2021-2024
Mikhailov,
S. E. (2024) On Solonnikov Parabolicity
of the Evolution Anisotropic Stokes and Oseen PDE Systems. In: Tbilisi Analysis
and PDE Seminar. TAPDES 2023. Duduchava, R., Shargorodsky,
E., Tephnadze, G. (eds) Trends in Mathematics, vol 7.
Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62894-8_15,
PDF
Ayele, T.G., Demissie, B.M., Mikhailov, S.E. (2024)
Boundary-Domain Integral Equations for Variable-Coefficient Helmholtz BVPs in
2D. J. Math. Sci. 1-26, https://doi.org/10.1007/s10958-024-06993-6,
PDF
Mikhailov, S. E. (2024) Spatially-Periodic Solutions for Evolution Anisotropic
Variable-Coefficient Navier-Stokes Equations: I. Weak Solution Existence. Mathematics, Vol. 12(12), 1817, 1-27, https://doi.org/10.3390/math12121817, PDF
Mikhailov,
S. E. (2023) On Maximum Principles for Weak Solutions of Some Parabolic
Systems. In: Integral Methods in Science and Engineering, C. Constanda
et al.(eds.), Springer, Chapter 18, 219-227, https://doi.org/10.1007/978-3-031-34099-4_18,
PDF
Mikhailov,
S.E. (2023) Stationary Anisotropic Stokes, Oseen and Navier-Stokes Systems:
Periodic Solutions in $\R^n$. Math. Methods in Applied
Sciences, Vol. 46, 10903-10928, https://doi.org/10.1002/mma.9159,
PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2022) Non-homogeneous Dirichlet-transmission problems for the
anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with
transversal interfaces, Calculus of Variations and PDEs, Vol. 61, Article No. 198, https://doi.org/10.1007/s00526-022-02279-4, 47p., PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2022) On some mixed-transmission problems for the anisotropic Stokes
and Navier-Stokes systems in Lipschitz domains with transversal interfaces,
J.
Mathematical Analysis and Appl., Vol. 516, 126464, 28p., DOI: 1016/j.jmaa.2022.126464,
PDF
Mikhailov,
S.E. (2022) Periodic Solutions in $\mathbb R^n$ for Stationary Anisotropic Stokes and Navier-Stokes
Systems. In: Integral Methods in Science and Engineering, C. Constanda
et al.(eds.), Springer, Chapter 16, 227-243. https://doi.org/10.1007/978-3-031-07171-3_16, PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2021)
Layer potential theory for the anisotropic Stokes system with variable L∞
symmetrically elliptic tensor coefficient, Math. Methods in Appl. Sci., Vol. 44, 9641-9674, DOI:
10.1002/mma.7167, PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2021)
Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes
systems with L∞ tensor coefficient under relaxed ellipticity
condition, Discrete and Continuous Dynamical
Systems, Vol. 41, 4421-4460, doi:10.3934/dcds.2021042, PDF
Mikhailov
S.E., Portillo C.F. (2021) Boundary-domain
integral equations equivalent to an exterior mixed BVP for the variable viscosity
compressible Stokes PDEs, Communications on Pure &
Applied Analysis, Vol. 20, 1103-1133,
http://dx.doi.org/10.3934/cpaa.2021009,
PDF
2016-2020
Mikhailov
S.E., Portillo C.F. (2020) Analysis of
boundary-domain integral equations based on a new parametrix for the mixed
diffusion BVP with variable coefficient in an interior Lipschitz domain, J. Integral Equations and Appl, Vol. 32, 59-75. https://projecteuclid.org/euclid.jiea/1593050451,
PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2020)
Variational approach for layer potentials of the Stokes system with L∞ symmetrically elliptic coefficient tensor
and applications to Stokes and Navier-Stokes boundary problems, https://arxiv.org/abs/2002.09990, 1-53, PDF
Kohr M., Mikhailov S.E., Wendland L.W. (2020)
Potentials and transmission problems in weighted Sobolev spaces for anisotropic
Stokes and Navier-Stokes systems with L∞ strongly elliptic coefficient tensor, Complex Variables and
Elliptic Equations, Vol. 65, 109-140, DOI: 10.1080/17476933.2019.1631293, PDF
Fresneda-Portillo
C., Mikhailov S.E. (2019) Analysis of boundary-domain
integral equations to the mixed BVP for a compressible Stokes system with variable
viscosity, Communic. Pure and Appl.
Analysis, Vol. 18, 3059-3088, DOI: http://dx.doi.org/10.3934/cpaa.2019137, PDF
Ayele
T.G., Dufera T.T., Mikhailov S.E. (2019) Analysis of Boundary-Domain Integral Equations for
Variable-Coefficient Mixed BVP in 2D. In: Analysis,
Probability, Applications, and Computation, K.-O. Lindahl et al.
(eds.), Springer Nature Switzerland AG, ISBN 978-3-030-04459-6, 467-480, doi:10.1007/978-3-030-04459-6_45,
PDF
Dufera
T.T., Mikhailov S.E. (2019)
Boundary-domain integral equations for variable coefficient Dirichlet BVP in 2D
unbounded domain.
In: Analysis,
Probability, Applications, and Computation, K.-O. Lindahl et al.
(eds.), Springer Nature Switzerland AG, ISBN 978-3-030-04459-6, 481-492, doi:10.1007/978-3-030-04459-6_46,
PDF
Kohr
M., Mikhailov S.E., Wendland L.W. (2019)
Newtonian
and single layer potentials for the Stokes system with L∞
coefficients and the exterior Dirichlet problem, In: Analysis
as a Life. S. Rogosin and A.O. Celebi, eds., Springer
(Birkhäuser), ISBN
978-3-030-02650-9, 237-260, DOI: 10.1007/978-3-030-02650-9_12,
PDF
Chkadua O.,
Mikhailov S.E., Natroshvili D. (2018)
Singular localised boundary-domain integral equations of acoustic scattering by
inhomogeneous anisotropic obstacle, Math. Methods in Appl. Sci. Vol.41, 8033-8058, DOI: 10.1002/mma.5268, PDF
Hakim
L., Mikhailov S.E. (2018) A history-dependent
cohesive zone model in elastic and visco-elastic materials under constant and
variable loading, Int. J.
Mechanical Sci., Vol. 144, 518-525, DOI: 10.1016/j.ijmecsci.2018.05.032,
PDF.
Mikhailov
S.E. (2018) Analysis of segregated
boundary-domain integral equations for BVPs with non-smooth coefficient on
Lipschitz domains, Boundary Value Problems,
Vol. 2018:87, 1-52, DOI: 10.1186/s13661-018-0992-0,
PDF.
Gutt R., Kohr M., Mikhailov S.E.,
Wendland W.L. (2017) On the
mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased
Lipschitz domains, Math. Methods in Appl. Sci., Vol.
40, 7780-7829, DOI: 10.1002/mma.4562,
PDF.
Ayele T.G., Dufera T.T., Mikhailov S.E. (2017) Analysis of boundary-domain integral equations for variable-coefficient Neumann BVP in 2D, In: Integral Methods in Science and Engineering, Vol.1 Theoretical Techniques. C. Constanda et al, eds. Springer (Birkhäuser): Boston, ISBN 978-3-319-59384-5, Chapter 3, 21-33, DOI: 10.1007/978-3-319-59384-5_3, PDF.
Mikhailov S.E., Portillo C.F. (2017)
A new
family of boundary-domain integral equations for the mixed exterior stationary
heat transfer problem with variable coefficient, In: Integral Methods in Science and Engineering,
Vol.1 Theoretical Techniques. C. Constanda et al, eds. Springer (Birkhäuser):
Boston, ISBN 978-3-319-59384-5, Chapter 19, 215-226, DOI:
10.1007/978-3-319-59384-5_19, PDF.
Chkadua O.,
Mikhailov S.E., Natroshvili D. (2017)
Localized
boundary-domain singular integral equations of Dirichlet problem for
self-adjoint second order strongly elliptic PDE systems, Math. Methods in Appl. Sci., Vol. 40, 1817-1837, DOI: 10.1002/mma.4100. PDF
Kohr M., Mikhailov
S.E., Wendland W.L. (2017)
Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman
systems in Lipschitz domains on compact Riemannian manifolds, J. Math. Fluid Mech.,
Vol. 19, 203-238, DOI: 10.1007/s00021-016-0273-6. PDF
Kohr M., Lanza de
Cristoforis M., Mikhailov S.E., Wendland W.L. (2016) Integral potential method for transmission
problem with Lipschitz interface in R3 for the Stokes and
Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys.,
Vol. 67: 116, 30p. DOI: 10.1007/s00033-016-0696-1. PDF
2011-2015
Mikhailov
S.E. (2015) Analysis of Segregated
Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet and
Neumann Problems with General Data, arXiv:1509.03501,
1-32. http://arxiv.org/abs/1509.03501
Hakim
L., Mikhailov S.E. (2015) Integral equations
of a cohesive zone model for history-dependent materials and their numerical
solution, Quarterly J. Mech. Appl. Math., Vol. 68, 387-419, doi: 10.1093/qjmam/hbv013. PDF
Mikhailov S.E., Portillo C.F. (2015a) A New Family of Boundary-Domain Integral Equations for
a Mixed Elliptic BVP with Variable Coefficient, In:
Proceedings of the 10th UK Conference on Boundary Integral Methods, University
of Brighton, UK, 13-14 July 2015 (Edited by P. Harris), ISBN 978-1-910172-05-6, 2015,
76-84. PDF
Dufera T.T., Mikhailov S.E. (2015)
Analysis
of Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet BVP in
2D, In: Integral Methods in Science
and Engineering: Theoretical and Computational Advances. C. Constanda and A. Kirsh,
eds., Springer (Birkhäuser): Boston, ISBN 978-3-319-16727-5, 163-175, DOI:
10.1007/978-3-319-16727-5_15, PDF
Mikhailov S.E., Portillo C.F. (2015b)
BDIE
System to the Mixed BVP for the Stokes Equations with Variable Viscosity, In: Integral Methods in Science
and Engineering: Theoretical and Computational Advances. C. Constanda and A. Kirsh,
eds., Springer (Birkhäuser): Boston, ISBN 978-3-319-16727-5, 401-412, DOI:
10.1007/978-3-319-16727-5_34, PDF
Chkadua O.,
Mikhailov S.E., Natroshvili D. (2013a)
Localized
boundary-domain singular integral equations based on harmonic parametrix for
divergence-form elliptic PDEs with variable matrix coefficients, Integral
Equations and Operator Theory (IEOT), Vol. 76, 2013,
509-547, DOI 10.1007/s00020-013-2054-4. PDF
Chkadua O., Mikhailov S.E., Natroshvili D. (2013b) Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Analysis and Applications, Vol.11, 2013, No 4, 1350006(1-33), DOI: 10.1142/S0219530513500061. PDF
Mikhailov S.E. (2013) Solution regularity and co-normal derivatives for
elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math.
Analysis and Appl., Vol. 400, 2013, 48-67. PDF
Grzhibovskis R.,
Mikhailov S., Rjasanow S. (2013)
Numerics of
boundary-domain integral and integro-differential equations for BVP with variable
coefficient in 3D, Comput. Mech., Vol. 51, 495-503, DOI: 10.1007/s00466-012-0777-8. PDF
Mikhailov S.E.,
Mohamed N.A. (2012) Numerical solution and
spectrum of boundary-domain integral equation for the Neumann BVP with variable
coefficient, International J. Computer Math., Vol. 89, 2012, 1488-1503, DOI: 10.1080/00207160.2012.679733.
PDF
Mikhailov S.E. (2011) Traces, extensions and co-normal
derivatives for elliptic systems on Lipschitz domains. J. Math.
Analysis and Appl., Vol. 378, 324-342. PDF
Mikhailov S. E.,
Namestnikova I. V. (2011) History-sensitive accumulation
rules for life-time prediction under variable loading, Archive of Applied Mechanics, Vol. 81, 1679-1696. PDF
Chkadua
O., Mikhailov S.E., Natroshvili D. (2011a)
Localized direct segregated boundary-domain integral equations for variable-coefficient
transmission problems with interface crack,
Mem. Differential
Equations Math. Phys., Vol. 52, 17-64.
PDF
Chkadua O., Mikhailov S.E., Natroshvili D. (2011b) Analysis of segregated boundary-domain integral
equations for variable-coefficient problems with cracks, Numerical Meth. for PDEs, Vol. 27, 121-140. PDF
Ayele T.G., Mikhailov S.E., (2011) Analysis of Two-Operator Boundary-Domain
Integral Equations for Variable-Coefficient Mixed BVP, Eurasian
Math. J., Vol.
2, 2011, No 3, 20-41. PDF
Chkadua O.,
Mikhailov S.E., Natroshvili D. (2011c)
Analysis of some localized boundary-domain integral equations for transmission
problems with variable coefficients, In: Integral
Methods in Science and Engineering: Computational and Analytic Aspects. C.
Constanda and P. Harris, eds., Springer (Birkhäuser): Boston, ISBN
978-0-8176-8237-8, 91-108. PDF
Hakim L., Mikhailov S.E. (2011) Nonlinear Abel type integral equation in modelling
creep crack propagation, In: Integral
Methods in Science and Engineering: Computational and Analytic Aspects. C. Constanda and P. Harris, eds., Springer
(Birkhäuser): Boston, ISBN 978-0-8176-8237-8, 191-201. doi: 10.1007/978-0-8176-8238-5_18,
PDF
2006-2010
Chkadua
O., Mikhailov S.E., Natroshvili D. (2010a) Localized
boundary-domain integral equation formulation for mixed type problems, Georgian
Math. J., Vol.17, 469-494. PDF
Chkadua
O., Mikhailov S.E., Natroshvili D. (2010b) Analysis
of direct boundary-domain integral equations for a mixed BVP with variable
coefficient, II: Solution regularity and asymptotics, J. Integral
Equations and Appl. Vol.22, 2010, 19-37. PDF
Chkadua
O., Mikhailov S.E., Natroshvili D. (2009a) Analysis
of some localized boundary-domain integral equations, J. Integral
Equations and Appl. Vol.21, 2009, 405-445. PDF
Chkadua O., Mikhailov S.E.,
Natroshvili D. (2009b) Analysis of direct
boundary-domain integral equations for a mixed BVP with variable coefficient,
I: Equivalence and Invertibility, J. Integral Equations and Appl. Vol.21(4), 2009, 499-543. PDF
Mikhailov
S.E. (2006a) Analysis of united
boundary-domain integro-differential and integral equations for a mixed BVP with
variable coefficient. Math. Methods in
Applied Sciences, Vol. 29, 715-739. PDF
Mikhailov
S.E. (2006b) Localized direct boundary-domain
integro-differential formulations for incremental elasto-plasticity of
inhomogeneous body. Engineering
Analysis with Boundary Elements, Vol. 30,
218-226. PDF
Mikhailov S. E. (2006c) Incremental Localized Boundary-Domain Integro-Differential Equations of
Elastic Damage Mechanics for Inhomogeneous Body, In: Advances in
Meshless Methods (Edited by J. Sladek & V.
Sladek), Tech Science Press, Forsyth, USA, ISBN: 0-9717880-2-2, 105-123. PDF
Mikhailov S. E., Namestnikova I. V. (2006)
Numerical Solution of a Free-Boundary Problem for Percussive Deep Drilling Modeling by BEM, In: Advances in
Boundary Element Techniques VII (Edited by B Gatmiri, A Sellier and M H Aliabadi), Eastleigh: EC Ltd,
ISBN 0-9547783-3-2, 2006, 15-22. PDF
2001-2005
Mikhailov
S.E. (2005a) Will the boundary (-domain)
integral equation method survive? Preface to the special issue on non-traditional
boundary (-domain) integral equation methods. J. Engineering Math., Vol. 51, 197-198. PDF
Mikhailov
S.E. (2005b) Localized direct
boundary–domain integro–differential formulations for scalar nonlinear
boundary-value problems with variable coefficients. J. Engineering Math. , Vol. 51,
283-302. PDF
Mikhailov
S.E. (2005c) Direct localized
boundary-domain integro-differential formulations for physically nonlinear
elasticity of inhomogeneous body. Engineering Analysis
with Boundary Elements, Vol. 29, 1008–1015. PDF
Mikhailov
S. E. (2005d) Analysis of extended
boundary-domain integral and integro-differential equations of some variable-coefficient
BVP. In: Advances in Boundary
Integral Methods - Proceedings of the 5th UK Conference on Boundary Integral
Methods (Edited by Ke Chen), University of Liverpool Publ., UK, ISBN 0 906370
39 6, 106-125. PDF
Mikhailov
S.E. (2005e) Analysis of boundary-domain
integral and integro-differential equations for a Dirichlet problem with
variable coefficient. In: Integral Methods in
Science and Engineering: Theoretical and Practical Aspects (Edited by C.Constanda, Z.Nashed,
D.Rolins), Boston-Basel-Berlin: Birkhäuser, ISBN
0-8176-4377-X, 161-176. PDF
Mikhailov
S.E. (2005f) Boundary-Domain Integro-Differential
Equation of Elastic Damage Mechanics Model of Stationary Drilling. In: Advances in
Boundary Element Techniques VI (Edited by A.P.S.Selvadurai, C.L.Tan & M.H.Aliabadi), EC Ltd., UK, ISBN 09547783-2-4,
107-114. PDF
Mikhailov
S.E., Nakhova I.S. (2005) Mesh-based numerical
implementation of the localized boundary-domain integral equation method to a
variable-coefficient Neumann problem. J. Engineering Math., Vol. 51, 251-259, doi: 10.1007/s10665-004-6452-0.
PDF
Mikhailov
S. E., Namestnikova I.V. (2005a) Quasi-static
stationary-periodic model of percussive deep drilling. In: Proceedings of the
11th International Conf. on Computer Methods and Advances in Geomechanics
(Eds. G.Barla and M.Barla), Bologna: Patron Editore,
Vol.1, 103-109. PDF
Mikhailov
S. E., Namestnikova I. V. (2005b) Application of damage mechanics
in percussive drilling modelling. In: Proceedings of the
11th International Conference on Fracture, 20–25 March, 2005, Turin,
Italy, 8p. PDF
Mikhailov
S. E., Namestnikova I. V. (2004) Local and non-local
normalised equivalent strain functionals for cyclic fatigue, In: Proceedings of the
Seventh International Conference on Biaxial/Multiaxial Fatigue & Fracture, DVM,
Berlin, 409-414. PDF
Mikhailov
S.E. (2003) Theoretical backgrounds of
durability analysis by normalized equivalent stress functionals. Mathematics and Mechanics of Solids, Vol. 8, 105-142. PDF
Mikhailov
S.E., Namestnikova I.V. (2003a) Local and non-local
approaches to fatigue crack initiation and propagation. In: IUTAM Symposium on
Asymptotics, Singularities and Homogenisation in Problems of Mechanics (Edited by A.B. Movchan ), Kluwer, ISBN 1-4020-1780-4, 285-294. PDF
Mikhailov
S. E., Namestnikova I. V. (2003b) Application of Local and
Non-Local Approaches to Multiple Fatigue Crack Initiation and Propagation. In:
Proceedings of ESIS International
Conference on Fatigue Crack Paths, FCP 2003, Parma, Italy, 8 p. DOC
Mikhailov
S. E. and Namestnikova I. V. (2003c) Fatigue strength and
durability analysis by normalised equivalent stress functionals. In: Proceedings
of the 9th International Conference on the Mechanical Behaviour of Materials,
ICM9, Geneva, Switzerland, 10p. PDF
Mikhailov
S. E. and Namestnikova I. V., (2003d) Local and non-local
approaches to creep crack initiation and propagation. In: Proceedings of the 9th
International Conference on the Mechanical Behaviour of Materials, ICM9,
Geneva, Switzerland, 8p. PDF
Mikhailov
S.E., Orlik J. (2003) Asymptotic homogenisation in
strength and fatigue durability analysis of composites. In: IUTAM Symposium on
Asymptotics, Singularities and Homogenisation in Problems of Mechanics (Edited by A.B. Movchan ), Kluwer, ISBN 1-4020-1780-4, 393-403. PDF
Mikhailov
S.E. (2002) Localized boundary-domain integral
formulations for problems with variable coefficients. Engineering
Analysis with Boundary Elements, Vol. 26,
681-690, doi: 10.1016/S0955-7997(02)00030-9. PDF
Mikhailov
S.E., Orlik J. (2002a) Homogenization methods and
macro-strength of composites, Proceedings in
Appl. Mathematics and Mechanics (PAMM), ISSN: 1617-7061, Vol.1, 411-413. PDF
Mikhailov
S.E., Orlik J. (2002b) Homogenization in strength and
durability analysis of reinforced tooth filling. In: Computer Methods in
Biomechanics and Biomedical Engineering - 4 (Edited by J. Middleton, N.
G. Shrive & M. L. Jones), University of Wales College of Medicine, ISBN: 1
903847095, 6p. PDF
Mikhailov
S.E., Orlik J. (2001) Homogenization in integral
viscoelasticity. ZAMM, Vol.81, S983-S984. PDF
Mikhailov
S.E., Namestnikova, I.V. (2001) Concept of Normalised
Equivalent Stress Functionals for Cyclic Fatigue. Preprint PP/MAT/SEM/0102-005, Glasgow Caledonian University, 1-53. PDF
1995-2000
Mikhailov
S.E., Namestnikova I.V. (2000)
Stress
singularity analysis in space junctions of thin plates, Journal of Engineering
Mathematics, Vol.37, 327-341. PDF
Mikhailov
S.E. (2000) Non-local strength conditions
based on generalized δc cohesive models. ZAMM, Vol.80, Issue
Supplement S2, S483-S486, DOI:
10.1002/zamm.200008014113. PDF
Mikhailov
S.E. (1999a) Finite-dimensional perturbations of linear operators and some
applications to boundary integral equations,
Engineering
Analysis with Boundary Elements, Vol.23,
805-813. PDF
Mikhailov
S.E. (1999b) About non-local strength functionals identification. In: Identification
in Engineering Systems. Proceedings of the 2nd International Conf. (Ed.
by M.I.Friswell, J.E.Mottershed & A.W.Lees),
Swansea: The Cromwell Press Ltd, 619-628.
Isupov
L.P., Mikhailov S.E. (1998) Comparative analysis of several non-local fracture
criteria, Archive of Applied
Mechanics, Vol.68, 597-612. PDF
Mikhailov
S.E. (1998a) On some weighted Hardy type classes of one parametric holomorphic
functions: I. Function properties and Mellin transforms, J. of Mathematical
Analysis and Applications,Vol.222,
339-364. PDF
Mikhailov
S.E. (1998b) On some weighted Hardy type classes of one parametric holomorphic functions: II. Partial Volterra operators in parameter, J. of Mathematical
Analysis and Applications, Vol.222,
374-396. PDF
Bavaglia
S., Mikhailov S.E. (1998) Application of a non-local failure criterion to a
crack in heterogeneous media. In: Damage and Fracture Mechanics: Computer
Aided Assessment and Control (Ed.: C.A.Brebbia & A.Carpentery),
Southampton-Boston: Computational Mechanics Publ., 1998, 155-164. PDF
Orlik
J., Mikhailov S.E. (1998) Equivalent elastic and shrinkage composite properties
and their application to the hardening of the filling for teeth. In: Damage
and Fracture Mechanics: Computer Aided Assessment and Control (Ed.: C.A.Brebbia & A.Carpentery), Southampton-Boston: Computational Mechanics
Publ., 217-226.
Mikhailov
S.E. (1998c) A functional approach to non-local strength conditions at
multiaxial loading. In: Damage and Fracture Mechanics: Computer
Aided Assessment and Control, (Ed.: C.A.Brebbia & A.Carpentery),
Southampton-Boston: Computational Mechanics Publ., 429-438.
Mikhailov
S.E. (1997a) Singular stress behaviour in a bonded hereditarily-elastic
aging wedge. I. Problem statement and degenerate case, Mathematical
Methods in the Applied Sciences, Vol.20, No.1,
13-30. PDF
Mikhailov
S.E. (1997b) Singular stress behaviour in a bonded hereditarily-elastic
aging wedge. II. General heredity, Mathematical
Methods in the Applied Sciences, Vol.20, 31-45.
PDF
Mikhailov
S.E. (1997c) About interpolation of the non-local strength functionals by
experimental data. In: 15th IMACS World Congress on Scientific
Computations, Modelling and Applied Mathematics: Berlin, August 1997. (Proceedings) /ed. by A.Sydow, Berlin: Wissenschaft und Technik Verl.,
Vol.3, 515-520.
Mikhailov
S.E. (1996) On a functional description of non-local strength and fracture.
Existence and uniqueness. In: Mechanisms and Mechanics of Damage and
Failure. - Proceedings of the 11th European Conf. on Fracture,
Poitiers-Futuroscope, France, Vol.1, 195-200.
1978-1995
Mikhailov
S.E. (1995a) A functional approach to non-local strength conditions and
fracture criteria: I. Body and point fracture, Eng. Fract.
Mech., Vol.52, No.4, 731-743. PDF
Mikhailov
S.E. (1995b) A functional approach to non-local strength conditions and fracture
criteria: II. Discrete fracture, Eng. Fract. Mech.,
Vol.52, No.4, 745-754. PDF
Mikhailov
S.E. (1992) Certain boundary integral equations of the plane problem of
elasticity theory for nonsingly connected bodies with
one-dimensional elastic borders and corner points, Mech. of Solids (Izv. AN SSSR. MTT),
Vol.27, No.1, 36-47. PDF
Mikhailov
S.E. (1991a) General and fundamental solutions of axisymmetric torsion equation
for a cylindrically anisotropic elastic medium, Mech. of Solids (Izv. AN SSSR.MTT), Vol. 26, No.3, 52-55. PDF-Russian, PDF-English.
Mikhailov
S.E. (1991b) Asymptotic behaviour of the solutions of some integral equations
and plane problems of elasticity near angular corners with displacements
specified on the boundary, Mech. of Solids (Izv.
AN SSSR. MTT), Vol.26, No.2, 28-40.
Mikhailov
S.E.,Namestnikova I.V.
(1991) Boundary value problems of elasticity theory for plane domains with
one-dimensional elastic reinforcements, J. of Applied Mechanics and Technical
Physics (PMTF), Vol. 32, No.1, 98-108. PDF-English
Mikhailov
S.E. (1990) Axisymmetric fundamental solutions for the equations of heat
conduction in the case of cylindrical anisotropy of a medium, J.
of Applied Mechanics and Technical Physics (PMTF), Vol. 31, No.4,
567-571. PDF-Russian, PDF-English.
Klepikov V.P., Mikhailov S.E. (1989) Analysis of members and
units of structures with stress concentrators by boundary integral equations
method, Soviet Machine Science (Mashinovedenie),
No.5, 38-46.
Mikhailov
S.E. (1989) Spectral properties and solution methods for some integral
equations of elasticity for plane non-simply-connected
bodies with corner points, under forces specified on the boundary, Mech.of Solids
(Izv.AN SSSR.MTT), Vol.24, No.5, 53-63.
Mikhailov
S.E. (1989) Asymptotic behaviour of the solutions of some integral equations
and plane problems of elasticity near corners, with forces specified on the
boundary, Mech. of Solids (Izv. AN SSSR. MTT),
Vol. 24, No.3, 32-41. PDF-Russian, PDF-English
Klepikov V.P., Mikhailov S.E. (1986) Solving integral equations
of elastic bars torsion in view of section symmetry, Soviet Machine Science (Mashinovedenie), No.4, 56-63.
Mikhailov
S.E., Osokin A.E. (1986) Construction of fundamental solutions for the
three-dimensional and plane problems for an anisotropic hereditary-elastic
aging medium, Mech. of Solids (Izv. AN SSSR. MTT), Vol.21, No.5, 121-130. PDF-Russian, PDF-English
Mikhailov
S.E. (1984) Singularity of the stresses in a plane hereditarily aging solid
with corner points, Mech. of Solids (Izv. AN SSSR. MTT), Vol. 19, No.2, 126-139. PDF-Russian.
Mikhailov
S.E., Osokin A.E. (1984) Construction of fundamental solutions for an
anisotropic aging medium of the hereditary type, Sov. Phys. Dokl. (Dokl.
AN SSSR), Vol.29(1), 78- 80. PDF-Russian, PDF-English.
Mikhailov
S.E. (1983a) On an integral equation of some boundary value problems for
harmonic functions in plane multiply connected domains with non regular
boundary, Matematicheskii Sbornik,
Vol.121, No.4, 533-544. (Engl.Translation: Mathematics of the USSR. - Sbornik, 1984, Vol.49, 525-536.) PDF-R, PDF-E
Mikhailov
S.E. (1983b) Solution of problems on the anti-plane deformation of elastic
bodies with corner points by the method of integral equations. Journal of Applied Mathematics and
Mechanics. (PMM), Vol.47, No.6, 783-788. PDF
Mikhailov
S.E. (1981) Edge effect in laminate composite materials, Mechanics of Composite Materials
(Mekhanika Kompozitnykh Materialov), Vol.17, No.2, 150-156. PDF-R, PDF-E
Mikhailov
S.E. (1979a) Stress singularity in a compound arbitrarily anisotropic body and
applications to composites, Mech. of Solids (Izv.
AN SSSR. MTT), Vol.14, No.6, 27-33. PDF-Russian, PDF-English.
Mikhailov
S.E. (1979b) Stress singularity in the neighbourhood of a rib in composite
inhomogeneous anisotropic body, and some applications to composites, Mech.
of Solids (Izv. AN SSSR. MTT), Vol.14, No.5,
88-94. PDF-Russian, PDF-English.
Mikhailov
S.E. (1978) One plane problem for two bonded anisotropic wedges, Mech. of Solids (Izv.
AN SSSR. MTT), 1978, Vol.13, No.4, 138-143. PDF-Russian, PDF-English.