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Abstract

Specially constructed localized parametrixes are used in this paper instead of a fundamental solution to reduce a boundary value problem

with variable coefficients to a localized boundary-domain integral or integro-differential equation (LBDIE or LBDIDE). After discretization,

this results in a sparsely populated system of linear algebraic equations, which can be solved by well-known efficient methods. This make the

method competitive with the finite element method for such problems. Some methods of the parametrix localization are discussed and the

corresponding LBDIEs and LBDIDEs are introduced. Both mesh-based and meshless algorithms for the localized equations discretization

are described. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The boundary integral equation (BIE) method (boundary

element method, elastic potential method) has been

intensively developed over recent decades both in theory

and in engineering applications. Its popularity is due to the

possibility (at least for some problems with constant

coefficients) of reducing a boundary value problem (BVP)

for a linear partial differential equation in a domain to an

integral equation on the domain boundary, i.e. to diminish

the problem dimensionality by one. It leads to a diminution

of the linear algebraic equations system, which results from

discretization, and allows to obtain numerical solutions

using small computer resources. The main thing necessary

for the reduction of a BVP to a BIE is a fundamental

solution to the original partial differential equation,

available in an analytical form and/or cheaply calcu-

lated. After the fundamental solution is used in the

corresponding Green formulae, one can reduce the problem

to a BIE.

However, such a fundamental solution is generally not

available if the coefficients of the original BVP are not

constant. The BVPs of heat transfer with variable heat

conductivity coefficients and the BVPs of elastic shells

particularly belong to this category. One can use, in this

case, a parametrix (Levi function), which is usually

available, instead of the fundamental solution in the Green

formulae. Parametrix correctly describes the main part of

the fundamental solution but is not required to satisfy the

original differential equations apart from the singular point.

This allows a reduction of the problem not to boundary but

to boundary-domain integral or integro-differential equation

(BDIE or BDIDE) [1–7]. For numerical solving the BDIE

or BDIDE, one should discretize not only the domain

boundary but also the domain itself and arrives after

discretization at a system of linear algebraic equations, as in

the finite element method (FEM), without any dimension

diminution. Unfortunately, this system unlike FEM is fully

populated which prevents the use of economical methods

developed for sparsely populated system solution.

To prevent this difficulty and to make the BDIE/BDIDE

method competitive with the FEM, some localized para-

metrixes are constructed and used in this paper to reduce

BVPs with variable coefficients to localized BDIEs or

BDIDEs, developing the approach of Ref. [8]. This results,

after discretization, in sparsely populated systems of linear

algebraic equations, which can be solved by well known

efficient methods. The local BIE method of Refs. [9,10] can

be considered as a particular realization of the localized

BDIE/BDIDE method described here.
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2. BVP, fundamental solution, parametrix, integral and

integro-differential equations

2.1. Stationary heat transfer problem in an inhomogeneous

body

The presented approach is sufficiently general but for

illustration of the idea we consider a stationary heat transfer

BVP in an isotropic inhomogeneous 2D or 3D body V, with

a prescribed temperature �uðxÞ on a closed part ›DV of the

boundary ›V and prescribed heat flux �tðxÞ on the remaining

part ›NV of ›V, i.e. we consider an equation

ðLuÞðxÞ U
›

›xi

aðxÞ
›uðxÞ

›xi

� �
¼ f ðxÞ; x [ V ð1Þ

with the mixed boundary conditions

uðxÞ ¼ �uðxÞ; x [ ›DV; ð2Þ

TuðxÞ ¼ �tðxÞ; x [ ›NV; ð3Þ

where V is an open (without boundaries) domain, uðxÞ an

unknown temperature, aðxÞ a known variable thermo-

conductivity coefficient, f ðxÞ a known distributed heat

source, T a surface flux operator, ðTuÞðxÞ U

aðxÞ ›uðxÞ=›nðxÞ; nðxÞ an external normal vector to the

boundary ›V, and �uðxÞ and �tðxÞ are known functions.

Summation in repeated indices is supposed from 1 to 2 in

the 2D and from 1 to 3 in the 3D case unless stated

otherwise.

The Green formula for the differential operator L has the

form

ð
V
½uLv 2 vLu� dV ¼

ð
›V

½uTv 2 vTu� dG: ð4Þ

2.2. Fundamental solution, integral and integro-differential

equations

Suppose Fðx; yÞ is a fundamental solution for the operator

L, that is, a solution to the equation

LxFðx; yÞ ¼ dðx 2 yÞ;

where dðx 2 yÞ is the Dirac delta-function. Then taking uðxÞ

in Eq. (4) as an unknown solution of Eq. (1) and vðxÞ as the

fundamental solution Fðx; yÞ; one obtains, by the usual way

[11], the integral equality

cðyÞuðyÞ2
ð
›V

½uðxÞTxFðx; yÞ2 Fðx; yÞTuðxÞ� dGðxÞ

¼
ð
V

Fðx; yÞf ðxÞ dVðxÞ; ð5Þ

cðyÞ ¼ cðy;VÞ ¼

1 if y [ V;

0 if y � �V;

aðyÞ=ð2pÞ if y [ ›V and V , R2;

aðyÞ=ð4pÞ if y [ ›V and V , R3;

8>>>>><
>>>>>:

ð6Þ

where aðyÞ is an interior space angle at a corner point y of

the boundary ›V, particularly, cðyÞ ¼ 1=2 if y is a smooth

point of the boundary. (Note that the signs in front of the

surface integrals in Eq. (5) throughout this paper differ from

those in Ref. [8], where they correspond in fact to the use of

the internal normal vector n in the flux operator T

definition.)

Different combinations of representation (5) with

boundary conditions (2) and (3) lead to different integral

or integro-differential systems, which, in turn, can lead to

different numerical realizations. We will, in particular,

consider two of them in this paper.

One way is to substitute boundary conditions (2) and (3)

into Eq. (5), to introduce a new variable tðxÞ ¼ TuðxÞ for the

unknown flux on ›DV, and to use Eq. (5) at y [ V< ›V to

reduce BVP (1)– (3) to a boundary-domain integral

equation (BDIE) for uðxÞ at x [ V< ›NV and tðxÞ at x [
›DV

c0ðyÞuðyÞ2
ð
›NV

uðxÞTxFðx; yÞ dGðxÞ

þ
ð
›DV

Fðx; yÞtðxÞ dGðxÞ ¼ F0ðyÞ; ð7Þ

F0ðyÞ U ½c0ðyÞ2 cðyÞ��uðyÞ þFðyÞ; y [ V< ›V;

FðyÞ U
ð
›DV

�uðxÞTxFðx; yÞ dGðxÞ2
ð
›NV

Fðx; yÞ�tðxÞ dGðxÞ

þ
ð
V

Fðx; yÞf ðxÞ dVðxÞ; ð8Þ

c0ðyÞ ¼
0 if y [ ›DV;

cðyÞ if y [ V< ›NV:

(
ð9Þ

Since the left hand side of integral equation (7) at the

boundary points y [ ›V is expressed in terms of only

boundary values uðxÞ ðx [ ›NVÞ and tðxÞ ðx [ ›DVÞ; one

can split Eq. (7) and first solve the equation at y [ ›V for

uðxÞ ðx [ ›NVÞ and tðxÞ ðx [ ›DVÞ; and then use Eq. (7) at

the remaining points y [ V for calculating uðyÞ at the

internal points. By this way one reduces the original BVP

(1)–(3) to a direct BIE with well known advantages

(diminishing of the problem dimensionality by one) and

disadvantages (system of linear algebraic equations with a

fully populated matrix after discretization).

Another approach includes substituting boundary

conditions (2) and (3) into integral equality (5) but leaving

T as a differential flux operator acting on u at the Dirichlet
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boundary part ›DV and using the resulting BDIDE only

V< ›VN,

cðyÞuðyÞ2
ð
›NV

uðxÞTxFðx; yÞ dGðxÞ

þ
ð
›DV

Fðx; yÞTuðxÞ dGðxÞ

¼ FðyÞ; y [ V< ›NV; ð10Þ

where FðyÞ is given by Eq. (8). Complementing the BDIDE

with the Dirichlet boundary condition (2) at y [ ›DV

reduces BVP (1)–(3) to a boundary-domain integro-

differential problem, BDIDP (10), (2) for uðxÞ; x [
V< ›NV:

2.3. Parametrix, integral and integro-differential equations

For the partial differential operators with variable

coefficients, like L in Eq. (1), a fundamental solution is

usually not available in an explicit form or the form is too

expensive to use for numerical solution of the BIE.

However, a parametrix is often available instead, which is

a function Pðx; yÞ satisfying

LxPðx; yÞ ¼ dðx 2 yÞ þ Rðx; yÞ;

where the remainder term Rðx; yÞ as a function of x [ V has

not more than a weak (integrable) singularity at x ¼ y:
One can check that a parametrix for Eq. (1) is given by

the fundamental solution to the same equation but with the

‘frozen’ coefficient aðxÞ ¼ aðyÞ: The equation then becomes

the Laplace equation up to the constant multiplier and the

parametrix for Eq. (1) is Pðx; yÞ ¼ FDðx; yÞ=aðyÞ; where

FDðx; yÞ is a fundamental solution for the Laplace operator

D,

FDðx; yÞ ¼
lnlx 2 yl

2p
; x; y [ R2;

FDðx; yÞ ¼
21

4plx 2 yl
; x; y [ R3;

where lx 2 yl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 2 yiÞðxi 2 yiÞ

p
: Then

Pðx; yÞ ¼
lnlx 2 yl
2paðyÞ

;

Rðx; yÞ ¼
xi 2 yi

2paðyÞlx 2 yl2
›aðxÞ

›xi

; x; y [ R2;

ð11Þ

Pðx; yÞ ¼
21

4paðyÞlx 2 yl
;

Rðx; yÞ ¼
xi 2 yi

4paðyÞlx 2 yl3
›aðxÞ

›xi

; x; y [ R3:

ð12Þ

Substituting in Eq. (4) Pðx; yÞ for vðxÞ and taking uðxÞ as a

solution to Eq. (1), we arrive at an integral equality

cðyÞuðyÞ2
ð
›V

½uðxÞTxPðx; yÞ2 Pðx; yÞTuðxÞ� dGðxÞ

þ
ð
V

Rðx; yÞuðxÞ dVðxÞ

¼
ð
V

Pðx; yÞf ðxÞ dVðxÞ; ð13Þ

where cðyÞ is given by Eq. (6).

As in Section 2.2, substituting boundary conditions (2)

and (3) into Eq. (13), introducing a new variable tðxÞ ¼

TuðxÞ for the unknown flux on ›DV, and using Eq. (13) at

y [ V< ›V reduces BVP (1)–(3) to the following BDIE

for uðxÞ at x [ V< ›NV and tðxÞ at x [ ›DV

c0ðyÞuðyÞ2
ð
›NV

uðxÞTxPðx; yÞ dGðxÞ

þ
ð
›DV

Pðx; yÞtðxÞ dGðxÞ þ
ð
V

Rðx; yÞuðxÞ dVðxÞ

¼ F0ðyÞ; y [ V< ›V;

ð14Þ

F0ðyÞ U ½c0ðyÞ2 cðyÞ��uðyÞ þFðyÞ;

FðyÞ U
ð
›DV

�uðxÞTxPðx; yÞ dGðxÞ2
ð
›NV

Pðx; yÞ�tðxÞ dGðxÞ

þ
ð
V

Pðx; yÞf ðxÞ dVðxÞ; ð15Þ

where c0ðyÞ is given by Eq. (9).

Since even for boundary points y, the last term in the left

hand side of Eq. (14) includes the unknown values of u over

the whole domain V, this BDIE does not lead to a BIE as in

the case when the parametrix is a fundamental solution,

described in Section 2.2.

Using another approach, one can substitute boundary

conditions (2) and (3) into integral equality (13) but leave T

as a differential flux operator acting on u on the Dirichlet

boundary part ›DV and use the following BDIDE only at

y [ V< ›VN;

cðyÞuðyÞ2
ð
›NV

uðxÞTxPðx; yÞ dGðxÞ

þ
ð
›DV

Pðx; yÞTuðxÞ dGðxÞ þ
ð
V

Rðx; yÞuðxÞ dVðxÞ

¼ FðyÞ; y [ V< ›NV ð16Þ

where FðyÞ is given by Eq. (15). Complementing the

BDIDE with the Dirichlet boundary condition (2) at y [
›DV reduces BVP (1)–(3) to a BDIDP (16), (2) for uðxÞ;
x [ V< ›NV: As we will see below, this approach can

lead, after discretization, to a system with a diminished

number of linear algebraic equations.
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3. Localized parametrix and BDIE/BDIDP

BDIE (14) as well as BDIDP (16), (2) can be reduced

after some discretization to a system of linear algebraic

equations and solved numerically. However, the system will

include unknowns not only at the boundary but also at

internal points (similar to the FEM). Moreover, since the

commonly used parametrixes, see e.g. Eqs. (11), (12), are

highly non-local, i.e. do not vanish for virtually all x, the

matrix of the system will be fully populated (unlike the

FEM)—this prevents the use of well elaborated methods for

sparsely populated systems.

To avoid this difficulty, we present some ideas on how to

construct localized parametrixes and consequently localized

BDIE/BDIDP (LBDIE/LBDIDP). This is based on the fact

that a parametrix is not unique and is defined up to any

function fðx; yÞ such that Lxfðx; yÞ has no more than weak

singularities. In other words, all parametrixes Pðx; yÞ for a

differential operator L have the same singularity at x ¼ y but

can differ at other points. Thus we can perturb an available

(not localized) parametrix P0ðx; yÞ additively or multi-

plicatively by a proper function so as to localize it.

Particularly, we can consider a function

Pðx; yÞ ¼ xðx; yÞP0ðx; yÞ; ð17Þ

where xðx; yÞ is a cut-off function, such that xðy; yÞ ¼ 1 and

xðx; yÞ ¼ 0 at x not belonging to a localization domain vðyÞ

(a vicinity of y ), Fig. 1. Then Pðx; yÞ has the same

singularity as P0ðx; yÞ at x ¼ y but is localized (non-zero)

only on vðyÞ: Further we have

LxðPÞ ¼ LxðxP0Þ ¼ LxðP
0Þ Lxðð1 2 xÞP0Þ

¼ dðx 2 yÞ þ Rðx; yÞ;

Rðx; yÞ ¼ R0ðx; yÞ Lxðð1 2 xÞP0Þ:

Consequently, if x is smooth enough, then R will have the

necessary properties of the remainder, that is, Pðx; yÞ given

by Eq. (17) is also a parametrix. Some non-smooth cut-off

functions are considered below as well.

3.1. Discontinuous localization

The simplest cut-off function is piecewise constant. Let a

domain vðyÞ ] y be an arbitrary open neighborhood of a

point y. Then the piecewise constant function xðvÞ which is

the characteristic function of the set v is given by

xðvÞ ¼
1; x [ �v;

0 x � �v:

(

If one uses this function in Eq. (17), one arrives at a

discontinuous localized parametrix

Pðx; yÞ ¼
P0ðx; yÞ; x [ �vðyÞ:

0; x � �vðyÞ:

(

Instead of further substituting this discontinuous parametrix

into the Green formula (4), which would demand a careful

analysis of the LxPðx; yÞ behavior in the distribution sense,

we apply the Green formula not to the domain V but to its

intersection with vðyÞ and arrive at the integral equality

localized on the intersection vðyÞ>V and on its boundary

›½vðyÞ>V�;

cðyÞuðyÞ2
ð

�vðyÞ>›V
uðxÞTxPðx; yÞ dGðxÞ

þ
ð

�vðyÞ>›V
Pðx; yÞTuðxÞ dGðxÞ

2
ð
V>›vðyÞ

uðxÞTxPðx; yÞ dGðxÞ

þ
ð
V>›vðyÞ

Pðx; yÞTuðxÞ dGðxÞ

þ
ð
vðyÞ>V

Rðx; yÞuðxÞ dVðxÞ

¼
ð
vðyÞ>V

Pðx; yÞf ðxÞ dVðxÞ: ð18Þ

Thus, the simplest localization by the piecewise constant

cut-off function leads to the localized integral equality. It

includes the volume integral along the part of vðyÞ

belonging to V with unknown function u and integrals

along the part of the boundary ›vðyÞ of the localization

domain belonging to V with unknown function u and its flux

Tu, in addition to integrals along the part of the global

boundary ›V intersecting with the closure �vðyÞ of the

localization domain vðyÞ with unknown function u or flux

Tu.

As for its non-localized counterpart (13), we can use

equality (18) to arrive either to BDIE or to BDIDP.

Substitution of boundary conditions (2) and (3) in Eq.

(18) and introduction of a new variable tðxÞ ¼ TuðxÞ at x [
›VD reduces BVP (1)–(3) to the following BDIDE for uðxÞ;Fig. 1. A body V with localization domains vðyiÞ:
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x [ V< ›NV and tðxÞ ¼ TuðxÞ; x [ ›DV;

c0ðyÞuðyÞ2
ð

�vðyÞ>›NV
uðxÞTxPðx; yÞ dGðxÞ ð19aÞ

þ
ð

�vðyÞ>›DV
Pðx; yÞtðxÞ dGðxÞ ð19bÞ

2
ð
V>›vðyÞ

uðxÞTxPðx; yÞ dGðxÞ ð19cÞ

þ
ð
V>›vðyÞ

Pðx; yÞTuðxÞ dGðxÞ ð19dÞ

þ
ð
vðyÞ>V

Rðx; yÞuðxÞ dVðxÞ ð19eÞ

¼ F0ðyÞ; y [ V< ›V; ð19fÞ

F0ðyÞ U ½c0ðyÞ2 cðyÞ��uðyÞ þFðyÞ; ð20Þ

FðyÞ U
ð

�vðyÞ>›DV
�uðxÞTxPðx; yÞ dGðxÞ

2
ð

�vðyÞ>›NV
Pðx; yÞ�tðxÞ dGðxÞ

þ
ð
vðyÞ>V

Pðx; yÞf ðxÞ dVðxÞ: ð21Þ

Unlike its non-localized counterpart (16), the above

equation is not integral but integro-differential, since it

includes an unknown flux TuðxÞ on V> ›vðyÞ:
We can also substitute boundary conditions (2) and (3)

into integral equality (18) but leave T as a differential flux

operator, acting on u at the Dirichlet boundary part ›DV, and

use the following BDIDE only at y [ V< ›VN;

cðyÞuðyÞ2
ð

�vðyÞ>›NV
uðxÞTxPðx; yÞ dGðxÞ ð22aÞ

þ
ð

�vðyÞ>›DV
Pðx; yÞTuðxÞ dGðxÞ ð22bÞ

2
ð
V>›vðyÞ

uðxÞTxPðx; yÞ dGðxÞ ð22cÞ

þ
ð
V>›vðyÞ

Pðx; yÞTuðxÞ dGðxÞ ð22dÞ

þ
ð
vðyÞ>V

Rðx; yÞuðxÞ dVðxÞ ð22eÞ

¼ FðyÞ; y [ V< ›NV; ð22fÞ

where FðyÞ is given by Eq. (21). We arrive then to BDIDP

(22a)–(22f), (2) for uðxÞ; x [ V< ›NV:
Note that if Pðx; yÞ is a fundamental solution at x [ vðyÞ;

then the last (volume) integrals with R (x,y) disappear in the

left hand sides of Eqs. (18), (19a)–(19f) and (22a)–(22f).

3.2. Relation with the subdomain (domain decomposition)

method

Let us cover the domain V by a subdomain closure set
�Vi , �V and take vðyÞ ¼ Vi if y [ Vi: Suppose parame-

trixes Piðx; yÞ are used in each subdomain Vi. Then localized

integral representation (18) generates a subdomain (domain

decomposition ) version of the BDIE if we replace cðyÞ ¼

cðy;VÞ by the coefficient cðy;ViÞ corresponding to Vi.

Particularly, for the case when the Vi do not intersect but

can have interfaces with each other, one can introduce a new

variable tðxÞ ¼ TuðxÞ for the unknown flux also on ›Vi\›NV

and arrive at the BDIE on the subdomains and their

boundaries

c0ðyÞuðyÞ2
ð
›Vi>›NV

uðxÞTxPiðx; yÞ dGðxÞ

þ
ð
›Vi>›DV

Piðx; yÞtðxÞ dGðxÞ

2
ð
V>›Vi

uðxÞTxPiðx; yÞ dGðxÞ

þ
ð
V>›Vi

Piðx; yÞtðxÞ dGðxÞ þ
ð
Vi>V

Rðx; yÞuðxÞ dVðxÞ

¼ F0ðyÞ; y [ �Vi; ð23Þ

F0ðyÞ U c0ðyÞ2 cðy;ViÞ
h i

�uðyÞ

þ
ð

�Vi>›DV
�uðxÞTxPiðx; yÞ dGðxÞ

2
ð

�Vi>›NV
Piðx; yÞ�tðxÞ dGðxÞ

þ
ð
Vi>V

Piðx; yÞf ðxÞ dV;

c0ðyÞ ¼
0 if y [ ›Vi > ›DV;

cðy;ViÞ if y [ �Vi\›DV;

(

which should be complemented by the interface conditions

for u and t in neighboring subdomains Vi.

Let some fundamental solutions Fiðx; yÞ be used as

parametrixes Piðx; yÞ on each subdomain. Then the last

volume integral disappears in BDIE (23) and it can be

considered at y [ ›Vi along with the interface conditions as

the well known subdomain (domain decomposition) version

of the BIE for uðxÞ; x [ ›Vi\›DV and tðxÞ; x [ ›Vi\›NV;
and as an integral representation for uðyÞ at y [ Vi after the

BIE is solved.

3.3. Continuous non-smooth localization

To get rid of integrals including Tu on ›vðyÞ in Eqs.

(18), (19a)–(19f) and (22a)–(22f), one can construct a

S.E. Mikhailov / Engineering Analysis with Boundary Elements 26 (2002) 681–690 685



localized parametrix Pðx; yÞ vanishing on the boundary

›vðyÞ but not necessarily with vanishing parametrix flux

TxPðx; yÞ:

3.3.1. Internally smooth localization

If the parametrix Pðx; yÞ is continuous in x [ �V and

smooth in x [ vðyÞ except at x ¼ y and vanishes on ›vðyÞ;
this reduces integral equality (18) to the following one

cðyÞuðyÞ2
ð

�vðyÞ>›V
uðxÞTxPðx; yÞ dGðxÞ

þ
ð
vðyÞ>›V

Pðx; yÞTuðxÞ dGðxÞ

2
ð
V>›vðyÞ

uðxÞTxPðx; yÞ dGðxÞ

þ
ð
vðyÞ>V

Rðx; yÞuðxÞ dVðxÞ ¼
ð
vðyÞ>V

Pðx; yÞf ðxÞ dVðxÞ:

ð24Þ

As a consequence, f integral (19d) disappears in Eq. (19b)

and BDIDE (19a)–(19f) becomes BDIE. Similarly, BDIDP

(22a)– (22f), (2) also simplifies since integral (22d)

disappears.

Different methods can be used to obtain a parametrix

Pðx; yÞ vanishing on ›vðyÞ: Particularly, the Green function

on vðyÞ (the difference between a fundamental solution and

a function called therein a ‘companion solution’) for a

corresponding BVP with frozen coefficients and without

junior derivative terms in the differential operator L, was

employed as a parametrix P0ðx; yÞ in Refs. [9,10]. However,

the Green function is available in an analytical form only for

sufficiently simple shapes of the localization domain vðyÞ;
e.g. for a ball.

It seems to be simpler and more universal to construct a

proper localized parametrix using formula (17), where

xðx; yÞ is continuous in x [ V cut-off function, which is

smooth in vðyÞ and equal to zero both on the boundary and

outside of vðyÞ; whereas P 0 is an available parametrix (e.g.

a fundamental solution for a corresponding differential

operator with frozen coefficients and without junior

derivative terms).

Some examples of such cut-off functions localized on a

ball vBðy; rÞ U {x : lx 2 yl , r} of a radius r around a

point y or on a cube vCðy; rÞ ¼ {x : lxi 2 yil , r; i ¼

1;…; n} with an edge 2r around a point y in Rn are

xðx; yÞ ¼ 1 2
lx 2 yl2

r2

 !
; x [ �vBðy; rÞ;

xðx; yÞ ¼
Yn

i¼1

1 2
ðxi 2 yiÞ

2

r2

 !
; x [ �v Cðy; rÞ;

while xðx; yÞ ¼ 0 at x outside the corresponding localization

domain vðyÞ: Here
Qn

i¼1 ai U a1; a2;…; an:

3.3.2. Internally piecewise smooth localization

Let us consider a piecewise smooth cut-off function

xðx; yÞ that is continuous in x [ �V; equal to zero at x � v; is

continuously differentiable with respect to x in open

subdomains vkðyÞ; which constitute (together with their

interfaces) vðyÞ; and has some jumps in normal derivatives

with respect to x on interfaces g between vkðyÞ: Such cut-off

functions naturally appear if we consider a mesh on V, take

the mesh elements adjacent to a node point y as vkðyÞ and

shape function corresponding to the node y as values of

xðx; yÞ in vkðyÞ:
For example, if vðyÞ , R2 consists of triangles vkðyÞ

with y being an apex of all them, Fig. 2, then xðx; yÞ can be

taken to be piecewise linear

xðx; yÞ ¼ 1 2
lðxðk1Þ 2 yÞ £ ðx 2 yÞ þ ðx 2 yÞ £ ðxðk2Þ 2 yÞl

lðxðk1Þ 2 yÞ £ ðxðk2Þ 2 yÞl
;

x [ �w kðyÞ:

Here xðk1Þ; xðk2Þ are corners of vkðyÞ supplementary to y and

a £ b denotes the vector product of vectors a and b.

If vðyÞ , R3 consists of tetrahedrons vkðyÞ with y being

an apex of all them, then xðx; yÞ also can be taken piecewise

linear

xðx; yÞ ¼ 1 2 {ðxðk1Þ 2 yÞ·½ðxðk2Þ 2 yÞ £ ðx 2 yÞ�

þ ðxðk1Þ 2 yÞ·½ðx 2 yÞ £ ðxðk3Þ 2 yÞ�

þ ðx 2 yÞ·½ðxðk2Þ 2 yÞ £ ðxðk3Þ 2 yÞ�}

={ðxðk1Þ 2 yÞ·½ðxðk2Þ 2 yÞ £ ðxðk3Þ 2 yÞ�}

for x [ �v kðyÞ; where xðk1Þ; xðk2Þ; xðk3Þ are corners of vkðyÞ

supplementary to y. Here a·b denotes the inner product and

a·½b £ c� the mixed product of vectors a, b, and c.

We can substitute this piecewise smooth (except at point

x ¼ y) parametrix Pðx; yÞ ¼ xðx; yÞP0ðx; yÞ into the Green

formula on the intersection of vkðyÞ with V and arrive at

integral equalities similar to Eq. (18) but localized on the

Fig. 2. Localization domain vðyÞ consisting of triangles vkðyÞ:
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intersection vkðyÞ>V and on its boundary ›½vkðyÞ>V�:
Summing up the integral equalities generated by each

subdomain vkðyÞ; we arrive at the BDIE localized on vðyÞ>
V; its boundary ›½vðyÞ>V� and on the net interface g

between the smoothness subdomains vkðyÞ;

cðyÞuðyÞ2
ð

�vðyÞ>›V
uðxÞTxPðx; yÞ dGðxÞ ð25aÞ

þ
ð
vðyÞ>›V

Pðx; yÞTuðxÞ dGðxÞ ð25bÞ

2
ð
V>›vðyÞ

uðxÞTxPðx; yÞ dGðxÞ ð25cÞ

2
ð
g>V

uðxÞ½TxPðx; yÞlg2 þ TxPðx; yÞlgþ� dGðxÞ

ð25dÞ

þ
ð
½vðyÞ\g�>V

Rðx; yÞuðxÞ dVðxÞ ð25eÞ

¼
ð
vðyÞ>V

Pðx; yÞf ðxÞ dVðxÞ: ð25fÞ

We account for continuity of xðx; yÞ and consequently

Pðx; yÞ on g and understand under the fluxes TxPðx; yÞlg7 the

limiting values of the fluxes on g in the directions of the

outer normal vectors nðxÞlg7 for the adjacent subdomains

vkðyÞ; where nðxÞlg2 ¼ 2nðxÞlgþ : Obtaining Eqs. (25a)–

(25f), it was also taken into account that if y [ vðyÞ belongs

to an interface between some subdomains vkðyÞ; k ¼

1;…;K; and is an internal point of V, then
PK

1 cðy;vkÞ ¼

1 owing to Eq. (6). However, if y [ vðyÞ belongs to an

interface between some subdomains vkðyÞ; k ¼ 1;…;K; and

is a boundary point of V, then
PK

1 cðy;vk >VÞ ¼ cðy;VÞ:
This means, the coefficients cðyÞ in Eqs. (25a)–(25f) are

given by the same expression (6), that is, are determined by

the position of y in V and does not depend on xðx; yÞ and

vðyÞ:
As a consequence of the jumps of the parametrix flux

inside vðyÞ and vanishing the parametrix on ›vðyÞ; BDIDE

(19a)–(19f) changes for this case since integral (19d) is

replaced by term (25d) and the equation remains integro-

differential. Similarly, BDIDP (22a)–(22f), (2) also changes

for this case since integral (22d) is replaced by term (25d).

3.4. Globally smooth localization

To simplify the integral representation even further by

getting rid of the remaining integral along ›vðyÞ; one can

employ a smooth in x [ �V cut-off function xðx; yÞ; which

vanishes on ›vðyÞ together with its normal derivative in x.

Then the same holds true also for the parametrix Pðx; yÞ ¼

xðx; yÞP0ðx; yÞ:
Some examples of smooth cut-off functions localized on

a ball vBðy; rÞ of a radius r around a point y or on a cube

vCðy; rÞ with an edge 2r around a point y in Rn, are

xðx; yÞ ¼ 1 2
lx 2 yl2

r2

 !2

; x [ �v Bðy; rÞ;

xðx; yÞ ¼
Yn

i¼1

1 2
ðxi 2 yiÞ

2

r2

 !2

; x [ �v Cðy; rÞ;

xðx; yÞ ¼ exp 1 2
r2

r2 2 lx 2 yl2

 !
; x [ �v Bðy; rÞ;

xðx; yÞ ¼
Yn

i¼1

exp 1 2
r2

r2 2 ðxi 2 yiÞ
2

 !
; x [ �v Cðy; rÞ;

where xðx; yÞ ¼ 0; x � �vðyÞ: The first two functions x are

continuous and have continuous first derivatives and the last

two are infinitely smooth in Rn.

Integral representation (18) is reduced for such a

parametrix to the following one

cðyÞuðyÞ2
ð
vðyÞ>›V

uðxÞTxPðx; yÞ dGðxÞ

þ
ð
vðyÞ>›V

Pðx; yÞTuðxÞ dGðxÞ þ
ð
vðyÞ>V

Rðx; yÞuðxÞ dVðxÞ

¼
ð
vðyÞ>V

Pðx; yÞf ðxÞ dVðxÞ: ð26Þ

If y is an internal point sufficiently far from the boundary

›V, then the boundary integrals along vðyÞ> ›V vanish in

the left hand side of Eq. (26) while only the volume integral

along vðyÞ remains. If y is a boundary point of V or an

internal point near the boundary of V, then the volume

integral along the intersection of vðyÞ with V and the both

boundary integrals along the intersection of ›V with vðyÞ

remain.

As a consequence, both integrals (19c) and (19d) along

VðyÞ> ›vðyÞ disappear and BDIDE (19a)–(19f) becomes

BDIE for this case. Similarly, BDIDP (22a)–(22f), (2) also

simplifies since both integrals along VðyÞ> ›vðyÞ disappear

(22c) and (22d).

4. Discretization of LBDIE/LBDIDP

To reduce LBDIDE (19a)–(19f) or BDIDP (22a)–(22f),

(2) to a system of linear algebraic equations, one can first

employ an interpolation or approximation formula to

express the unknown function u at any point of integration

or source point in terms of the values of the same or an

auxiliary function at some node points. To make sure the

system will be sparsely populated, the interpolation/approxi-

mation formula should also be local. After substitution of

the interpolation/approximation formula into a LBDIDE/

LBDIDP, either the collocation or the Petrov–Galerkin
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method can be applied. Only the first method is discussed

below.

As demonstrated above, there is a lot of flexibility in

constructing appropriate cut-off functions for rather arbi-

trary shapes and combinations of volume elements. It seems

to be preferable to use continuous cut-off functions to

eliminate the unknown flux Tu from the formulation except

on the global boundary ›V (or even smooth cut-off

functions to get rid of all the surface integrals along ›vðyÞ

and g ) and work with the simplified LBDIEs or LBDIDPs.

We will consider below the sufficiently general case of the

discontinuous localization described in Section 3.1 and

show the simplifications for more smooth localizations.

4.1. Mesh-based discretization

Suppose the domain V is covered by a mesh of closed

volume elements ek with nodes set up at the corners, edges,

faces, and/or inside the elements. Let J be the total number

of nodes xi ði ¼ 1; 2;…; JÞ; from which there are JD nodes

on ›DV. One can use each node x i as a collocation point for

an LBDIE with a localization domain vðxiÞ: Let the union of

closures of the volume elements that intersect with vðxiÞ be

called the total localization domain ~vðxiÞ; Fig. 3. Then the

closure �vðxiÞ> �V belongs to ~vðxiÞ: If vðxiÞ is sufficiently

small, then ~vðxiÞ consists only of the elements adjacent to

the collocation point x i. If vðxiÞ is from the very beginning

chosen as consisting only of the elements adjacent to the

collocation point x i, which seems to be reasonable in

practical calculations, then ~vðxiÞ ¼ �vðxiÞ: Let J ~vðx
iÞ be the

number of nodes belonging to ~vðxiÞ:
Let us consider a continuous interpolation of uðxÞ at any

point x [ V in terms of the values of uðxjÞ at the node points

x j belonging to the same element ek , V as x

uðxÞ ¼
X

j

uðxjÞfkjðxÞ; x; xj [ ek;

where the shape functions fkjðxÞ are localized on ek.

Collecting the interpolation formulae for all x [ ~vðxiÞ; we

have

uðxÞ ¼
X

xj[ ~vðxiÞ

uðxjÞFijðxÞ; x [ ~vðx
iÞ; ð27Þ

FijðxÞ ¼
fkjðxÞ if x; xj [ ek , ~vðxiÞ;

0 otherwise:

(
ð28Þ

Consequently, FijðxÞ ¼ 0 if xj � ~vðxiÞ: We can also use a

local interpolation of tðxÞ ¼ ðTuÞðxjÞ along only boundary

nodes belonging to ~vðxiÞ> ›DV

tðxÞ ¼
X

xj[ ~vðxiÞ>›DV

tðxjÞF0
ijðxÞ; x [ ~vðx

iÞ> ›DV: ð29Þ

Here F0
ijðxÞ are the boundary shape functions obtained

similar to FijðxÞ in Eq. (28) and such that F0
ijðxÞ ¼ 0 if

xj � ~vðxiÞ> ›DV:
After substitution of interpolations (27) and (29), e.g. in

LBDIDE (19a)–(19f), we arrive at the following system of

J linear algebraic equations for J unknowns uðxjÞ; xj [
V< ›NV and tðxjÞ ¼ ðTuÞðxjÞ; xj [ ›DV

c0ðxiÞuðxiÞ þ
X

xj[V<›NV

K0
ijuðx

jÞ þ
X

xj[›V

Qijtðx
jÞ

¼ F0ðxiÞ2
X

xj[›DV

K0
ij �uðx

jÞ;

i ¼ 1;…; J; no sum in i;

ð30Þ

where F0ðxiÞ is calculated from Eq. (20),

K0
ij ¼ 2

ð
�vðxiÞ>›NV

FijðxÞTxPðx; xiÞ dGðxÞ ð31aÞ

þ
ð
vðxiÞ>V

Rðx; xiÞFijðxÞ dVðxÞ ð31bÞ

2
ð
V>›vðxiÞ

FijðxÞTxPðx; xiÞ dGðxÞ ð31cÞ

þ
ð
V>›vðxiÞ

Pðx; xiÞTFijðxÞ dGðxÞ; ð31dÞ

Qij ¼
ð

�vðxiÞ>›DV
Pðx; xiÞF0

ijðxÞ dGðxÞ: ð32Þ

Instead, one can arrive at the system of only J 2 JD

algebraic equations for J 2 JD unknowns uðxjÞ; xj [
V< ›NV; if one substitutes interpolation formulae (27) in

BDIDP (22a)–(22f), (2)

cðxiÞuðxiÞ þ
X

xj[V<›NV

Kijuðx
jÞ ¼ FðxiÞ2

X
xj[›DV

Kij �uðx
jÞ;

ð33Þ

xi [ V< ›NV; no sum in i;

where FðxiÞ is calculated from Eq. (21),

Kij ¼ 2
ð

�vðxiÞ>›NV
FijðxÞTxPðx; xiÞ dGðxÞ ð34aÞ

Fig. 3. A localization domain vðxiÞ and a total localization domain ~vðxiÞ

associated with a collocation point xi at a mesh-based discretization of a

body V.
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þ
ð

�vðxiÞ>›DV
Pðx; xiÞTFijðxÞ dGðxÞ ð34bÞ

2
ð
V>›vðxiÞ

FijðxÞTxPðx; xiÞ dGðxÞ ð34cÞ

þ
ð
V>›vðxiÞ

Pðx; xiÞTFijðxÞ dGðxÞ ð34dÞ

þ
ð
vðxiÞ>V

Rðx; xiÞFijðxÞ dVðxÞ: ð34eÞ

4.2. Meshless discretization

For a meshless discretization, one needs a method of

local interpolation or approximation of a function along

randomly distributed nodes x i, for example, the moving

least squares (MLS) approximation method, see Refs. [9,10]

and the references therein. This leads to an approximation of

a function uðxÞ along values of an auxiliary function ûðxÞ in

the nodes x i belonging to a localization domain v0ðxÞ of the

approximation method

uðxÞ ¼
X

j

ûðxjÞfjðxÞ; xj [ v0ðxÞ; ð35Þ

where fjðxÞ are known shape functions.

We will suppose all the approximation nodes x i belong

to �V and will use them also as collocation points for the

LBDIDE/LBDIDP discretization. Let, as before, J be the

total number of nodes xj ði ¼ 1; 2;…; JÞ; JD from which be

the number of the nodes on ›DV. Formula (35) can be used

to approximate uðxÞ both at a collocation point x i and at

integration points x from a localization domain vðxiÞ: Then

Eq. (35) implies a total approximation of uðxÞ; for all x [
�vðxiÞ;

uðxÞ ¼
X

xj[ ~vðxiÞ

ûðxjÞFijðxÞ; x [ �vðx
iÞ; ð36Þ

FijðxÞ ¼
fjðxÞ if xj [ v0ðxÞ , ~vðx

iÞ;

0 otherwise;

(
ð37Þ

where ~vðxiÞ U <x[ �vðxiÞ> �Vv0ðxÞ is a total localization

domain, Fig. 4. Consequently, FijðxÞ ¼ 0 if xj � ~vðxiÞ:
Let J ~vðx

iÞ be the number of nodes xj [ ~vðxiÞ:
Let F0

ijðxÞ be the shape functions obtained similar to

FijðxÞ in Eq. (37) for a local approximation of tðxÞ ¼ ðTuÞ

ðxÞ along only boundary nodes belonging to ~vðxiÞ> ›DV;
such that F0

ijðxÞ ¼ 0 if xj � ~vðxiÞ> ›DV: Then

tðxÞ ¼
X

xj[ ~vðxiÞ

t̂ðxjÞF0
ijðxÞ; x [ �vðx

iÞ> ›DV: ð38Þ

After substitution of approximations (36) and (38), e.g. in

LBDIDE (19a)–(19f) and boundary conditions (2), we

arrive at the following system of J þ JD linear algebraic

equations with respect to the J unknowns ûðxjÞ; xj [ �V and

JD unknowns t̂ðxjÞ; xj [ ›DV

c0ðxiÞ
X

xj[ ~vðxiÞ

ûðxjÞFijðx
iÞ þ

XJ

j¼1

K0
ij ûðx

jÞ þ
X

xj[›V

Qijt̂ðx
jÞ

¼ F0ðxiÞ; i ¼ 1;…; J; ð39ÞX
xj[ ~vðxiÞ

ûðxjÞFijðx
iÞ ¼ �uðx

iÞ; xi [ ›DV; no sum in i;

ð40Þ

where F0ðxiÞ is calculated from Eq. (20), K0
ij and Qij are

expressed by Eqs. (31a), (31b), and (32) with the shape

functions Fij, F
0
ijðxÞ from Eqs. (37) and (38).

Alternatively, one can arrive at another system of J

algebraic equations with respect to J unknowns ûðxjÞ; xj [
�V if one substitutes approximation formulae (36) in BDIDP

(22a)–(22f), (2)

cðxiÞ
X

xj[ ~vðxiÞ

ûðxjÞFijðx
iÞ þ

XJ

j¼1

Kijûðx
jÞ ¼ FðxiÞ;

xi [ V< ›NV;

ð41Þ

X
xj[ ~vðxiÞ

ûðxjÞFijðx
iÞ ¼ �uðx

iÞ; xi [ ›DV; no sum in i;

ð42Þ

where FðxiÞ is calculated from Eq. (21) and Kij is expressed

by Eqs. (34a)–(34e) with the shape functions Fij from Eq.

(37).

4.3. Remarks on the discretizations

Application of the discretization algorithms to the both

LBDIE (19a)–(19f) and LBDIDP (22a)–(22f), (2) needs

differentiation of the shape functions fkj(x) to calculate

TFijðxÞ in integrals (31d), (34b), and (34d). However, if the

parametrix is continuously localized, then integrals in Eqs.

(31d) and (34d) disappear and the need to differentiate

remains only for integral (34b) in the discrete versions of

LBDIDP (22a)–(22f), (2). If the parametrix is localized and

globally smooth (except its singular point x ¼ y), then all

the integrals (31c) and (34c)–(34d) disappear simplifying

Fig. 4. A localization domain vðxiÞ and a total localization domain ~vðxiÞ

associated with a collocation point xi at a meshless discretization of a body

V.
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the matrix calculations for algebraic systems (30), (33),

(39)–(40) and (41)–(42).

From the definitions in both mesh based and meshless

methods, FijðxÞ ¼ TFijðxÞ ¼ F0
ijðxÞ ¼ 0 and consequently

K0
ij ¼ Qij ¼ Kij ¼ 0 if xj � ~vðxiÞ: This means, each of

equations in Eqs. (30), (33), (39)–(40), and (41)–(42) has

not more than J ~vðx
iÞp J non-zero entries, what manifests

the systems are sparsely populated.

5. Concluding remarks

Partial differential equations with variable coefficients

generally do not possess explicit and cheaply calculated

fundamental solutions and this prevents reduction of BVPs

for such equations to BIEs. Fortunately, such equations

often possess simple and cheaply calculated parametrixes.

Localization of a parametrix by multiplication by a cut-off

function with a local support allows the reduction of a BVP

to a localized boundary-domain integral or integro-differ-

ential equation/problem, which ends up, after a discretiza-

tion, in a system of linear algebraic equations with a

sparsely populated matrix. This makes the method com-

petitive with the FEM. Examples of different cut-off

functions with different smoothness leading to different

LBDIEs/LBDIDEs/LBDIDPs demonstrate the method high

flexibility. Localized algorithms for both mesh-based and

meshless discretization are presented showing the great

potential of the LBDIE/LBDIDE/LBDIDP method for

numerical applications to different BVPs in science and

engineering.

Even in some situations when a cheap fundamental

solution is available, it seems to be profitable to treat it as a

parametrix and obtain a localized BDIE/LBDIDE/LBDIDP

based on it. (For a particular localization, such an approach

was in fact employed in Ref. [9].) This makes sense

especially for elongated or flattened bodies, where the non-

local connection between remote points in the traditional

BIEs looks artificial from the physical point of view and

leads to ill-posed algebraic systems after discretization. The

localized approach allows to obtain a discrete algebraic

system of higher dimension but with a very sparsely

populated and well-posed matrix.

As was mentioned at the end of Section 3.1, the localized

parametrix approach also leads to the domain decompo-

sition (subdomains) method. Following this approach

further, one can use BIE in some of the subdomains

(provided that there is a fundamental solution available

there) and LBDIE/LBDIDE/LBDIDP in the remaining

subdomains. This seems particularly promising for infinite

or semi-infinite domains, where BIE is employed in an

infinite (semi-infinite) subdomain with constant BVP

coefficients and LBDIE/LBDIDE/LBDIDP in the remaining

finite subdomain with variable coefficients. Speaking more

generally, in many problems, where the BIE/FEM combi-

nation proved to be efficient, the subdomain combination of

BIE with LBDIE/LBDIDE/LBDIDP should be not less

efficient and more natural.

So as not to obscure the main idea of the localization

approach, we deliberately avoided specification of appro-

priate function classes where the considered integral and

integro-differential operators act. However, this should be

done to consider some important features of the LBDIE/LB-

DIDE/LBDIDP such as existence and uniqueness of

solution, spectral properties, equivalence to the original

BVP, convergence of approximate solutions. This should be

the subject of special investigations leading to an optimal

choice of the cut-off functions, localization domains, node

points, and hopefully to effective iteration methods based on

this information [12].
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