, ISBN 978-0-8176-8237-8, 91-108. PDF

Hakim L., Mikhailov S.E. (2011) Nonlinear Abel type integral equation in modelling creep crack propagation, In: Integral Methods in Science and Engineering: Computational and Analytic Aspects.  C. Constanda and P. Harris, eds., Springer (Birkhäuser): Boston, ISBN 978-0-8176-8237-8, 191-201. doi: 10.1007/978-0-8176-8238-5_18, PDF

2006-2010

Chkadua O., Mikhailov S.E., Natroshvili D. (2010a) Localized boundary-domain integral equation formulation for mixed type problems, Georgian Math. J., Vol.17, 469-494. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2010b) Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, II: Solution regularity and asymptotics, J. Integral Equations and Appl. Vol.22, 2010, 19-37. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2009a) Analysis of some localized boundary-domain integral equations, J. Integral Equations and Appl. Vol.21, 2009, 405-445. PDF

Chkadua O., Mikhailov S.E., Natroshvili D. (2009b) Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and Invertibility, J. Integral Equations and Appl. Vol.21(4), 2009, 499-543. PDF

Mikhailov S.E. (2006a) Analysis of united boundary-domain integro-differential and integral equations for a mixed BVP with variable coefficient. Math. Methods in Applied Sciences, Vol. 29, 715-739. PDF

Mikhailov S.E. (2006b) Localized direct boundary-domain integro-differential formulations for incremental elasto-plasticity of inhomogeneous body. Engineering Analysis with Boundary Elements, Vol. 30, 218-226. PDF

Mikhailov S. E. (2006c) Incremental Localized Boundary-Domain Integro-Differential Equations of Elastic Damage Mechanics for Inhomogeneous Body, In: Advances in Meshless Methods (Edited by J. Sladek & V. Sladek), Tech Science Press, Forsyth, USA, ISBN: 0-9717880-2-2, 105-123. PDF 

Mikhailov S. E., Namestnikova I. V.  (2006) Numerical Solution of a Free-Boundary Problem for Percussive Deep Drilling Modeling by BEM, In: Advances in Boundary Element Techniques VII (Edited by B Gatmiri, A Sellier and M H Aliabadi), Eastleigh: EC Ltd, ISBN 0-9547783-3-2, 2006, 15-22. PDF 

2001-2005

Mikhailov S.E. (2005a) Will the boundary (-domain) integral equation method survive? Preface to the special issue on non-traditional boundary (-domain) integral equation methods. J. Engineering Math., Vol. 51, 197-198. PDF

Mikhailov S.E. (2005b) Localized direct boundary–domain integro–differential formulations for scalar nonlinear boundary-value problems with variable coefficients. J. Engineering Math. , Vol. 51, 283-302. PDF

Mikhailov S.E. (2005c) Direct localized boundary-domain integro-differential formulations for physically nonlinear elasticity of inhomogeneous body. Engineering Analysis with Boundary Elements, Vol. 29, 1008–1015. PDF

Mikhailov S. E. (2005d) Analysis of extended boundary-domain integral and integro-differential equations of some variable-coefficient BVP.  In: Advances in Boundary Integral Methods - Proceedings of the 5th UK Conference on Boundary Integral Methods (Edited by Ke Chen), University of Liverpool Publ., UK, ISBN 0 906370 39 6, 106-125. PDF

Mikhailov S.E. (2005e) Analysis of boundary-domain integral and integro-differential equations for a Dirichlet problem with variable coefficient. In: Integral Methods in Science and Engineering: Theoretical and Practical Aspects (Edited by C.Constanda, Z.Nashed, D.Rolins), Boston-Basel-Berlin: Birkhäuser, ISBN 0-8176-4377-X, 161-176. PDF

Mikhailov S.E. (2005f) Boundary-Domain Integro-Differential Equation of Elastic Damage Mechanics Model of Stationary Drilling. In: Advances in Boundary Element Techniques VI (Edited by A.P.S.Selvadurai, C.L.Tan & M.H.Aliabadi), EC Ltd., UK, ISBN 09547783-2-4, 107-114. PDF

Mikhailov S.E., Nakhova I.S. (2005) Mesh-based numerical implementation of the localized boundary-domain integral equation method to a variable-coefficient Neumann problem. J. Engineering Math., Vol. 51, 251-259, doi: 10.1007/s10665-004-6452-0. PDF

Mikhailov S. E., Namestnikova I.V. (2005a) Quasi-static stationary-periodic model of percussive deep drilling. In:  Proceedings of the 11th International Conf. on Computer Methods and Advances in Geomechanics (Eds. G.Barla and M.Barla), Bologna: Patron Editore, Vol.1, 103-109. PDF

Mikhailov S. E., Namestnikova I. V. (2005b) Application of damage mechanics in percussive drilling modelling. In: Proceedings of  the 11th International Conference on Fracture, 20–25 March, 2005, Turin, Italy,  8p. PDF

Mikhailov S. E., Namestnikova I. V. (2004) Local and non-local normalised equivalent strain functionals for cyclic fatigue, In: Proceedings of the Seventh International Conference on Biaxial/Multiaxial Fatigue & Fracture, DVM, Berlin, 409-414. PDF

Mikhailov S.E. (2003) Theoretical backgrounds of durability analysis by normalized equivalent stress functionals. Mathematics and Mechanics of Solids, Vol. 8, 105-142. PDF

Mikhailov S.E., Namestnikova I.V. (2003a) Local and non-local approaches to fatigue crack initiation and propagation. In: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics (Edited by A.B. Movchan ), Kluwer, ISBN 1-4020-1780-4, 285-294. PDF

Mikhailov S. E., Namestnikova I. V. (2003b) Application of Local and Non-Local Approaches to Multiple Fatigue Crack Initiation and Propagation. In: Proceedings of ESIS International Conference on Fatigue Crack Paths, FCP 2003, Parma, Italy, 8 p. DOC

Mikhailov S. E. and Namestnikova I. V. (2003c) Fatigue strength and durability analysis by normalised equivalent stress functionals. In: Proceedings of the 9th International Conference on the Mechanical Behaviour of Materials, ICM9, Geneva, Switzerland, 10p. PDF

Mikhailov S. E. and Namestnikova I. V., (2003d) Local and non-local approaches to creep crack initiation and propagation. In: Proceedings of the 9th International Conference on the Mechanical Behaviour of Materials, ICM9, Geneva, Switzerland, 8p. PDF

Mikhailov S.E., Orlik J. (2003) Asymptotic homogenisation in strength and fatigue durability analysis of composites. In: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics (Edited by A.B. Movchan ), Kluwer, ISBN 1-4020-1780-4, 393-403. PDF

Mikhailov S.E. (2002) Localized boundary-domain integral formulations for problems with variable coefficients. Engineering Analysis with Boundary Elements, Vol. 26, 681-690, doi: 10.1016/S0955-7997(02)00030-9. PDF

Mikhailov S.E., Orlik J. (2002a) Homogenization methods and macro-strength of composites, Proceedings in Appl. Mathematics and Mechanics (PAMM), ISSN: 1617-7061, Vol.1, 411-413. PDF

Mikhailov S.E., Orlik J. (2002b) Homogenization in strength and durability analysis of reinforced tooth filling. In: Computer Methods in Biomechanics and Biomedical Engineering - 4 (Edited by J. Middleton, N. G. Shrive & M. L. Jones), University of Wales College of Medicine, ISBN: 1 903847095, 6p. PDF

Mikhailov S.E., Orlik J. (2001) Homogenization in integral viscoelasticity. ZAMM, Vol.81, S983-S984. PDF

Mikhailov S.E., Namestnikova, I.V. (2001) Concept of Normalised Equivalent Stress Functionals for Cyclic Fatigue. Preprint PP/MAT/SEM/0102-005, Glasgow Caledonian University, 1-53. PDF

1995-2000

Mikhailov S.E., Namestnikova I.V. (2000) Stress singularity analysis in space junctions of thin plates, Journal of Engineering Mathematics, Vol.37, 327-341. PDF

Mikhailov S.E. (2000) Non-local strength conditions based on generalized δc cohesive models. ZAMM, Vol.80, Issue Supplement S2, S483-S486, DOI: 10.1002/zamm.200008014113. PDF

Mikhailov S.E. (1999a) Finite-dimensional perturbations of linear operators and some applications to boundary integral equations, Engineering Analysis with Boundary Elements, Vol.23, 805-813. PDF

Mikhailov S.E. (1999b) About non-local strength functionals identification. In: Identification in Engineering Systems. Proceedings of the 2nd International Conf. (Ed. by M.I.Friswell, J.E.Mottershed & A.W.Lees), Swansea: The Cromwell Press Ltd, 619-628.

Isupov L.P., Mikhailov S.E. (1998) Comparative analysis of several non-local fracture criteria, Archive of Applied Mechanics, Vol.68, 597-612. PDF

Mikhailov S.E. (1998a) On some weighted Hardy type classes of one parametric holomorphic functions: I. Function properties and Mellin transforms, J. of Mathematical Analysis and Applications,Vol.222, 339-364. PDF

Mikhailov S.E. (1998b) On some weighted Hardy type classes of one parametric holomorphic functions: II. Partial Volterra operators in parameter, J. of Mathematical Analysis and Applications, Vol.222, 374-396. PDF

Bavaglia S., Mikhailov S.E. (1998) Application of a non-local failure criterion to a crack in heterogeneous media. In: Damage and Fracture Mechanics: Computer Aided Assessment and Control (Ed.: C.A.Brebbia & A.Carpentery), Southampton-Boston: Computational Mechanics Publ., 1998, 155-164. PDF

Orlik J., Mikhailov S.E. (1998) Equivalent elastic and shrinkage composite properties and their application to the hardening of the filling for teeth. In: Damage and Fracture Mechanics: Computer Aided Assessment and Control (Ed.: C.A.Brebbia & A.Carpentery), Southampton-Boston: Computational Mechanics Publ., 217-226.

Mikhailov S.E. (1998c) A functional approach to non-local strength conditions at multiaxial loading. In: Damage and Fracture Mechanics: Computer Aided Assessment and Control, (Ed.: C.A.Brebbia & A.Carpentery), Southampton-Boston: Computational Mechanics Publ., 429-438.

Mikhailov S.E. (1997a) Singular stress behaviour in a bonded hereditarily-elastic aging wedge. I. Problem statement and degenerate case, Mathematical Methods in the Applied Sciences, Vol.20, No.1, 13-30. PDF

Mikhailov S.E. (1997b) Singular stress behaviour in a bonded hereditarily-elastic aging wedge. II. General heredity, Mathematical Methods in the Applied Sciences, Vol.20, 31-45. PDF

Mikhailov S.E. (1997c) About interpolation of the non-local strength functionals by experimental data. In: 15th IMACS World Congress on Scientific Computations, Modelling and Applied Mathematics: Berlin, August 1997. (Proceedings) /ed. by A.Sydow, Berlin: Wissenschaft und Technik Verl., Vol.3, 515-520.

Mikhailov S.E. (1996) On a functional description of non-local strength and fracture. Existence and uniqueness. In: Mechanisms and Mechanics of Damage and Failure. - Proceedings of the 11th European Conf. on Fracture, Poitiers-Futuroscope, France, Vol.1, 195-200.

1978-1995

Mikhailov S.E. (1995a) A functional approach to non-local strength conditions and fracture criteria: I. Body and point fracture, Eng. Fract. Mech., Vol.52, No.4, 731-743. PDF

Mikhailov S.E. (1995b) A functional approach to non-local strength conditions and fracture criteria: II. Discrete fracture, Eng. Fract. Mech., Vol.52, No.4, 745-754. PDF

Mikhailov S.E. (1992) Certain boundary integral equations of the plane problem of elasticity theory for nonsingly connected bodies with one-dimensional elastic borders and corner points, Mech. of Solids (Izv. AN SSSR. MTT), Vol.27, No.1, 36-47. PDF

Mikhailov S.E. (1991a) General and fundamental solutions of axisymmetric torsion equation for a cylindrically anisotropic elastic medium, Mech. of Solids (Izv. AN SSSR.MTT), Vol. 26, No.3, 52-55. PDF-Russian, PDF-English.

Mikhailov S.E. (1991b) Asymptotic behaviour of the solutions of some integral equations and plane problems of elasticity near angular corners with displacements specified on the boundary, Mech. of Solids (Izv. AN SSSR. MTT), Vol.26, No.2, 28-40.

Mikhailov S.E.,Namestnikova I.V. (1991) Boundary value problems of elasticity theory for plane domains with one-dimensional elastic reinforcements, J. of Applied Mechanics and Technical Physics (PMTF), Vol. 32, No.1, 98-108. PDF-English

Mikhailov S.E. (1990) Axisymmetric fundamental solutions for the equations of heat conduction in the case of cylindrical anisotropy of a medium, J. of Applied Mechanics and Technical Physics (PMTF), Vol. 31, No.4, 567-571. PDF-Russian, PDF-English.

Klepikov V.P., Mikhailov S.E. (1989) Analysis of members and units of structures with stress concentrators by boundary integral equations method, Soviet Machine Science (Mashinovedenie), No.5, 38-46.

Mikhailov S.E. (1989) Spectral properties and solution methods for some integral equations of elasticity for plane non-simply-connected bodies with corner points, under forces specified on the boundary, Mech.of Solids (Izv.AN SSSR.MTT), Vol.24, No.5, 53-63.

Mikhailov S.E. (1989) Asymptotic behaviour of the solutions of some integral equations and plane problems of elasticity near  corners, with forces specified on the boundary, Mech. of Solids (Izv. AN SSSR. MTT), Vol. 24, No.3, 32-41. PDF-Russian, PDF-English

Klepikov V.P., Mikhailov S.E. (1986) Solving integral equations of elastic bars torsion in view of section symmetry, Soviet Machine Science (Mashinovedenie), No.4, 56-63.

Mikhailov S.E., Osokin A.E. (1986) Construction of fundamental solutions for the three-dimensional and plane problems for an anisotropic hereditary-elastic aging medium, Mech. of Solids (Izv. AN SSSR. MTT), Vol.21, No.5, 121-130. PDF-Russian, PDF-English

Mikhailov S.E. (1984) Singularity of the stresses in a plane hereditarily aging solid with corner points, Mech. of Solids (Izv. AN SSSR. MTT), Vol. 19, No.2, 126-139. PDF-Russian.

Mikhailov S.E., Osokin A.E. (1984) Construction of fundamental solutions for an anisotropic aging medium of the hereditary type, Sov. Phys. Dokl. (Dokl. AN SSSR), Vol.29(1), 78- 80. PDF-Russian, PDF-English.

Mikhailov S.E. (1983a) On an integral equation of some boundary value problems for harmonic functions in plane multiply connected domains with non regular boundary, Matematicheskii Sbornik, Vol.121, No.4, 533-544. (Engl.Translation: Mathematics of the USSR. - Sbornik, 1984, Vol.49, 525-536.) PDF-R, PDF-E

Mikhailov S.E. (1983b) Solution of problems on the anti-plane deformation of elastic bodies with corner points by the method of integral equations. Journal of Applied Mathematics and Mechanics. (PMM), Vol.47, No.6, 783-788. PDF

Mikhailov S.E. (1981) Edge effect in laminate composite materials, Mechanics of Composite Materials (Mekhanika Kompozitnykh Materialov), Vol.17, No.2, 150-156. PDF-R, PDF-E

Mikhailov S.E. (1979a) Stress singularity in a compound arbitrarily anisotropic body and applications to composites, Mech. of Solids (Izv. AN SSSR. MTT), Vol.14, No.6, 27-33. PDF-Russian, PDF-English.

Mikhailov S.E. (1979b) Stress singularity in the neighbourhood of a rib in composite inhomogeneous anisotropic body, and some applications to composites, Mech. of Solids (Izv. AN SSSR. MTT), Vol.14, No.5, 88-94. PDF-Russian, PDF-English.

Mikhailov S.E. (1978) One plane problem for two bonded anisotropic wedges, Mech. of Solids (Izv. AN SSSR. MTT), 1978, Vol.13, No.4, 138-143. PDF-Russian, PDF-English.