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1 | INTRODUCTION

| Sergey E. Mikhailov?

| Wolfgang L. Wendland?

The purpose of this paper is to study the mixed Dirichlet-Neumann bound-
ary value problem for the semilinear Darcy-Forchheimer-Brinkman system in
L,-based Besov spaces on a bounded Lipschitz domain in R?, with p in a neigh-
borhood of 2. This system is obtained by adding the semilinear term |u|u to
the linear Brinkman equation. First, we provide some results about equiva-
lence between the Gagliardo and nontangential traces, as well as between the
weak canonical conormal derivatives and the nontangential conormal deriva-
tives. Various mapping and invertibility properties of some integral operators
of potential theory for the linear Brinkman system, and well-posedness results
for the Dirichlet and Neumann problems in L,-based Besov spaces on bounded
Lipschitz domains in R" (n > 3) are also presented. Then, using integral poten-
tial operators, we show the well-posedness in L,-based Sobolev spaces for the
mixed problem of Dirichlet-Neumann type for the linear Brinkman system on a
bounded Lipschitz domain in R"(n > 3). Further, by using some stability results
of Fredholm and invertibility properties and exploring invertibility of the asso-
ciated Neumann-to-Dirichlet operator, we extend the well-posedness property
to some L,-based Sobolev spaces. Next, we use the well-posedness result in the
linear case combined with a fixed point theorem to show the existence and
uniqueness for a mixed boundary value problem of Dirichlet and Neumann
type for the semilinear Darcy-Forchheimer-Brinkman system in L,-based Besov
spaces, with p € (2 — ¢, 2 + €) and some parameter € > 0.

KEYWORDS

Semilinear Darcy-Forchheimer-Brinkman system, mixed Dirichlet-Neumann problem, L,-based

Besov spaces, layer potential operators, Neumann-to-Dirichlet operator, existence and uniqueness

Boundary integral methods are a powerful tool to investigate linear elliptic boundary value problems that appear in
various areas of science and engineering (see, eg, previous studies'”). Among many valuable contributions in the
field, we mention the well-posedness result of the Dirichlet problem for the Stokes system in Lipschitz domains
in R"(n > 3) with boundary data in L,-based Sobolev spaces, which have been obtained by Fabes, Kenig, and

Verchota® by using a layer potential analysis. Also, Mitrea and Wright’ obtained the well-posedness results for Dirichlet,
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Neumann, and transmission problems for the Stokes system on arbitrary Lipschitz domains in R*(n > 2),
with data in Sobolev and Besov-Triebel-Lizorkin spaces. By using a boundary integral method, Mitrea and Taylor®
obtained well-posedness results for the Dirichlet problem for the Stokes system on arbitrary Lipschitz domains
on a compact Riemannian manifold, with boundary data in L,. Their results extended the results of Fabes,
Kenig, and Verchota® from the Euclidean setting to the case of compact Riemannian manifolds. Continuing the
study of Mitrea and Taylor®, Dindo§ and Mitrea® developed a layer potential analysis to obtain existence and
uniqueness results for the Poisson problem for the Stokes and Navier-Stokes systems on C* domains but also on
Lipschitz domains in compact Riemannian manifolds. Medkova* studied various transmission problems for the
Brinkman system.

Due to many practical applications, the mixed problems for elliptic boundary value problems on smooth and Lips-
chitz domains have been also intensively investigated. Let us mention that I. Mitrea and M. Mitrea® have proved sharp
well-posedness results for the Poisson problem for the Laplace operator with mixed boundary conditions of Dirichlet
and Neumann type on bounded Lipschitz domains in R? whose boundaries satisfy a suitable geometric condition intro-
duced by Brown® and with data in Sobolev and Besov spaces. Brown et al'® have obtained the well-posedness result of
the mixed Dirichlet-Neumann problem for the Stokes system on creased Lipschitz domains in R" (n > 3). To prove
the desired well-posedness result, the authors reduced such a boundary value problem to a boundary integral equation,
obtained useful Rellich-type estimates, and used the well-posedness result of the mixed Dirichlet-Neumann problem
for the Lamé system that has been obtained by Brown and Mitrea.!! Costabel and Stephan'? analyzed mixed boundary
value problems in polygonal domains by using a boundary integral approach. In other studies,"*** direct segregated sys-
tems of boundary-domain integral equations equivalent to mixed boundary value problems of Dirichlet-Neumann type
for a scalar second-order divergent elliptic partial differential equation with a variable coefficient were analyzed in inte-
rior and exterior domains in R* (see also Chkadua, Mikhailov and Natroshvili*® for the mixed problems with cracks and
Mikhailov'¢ for united boundary-domain integral equations). An interesting boundary integral equation method for a
mixed boundary value problem of the biharmonic equation has been developed by Cakoni et al.'”

Boundary integral methods combined with fixed point theorems have been focused on the analysis of boundary value
problems for linear elliptic systems with nonlinear boundary conditions and for nonlinear elliptic systems with various
(linear or nonlinear) boundary conditions. Recently, Kohr et al'® have used a boundary integral method to obtain existence
results for a nonlinear problem of Neumann transmission type for the Stokes and Brinkman systems on Lipschitz domains
in Euclidean setting and with boundary data in various L,, Sobolev, or Besov spaces. The techniques of layer potential the-
ory for the Stokes and Brinkman systems was used in Kohr et al'? to analyze Poisson problems for semilinear generalized
Brinkman systems on Lipschitz domains in R" with Dirichlet or Robin boundary conditions and given data in Sobolev and
Besov spaces. Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in
Lipschitz domains in Euclidean setting have been investigated in other study® (see also Kohr et al**?). An integral poten-
tial method for transmission problems with Lipschitz interface in R® for the Stokes and Darcy-Forchheimer-Brinkman
systems and data in weighted Sobolev spaces has been recently obtained in previous study.® Transmission problems
for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian mani-
folds have been recently analyzed in Kohr et al.** Well-posedness results for semilinear elliptic problems on Lipschitz
domains in compact Riemannian manifolds have been obtained by Dindo§ and Mitrea.** Let us also mention that Russo
and Tartaglione®** used a double-layer integral method to obtain existence results for boundary problems of Robin type
for the Stokes and Navier-Stokes systems in Lipschitz domains in Euclidean setting with data in Sobolev spaces. Maz'ya
and Rossmann? obtained L, estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral
domains. Taylor, Ott, and Brown® studied L,-mixed Dirichlet-Neumann problem for the Laplace equation in a bounded
Lipschitz domain in R" with general decomposition of the boundary.

In this paper, we analyze the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-
Forchheimer-Brinkman system in L,-based Besov spaces on a bounded Lipschitz domain in R?, when the given bound-
ary data belong to L, spaces, with p in a neighborhood of 2. This system is obtained by adding the semilinear term
|uju to the linear Brinkman equation. First, we provide some results about equivalence between the Gagliardo and
nontangential traces, as well as between the weak canonical conormal derivatives and the nontangential conormal
derivatives. Various mapping and invertibility properties of some integral operators of potential theory for the linear
Brinkman system, and well-posedness results for the Dirichlet and Neumann problems in L,-based Besov spaces on
bounded Lipschitz domains in R” (n > 3) are also presented. On the basis of these results, we show the well-posedness
result for the mixed problem of Dirichlet-Neumann type for the Brinkman system in a bounded domain in R*(n > 3)
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with given data in L,-based Sobolev spaces. Further, by using some stability results of Fredholm and invertibility prop-
erties, we extend the well-posedness property to the case of boundary data in L,-based Sobolev spaces, with p €

(% —e,2+ 5) N (1, +0), for some € > 0. The main idea for showing this property is the invertibility of an asso-

ciated Neumann-to-Dirichlet operator, inspired by the approach developed by I. Mitrea and M. Mitrea.® Next, we use
the well-posedness result in the linear case combined with a fixed point theorem to show the existence and unique-
ness in Lp-based Besov spaces for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear
Darcy-Forchheimer-Brinkman system in a Lipschitz domain in R*, when the boundary data belong to some L, spaces,
with p € (2 — €,2 + ¢) and some parameter ¢ > 0. The motivation of this work is based on some practical applica-
tions, where the semilinear Darcy-Forchheimer-Brinkman system describes the motion of viscous incompressible fluids
in porous media. A suggestive example is given by a sandstone reservoir filled with oil, or the convection of a viscous fluid
in a porous medium located in a bounded domain, where a part of the boundary is in contact with air and the remaining
part is a solid surface or the interface with another immiscible material or fluid. All these problems are well described
by the Brinkman system, the semilinear Darcy-Forchheimer-Brinkman system, or by the Darcy-Forchheimer-Brinkman
system, the latter of these systems containing both the nonlinear convective term (u - V)u and the semilinear term |u|u.
For further details, we refer the reader to the book by Nield and Bejan® (see also the theoretical and numerical approach
in Grosan et al*! and Gutt and Grosan®?).

It is supposed that the methods presented in this paper can be developed further, to analyze also the nonlinear
boundary-domain integro-differential equations, eg, the ones formulated in Mikhailov**** for some quasi-linear boundary
value problems.

2 | FUNCTIONAL SETTING AND USEFUL RESULTS

The purpose of this section is to provide main notions and results used in this paper. We recall the definition of a bounded
Lipschitz domain and give a short review of the involved Sobolev, Bessel potential, and Besov spaces. Also, we present the
main properties of the layer potential operators for the Stokes and Brinkman systems in Lipschitz domains in R".

For any point x = (X1, %2, ... ,X,) € R", we use the representation x = (x’,x,), where x’ € R*"! and x,, € R. First, we
recall the definition of Lipschitz domain (cf eg, Definition 2.1 in Mitrea and Mitrea®).

Definition 2.1. A nonempty, open, bounded subset Q of ¢ R"(n > 3) is called a bounded Lipschitz domain if for any
X € 0Q, there exist some constants r, h > 0 and a coordinate system in R"”, (yy, ... ,yn) = (/,¥n) € R*! x R, which
is isometric to the canonical one and has origin at x, along with a Lipschitz function ¢ : R"™! — R, such that the
following property holds. If C(r, h) denotes the open cylinder {y = (¢/,y,) € R"! xR : |y'| <r,|y.| < h} C R", then

QnCr,h)y={y=0¢"y,) eR"'XR : |y/| <rand (/) <y, <h}. 1)

In view of the Definition 2.1, condition (1) implies that dQ = dQ and the characterization (cf Mitrea and
Mitrea3 (2.4)—(2.6))
0QNCr,h={y=0"y») €eR"' xR : |y| <randy, = 90"},

_ 2
R"\QDNCrh)={y=0.y) €ER"IXR : |y| <rand—h <y, < o)} @

Let, all along the paper, Q. denote a bounded Lipschitz domain with a connected boundary 0Q and Q_ :=R"\ Q. denote
the corresponding exterior domain. Unless stated otherwise, it will be also assumed that n > 3.

Let k = x(0Q) > 1 be a fixed sufficiently large constant. Then the nontangential maximal operator of an arbitrary
function u : Q4+ — R is defined by

M@)(x) := {sup [u()| : y € D+(x), x € IQ}, (3)
where
Dr(X) = D, +(x) 1= {y € Q4 : dist(x,y) < xdist(y,0Q), x € Q}, @

are nontangential approach cones located in Q; and Q_, respectively (see, eg, Mitrea and Wright”). Moreover,

i) = lim u() (5)
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are the nontangential limits of u with respect to Q. at x € dQ. Note that if M(u) € L,(0Q) for one choice of x, where
D € (1, ), then this property holds for arbitrary choice of k (see, eg, Medkova>®P63). For the sake of brevity, we use the
notation D4 (x) instead of D,.+(x). We often need the property below (cf Necas*” P80 and Theorem 1.12 in Verchota®; see
also Lemma 2.2 in Mitrea et al*).

Lemma 2.2. IfQ C R" is a Lipschitz domain, then there exists a sequence of C* domains Q; approximating Q (Q; — Q
asj — oo) in the following sense:

(1) Q; C Q, and there exists a covering of 0Q with finitely many coordinate cylinders (atlas) that also form a family
of coordinate cylinders for 08, for each j. Moreover, for each such cylinder C(r,h), if ¢ and @; are the corre-
sponding Lipschitz functions whose graphs describe the boundaries of 0Q and 0Q;, respectively, in C(r, h), then
IVoill_rey < IVl w1y and Vo; - Ve pointwise a.e.

(if) There exist a sequence of Lipschitz diffeomorphisms ®; : 0Q — 0Q; such that the Lipschitz constants of ®;, dDj‘l
are uniformly bounded in j.

(iii) There is a constant k > 0 such that for allj > 1 and all x € 0Q, we have ®;(x) € D, (X) = D,.+(x), where
D, (X) = D,..+(x) is the nontangential approach cone with vertex at x. Moreover,

lim |®;(x) — x| = 0 uniformly in x € 0L, (6)
Jjooo
lim vO(®;(x)) = v(x) for a.e.x € 0Q, and in every space L,(0Q), p € (1, ), (7)
jocoo

where V0 is the outward unit normal to 0Q; and v is the outward unit normal to 0Q.
(iv) There exist some positive functions w; . 0Q — R (the Jacobian related to ®;, j € N) bounded away from zero and
infinity uniformly in j, such that, for any measurable set A C 0Q, [, w;do = /¢,( ydoj. In addition, lim;_. . w; = 1
J
a.e. on 0Q2 and in every space Ly(0L2), p € (1, ).

Lemma 2.2 implies that the Lipschitz characters of the domains €; are uniformly controlled by the Lipschitz character
of Q. The meaning of Lipschitz character of a Lipschitz domain is given below (cf, eg, Mitrea and Mitrea’>P22),

Definition 2.3. Let Q C R" be a Lipschitz domain. Let {C(rx, hr) : 1 < k < N}(with associated Lipschitz functions
{or : 1 <k < N})be an atlas for 0L, ie, a finite collection of cylinders covering the boundary 0Q. Having fixed such
an atlas of 0Q, the Lipschitz character of Q is defined as the set consisting of the numbers N, max{||V@i|l; g1 : 1 <
k <N}, min{r, : 1 <k <N},and min{h; : 1 <k <N}.

2.1 | Sobolev and Besov spaces and related results

In this subsection, we assume n > 2. We denote by D(R") := ngmp(IR{") the space of infinitely differentiable functions with
compact support in R" and by D(R",R") := CZ,,(R", R") the space of infinitely differentiable vector-valued functions
with compact support in R". Also, let £(Q+) := C*®(Q+) denote the space of infinitely differentiable functions, and
let D(Q+) = Comp(Q4+) be the space of infinitely differentiable functions with compact support in ., equipped with
the inductive limit topology. Let S(R") be the Schwartz space of rapidly decreasing C* functions on R". Let S(R") be
the Schwartz space of rapidly decreasing C* functions on R". Let*&’(R") and S’(R") be the duals of £(R") and S(R"),
respectively, ie, the spaces of distributions on R". Let S(R") be the dual of S(IR"). The spaces £'(Q+) and D’'(Q+) can be
similarly defined.

Let 7 denote the Fourier transform defined on the space of tempered distributions to itself and 7~ be its inverse. For
p € (1,0), L,(R") is the Lebesgue space of (equivalence classes of) measurable functions integrable with power p on
R", and L. (R") is the space of (equivalence classes of) essentially bounded measurable functions on R". For s € R, the
L,-based Bessel potential spaces H;(R") and HIS,(R", R™) are defined by

HYR™) :={f : ([= A)if € LyRM} = {f : J'f € Ly(RM)}, ®)
H®R"R"Y :={f=(.f. ... .S e HJRY, j=1,..,n}, 9)

where J* : S'(R") — S'(R") is the Bessel potential operator of order s defined by J°f = F~1(p*Ff) with
p(&) = (1+ ¢ (10)

(see, eg, chapter 3 in McLean®). Note that Hy(R") is a Banach space with respect to the norm

*If X is a topological space, then X’ denotes its dual.
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||f||H;(]Rn) = ||Jsf||Lp(]R") = ||P_1(PSFf)||Lp(Rn)- (11)

For integer s > 0, the spaces H;(IR{") coincide with the Sobolev spaces W;(R").
The Bessel potential spaces Hp(€2) and ﬁ;(ﬂ) are defined by

Hy(Q) :={feD'(Q):3 FeH),R") suchthatF|g =f}, (12)

Q) := {f € H3(R") : supp f C ﬁ}, 13)

and the Bessel potential spaces H;(€2,R") and ﬁ;(Q, R"™) are defined as the spaces of vector-valued functions (distribu-

tions) whose components belong to the spaces H;(Q) and H (), respectively (see, eg, McLean®). For any s € R, C® (ﬁ) is

dense in H}(Q) and the following duality relations hold (see Jerison and Kenig,*" Proposition 2.9 papes et al,*> 19 and Mitrea
and Taylor*» 414))

~ - '

(H;(Q))’ = HI;,S(Q), HI;,S(Q) = (H;(Q)) . (14)

Here and further on p, p’ € (1, o) are related as i + 1% =1.

Replacing Q by Q_ in (12) and (13), one obtains the Bessel potential spaces Hy(Q2-), I;';(Q_).

For p € (1, 0) and s € (—1,1), the boundary Bessel potential space Hj,(0€2) can be defined by using the space H;,(]R”‘l),
a partition of unity and pullback. In addition, H;,S(aQ) = (H;(@Q))'. We can also equivalently define HE(@Q) = L,(0Q) as
the Lebesgue space of measurable, p™ power integrable functions on Q. In addition, H;(@Q) coincides, with equivalent
norm, with the Sobolev space

W,(0Q) := {f € Ly(0Q) : (I fllwi o) < 00}, I flwiee = I1fllL,02 + IVianfllL,00- 15)

Here, the weak tangential gradient of a function f locally integrable on 0Q is Vi,f := (vkafkff )1Sj<n’ where 0, f is

defined in the weak form as (cf, eg, Mitrea and Wright” 2.9)) (dfkff, oo = —{f, afkj(b)ag for any ¢ € D(R") with
Oz, 1= Vi ((3j¢>) loe — Vi (Okd) loa, J,k=1,...,n,and v = (v, ... ,v,) is the outward unit normal to Q, which exists
at almost every point on 0Q. If f is defined and smooth enough in the vicinity of dQ, then by integrating by parts, it is
possible to show that the weak definition coincides with the strong one, given by 6%]‘ = (djf ) loa — v; (k) loqa-

Now, for s € R and p,q € (1, =), denote by B;,q(R”) the scale of Besov spaces in R", see Appendix A. Similar to (12)
and (13), the Besov spaces B, ,(Q2) and By, ,(©2, R") are defined by

B o(Q) := {f € D'(Q) : IF € B} ,(R") such that Flg = f}, (16)
B QR" :={f=(f.fo. ... .f) 1 i€B(Q).j=1, ... ,n}, 17)
Byq@ = {f € B,®" : supp fCQ}. (18)

For s € [0,1] and p,q € (1, o), the Sobolev and Besov spaces H;(0€2) and B, ;(d€2) on the boundary 9Q can be defined
by using the spaces H;(R”‘l) and Bf,’q(R”‘l), a partition of unity and the pullbacks of the local parametrization of 0Q. In

! !
addition, we note that H,*(0Q) = (H;,(OQ)) and B,§ = (B;,’q,(dg)) , where p’,q’ € (1, 00) such that 11) + 1% = 1and

14 i = 1 (for further details about boundary Sobolev and Besov spaces, see, eg, Mitrea and Wright?- P33),

A useful result for the problems we are going to investigate in this paper is the following trace lemma (see Theorem
1,2 in chapter VIII of Jonsson and Wallin,* Theorem 3.1 in Brewster et al,** and also Lemma 3.6 in Costabel? for the case
p = 2 and a discussion on the critical smoothness index s = 1).

Lemma 2.4. Assume that Q C R" is a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \ Q

be the corresponding exterior domain. Let p, q € (1, 00) and s € (0, 1). Then there exist linear and continuous Gagliardo
1

++ +=
trace operators y+ H; "(Q+) - B, ,(0Q) and y+ : B;’q" (Q+) — By ,(0Q), respectively, such that y.f = flaq for

any f € Cm(ﬁi). Thlese operators are surjective and Iflzave (nonunique) linear and continuous right inverse operators

S+- S+=
y; ! B}, (0Q) - H, " (Q+) and y; : B} ,(0Q) = B, [ (Q4), respectively.
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Lemma 2.4 holds also for vector-valued and matrix-valued functions f. If fis such that y, f = y_f, we will often write yf.
We have the following trace equivalence assertion.

Theorem 2.5. Assume that Q C R" is a bounded Lipschitz domain with connected boundary 0Q2 and let Q_ :=R”" \ﬁ

s+1 s+1
be the corresponding exterior domain. Letp,q € (1, ), and letu € Bp,q” (Q+)orueH, ?(Q+) for some s > 0. Then the
Gagliardo trace y ,u is well defined on 02 and, moreover,

(i) if the pointwise nontangential trace ui exists a.e. on 092, then ui = Y4y
(i) if the pointwise nontangential trace ui exists a.e. on 0Q and s € (0, 1), then ui = Y+u € B} 4(0Q); and
(iii) ifu;ﬁ € H;(0Q) for some s € (0,1], then y+, € H;(0Q) as well.

Proof. Ttem (i) for 0 < s < 1 is implied by Theorem 8.7 (iii) in Brewster et al,* while for s > 1, the equality y+, = ui

still applies by an imbedding argument. Items (ii) and (iii) follow from item (i) and the well-known imbedding y+, €
B} ,(0) for s € (0,1). O

Further on, (-, -)or will denote the dual form between corresponding dual spaces defined on a set Q'. For further details
about Sobolev, Bessel potential, and Besov spaces, we refer the reader to, eg, previous studies.*#+

2.2 | The Brinkman system and conormal derivatives in Bessel potential and Besov spaces

In this subsection, we also assume n > 2. For a couple (u, z), and a real number @ > 0, let us consider the linear Brinkman
system (in the incompressible case)

L,(u,7)=f, diva=0, 19
where the Brinkman operator is defined as
L,u,7):=/Au—aqu—-Vr. (20)

When a = 0, the Brinkman operator becomes the Stokes operator.
Now, for (w,z) € C'(Q4,R") x C%Q4), such that diva = 0 in Q., we define the classical conormal derivatives
(tractions) for the Brinkman (or the Stokes) system, t<*(u, r), by using the well-known formula

tF@,7) 1= (yaow, ) v, 1)
where
o, ) := -zl + 2E(u) (22)

is the stress tensor, [E(u) is the strain rate tensor (symmetric part of Vu), and v = v* is the outward unit normal to Q,,
defined a.e. on Q. Then for any function ¢ € D(R", R"), we obtain by integrating by parts the first Green identity,

(@ m,0) = 2AEW,E@)ay +a(W@)ay — (7.div @a, + (LaW, 1), 9, (23)

0Q

If the nontangential traces of the stress tensor ag—;(u, ) and the normal vector v exist at a boundary point, then the
nontangential conormal derivatives are defined at this point as

£y, (24)

+ .
t,(u, ) =0y

For s € Rand p,q € (1, o), we consider the spaces

Hy (@4, R") = {ug € H)(Q4+,R") 1 divu=0in Q4 }, (25)
B} @+ R") 1= {us € B, ((Q+.RM 1 divu=0in Q4 } . (26)

We need also the following spaces (cf Definition 3.3 in Mikhailov™).
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Definition 2.6. Let Q be a Lipschitz domain (bounded or unbounded). For s € R, p,q € (1,0) and t > —1/p’, let us
consider the following spaces equipped with the corresponding graphic norms:

1 14 - - ~
NCY DY ={@neH, " @RYxH, (@ : Loum =fofe H(@R) and divu=0in @},

l(w, o)|1> = ||u||23+; + ”””2 2 F ||f||f{[ QRn’
5pdf'v Q.L,) H, P @R H, s @ p(@RY
" o1 £ L
B QL) : {(u, 7)€ Byd QR X B,y (@) ¢ Lawm) =Flo, F€ Byy(@.RM and divu=0in Q},
[|(a, rr)II2 = |lu || + ””llzﬁl_l + ||f||2 0 QR
(QE) p(QR”) B, @

pq dw g

where L,(u, ) is defined in (20).

l l

Ift; > t,, the following continuous embeddings hold, ﬁp gy (Q Ly) > 5p div (Q Ly), %p q" le(Q Ly) > %p qp dlv(Q Ly).
Let Ddiv(Q, R™) := {v S D(Q,R") :divv=0in Q} Similar to, Theorem 6.9 in Mikhailov® one can prove the

following assertion.

Theorem 2.7. IfQis a Lipschitz domain (bounded or unbounded) orQ=R"a>0,p,ge(l,o),s€Randt > —5,

then de(Q R™) x D(Q) is dense in S)p v (Q L) andin 23 i (Q Ly).

Letp, q € (1, c0). Let E4 be the operator of extension of functions defined on Q. by zero on R”\ Q. Following the proof
of Theorem 2.16 in Mikhailov,” let us define the operator E+ on H,(Q+) and B}, ,(Q+) as E4 := Eiforo<t< i and as

- ~ . 1
(E+h, v)gi = (h,Eiv)Qi = <h,EiV>Qi, when — 17 <t<0,

forall h € Hy(Q4), v € H;’(Qi), or forall h € B, ,(Q4), v € B;,tq,(Qi), respectively. Then, for —1/p’ < t < 1/p,
evidently,

Es @ HyQq) > Hy(Q), Ex : Bpg(Qx) > Bpg(Qa)

are bounded linear extension operators. Similar definition and properties hold also for vector fields.
Analogously to the corresponding definition for Petrovskii-elliptic systems in Definition 3.6 of Mikhailov,*® we can
introduce an operator £, as follows.

Definition 2.8. Let Q be a Lipschitz domain (bounded or unbounded), p,q € (1, »), s € R, t > —1/p’. The operator
L, mapping

« functions (u,z) € 9 " N (Q L,) to the extension of the distribution £L,(u, ) € H, H(€2,R") to H, Hi H(€2,R")

p.div

or

« functions (u, z) € %p q; 1185 Lo) to the extension of the distribution £,(u, z) € B, ,(Q,R") to E;’q(Q, R™),

will be called the canonical extension of the operator L,.

Remark 2.9. Similar to the paragraph following Definition 3.3 in Mikhailov,*® one can prove that the canonical
extensions mentioned in Definition 2.8 exist and are unique. If p,q € (1, ©),s € R, t > —1/p’, then

12a Doy < N@DI or - and 1£a Dl @ S NOD b
p.div Ta p.g.divTTa

1

(Q L,) and EB it (Q, L,). Hence, the linear operators L, b

by definition of the spaces 35 0 g.div

(Q» Ly) -

D, dl D, dlv

1

Ht(Q R") and £, %p quIV(Q Ly) — ;’q(Q, R™) are continuous. Moreover, if —1/p’ < t < 1/p, and Q is a

Lipschitz domain (bounded or unbounded), then we have the representation £, := E‘+£,,, or £, := E‘E,,,
respectively, cf Remark 3.7 in Mikhailov.*
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Formula (23) suggests the following definition of the canonical conormal derivative in the setting of Besov spaces
(cf. Lemma 3.2 in Costabel,? Lemma 2.2 in Kohr et al,'° Definition 3.8 and Theorem 3.9 in Mikhailov,*® Definition 6.5 and
Theorem 6.6 in Mikhailov,”* and Proposition 10.2.1 in Mitrea and Wright”)

Definition 2.10. Let @ >0,5s€(0,1),p.q e, oo) Then the canonical conormal derivative operators t are defined
1

on any (u, ) € @ d“; 4 (Q4,Ly), 0r (0, 7) € §8p q“c;w (Q+, L,), in the weak sense, by the formula

HEE W, 1), ooy, = 2(FaEW. EG3 ¢)> +a<}§iu,y;_r1q,>gi — (Bxr divey! ¢)>Q o
+ + 7

+ (L., ), vy P, . Voe B;z;,(aQ,R"), orVee B;:;,(@Q, R"), respectively.

Note that the canonical conormal derivative operators introduced in Definition 2.10 are different from the generalized
conormal derivative operator, cf Lemma 2.2 in Kohr et al,?* Definition 3.1 and Theorem 3.2 in Mikhailov,*® and Definition
5.2 and Theorem 5.3 in Mikhailov.* Similar to Theorem 3.9 in Mikhailov,* one can prove the following assertion.

Lemma 2.11. Under the hypothesis of Definition 2.10, the canonical conormal derivative operators,

1 1

. S+p’ I Bl n + . S+1_7’ I Bl n
. b i (Q+,£ )_> D.p (()Q,R )s ta . (Q+a£ )_) D.q (aQ’R ),

+
@ p.div p q.,div

t

are linear, bounded, and independent of the choice of the operators s L. In addition, the following first Green identity holds

+H(tE W, 1), 7 W)sn = 2<E'i]E(u), E(w)>g+ + a<]§iu,w>g+

~(Bemdvw) +(Lawmw), . (28)
. +

1

1

1+ —
Q. L) weB, ! (©Qx.R", and

==

/

. 1+ +1
forall(u,r) € 5 div Y (Q+, Ly, we Hp, (Q...,R") and all (u, n) € %p quw
the following second Green identity holds

+ ((t;i(u, ), 7+V)aq — (LW, ), 7+u>a§z> = (L@ mv)o, —(La. ) (29)

1 1

Qe L), wa) € B N Y@e. R and all (wr) € BT Qs L), 0g)

for all (u,n) € 35pdw p.q.di

Remark 2.12. Similar to Kohr et al,?> ™™tk 26 e note that by exploiting arguments analogous to those of the proof
of Theorem 3.10 and the paragraph following it in Mikhailov, one can see that the canonical conormal derivatives
on 0Q can be equivalently defined as t;—"(u, ) = rmt,’,i(u, 7). Here, t"xi(u, ) is defined by the dual form like (27)
but only on Lipschitz subsets Q! C Q4 such that 0Q C 0Q/,_ and closure of Q4 \ q coincides with Q. \ Q%'

(ie, Q’ are some layers near theBoundary 0Q). Moreover, such a definition is well appligable to the functions (u, )
1 1 1

" +=,
o div v (Q’ ,L,) or pqp iy (Q’ , L,) that are not obliged to belong to 5

ple Y (Q+7 C() or %pqulv (Q+, a)’
1 1

from 5

respectively. It is particularly useful for the functions (u, z) that belong to sj dw’ v (Q_,Eu,) or %p q"éw (Q_,Eu,)
only locally.

Now, we prove the equivalence between canonical and nontangential conormal derivatives (as well as classical
conormal derivative, when appropriate).

Theorem 2.13. Letn > 2, a > 0, and p,q € (1, ).

1

1+ —1+1

o dW(Q..., R" )>< P(Qy)or(u,z) € H dw(Q..., R”)XH ?(Q4). Then the classical
conormal derivative t**(u, r) and the canomcal conormal derlvatlve ta—(u, r) are well defined and t‘;—"(u, n) =
tF(u, z) € L,(0Q,R").

If, moreover, the nontangential trace of the stress tensor, o-nt(u ), exists a e. on 0%, then the nontangential
conormal derivative, defined by (24), also exists a.e. on 0Q and t (u, ) = t (w,n)=ttw ) e L,(0Q,R").

(i) Lets>1land(u,7) €B
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l

(ii) Let0<s <1, (u,x) € %pquw(g_'_’ Lyor(u,x) € sjpdw
nontangential maximal function M(o(u, )) and the nontangentlal trace of the stress tensor, ¢;; (u ), exist and

are finite a.e. on 0Q and belong to the space L,(0Q, R™"). Then t—(u )= t c(u, ) € Ly(0L, R”)

(Q+, Ly), for some t > —pl. Let also assume that the

Proof. We will give a proof in the case of a bounded domain Q. and the Besov spaces. For an unbounded domain Q_
and the Bessel potential spaces, the arguments are the same.

l

—1+1
(i) Let (u,n) € B q" iy (4 R™) X B;’qu" (Q,) for some p,q € (1,00) and s > 1. Evidently, the stress tensor o(u, 7)

belongs to Bp;] E(Q, R™"), which for 1 < s < 2 implies that y_o(u, z) € B} 1(69 R™") C Lp(02, R™"). Taking into
account that the unit normal vector to the boundary, v, belongs to Loo(asz R™), we obtain by (21) that t**(u,z) €
Lp(0Q,R").

On the other hand, the inclusion (u, z) € B \;

qdlv(§2+) ><B "(Q+) for p,q € (1, 00) and s > 1 implies that (u, z) €

pq dlv(QJr, o) fort € (-=1/p’,s — 1 — 1/p’) and thus the canonical conormal derivative t}(u, ) is well defined

and belongs to BS 1(69 R") for any s’ € (0,1). For 1 < s < 2, the proof that t] (u, z) = t;"(u,7) € Ly(0Q,R") is
similar to Corollary 3.14 Mikhailov** (with evident modification to L,-based spaces), while for s > 2, the relation
ty(u, ) =t (u, ) € Ly(0Q, R") still stays by imbedding.

If, in addition, the nontangential trace of the stress, o- (u, 7), exists a.e. on 0€, then o (u r) = yTo(u, ) by
Theorem 2.5 (i) implying that t! (u, z) = t; (u, 7) = t*(u, n) € L,(0Q,R").

(ii) Let 0 < s < 1 first, and the case s = 1 will follow by inclusion. Under the other hypotheses of item (ii), the
canonical conormal derivative, t} (u, ), is well defined on the boundary dQ and belongs to BS 1(09 R™). Let {€)}j>1
be a sequence of subdomains in €, that converge to , in the sense of Lemma 2.2, with the correspondmg notations
®;, v¥) and o also introduced there.

Similar to the proof of Lemma 3.15 in Mikhailov,* one can now prove that the canonical conormal derivative on
0Q is a limit of the canonical conormal derivatives on 9%, ie, (t; 9oW ), 7,0 W)oa = limj_,oo(t; 00 (a, n), Yoo, W)agj for

l+i,—s
anyweB ", (Q;,R™).

1

The inclusion (u, z) € % q" dlv(QJ,, L,) means that the couple (u, z) satisfies the elliptic Brinkman PDE system

(19) with a right hand side f € B ,q(QJr, R™), which implies that (u, z) € B;*qz div (&) X B’“(Q ). Then ys06(u, ) €

1-1
B, "(0Q;, R™™) C Lp(0;, R™") and t+ (u )= t (u T) = yggja(u, 7)v € Ly,(0Q;, R™) by item (i).
On the other hand, for a.e. point x € 09, the nontangentlal function M(o(u, 7))(x) exists and is finite, which par-
ticularly implies that o(u, 7) is well defined and bounded in the approach cones D (x). We can consider o (u, 7)(x) as

strictly defined (by its limit mean values lim,_, f B(x’r)a(u, )(&)dE in the sense of Jonnson and Wallin,* P!> see also
Brewster et a4 Theorem 8.7). thep }/ag o(u, 7)(y) = o(u, 7)(»), and hence, t" 200, (u, 7)(y) = CE (w, m)(Y) = o(u, ©)Y)- v;(y)
fory € D,(x) N 0Q;. In addition, t t asz (u, 7)(Pj(x)) = t (u m)(P;(x) = a(u ) (D;(x)) - v(dD (x)) tends to & nt(u 7)(x) -
v(x) = t+t 20(W, T)(X) as j — oo for a.e. x € 0Q, for Wthh o (u, 7)(x) does exist.

Let us now prove that t (u 7)(®j(x)) converges to t*, . _(u, 7)(x) not only pointwise for a.e. x € 0Q but also in the

nt,0Q2

. . 1+i,—s
weak sense, ie, hmj_,oo(tggj (u, ), )/deW>aQ (trlt 20(W ), 7, W)og forany w € Bp’,;’ (Q4,R"). We have

|<t35j(U, ), ijW>de — () 9o 1), 7,5, Whoal = |<t35j(lL ﬂ)oq)j,a)jymjwocbj)og — () 00, 1), 7,5, W)acl
< |<tc‘5.(u, ﬂ)odDj - t;wg(u, 71'), a)j)/mjwoéj>agl (30)
+ [(t], s, 1), (@) — 1)7,6, Wo®j)oal

+ |<tnt 6Q(u’ ), }/anj Wo(l)j - Yomw}l?Q [.
Let us prove that the summands in the right hand side of (30) tend to zero asj — oo. To this end, we use the inequality

|<t35j(U, m)od; —t 1), @Y o Woj)oa| < ||t§5j(u, m)o®; — t7 (@, 1)l 00) w7, Wojllz, 000 (31)
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€5, (W (@) — £ 1o (@, W] < M0, 1)) + [t o (8 )0, (32)

the both terms in the right hand side of (32) belong to L,(0€2) and t an(“’ 7)od; — m 50
0Q. Then the Lebesgue dominated convergence theorem implies that the first multiplier in the right hand side of
(31) tends to zero. Since Voo, W € Bl, S,(&QJ,R”) C L1 (0, R" and y,, wo<I> — 7,,, W (cf Netag® chapter 2. Theorem 4.5
the second multiplier in the right hand side of (31) is bounded and hence the whole right hand side of (31) tends to
zero. The second summand in the right hand side of (30) tends to zero since w; — 1, and the third, again, because
yanjwoq)j = Vi W

Combining this with the previous argument, we obtain,

(u, ) — 0 pointwise a.e. on

1+i,—s
(t) 0@, 7). 7,0, W)og = hm (t5, (u ), Y g, W)oo, = (t7 oW, 7),7,,, Who VW E B, (Q.R".

Taking w = y; ', this gives (t:m(u, ), Ploq = (tm 50 7), @)oq for any ¢ € B;;;,(ag, R™), ie, tf (u, 7) = t} (u, 7),
and since tJr (a, ) = 0' [(u, m) v € Ly(0Q2, R"), this completes the proof of item (ii) for 0 < s < 1, while for s = 1, the
statement follows by 1nclusi0n. O

Remark 2.14. Due to Remark 2.12, Theorem 2.13 will still valid for Q_ if the functions belong to the corresponding
(Q_, L£,) in item (ii).

(Q_,R" )xB (Q )initem (i) and (u, n)e%

spaces only locally, ie, if (u, z) € B . q"(;w loc

P, d1v loc p.g.loc

3 | INTEGRAL POTENTIALS FOR THE BRINKMAN SYSTEM

This section is devoted to the main properties of Newtonian and layer potentials for the Brinkman system.

3.1 | Newtonian potential for the Brinkman system

Let a > 0 be a constant. Let us denote by G* and II the fundamental velocity tensor and the fundamental pressure vector
for the Brinkman system in R” (n > 3), with the components (see, eg, Eq. (3.6) in McCracken,>* section 3.2.1 in Kohr and
Pop,** and formula (2.14) in Varnhorn>*)

1 5 Xk
I1 —_— 33
G = w{||"2 || } 00 = 5 G

where A;(z) and A,(z) are defined by
z " 1 z n z Zh
=)2 "Kn_1(2) =)2Kn(2) =)2 "Kn 1 (2)
AR = (3) it +2(2) -t AR :=£2—4<2)n—2:1. (34)
ri3) rgz =z z r(3)z

K, is the Bessel function of the second kind and order x > 0, I' is the Gamma function, and @, is the area of the unit
sphere in R”. The fundamental solution of the Stokes system, (G, IT), which corresponds to @ = 0, is given by (see, eg,
Varnhorn> (112))

1 1 Sk XX 1 Xk
L (X) = 1 T M) = — 2 35
Gix(x) 2, {n 2 x| + X" } k(X) o x| (35)
Next, we use the notations G*(X,y) = ¢*(x —y) and II(x,y) = [I(x — y). Then
(Ax — aD)G*(x,y) — VxII(x,y) = =6,(®)[, divxG*(x,y) =0, Vy € R", (36)

where 6y is the Dirac distribution with mass in y and the subscript x added to a differential operator refers to the action
of that operator with respect to the variable x.
The fundamental stress tensor S* has the components

0CH(xy)  9GE(x.y)

St (% y) = ~T[(X,y)bi + ™ + Froa (37)
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where §jx is the Kronecker symbol. Let A” be the fundamental pressure tensor with components Aj‘?;(. Then for fixed i and
k, the pair (Sg.k, A3 satisfies the Brinkman system in R" if x # y, ie,

AxSE (%,y) — aS? (x,y) — 2600 _ o
2 ’ ; 38
OS‘i’I‘,k(x,y) ( )
0 = 0
ox;
j i ,(2.18)
The components A (X, y) are given by (see, eg, Varnhorn> )
1 2n(yk - xk) 261’1{ 1 1

AN Xy =—< -0 —X + - Sik v 39
lk( y) om { Wi i) ly — x|n+2 ly — x|" a(n )y x> ik (39)

For a = 0, we use the notations S := Sgk and A ;= A?k.
Let % denote the convolution product. Let us consider the velocity and pressure Newtonian potential operators for the
Brinkman system,

(Nere @) ®) := = (6" * @) () = ~(G“ (X, ), @)ga> (Qukr®) X) = (Qrr@) (%) 1= — (1 % ¢) (X) = ~([I(X, ), @), (40)

where the fundamental tensor G* is presented through its components in (33). Note that the Fourier transform of

G*-components is given by
gy _ 20) &
a, = — P . 4
0= o (o ) @)

Then we have the following property (cf Theorem 3.10 in McCracken®? in the case n = 3, s = 0).

Lemma 3.1. Leta > 0. Then forall p,q € (1, ) and s € R, the following linear operators are continuous

N,g: : Hy(R",R") - HS2(R", R, (42)
Na;R” : Bi),q(Rn, Rn) - BZ-LZ(RH» Rn), (43)
Op» : Hy([R™,R") — Hy (R"), (44)
Op» 1 Byy(R",R") - B (R"). (45)

Proof. Let @ € Hy(R",R"). By (11),

s+ n Rny = -1 s+2 Rn
”Na;Rn(p”H; 2(Rn,Rn) “73 (P F(NQ,R ¢)) ||LP(R”,R”)’ (46)
where p is the weight function given by (10). In addition, we note that
F (Na;R”¢) = r(ga * ¢) = ga/\7 (47)
and hence, by (46),
||Na;]R<n(l’||H;+2(Rn,Rn) = HF_I </’ S+2Qa(7’) R R ol 7D(qu”))”Lp(]Rﬂ,]Rﬂ)' (48)
L,(RRm)

In view of (41), the matrix function A := p 2C* has the components

f () = oyt LEIER (6 G .
myj(§) = 2r) |§|2+a<5kj |§|2>, kj=1,..,n,

and is smooth everywhere except the origin and uniformly bounded in R" x R". Hence, it is a Fourier multiplier
in L,(R") (cf Theorem 2 in Appendix of Mikhlin®), ie, there exists a constant M > 0 (which depends on p but is
independent of ¢) such that

||Na;Rn(P||H;+2(Rw,]Rw) < M”JS(D”LP(Rn,Rn) = M||¢||H;(R",R")-

and thus |N,g»

H R0 RY)— Hy (R R7) < M, while operator (42) is continuous.
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Moreover, by formula (A12), we have the interpolation property

(Hy (R",R™), H}(R",R"), = B} ,(R",R"), (Hj;”(R“, R"), Hy(R", R”))qu = B (R, RY), (49)
where s = (1 — 6)s; + 0s,. Then by continuity of operator (42), we obtain that operator (43) is also continuous for
D.q € (1,) and any s € R.

Let us now show the continuity of operators (44) and (45). To this end, we note that the pressure Newtonian potential
operator for the Brinkman system coincides with the one for the Stokes system and for any ¢ € D(R",R") can be
written as

Orn@ = div N A 9, (50)
where
(Nari@) X) :=—(GA * ¢) (X), (51)
and GA(X,y) 1= — (n_;)wn l){_y% is the fundamental solution of the Laplace equation in R". Therefore, the mapping

properties of the pressure Newtonian potential are provided by those of the harmonic Newtonian potential N' A Rs.
Since N A.rn is a pseudodifferential operator of order —2 in R", the following operator is continuous,

Nags 1 Hy(R") - H;jgc(R"), VseR, pe(,w). (52)

Then by (50) and (52), we deduce the continuity property of the pressure Newtonian potential operator in (44). By
using an interpolation argument as for (43), we also obtain continuity of operator (45). O

Leta > 0and p € (1, o) be given. The Newtonian velocity and pressure potential operators of the Brinkman system in
Lipschitz domains Q. are defined as

Nug = roNgr:E+ and Qo =ro, Qp.Lx. =

Recall that E4 is the operator of extension of vector fields defined in Q. by zero on R \ Q4, and rq - is the restriction
operator from R" to Q.. The operators E+ : Ly(Q+,R") — Ly(R",R") and ro 4+ Hg(R", R") — Hﬁ(Qi, R™) are linear
and continuous. In addition, the volume potential operator N,.r» : L,(R",R") — Hlf(R”, R") is linear and continuous as
well, for any p € (1, o0) (cf, eg, Theorem 3.10 in McCracken,*> Lemma 1.3 in Deuring,* and Lemma 3.1). Therefore, the
velocity Newtonian potential operators

Nuay : Lp(@Qx.R") —» Hj(Q+.R"), pe ), (54)
are continuous operators. A similar argument yields the continuity of the Newtonian pressure potential operators

Qo, : Ly(Q4,R") = Hp(Qy), Qo : Ly(Q-,RM —» H} | (Q), p e (1 00). (55)

Jloc

Next, in view of (A5), (A6), and the first inclusion in (A8), we obtain the inclusions
141 1+1 141
H;R"R") = WyR",R") & W, "(R",R") =B,/ (R",R") < B, "(R"R"), Vp>1, p*=max{p,2}, (56)
which are continuous. Then relations (54) and (56) imply also the continuity of the velocity Newtonian potential operator
1+
Nuo, : Lp(Q+, R — B, " (Q+,RY, p e (1,0). 7

A similar argument yields the continuity property of the pressure Newtonian potential operator

1 1 _
Quo, : QR = B (Q)), Quo @ L,Q ,RY—B, | (Q), pe(l, o). (58)
In addition, due to (53), we have the relations
AN‘X;Qif - (XN,,;Qif - VQQ_if = f, diVNa;Qif =0in Qi- (59)

This leads us to the following assertion.

Corollary 3.2. Let « > 0, p € (1,»), and p* = max{p,2}. Then the Brinkman Newtonian potentials satisfy
Equation 274, and the following operators are continuous
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(Nug,. Qa,) 1 Q4R = 520 (@1, L), (Nug. Qo) : Ly Q- R = §20 1 (@, Lo), (60)
(Nug,.Q0,) : Lp(@, R = B2 Q.. L), (Nuo.Qo) @ LyQ.RY =B (Q,L,). (61)

Remark 3.3. Letfy € Ly(Q+,R") for some p € (1, o) and p* = max{p, 2}. Then Corollary 3.2, Lemmas 2.4 and 2.11,
and Remark 2.12 imply that

v+ (Na;Q ifi) €B, (GQRY, tF (Na;Q L f+.Qq ifi) € B L(OQ.RY, Vse (0,D). (62)

Moreover, due to (54), the first equality in (56), Theorem 2.13, and Theorem 5 in Buffa and Geymonat,” these
inclusions can be improved to the following ones

7 (Nuoyfe ) € H @R, 6F (Nuay fr. Qa, fr ) = % (Nug, £, Qo fr ) € LGQRY.  (63)

In (62), (63), and further on, the following space notations are used for p € (1, ), q € (1, o], s € (0, 1], and the outward
unit normal v to the Lipschitz domain Q, c R”,

Ly (0QR") := {ve Ly(0Q,R") : / v vdo = o} JHS,(0Q,R") = {veH;(asz,]R”) : / v vdo = o},
0Q oQ

(64)

B} 4 (0Q,R™) := {v € B} ,(0Q.R") : /a vevdo = 0} :

3.2 | Layer potentials for the Brinkman system

For a given density g € L,(0Q, R"), the velocity single-layer potential for the Brinkman system, V,g, and the corresponding
pressure single-layer potential, Q°g, are given by

(Ve®)(X) 1= (G (X, ), 8)o0, (Q°B)X) :=(II(X,"),8)oa, X ER"\0Q. (65)

Leth € H},(ag, R™) be a given density. Then the velocity double-layer potential, W,.,oh, and the corresponding pressure
double-layer potential, Qg_ ,oh. are defined by

(W, h);(x) := / Sir % Y)Ve (Y)hi(y)doy, (Qih)(x) := / A (X y)ve(hi(y)doy, ¥V x € R"\ 0Q, (66)
oQ oQ
where vy, £ = 1, ... , n, are the components of the outward unit normal v to Q,, which is defined a.e. (with respect to

the surface measure o) on 0Q. Note that the definition of the double layer potential in Shen’® ¢ differs from Definition
(66) due to different conormal derivatives used in Medkova®® ('4) and in formula (22) of our paper.

The single- and double-layer potentials can be also defined for any g € B;,qu(asz, R") and h € By, ,(0€2, R"), respectively,
where s € (0,1) and p,q € (1, o). For @ = 0 (ie, for the Stokes system), we use the notations Vg, Q°g, Wh, and 0% for
the corresponding single- and double-layer potentials.

In view of Equations 36 and 38, the pairs (V,g, Q°g) and (W5h, Q¢h) satisfy the homogeneous Brinkman system in Q.,

(A - al)V,g —VQ’g =0, divV,g =0in R"\ 0Q, (67)
(/A —a)W,h — VO*h =0, divW,h =0inR"\ 0Q. (63)

The direct value of the double layer potential W,.soh on the boundary is defined in terms of Cauchy principal value by
(K h)(x) := p.v./ S]‘.’;cf(y, X)vo(Y)hj(y)doy a.e. X € 0Q. (69)

oQ
Lemma3.4. LetQ, C R"(n > 3)beabounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.
Leta > 0and p € (1, ). There exist some constants C; > 0,i = 1, ... ,4, depending only on p, a and the Lipschitz
character of Q., such that the following properties hold:

IM (VVeg) Il 00) + IM (Vo) Il 00 + IM (Q°8) llz,00) < CiligllL,0akn, ¥ &€ Ly(0Q,R™), (70)

IM (Vo) I, 00) < Czllg”H;l(dQ,R")’ V g € H,'(0Q,R"), (71)
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1M (Weh) I, 00 < CslihllL oorn, V h € Ly(0Q,R"), (72)
IM (VW.h) ||, 00) + IM (Wah) ||, o) + IM(Q5R) ||,00) < Callbllmoare, ¥V h e Hp(0Q,R™). (73)

Moreover, the following estimates hold for the nontangential traces that exist at almost all points of 0Q:
||(Vag)$||Lp(oQ,Rn), ||(VVag)$||Lp(aQ,Rn), ||(ng)$||Lp(aQ,Rn) < Ciligllz oo, V 8 € Ly(0Q,R"), (74)
||(Vag)$||Lp(0Q) < C2”g”H;1(0Q,]R”)’ Vg€ H,'(0Q,R"), (75)
(W)l 00k < CallRll oaRn, ¥ h € Ly(OQ,R"), (76)
IWah) I oo VWl 0o ke 1QEYIIL 0o Ry < Callhllmoarn, Vb € HyOQR™. (77)

Proof. In the case a = 0, inequalities (70) to (73) follow from Propositions 4.2.3 and 4.2.8 Mitrea and Wright.”

In the case @ > 0, inequality (70) has been obtained in Shen.’® lemma32 In addition, inequality (71) follows by
the same arguments as in the proof of its counterpart in the case @ = 0 (cf Mitrea and Wright” V), Indeed, if
g € H,"(0Q,R"), then there exist g, = (801, --- »8on)> 8¢ = &ri1s -+ »8rem) € Ly(0Q,R™), 1,# =1, ..., n, such that

n n
8k = 8ok + 2 0c, 8 118okllL 00) + 2 8r:kcllL,02) < 2118kl 00 k=1,...n, (78)
r./=1 r.f=1

(cf Corollary 2.1.2 and relation (4.65) in Mitrea and Wright’), where 0;, = v,d, — v,0, are the tangential derivative
operators. Hence, integrating by parts,

Vo= [ Goc-yruwey =3 3 [ (0, (Gux-v))gratrdey, v xRN0 (79)

k=1r,/=1

(cfEq. (4.66) in Mitrea and Wright’ for « = 0). Inequality (71) immediately follows from equality (79) and the estimates
in (70) and (78).

Let us now show inequality (72) for « > 0 (note that its analogue for a differently defined double-layer poten-
tial in place of W, was given in Theorem 3.5 of Shen®). First, we note that Lemma 4.1 in Medkova® (see also
Shen? Theorem 2.5y implies that there exists a constant ¢, = ¢,(Qy, @) > 0 such that

VG (x,y) - VG Y| S ealx —yIP™, VX, y € Q. x £ (80)
Then, in view of formula (37) and equality I[1* = II, there exists a constant Cs = Cs(€,, ) > 0 such that

G a6,y
Yk Yk

995X ag(y, x)

<Cslx—y|*™", Vx,y€Q,, . (81
» 1= 51X —yl X,yeEQ,, x#y. (81)

[S7 (¥, X) — Sijk(y, X)| <

A [+]

Inequality (81) and Proposition 1 in Medkova* (applied to the integral operator W, — W whose kernel is
(S*(y,x) — S(y,x)) v(y)) show that there exists a constant Cs = C¢(d€2, p, ) > 0 such that
1M (Wo = W)h) I, 00) < CellhllL 9o rn, Vh € Ly(0Q,RY. (82)
Moreover, by Mitrea and Wright,” (4:56) there exists a constant C; = C;(0Q, p) > 0such that
IM (Wh) I, 00 < CrllhllL oo rn, V€ Ly(0Q R, (83)

and then, by (82) and (83), we obtain inequality (72).
Let us now show inequality (73) for « > 0. According to the second formula in (66) and formula (39), the kernel of
the Brinkman double-layer pressure potential operator Q¢ is given by

{ 200 = X)Wk = Xi)vi(y) N 2vi(y) 1 1 }

, 84
ly —x|"+2 ly —x|" ‘-2 Iy—XI"‘ZV’(Y) &4

. 1
ALK YY) = =
w

n
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For a = 0, (84) reduces to the kernel of the Stokes double-layer pressure potential operator Q%. Therefore,

a 1
@n(n —2) ly —x|"=2°
Then according to Proposition 1in Medkov4*® applied to the operator Q% —Q¢, there exists a constant Cg = Cg(0L, p, @)
such that

Vxe§+,yedﬂ, X#Y. (85)

| A5 YIVi(Y) = A Y@ < =

M ((@d-2%)n Csllhllz,pamn. ¥ 'h € Hy(OQR". (86)

“L (BQ)

In view of Proposition 4.2.8 in Mitrea and Wright,” the Stokes double-layer pressure potential operator Q¢ satisfies the
inequality

M (*h) ”L ooy < Colbllmearn. ¥ h e HyOQR, 87)
with a constant Cg = Cg ,p) > 0. Then by an 7), there exists a constant C;9 = Cyg ,p, a) > 0such that
ith Cy = Cy(0Q, p) Then by (86) and (87), th C C10(0Q2 ) h th
M (Q‘ih)”Lp@m < Cuollblloams, ¥ h € HY(OQ,R"). (88)

Next, we show that there exists a constant ¢; = ¢3(Q4, p, @) > 0 such that
IM (VW,h) || 00) < C3||h||H;(aQ,JRn), V h € Hy(0Q,R"). (89)

To this end, we use expressions (66) and (37) for the Brinkman double-layer potential W,h to obtain for any h €
Hl(0Q,R")
p b 9

0.(W, ) (x) = / {vew (000G ) 7 =30 + v ) (0:91G2) =% =y O (7 = %) } hacy)doy
/ {000 (0068 ) =30+ 01,0 (9C5) ¥ = %) = 0o, ey =) | eyl
0Q
- [ {59 A G =0+ @) (0:00) 3 =0~ w3 (911) 5 =0} Iy (90)
9
/ {(0:G) 5= (9c, 1) )+ (962,) & =20 (0, 1) ) = Thely = %) (95, ) 9) } doy

—a/ v (y) j‘.’;c(y—x)hk(y)day, jr=1,....,n,
0Q

where 9; 1= %. We also used the following integration by parts formula, which holds for any p € (1, o) (cf formula
2.16 in Mitrea and Wright”),

f(0:,8)do = / (0:,f) gdo, ¥ f € Hy(0Q), Yge H;, (0Q), (91)
o0 0
where 11—) + }% = 1. The last integral in (90) follows from Equation 36, which, in particular, yields that
(Ay —aDC*(y —x) — VyIl(y —x) =0, divyG*"(y—-x)=0, VXER"\0Q, yeiQ. (92)
In the case a = 0, formula (90) has been obtained by Mitrea and Wright.” 34
Now, from formula (90) and its counterpart corresponding to « = 0, we obtain for all j,r =1, ... ,n,

0r(Woh); = 0:(Wh); + 07 ((Va = V) (95,h) ), + (Ve = V) (0:,h) ), — a(Va (vh), Vh € Hy(0QR™.  (93)

Further, by using estimate (4.86) in Proposition 4.2.8 in Mitrea and Wright” for the Stokes double-layer potential,
Wh, property (70) for the Brinkman and Stokes single-layer potentials involved in formula (93), and continuity of the
tangential derivative operators o, : H,(0Q) — L,(9Q), we obtain inequality (89), as asserted (see also inequality (3.35)
in Kohr et al®).

Finally, inequalities (72), (88), and (89) imply inequality (73).

For any n > 3 and # > 0, there exists a constant C = C(n,¢,«) > 0 such that the inequality (cf Theorem 2.4 in

Shen*®),
C

(1 +alx|?) [x|n-2+¢"
holds and implies that |G*(x —y)| < Co|x — y|>7", with some constant Cy = Cy(n, @) > 0. Then in view of Propo-
sition 1 in Medkov4,* for any g € L,(0Q,R"), there exist the nontangential limits of the Brinkman single-layer

(94)

(o <
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potential V,g at almost all points of 0Q. Moreover, the existence of the nontangential limits of VV,g at almost all
points of 0Q follows immediately from Lemma 3.3 in Shen.*® For 9Q°g, such a result is valid since the Brinkman pres-
sure single-layer potential coincides with the Stokes pressure single-layer potential, for which the result is well known,
cf, eg, Proposition 4.2.2 in Mitrea and Wright’ and Lemma 3.3 in Shen.*®

Ifg € Hy 1(0Q, R™), then the existence of the nontangential limits of V,g a.e. on 0Q follows from formula (79) and
the corresponding statement for the existence of nontangential limits for a single-layer potential and the gradient a
single-layer potential with a density in L,(0Q, R").

Now, let h € L,(0Q,R"). Then the existence of the nontangential limits of the Brinkman double-layer potential
W, h at almost all points of 0Q follows easily from the case « = 0. Indeed, estimate (81) and Proposition 1 in Medkova*®
imply that the difference

(W, h);(x) — (Wh);(x) = / (8507 =0 = Sty = 20 ) vehi(y)doy
0Q

G Y —X)  9Gi(y — X) AN —% 3Gy —x)
— ) _ ij G _ j '
- /asz {( Yk Yk + a; e vk(Yhi(y)doy, x € Q4+

(95)
has nontangential limits ((Wah)j - (Wh)j)i (x%0) at almost all pointsxy, € dQ. On the other hand, according to Propo-
sition 4.2.2 in Mitrea and Wright,” there exist the nontangential limits of the Stokes double-layer potential Wh at
almost all points x, of 0Q. Therefore, the nontangential limits of the Brinkman double-layer potential W, h exist as
well at almost all points x of 0Q.

Now, leth € H},(()Q, R™). Then the existence of the nontangential limits of VW h at almost all points of 0Q follows
from their existence in the case a = 0 (cf Mitrea and Wright” **), formula (93), and the statement for the existence of
nontangential limits for a single-layer potential and the gradient a single-layer potential with a density in L,(0Q, R"),
while the existence of nontangential limits of Q,h a.e. on 0Q is provided by the corresponding result in the case
a = 0 (cf. Eq. (4.85) in Mitrea and Wright”) and Proposition 1 in Medkova*® applied to the complementary term
(Qg - Qd) h = aV A (h - v), which by (84) is the Laplace single-layer potential with density ah - v € L,(0Q).

Finally, note that inequalities (74) to (77) follow from inequalities (70) to (73) and the estimate ||fn$“Lp(6Q) <

1M L,(09)> whenever f has the property that both x;TF and M(f) exist a.e on 9Q (see remark 9 in Choe and Kim*®). (J

The mapping properties of layer potential operators for the Stokes system (ie, for « = 0) in Bessel potential and Besov
spaces on bounded Lipschitz domains, as well as their jump relations across a Lipschitz boundary, are well known, cf, eg,
Fabes et al,® Hsiao,*” Theorem 10.5.3 in Mitrea and Wright,” and Theorem 3.1 and Proposition 3.3 in Mitrea and Taylor.?
The main properties of layer potential operators for the Brinkman system are collected below (some of them are also
available in Proposition 3.4 of Dindo§ and Mitrea,* Lemma 3.4 in Kohr et al,” Lemma 3.1 in Kohr et al,’® Theorem 3.1 in
Mitrea and Taylor,” and Theorems 3.4 and 3.5 in Shen®).

Theorem 3.5. LetQ, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ :=R" \§+.
Letp,q € (1,0), « > 0, and p* := max{p,2}. Let t > —I% be arbitrary, wherell) + 1% =1

(i) Then the following operators are linear and continuous,

1

1+2 1
Vila, : Lp(0QR" > B ! (Q.R"), Qla, : L(0QR") - By .(Q.), (96)
s n 1+117’t
(le|9+7Q |Q+) : Lp(aQ,R ) - %p,p*;div(g+’£a)’ (97)
1 —1+1
Valo, : Hy'(OQ.R") = B) . (Q..R"),  Qlo, : Hy'(0QR") — B, . " (Q,), (98)
L1y
(Vale,. Qla,) : Hy'(OQRM = B (Qy, Lo), (99)
1+1 1
Wala, : HiOQR" = B, ! (Q R, Qfl, : Hy(0QRM — By (Qy), (100)

+i

1
(Walo,. Qila,) : HyOQR") > B 7 (Qy, Lo). (101)
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1
Walo, : Ly(0Q, R")eB*’ Q. R", Qi Ly(0QR" — B) . (Q),

p.p*;div

(Wela,.Q%la,) : Lp(0Q, R")a% (Qy, L)

p.p*;div
(ii) Moreover, the following operators are also linear and continuous for s € (0, 1),

V,: @QR%aBP R"RY, Q' : B l(0Q,R") - B

p.q;div (Rn)

pqloc

l

Vila, : BiJGQRY) B 7 (@R, (Q°)la, : By OQRY - By~ (@),

(Vala,-Qla,) © Bid OQ.R™ » B, 7" Q. L,),

+3 s+i-1
Wilo, : Byg@QR) » B (@, R, Qfla, : B, 0QR") — B,/ (@),

(Wala,. Qlla,) © B),(0QR™ - B, ;dw<9+, La),

Vela_ : Byg (09, R”)—>B " QLRY, Q. : By4 (0Q,R") - B

Dp.q;div (Q )

D.q; loc

1

(Vo @la ) : B QR » B 7 (@_.L,).

l

Wila : Byg@QR) ~ B2 (@ R", Qg : By 0QRY) ~ B 7 (@),

1
(Wala_,Qdla ) : B0, R“)q%p;dm( _.Ly).

(iii) The following relations hold a.e. on 0%,
(Vag)! = (Vug),, =: Vug. Vg€ Hy (00 R");

%h+anm;:-?u4wmm::mm,Vhe%wQR%
1 1 _ s n
-38 +th (V,8.0°8) = 58 +t,(V.8.0°%8) =: Kig, VgeL(0QR");

t' (W,h,Qth) = t,(W,h,Qth) =: D,h, V h € Hy(0Q,R");

where K}, is the transpose of K, 0o, and the following boundary integral operators are linear and bounded,

Y, 1 Ly(0Q,R") — HY0Q,R"), K, : H)0Q,R") — H)(0Q,R"),

V, t Hy'(0Q,R") = Ly(0Q,R"), K, : Ly(dQ,R") - Ly(0Q,R"),

K : Ly(0Q,R") - L,(0Q,R"), D, : Hy(0Q,R") - L,(0Q,R").

Forh € B}, ;(0Q,R") and g € B 1(09 R™), s € (0, 1), the following relations hold a.e. on 0€,

7+(Vag) = y—(Vag) =: V.8,

%h+hanm:—?uw4wmp:Kh

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)
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1 1 _
—58+1t (Vg Q'g) = S8+t (Vag. Q08) = Kig, (122)
ty (Woh, Qi) = t; (W).h, Q2 h) =: D.h, (123)
and the following operators are linear and continuous,
V, : B51(0Q,RY) — BS (0Q.R"), K, : B, (0Q,R") — BS (0Q,R"), (124)
K : By (0Q,R") - By (0Q,R"), D, : B} ,(0Q,R") — B} [(0Q,R"). (125)

Proof. (i) First of all, we remark that all range spaces of the velocity vector-valued layer potential operators in (96)
to (112) are divergence free due to the second relations in (67) to (68). Further, let us note that by (65) and (40), the
single-layer potential can be presented as (cf formula (4.1) in Costabel?),

Vog = (rG (X, ), 8o = (G*(X, ), V' )rr = NyreoY'g, (126)
for any g € By, 1(69 R"), p,q € (1 oo) and s € (0,1). Here, the operator y’ : By, 1(09 R") — q;zoip(R”,R") is

adjoint to the trace operator y : B g lOC(IR" R") — B1 L ,(0Q, R™) and they both are continues due to Lemma 2.4.

Next, we show the continuity of the first operator in (96) in the case @ > 0 (ie, for the Brinkman system). To this
end, we split the Brinkman single-layer potential operator into 2 operators, as V, = V + V,, where V, is the
complementary single-layer potential operator, ie,

Va;O =V, -V= Na;O;R"oylols (127)
where the imbedding operator : : L,(0Q,R") < B; "pl* (0Q,R") is continuous for any s € (0,1) and p € (1, 0). In
addition, N,.or» := N,r» — No.r~ is a pseudodifferential operator of order —4 with the kernel G*° := G* — G (see
formula (2.27) in Kohr et al'®), and hence, the linear operator

. s—1— n n +3—
N,ors : B (R", R )—»B

. scomp b.p* 1oc(Rn R™) (128)

1

(R",R") is the space of distributions in

. . 1_ s—l—
is continuous for any s € (0,1) and p € (1, o), where 7= 1- and Bp - comp

L
B, ”(R", R") with compact supports. Then formula (127) and the continuity of the involved operators imply that
the operators

+2+
Voo : Ly(OQR") > B,

SRR, (Vo) lo, £ LORRY = By (@, BY)

s+2+
are continuous as well. Now, the continuity of the embedding B (Q+,R”) < B "(Q+,R") for any s € (0,1)
shows that

1+1
Voo 1 L(0QR") = B, (Q,, R") (129)

is a continuous operator, even compact.
Moreover, the Stokes single-layer potential operator V. : L,(0Q,R") — L,(Q,,R") is continuous (cf, eg, the
mapping property (10.73) in Mitrea and Wright” and the continuity of the embeddings L,(0Q, R") < B;;)ﬂ (0Q,R")

+l
and B;,pi (Q..R") & Ly(Q,. R for any s € (0, 1).
On the other hand, the kernel VG of the integral operator VV satisfies the relations

VG e C¥R"\ {0}), (VO(—x) =—-(VOX), (VOUxX) =1 "(VO(x), Vi>0. (130)
Then, in view of Proposition 2.68 in Mitrea and Mitrea,* there exists a constant Cy = Co(Q+,p) > 0 such that

n
Ivvgll 1 o, R < Coligllr, o rn, ¥ 8 € Lp(0Q, RY). (131)

p.p*

Consequently, there exists a constant € = €(Q., p) > 0 such that
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vg|l .1 = |V, o+ |[|VVE]|l 1 <€ ny, Vg€ LyQi, RY), 132
| gllB;pf(Q+,Rn) IVl @, rn + |l g”B:’P*(QH]R"X") lIgllz, @, R g€ Ly(Qy,R") (132)
which shows that the Stokes single-layer potential operator
1+1
Vi Ly(0Q,R") — B, [(Q,R") (133)

is also continuous (cf, eg, Theorem 7.1 and Eq. (3.33) in Mitrea and Taylor’ and see also Fabes et al® for p = 2).
This mapping property and the continuity of operator (129) show that the Brinkman single-layer operator V, :

1+
L,(0Q,R") — Bp,pf (&, R™) is continuous, as well.

Let us show the continuity of the second operator in (96). To this end, we note that the Stokes single-layer pressure
potential Q*f with a density f = (f1, ... ,fu) € Ly,(0Q, R") can be written as

(Q°f) ®) = (divVAf) (x), VX € R"\ 0Q, (134)
where V A g is the harmonic single-layer potential with density g € L,(0Q), given by
1 1
VAQRX) 1= — — / (y)doy, xe€R"\0Q. (135)
A8 (n=2)@ Joo |X - yl"‘2g Yoy \

Then the continuity of the single-layer pressure potential operator Q° : L,(02, R") — Bp’i p*(QJr) forany p € (1, ) is
a direct consequence of Proposition 4.23 in Mitrea et al.®> Note that Proposition 2.68 in Mitrea and Mitrea® applies
as well and shows the desired continuity of the single-layer pressure potential operator in (96) (see also Theorem 3.1
and Eq. (3.30) in Mitrea and Taylor®). Thus, we have proved the continuity of the operators in (96).

Continuity of the first operator in (98) follows from the continuity of operators involved in the right hand side
of equality (79). Continuity of the second operator in (98) follows from equality (134), which is valid also]for any

feH, 1(0Q,R"), and by the continuity of the harmonic single-layer potential operator V 5 from H, L(0Q) to B;_’!p* (Q,).
Indeed, for any f € Hgl(aQ), there exist fy, f,, € Lp(0Q), r,¢ =1, ... n,such that f = fo + fozl 0., fre (see (78)).
Then by using the integration by parts formula (91), we obtain that

VaANHEX) = / OAx = y)fo(y)doy — Z / (0:,,CAY)) fre(V)doy, VX € R"\ 0Q, (136)
oQ el o0
where G A (x,y) is the fundamental solution of the Laplace equation in R" (n > 3). By using again Proposition 2.68 in
Mitrea and Mitrea® (see also (131)) and the continuity of the Laplace single-layer potential operator VA : Ly(0Q2) —

142
Bp,pf (Q4) (see, eg, Proposition 4.23 in Mitrea et al®* and property (3.49) in Proposition 3.3 of Mitrea and Taylor®), there
exists a constant Cy such that

IVAfI 2 = 1IVAfllL,@) + IVVASI < Goll fllL,@,): YV f € Lp(Q4). (137)
B, L Q) " (@R

pp* T pp*H?
Thus, the operator VVA : L,(0Q) — B;);,p* (Q,,R") is also continuous. Finally, by continuity of this operator and of
141
the operator VA : L,(0Q2) — B N pf (Q4) and also by the second relation in (78), we obtain from (136) continuity of the

operator VA : Hy L0Q) —» B;Z,p* (Q4) and, accordingly, continuity of the second operator in (98).

Let us now show the continuity of the first operator in (100). To this end, we notice that the Brinkman double-layer
potential operator can be written as W, = W + W, where W, is the complementary double-layer potential
operator, ie,

Wa;O = Wll -W= IK!I;OOy,o»’z (138)

(see Kohr et al'*¢433D), where the operator % : Hy(0Q,R") — L,(0Q,R" @ R") — B .(0QR"®R"), Nhx) :=
v(x) ® h(x), is continuous for any s € (0, 1). In addition, K, is a pseudodifferential operator of order —3 with the
kernel S*° := 8% — S (cf, eg, formula (2.27) in Kohr et al'*), and hence, the operator

—1-s+1 PR
P (Rn,Rn ®Rn> > B P

Ka;o ' B 'p.p*:loc

o (R",R™),
bpscomp (139)

—1-s+3
P

(KaoT),00 := (S5, = Sie) 20T, ) . VT €B, 7 (R"R" @R,
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1-s+
is also llnear and continuous for any s € (0,1), where B p P Cofnp(R” R" ® R") is the space of all distributions in

—1-s+

B, » (R",R" ® R™) having compact support in R". In addition, the trace operator y :

. . . . e oo +5
B;, p*,(asz, R"®R") (acting on matrix-valued functions) and its adjoint y’ : Bp; L(0Q,R"QR") — Bpp com p(R” R"®@R™")

are continuous (see the proof of Theorem 1 in Costabel?). Then formula (138) and the continuity of the involved
operators imply that the operators

) pMIOC(R" ®R") —

W, 1 HA0Q, ]R”)—>B ~* R.RY), (Wao) lo, : HX0Q, R")—>B QL R

p.p*;loc

2+
are continuous as well. Now, the continuity of the embedding Bp, (Q+,R”) o B ”(Q+,R") for any s € (0,1)
shows that

1+1
W, : Hy(0Q,R") - B, 0 (Q4,R") (140)

is a continuous operator, even compact. Let us now show that the Stokes double-layer potential operator

1+1
W : H,(0Q,R") — B,/ (Q,R") (141)

is continuous as well. In the setting of Riemannian manifolds and for double-layer potentials for second-order elliptic
equations, this continuity property follows from Theorem 8.5 in Mitrea and Taylor,* but we will provide a direct proof
here in the context of Euclidean setting. To this end, we use the following characterization of the space H;(dQ)

h € HY(0Q) <> h € L(0Q), 09,h €Ly(0Q), jk=1,...n (142)

(cf, eg, Mitrea and Wright”?1D) and recall that the tangential derivative operators Or, - H;(aQ) — L,(0Q) are
continuous. In addition, consider the operator Vi defined as

(Vig) ®) 1= [ Gux—y)g(y)doy, xe€R"\0Q. (143)
0Q

We have proved that the Stokes single-layer potential operator (133) is continuous for any p € (1, ) (see also Mitrea
and Taylor® Theorem 3.1,(3.33)) Consequently, the operators

1+
Ly(0Q) - B, 7 () (144)

+1
are continuous as well, for all j,k = 1, ... ,n. Recall that the operator VA © Lp(0Q) — Bp pf (Q,) is also linear and
continuous. Finally, we mention the following formula (cf Mitrea and Wright” 44)

0 (Wh); = =0, Vjy (0, i) = Vi (0z, i) — VA (05, k) in R™\0Q, (145)
which holds for every h € H;(OQ, R") and j,r = 1, ... ,n, where h; is the jth component of h. Then by using the
continuity of operator (144) and properties (142) and (145), we deduce that the operators

0:(W); : HY(0Q,R") — Bg?p*(sm, rj=1,...n (146)
are continuous. By Proposition 10.5.1 and Eq. (10.68) in Mitrea and Wright,” the operator W : H},(@Q,R") -
1
L,(Q,,R") is also continuous, as its range is a subspace of the space H;+" (Q4,R") for any s € (0, 1), H;(ag, R") &
By, p(0€2, R") (due to formula (A12)) and S+_(Q+, R") < L,(Q,,R")). Consequently, the Stokes double-layer poten-

tial operator W : H, 1(0&2 R") - B pp (Q,,R") is continuous, as asserted. This mapping property combined with the
continuity of operator (140) 1mphes the continuity of the first operator in (100).
Continuity of the second operator in (100) follows from similar arguments. To this end, let us mention the useful for-

141
mula Qg = div(W A g), where the harmonic double-layer potential operator W : H, 1(09) - B pp () is continuous
(cf, eg, Proposition 4.23 and Egs. (2.120) and (4.96) in Mitrea et al®?). Thus, the continuity of the Stokes double-layer
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pressure potential operator Q¢ : H},(aQ, R") — Bj, - (Q,) immediately follows. This property and continuity of the
complementary double-layer potential operator Q% := Qf — Q¢ : H;(9Q,R") — B;Z,p»« (Q,), where (cf Shen®® 3-10)
Q¢ h=aVa(h-v), (147)

yield the continuity of the Brinkman double-layer pressure potential operator QF = Q¢ + Q% : H,(0Q,R") —

1
BY ().
Continuity of the first operator in (102) for the case @ = 0 is an immediate consequence of Proposition 2.68 in Mitrea

and Mitrea® applied to the integral operator whose kernel is given by the fundamental stress tensor S°. Moreover, by
1

using again formulas (138) and (139), we can see that the operator Wy, : Lp(02, R") — BI‘;’p*(QJ,, R™) is continuous.

Therefore, for « > 0, the first operator in (102) is continuous as well. To prove continuity of the second operator

in (102), we again use the representation Q%g = div(W A 8) and continuity of the harmonic double-layer potential
1

operator Wa : L,(0Q) — B;,p* (Q4), eg, again Proposition 2.68 in Mitrea and Mitrea,* along with continuity of the

1
i1
complementary double-layer potential operator QZ;O D L0, R") — Bzip* Q).
Mapping properties (97), (99), and (101) are implied by the ones just above them and by the first relations in
(67) to (63).
(ii) Now, relation (126), continuity of the operator y’ : B}S,‘l(aQ, R") — B;jq +‘;(R”, R"™) (cf Lemma 2.4), and conti-

q
_2+l +l
nuity of the Newtonian potential operator N, g« : B;!q P(R",R") —» B;!q” (R",R") (see (43)) imply the continuity of

the first operator in (104) and thus of the first operators in (105) and (109). Continuity of the second operator in (104)
follows by similar arguments based on the equalities Q° = Qr.oy’ and implies also continuity of the second operators
in (105) and (109) (cf Proposition 10.5.1 in Mitrea and Wright”).

+l
Further, let us mention that relations (138) and (139) imply that the operator Wy, @ B}, ;(0Q,R") — B;’q" (Q,R")
is continuous for all p € (1,+o0) and s € (0, 1). This mapping property combined with the continuity of the Stokes
1

double-layer potential operator Wlq,_ : By, ,(0Q,,R") — B;Tq; (Q4+,R™) (see Proposition 10.5.1 in Mitrea and Wright”)
implies the continuity of the first operator in (107). The continuity of the second operator in (107) can be similarly
obtained. Other mapping properties of layer potentials mentioned in (104) and (111) follow with similar arguments
to those for (96) and (100). We omit the details for the sake of brevity (see also the proof of Lemma 3.4 Kohr et al®).

(iii) Equality (113) for g € L,(0Q, R") can be obtained by using inequality (94) and Proposition 1 in Medkova* (see
also Theorem 3.4 in Shen®). Since (V,),g):t and (V,g)_, are well defined for g € H,"(0Q,R") due to Lemma 3.4 (iii),
inequality (75) and the density argument then imply equality (113) also for g € H, (99, R"). Formulas (114) and
(115) follow by using arguments similar to those for the trace formulas (3.11) and (3.18) in Shen.*® To this end, we
first prove the formulas

(9 (Vig)) [mx) = i%v,-(x) (B = vi()VK(X)) (%) + p.v. / 0G5 (x ~ y)g(y)doy a.a. X € 0Q, (148)
0Q

for any g € L,(02) and all i,k = 1, ... ,n, where the function Vl’;‘(g is defined as in (143) with QJ‘?’k instead of Gy.
Indeed, formula (148) has been proved in Mitrea and Wright” * in the case @ = 0. Moreover, the estimate’® 227 for
the kernel VxGf (x) — VxGj(x) and Proposition 1 in Medkova* imply that there exist the nontangential limits of the
complementary potential 0;V g — d;Vicg at almost all points of 0Q and

(0 (Vig) — 0 (Vig)) |§(x) =p.v. /d . (0,G, — 0iGix) (x — y)g(y)doy a.a. X € 0Q, (149)
which implies (148) also for a # 0. Moreover, formula (148) yields for any f € L,(0Q, R") that
1
(0;(Vo)) |§(x) = iavj(x) (fx) — fi®)ve(X)V(X)} + p.v. / 0;G"(x — y)f(y)doy a.a. X € 0Q (150)
0Q

(cf Mitrea and Wright” *>* for « = 0 and Lemma 3.3 in Shen® for a > 0).
In addition,

(QSf) |$(x) = iévk(x)fk(x) + p.v./ Ik (x — Y)fi(y)doy a.a. X € 0Q (151)
oQ
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(cf Eq. (4.42) in Mitrea and Wright” and Lemma 3.3 in Shen*®). Then formulas (114) and (115) follow from formulas
(22), (24), (37), (66), (150), and (151).

Formula (116) follows from formulas (93) and (147) together with Proposition 4.2.9 in Mitrea and Wright’ (i.e., the
counterpart of the trace formula (116) corresponding to the case a« = 0).

Continuity of operators (106), (108), (110), and (112) is implied by the continuity of the operators just above them
and by the first relations in (67) and (68).

Now, we note that formula V, = V + V,,, continuity of the Stokes single-layer operator V : L,(0Q,R") —
H;(&Q, R") (cf Proposition 4.2.5 in Mitrea and Wright’), and continuity of the complementary operator V.
L,(0Q,R") — H;(dQ, R™) (cf Theorem 3.4(b) in Kohr et al'®) imply continuity of the first operator in (117). Conti-
nuity of the second operator in (117) and of the operators in (119) similarly follows from Propositions 4.2.7-4.2.10 in
Mitrea and Wright” and Theorem 3.4(b) in Kohr et al.'® In addition, formula (79) and the first relation in (78) yield
the following equality

n n
(Vo)) = / Go.(x ~ Y)gou(y)doy — Y, Y pu. / (0, (Gax-v)) ) grvaty)doy aa xe€oQ,  (152)
0Q k=1r=1 0Q

for any g € H,"(0Q,R") (cf, eg, formula (4.69) in Mitrea and Wright” for a = 0). Then the continuity of the first
operator in (118) immediately follows (see also Proposition 4.2.5 (iii) in Mitrea and Wright” for a = 0). Continuity of
the Stokes double-layer operator K : L,(0Q, R") — L,(0€2, R") (cf, eg, Corollary 4.2.4 in Mitrea and Wright”) and the
continuity of the reminder operator K, — K : L,(0Q,R") — L,(022, R") (see Theorem 3.4(b) in Kohr et al'*) show the
continuity of the second operator in (118). Continuity of the traces and conormal derivatives of the layer potentials
involved in (120) to (123) and hence continuity of the boundary operators (124) and (125) immediately follow from
the mapping properties of the layer potentials in item (ii) and Lemmas 2.4 and 2.11.

Finally, the jump relations given by the first equalities in (120) to (123) follow from formulas (113) to (116), together
with the density of the embeddings H;(aQ, R") Bf,,q(aQ, R") and L,(022,R") < Bj,‘l(aQ, R"), and equivalence

q
results in Theorems 2.5 (i) and 2.13 (i) for traces and conormal derivatives. O

Let us mention the following useful result.
Lemma 3.6. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.

(i) Ifp € (1,0), @ € (0,0), g € L,(0Q,R") and h € HA(9Q, R"), then

r+(Vog) = (Vo) € Hy, (0Q.R"), (153)
y£(Woh) = (Wb € H},(0Q,RY), (154)

tF (V.g,Q°g) = t& (V.g, Q%) € L,(0Q,R"), (155)
t (W,h,Q%h) = t%(W,h,0%h) € L,(0Q,R"), (156)

with the corresponding norm estimates.

(ii) Ifp.q € (1,0), s € (0,1), a € (0, 0), g € B} (0Q, R") and h € B} (92, R"), then

1+(Vag) = (V)% € BS 1., (00, RY), (157)

r+(Woh) = (W,h)}; € B} 0., (0Q,R"), (158)

with the corresponding norm estimates.

Proof. Let first g € L,(0Q,R") and h € H},(@Q, R"), p € (1, ). Then, according to Lemma 3.4 (ii,v), the right
hand sides of the equalities in (153) to (156) exist almost everywhere on dQ in the sense of nontangential limit,

1+1
while Theorem 3.5 (i) yields that (V.g.Q’g).(W:h,Q7h) € B ! . (@, L,) and (V.g.Q’g).(W.h,Qih) €

%p’pf; divioe(82—: Lo) forany ¢ > —l%. Moreover, Theorem3.5 (iii) and the divergence theorem applied to the single-layer

potentials V,g and W, h in the domain Q. yield that (V,],g)nit € H;;V(aQ, R™), bft;ﬁ (Vag, ng) € L,(0Q,R"), for any
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g € L,(0Q,R"), while (W, h)— € H,,,(0Q,RM), t;l—*t (W.g,Q%g) € L,(0Q,R"), for any h € H,(9Q,R"), with the cor-
responding norm estimates. Hence, Theorems 2.5 (i) and 2.13 (ii) along with Remark 2.14 imply relations (153) to
(156).

For p,q € (1,00) and s € (0,1), we have g € B} /(0Q,R") C H,;'(0Q,R") and h € B} (0Q,R") C L,(9Q,R")
and, according to Lemma 3.4 (iii,iv), the right hand 51des of the equahtles in (157) and (158) exist almost everywhere

on 0L, while Theorem 3.5 (ii) yields that V,g, W,;h € Bp qp 41y (€+). Hence, Theorem 2.5 (i) implies relations (157)
and (158). O

We will further need the following integral representation (the third Green identity) for the homogeneous Brinkman
system solution (see eg,, formula (10.95) of Mitrea and Wright’, in the case a« = 0).

Lemma 3.7. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.
Let a € (0, ), p,q € (1,00) and s € (0, 1). If the pair (u, =) satisfies the system

NAu—au—-Vr=0, divu=0in Q, (159)

and u,m) € H, *(@,, R X H, | *(Qy), or (u,7) € By (@4, R X By *(Qy), then
ux) = Vo (i 7)) %) - W, () (%), VX € Q. (160)

Proof. Let B(y,e) C Qbe aball of aradius ¢ around a pointy € Q, and let G¥ LX) = ( o (X)s ,ggn(x)), k=1, ...,n,
where (G%,I1) is the fundamental solution of the Brinkman system in R” (see (33) and (34)). Applying the second
Green identity (29) in the domain Q. \ B(y, €) to (u, z) and to the fundamental solution (G, (- —=), Ily)(- —y) and taking
the limit as ¢ — 0, we obtain (160). O

Next, we show the counterpart of the integral representation formula (160) written in terms of the nontangential trace
and conormal derivative.

Lemma3.8. LetQ, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Leta > Oand p € (1, c0)
be given constants. Assume that M(w), M(Vu), M(x) € Lp(0R2), there exist the nontangential limits of u, Vu, and 7 at
almost all points of the boundary 0Q, and that the pair (u, ) satisfies the homogeneous Brinkman system

NAu—au—-Vr=0, divu=0in Q,. (161)
Then u satisfies also the following integral representation formula
ux) =V, (thwn)® - W, (u,) ®, VxeQ,. (162)

Proof. We use arguments similar to the ones in for Proposition 4.4.1 in Mitrea and Wright’ for the Stokes system. In
the case of a smooth bounded domain Q, ¢ R” and for u € C%(Q,,R"), = € CY(Q,), formula (162) follows easily
from the integration by parts, cf, eg, (160). Now consider a sequence of subdomains {Q }.>1 in Q, that contain the
point x € Q. and converge to Q, in the sense of Lemma 2.2. Then formula (162) holds for each of the domains Q;,
and by the Lebesgue dominated convergence theorem (applied again after the change of variable as in Lemma 2.2
that reduces the integral over 0Q; to an integral over dQ) letting j — oo, we obtain (162) for the Lipschitz domain €.
as well. O

4 | INVERTIBILITY OF RELATED INTEGRAL OPERATORS

Lemma 4.1. Let Q. C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Let a € (0, ) and
0 < s < 1. Then the following operators are isomorphisms,

%H + K : H;%(0Q,R") — H;*(0Q,R"), (163)

1
SI+ K, HY0Q.R") — Hy(0Q.R"). (164)

Proof. Isomorphism property of operator (163) for s = 0 follows from Proposition 7.1 in Medkova® (see also Lemma
5.1 in Shen®). By duality, this also implies the isomorphism property of operator (164) for s = 0

Let us now remark that for « = 0 and 0 < s < 1, operator (164) is a Fredholm operator with index zero (cf, eg,
Proposition 10.5.3 and Theorem 5.3.6 in Mitrea and Wright’), while the operator K, := K, — K : H}(0Q,R") —
H;(0Q, R") is compact (cf, eg, Theorem 3.4 in Kohr et al'®), implying that for « > 0 and 0 < s < 1, (164) is a Fredholm
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operator with index zero as well. Then by Lemma B.4 and the invertibility property of operator (164) for s = 0, we
obtain the equalities

Ker { %]1 + K, : H(0Q.R") - H3(0Q, ]R")} — Ker { %]I + K, : HOOQR") - H(0Q, R")} —{0), 0<s<1, (165)

which show invertibility and hence isomorphism property of operator (164) for « > 0 and 0 < s < 1 as well. A duality
argument implies that operator (163) is also an isomorphism whenever « > 0and 0 < s < 1. O

We will often need the following 2 intervals,

2(n—1) 2—-¢g,4x) if n=3
Ro(n, e) = < —— —6,2+6> N(1,+00), Ri(n,e)= <2_£7 2(nn_—31) +g> f n>3° (166)
which are particular cases of a more general interval
2-¢,+) if n=3andd=1
Ro(n,e) = 2n-1) _ _ 2n-1 . (167)
(m ,m'i‘f)n(l,-i-oo) if n>30r0<6<1

Lemma 4.2. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Let a € (0, o0). Then
there exists e = €(0Q) > 0 such that for any p € Ro(n,e) and p' € R1(n, €), see (166), the following operators are
isomorphisms,

%]1 4K ¢ Ly(0Q R - L(0Q,R"), (168)
%}1 +K,: H;,I(OQ, R - Hl;,l(asz, R™), (169)
%}1 +K, : Ly(0Q,R") - Ly(0Q,R"), (170)
%11 +K, : Hy(0Q,R") — Hy(0Q,R"). (171)

IfQ, is of class C', then the above invertibility properties hold for all p,p’ € (1, ).

Proof. By Theorem 9.1.11 in Mitrea and Wright,” there exists a parameter € > 0 such that for any p € Ry(n, ),
%]1 + K" 1 L,(0Q,R") = L,(0Q, R") (172)

is a Fredholm operator with index zero. Then compactness of the operator K7 ;| := K;—K* @ L,(0Q, R") — L,(0Q, R")
forany p € (1, o0) (see Theorem 3.4(b) in Kohr et al'®) implies that operator (168) is Fredholm with index zero as well,
for any p € Ro(n, ). In addition, a density argument based on Lemma B.4 and the invertibility property of operator
(163) in the case s = 0 show that operator (168) is an isomorphism for p = 2 and hence for any p € Ry(n, ¢).

Similarly, by Theorem 9.1.3 in Mitrea and Wright,” there exists a parameter (for the sake of brevity, we use the same
notation as above) € > 0 such that for any p € Ry(n, ), the operator

1
5]1 +K : Hy(0Q,R") - Hy(0Q,R") (173)

is Fredholm with index zero. Then compactness of the complementary operator K, := K, — K : H;(aQ, R") —
H; (0Q,R™) for any p € (1, o) (see Theorem 3.4(b) in Kohr et al'®) implies that operator (171) is Fredholm with index
zero as well, for any p € Ro(n, €). In addition, a density argument based on Lemma B.4 and the invertibility property
for operator (164) in the case s = 1 show that operator (171) is an isomorphism for p = 2and hence forany p € Ro(n, ).

Isomorphism property of operators (169) and (170) then follows by duality and isomorphism property of operators
(171) and (168), respectively, for p’ = ﬁ.

If Q, is of class C', then operator (173) is Fredholm with index zero for any p € (1, ), cf, eg, remark 3.1 in Russo
and Tartaglione®® and the rest of the proof holds true for any p, q € (1, ). O



GUTT ET AL. Wl LEY 25

Lemmas 4.2, A.1, and B.1 (ii) and an interpolation argument (provided by the complex and real interpolation theory)
imply the following assertion.

Corollary 4.3. Let Q. C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q, and a € (0, ).
Then there exists € = £(0Q) > 0 such that for any p € Ry(n,e) and p’ € R1_s(n, €), cf (167), the following operators are
isomorphisms

24K, Hy0R,R") - Hy0Q.R"), s€0.1], (174)
24K HP0Q.R") - HP0Q R, s e[0.1], (175)
24K, : By (0.R") = By (GQR), s€©0.1), q€ ) (176)
4K, 1 B @R — BLOQRY, s€O1), g€ (L) 177)

IfQ, is of class C', then the properties hold for all p,p’ € (1, o).
Next, we show the following invertibility result (see also Proposition 7.2 in Medkova* in the case p = 2 and s = 0).

Lemma 4.4. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.
Let @ € (0, 00). Then there exists a number € = £(0Q) > 0 such that the operators,

214K, Ly 0B = Ly, (02.R), (178)
—%]I + K Ly(0Q, R")/Ry — Ly(0Q, R")/Rv, (179)
—%H +K, : Hy (0Q,R") > H} (0Q,R"), (180)
—%]I +K; : H'(0Q.R")/Rv — H>(9Q, R")/Ryv, (181)

are isomorphisms for all p € Ro(n,€) and p’ € R1(n, €) (cf(166)).
If the domain Q is of class C, the above properties hold for all p,p’ € (1, o).

Proof. In the case @ = 0, operator (178) is an isomorphism (cf Corollary 9.1.12 in Mitrea and Wright”) and hence a
Fredholm operator with index zero for any p’ € R1(n, €). Moreover, the operator K, — K is compact on the space
Ly (0Q,R") (see Theorem 3.4(b) in'®), and its range is a subset of L,.,(dQ, R"). Indeed, by using the formula

(K, —K)h = (—%]I + Ka> h- <—%}1 + K) h=y,W,h—y,Wh,

the equations divW,h = 0 and div Wh = 0in Q,, and then, the divergence theorem and the trace formulas (114), we
deduce that (K, — K)h € L., (02, R") for any h € L., (02, R"). Therefore, the operator K, — K : Ly, (0Q,R") —
Ly, (02, R") is compact, and then operator (178) is Fredholm with index zero for any p’ € R.(n, €). On the other
hand, by a similar reasoning (cf, eg, Theorem 9.1.3 in Mitrea and Wright” and Theorem 3.4(b) in Kohr et al'®), operator
(180) is Fredholm with index zero as well, for any p € Ry(n, €).

We show now that operators (178) and (180) are also injective. Let us start from operator (180) with p = 2. Let
h, € H;;V(OQ, R™) be such that (—%H + K,,,) h = 0. Thus, y,W,hy, = 0, and by applying the Green formula (28)
to the double-layer velocity and pressure potentials W,hy and 9%h, in Q,, we deduce that W hy = 0 and Q;’ho =
¢o € Rin Q. According to formula (116), we obtain that t— (W,ho, Qdhy) =t} (W,ho, Q¢hy) = —c,v, and then the
relation y-Wyhy = hy € H} (9Q,R") shows that (t; (W,ho, Qdhy), 7-W,hg Yoo = 0. Finally, the relations W ho(x) =
O(|x|™") and Q%h, = O(|x|*~") as |x| — oo (see, eg, Varnhorn> Lemma .12, (276)y and the Green formula (28) applied to
W,h, and Q%h, in Q_ imply that W hy = 0 and Q%h, = 0 in Q_. Then the trace formula (114) yields that hy = 0.
Consequently, operator (180) with p = 2 is injective. Then Lemma B.4 implies that operator (178) with p’ = 2 is
injective as well. Applying Lemma B.4 again, we now obtain that operator (180) with p € Ry(n, £) and operator (178)
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with p’ € Ri(n, €) are injective, and according to their Fredholm property, these operators are also isomorphisms.
Operators (179) and (181) are then isomorphisms by duality.

If Q is of C? class, then for all p,p’ € (1, c0) operators (178) and (179) are Fredholm with index zero due to com-
pactness of the operators K and K* on the corresponding spaces (cf, eg, Eq. (3.51) in the proof of Proposition 3.5 by
Dindo§ and Mitrea® and Theorem 3.4(b) in Kohr et al'®). Then the previous paragraph implies that operators (178) to
(181) are isomorphisms for p,p’ € (1, ). O

Lemmas 4.4, A.1, and B.1 (ii) by interpolation imply the following result (see also Proposition 7.2 in Medkova® for p = 2
and s = 0).

Corollary 4.5. LetQ, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.
Let a € (0, ). Then there exists e = £(0Q) > 0 such that forany p € Rs(n,e) andp’ € R1_5(n, €)(cf(167)), the following
operators are isomorphisms,

-1+ K, H, QQR") = Hy, OQRY, s€[0,1] (182)
—%]I+KZ : Hy*(0Q,R")/Rv — H;(0Q.R")/Rv, s e [0,1], (183)
—%H+Ka B (OQRM = B, (GQ.R", s€(0.1), g€ (1 o), (184)
—%]I+Kj, . B;3(0Q,RM/Ry > B (0Q,R")/Rv, se(0,1), qe (1) (185)

IfQ, is of class C', then the properties hold for all p,p’ € (1, ).

In the case « = 0, the result, corresponding to the next one, has been obtained in Mitrea and
Wright7’ Theorem 9.1.4, Corollary 9.1.5 (see also Mitrea and TaleI'S’ Theorem 6.1)'

Lemma 4.6. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q and let Q_ := R" \§+.
Let a € (0, ). Then there exists a number € > 0 such that foranyp € Ro(n,e) andp’ € R1(n, €), see (166), the following
Brinkman single-layer potential operators are isomorphisms

Ve @ Lp(0Q,R")/Rv — H,,(0Q,R™), (186)

Y, : Hp-,l(asz, R™")/Rvy = Ly, (0Q,R"). (187)

IfQ, is of class C', then the above invertibility properties hold for all p,p’ € (1, o).

Proof. First, we note that for any f € L,(0Q,R"), the inclusion V,f € H;(&Q, R") follows by Theorem 3.5 (iii). More-
over, the inclusion V,f € H;;V(ag, R") follows from the equation div V,f = 0 in Q,, the divergence theorem, and
relation (120). On the other hand, there exists a number € > 0 such that the Stokes single-layer potential operator

VY L,(0Q,R")/Rv — H;;v(aQ, R™)

is an isomorphism for any p € Ry(n, €) (Theorem 9.1.4 in Mitrea and Wright”), which implies that ¥V : L,(0Q,R") —
H; (022,R") is a Fredholm operator with index zero for the same range of p. Thus, the Brinkman single-layer
potential operator
Vo 1 Ly(0Q,R") — Hy(0Q,R") (188)
is a Fredholm operator of index zero for any p € R(n, €), as follows from the equality V, = V + V,¢, where V, :=
Vo=V : L,(0Q,R") - H 11, (0Q, R™) is a compact operator (cf Lemma 3.1 in Kohr et al'®). Then by Lemma B.4, we obtain
the equality
Ker {V, : Ly(0Q,R") » Hy(0Q,R")} = Ker {V, : L,(0Q,R") > H,(0Q,R")}, (189)
foreach p € Ry(n, €).
Moreover, by considering a density @, € L,(02, R") such that V,¢@, = 0 on 0Q, by applying the Green identity (28)
to the single-layer velocity and pressure potentials uy = V,¢, and 7y = Q°@,,, and by using Theorem 3.5, we deduce
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thatuy = 0 and 7y = ¢p € Rin Q. In addition, the behavior at infinity of the single-layer potentials, uy(x) = O(|x|™"),
o(ug, m)(X) = O(|x|'™") as |x| — oo (see, eg, Medkova™ sction4) yields that the Green identity (28) applies also to the
fields ug and 7y in the exterior domain Q_ and yields uy = 0, 7o = 0 in Q_. Then by formulas (115), ¢, = cov. On

g7 (x=y)
* " dy=0and
o Y

the other hand, the divergence theorem and the second equation in (36) imply that (V,v);(x) = fQ
accordingly that ¥V, v = 0. Thus, we obtain the equality

Ker {V, : L,(0Q,R") — H,(0Q,R")} = Rv.

Therefore, by (189), the codimension of the range of the operator V, : L,(0Q,R") — H;(()Q, R") is equal to one.
Moreover, Range (Va;ag) C H;;V(ag, R™), as follows from the divergence theorem and the second equation in (36).
Since HI};V(OQ, R") is a subspace of codimension one in H;(OQ, R"), we conclude that the range of the operator V, :
L,(0Q,R") — H;(aQ, R") is just H;;V(dﬂ, R™). Then the fundamental quotient theorem for linear continuous maps
implies V, : L,(0Q,R")/Rv — H;,;V(ag, R") is an isomorphism for any p € Ro(n, €), as asserted.

Since the operator V, is self-adjoint, duality shows that operator (187) is also an isomorphism for any q € (1, o0)
such thatq = ﬁ. Note that for the same range of g, the Stokes single-layer potential operator V : Hy L0Q, RY) /Ry —
L;.,(0Q,R") is an isomorphism as well (see Corollary 9.1.5 in Mitrea and Wright” for a = 0).

If Q, is of class C?, then the operator V : H, 7 LoQ,R") - L,(0Q,R") is Fredholm with index zero for any g € (1, c0)
(cf, eg, remark 3.1 in Russo and Tartaglione®; see also Proposition 4.1 in Hofmann et al®*). By duality, we deduce that
operator (188) is Fredholm with index zero as well for any p € (1, o) whenever a = 0. In view of Theorem 3.4 in Kohr
et al,'’® the complementary operator V, — V : L,(0Q,R") — H},(ag, R™) is compact (even in the case of a Lipschitz
domain). Therefore, the operator V, : Lp(02, R") — HI}(()Q, R") is Fredholm with index zero for any p € (1, o). Then
the rest of the proof holds true for any p, q € (1, ). O

Lemmas 4.6, A.1, and B.1 (ii) and an interpolation argument imply the following assertion (see also remark 3.1 in Russo
and Tartaglione? in the case of a C* domain).

Corollary 4.7. LetQ, C R*(n > 3) be a bounded Lipschitz domain with connected boundary 0Q andletQ_ := R"\§+.
Let « € (0,00) and p € Rs(n,¢), see (167). Then there exists e = €(d2) > 0 such that the following operators are
isomorphisms,

V. © Hy*(0Q,R")/Rv — Hy P(0Q,R"), s€[0,1], (190)

Ve : By (0Q,R")/Rv > B, ,(0Q,R"), s€(0,1), g€, o). (191)

IfQ, is of class C', then the property holds for any p € (1, o).

5 | THE DIRICHLET AND NEUMANN PROBLEMS FOR THE BRINKMAN
SYSTEM

5.1 | The Dirichlet problem for the Brinkman system
Let us consider the Dirichlet problem for the homogeneous Brinkman system,
Au—au—-Vz=0, divu=0inQ,, (192)
u’ =h, on 0Q, (193)

and show the following assertion (cf Theorem 5.5 in Shen® for p = 2 and the boundary data in the space L,.,(0Q, R");
for @ = 0, see also Corollary 9.1.5, Theorems 9.1.4, 9.2.2 and 9.2.5 in Mitrea and Wright” and Theorem 7.1 in Mitrea and
Taylor®). The Dirichlet boundary condition (193) is understood in the sense of nontangential limit at almost all points of
0Q.

Theorem 5.1. Let Q, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q.. Let a € (0, ),
p € (1, ), and p* := max{p,2}.

(i) Lethy € H;,;V(agz, R™). Then there exists € = €(0Q2) > 0 such that for any p € Ro(n, €), the Dirichlet problem (192)
to (193) has a solution (u, z) such that M(u), M(Vu), M(z) € L,(0Q) and there exist the nontangential limits of u,
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Vu, and = at almost all points of the boundary 0Q. Moreover, there exists a constant C = C(0Q, p, ) > 0 such that
IM@)I,00) + IM(VI)llL,00) + IM(®)llL,00) < Clihollm ook, (194)
iz, (aQ) + IVuy Iz, 00 + 175,00 < C”hOHHl(aQR") (195)
In addition, u € B "(S2+,R”) e B" .(Q,) and

llull .. o, R +llzll 1 < C||h0||H;(asz,Rn>-

pvp* '+ pvp* '+
(ii) Lethy € L, (0Q,R"). Then there exists € = €(dQ) > 0 such that for any p € R1(n, €), the Dirichlet problem (192)
to (193) has a solution (u, ) such that M(u) € L,(0Q). Moreover, there exists a constant C > 0 such that

IM@)||1,00) < CllhollL oo k- (196)

1
In addition, u € B; - (Qy,R™) and
]l 1 < Clibholly o0,r)-
BY (@, R ’

s

(iii) Let0 <s < 1landhg € Hy, (0Q,R"). Then there exists e = €(0Q) > 0 such that for any p € R1_5(n, €) (cf (167)),
the Dirichlet problem ( 1 92) to (193) (where the Dirichlet condition (193) is considered in the Gagliardo trace sense)

has a solution u € B "(Q+, R"), z € B ‘i (Q+) and there exists a constant C > 0 such that

< s ny.
|Iu|| 5 IR)+ Nzl g S Cliholl s o Re)

p.p* +

In each of the cases (i), (i), and (iii), the solution is unique up to an arbitrary additive constant for the pressure = and
can be expressed in terms of the following double layer velocity and pressure potentials

u="w, <<—%I+Ka>_lho> . z=0¢ <<—%I+KQ)_lho> inQ, . (197)

Proof. According to Lemmas 3.4 and 4.4 and Theorem 3.5 (iii), the functions given by (197) provide a solution of
the Dirichlet problem (192) to (193), which satisfies the corresponding norm estimates mentioned in items (i) to (ii).
For 0 < s < 1 in item (iii), we have by Corollary 4.5 that (—%I + Ka) 1ho € Hy(0Q.R") — B .(0Q,R") with
corresponding norm estimates, which by (72), (107), and (114), proves the desired solution properties.

We will now prove uniqueness of the solution of the Dirichlet problem (192) to (193) satisfying the conditions in
item (ii), by modifying arguments in the proofs of Theorem 5.5.4 in Mitrea and Wright” and Theorem 7.1 in Dindo§
and Mitrea.’ Let (u°, z°) be a solution of the homogeneous version of the Dirichlet problem (192) to (193) such that
M(u®) € L,(0Q) and u, satisfies the homogeneous boundary condition in the sense of nontangential limit at almost
all points of the boundary 0Q. Let xo € . and let {Q;}>1 be a sequence of C* subdomains in Q, that contain x, and
converge to Q. in the sense described in Lemma 2.2. Let GZ(X) = (ggl(x), ,an(x)), k=1, ... ,n,where (¢* II) is
the fundamental solution of the Brinkman system in R" (see (33) and (34)). Then for each Q;andany k =1, ... ,n,
the functions v and ¢/ given by

. o . } . . -1
v, =W, (0?), g, =0 m") inR"\oQ, n= (-%1 + K@) (GE(xo = )logy): (198)

satisfy the system

{ AV, —avl - Vg, =0, divv, =0inQ, (199)

(Vo )k = G (X0, )og-

Here, W’a = Wape, and Q’;d 1= QZ; o0, 2T€ the double-layer velocity and pressure potential operators corresponding
to 0€;, while K{, : H;,(aQ», R") — H;,(aQ-, R") is the corresponding double-layer integral operator. Indeed, G;/(Xo —
g, € H;;VU)(()Q-, R™) and, in view of Lemma 4.4, the operator —%I +K, H;,w(ag-, R") — H;,;VU.)(@QJ-, R™) is an
isomorphism for any p’ € (1, o) since Q; is a smooth domain.

Note that the operator —%I +K, : H;,;V(aQ, R") — H;,;V(aQ, R") is an isomorphism for any p’ € Ry(n, €) (see
Lemma 4.4), ie, for any p’ such that }% =1- 1%’ where p € Ri(n,€). After performing a change of variable as in
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Lemma 2.2, the operator —%I + K/, defined on 0Q; can be identified with an operator 7! acting on functions defined
on dQ. Then, using the arguments, eg, similar to those in the last paragraph in p116 in Mitrea and Wright,” which are
based on Lemmas 11.9.13 and 11.12.2 in Mitrea and Wright,” and taking into account of Proposition 1 in Medkova*
(see also Theorems 3.8 (iv) and 4.15 in Fabes et al®), one can show that the sequence of operators 7 J converges to the
operator 7, : ——I + K, in the operator norm and the sequence of the inverses of the operators T, J converges to the

inverse of the operator 7, in the operator norm. Hence, the operator norms || <_EH + Ka) | g2 (00, Rn) are bounded
24 ’
uniformly in j, implying that there exist some constants Cy, C;; depending only on p, 1, @, and the Lipschitz character
of Q, (thus, Cy does not depend on j) such that
IR, o0, By < Coll G o, llaz oy ey < CoUM (G (Ko Dl o) + IMVGEos Nl ) (200)

where the nontangential maximal operator M is considered with respect to a regular family of cones truncated at
a height smaller than the distance from x, to dQ (cf Theorem 1.12 in Verchota,*® see also Lemma 2.2). Further, by

considering the change of variable y; := @;(y) as in Lemma 2.2, the double-layer potential representations (198)
become
v (0 = /0 S, . vsyph,(yp)doy, = / 5% (@(y), X)vs(@;(y)H, " (y)doy, (201)
J
g, (%) = / AL sk, (ypdoy, = / AL@;(y). X)vs( @iy H, " (y)doy, Vx € Q;, (202)
oQ

J
where H'(y) := W'O(@;(y)w(y)y € 0Qy? = 6, ... .y, 00 = R0, ... .09, B = @Y, ... . H'Y), and o,
is the Jacobian of @; : 0Q — 0Q;.
In view of (200) and of the uniform boundedness of {®;};>1, there exists a constant C; > 0 (which depends only on
D, n and the Lipschitz character of Q) such that

IH (’)”Hl @aRn < Ci||h & ||H1 09 Rm) < CoCr(IM(G (%0, Nz, 00 + IM(VGE (X0, N, 00), V2 1. (203)

Hence, {H'? }j>1 is a bounded sequence in H;,(GQ, R"), and, thus, there exists a subsequence, still denoted as the
sequence, and a function H' € H;,(OQ, R™), such that H'Y' — H’ weakly in H;,(ag, R™). By this property and letting
j = oo in (201) to (202), we obtain \/,;O(x) - vy, (x) = W,H (%), q’,'(o (X) = gx,(x) = QYH'(x) pointwise for any
x € Q. Moreover, in view of Lemma 3.4 (where the constants depend only on the Lipschitz character of Q. ), applied
to 0€;, and (200), we obtain the inequality

IM(VV)llL, 00 + 1ML, 00 < C3lIWP| < CHCs (IIMGEo. NIz, 00 + IM(VGE (X0, Mz, 00) - (204)

with a constant C; depending only on p, n, and the Lipschitz character of Q2.
In addition, the pair (GZJ(XO, ), 7z‘li€(X0, -)) given by

G(xo,) 1= Gi(xo — ) =V, 7 (%0,) 1= Mx(xo — ) — . (205)
defines the Green function of the Brinkman system in Q; and its corresponding pressure vector, ie, it satisfies for each
Xy € Q; the following relations

—V (%0, Y) + AN} (x0,y) — aGy (%0, y) = —8y(x0)L,
diYyGZV(xo,y) =0 in Q (206)
GZ"(XO,y) =0, ye€oi.

Hence, for each Q; and any k = 1, ... , n, we obtain the relations

<AGZJ(X0’ ) = aG Y (x0,) = Vi (Xo, -),u°>Q = u0(xo)- (207)

J

Then by (206) and (207), we obtain that

(%) = / (G (%o, ), 7y (%o, ) - u’do. (208)
0%

By (205) and (204), there exists a constant C depending only on a, p, n, and the Lipschitz character of Q. such that
IM(VGE X0, Ml 00y + 1M, (%o, DL 00, < CUMGEo, ML, 00 + IMVGE o, DL, 0.
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Since also M(u°) € L,(0Q) and (uo);:t = 0 on 0L, then the Lebesgue dominated convergence theorem (applied again
after the change of variable as in Lemma 2.2 that reduces the integral over dQ; to an integral over 0€2) implies that
the right hand side in (208) tends to zero as 0€; tends to dQ and hence uz(xo) = 0. Because X, is an arbitrary point
in Q,, we conclude that u® = 0 in Q,, and by the first equation in (192), z° is a constant pressure, as asserted. This
completes the proof of the uniqueness in item (ii).

Let us show also the uniqueness result for item (i). To do so, assume that (uy, 7¢) is a solution of the homogeneous
version of the Dirichlet problem (192) such that M(uo), M(Vuy), M(7o) € L,(0R), there exist the nontangential limits
of uy, Vuy, and r( at almost all points of the boundary 0L, and u, satisfies the homogeneous Dirichlet boundary
condition in the sense of nontangential limit at almost all points of dQ2. Then the Green representation formula uy =
V, (th(ug, 7)) = W, (uf) in Q, (cf. Lemma 3.8) reduces to uy = V, (t' (ug, 7)) in Q,, and, by considering the

nontangential trace, we (K;Ebtain that V, (t;t(uo, 7[‘0)) = 0 on 0Q. Thus, t:t(uo, 7o) € Rv (see Lemma 4.6), and hence
uy = 0in Q,, while the Brinkman equation (192) shows that z° = 0 in Q, (up to an additive constant pressure). This
completes the proof of the statement in item (i).

Next, we show for s € (0,1) the uniquenelss of a solution tlo the Dirichlet problem (192) to (193), in the hypothesis
of item (iii). To this end, let (u°, z°) € B;;é (Q,,R") x B:;‘i (Q4) denote a solution of the homogeneous version of
the Dirichlet problem (192) to (193). By Lemmas 2.4 and 2.11 and Theorem 2.5, we obtain that y,u® = ug:“ = 0and
tt’, 20 e B;TPE (02, R™). Then for s € (0,1), the Green representation formula (160) applied to the pair (u°, z°)
implies that y, V, (t;(u, zr)) = 0 on 0Q. Hence, by (120) and (191), we obtain that tf(u, ) € Rv. Since V,v = 0 in
Q. , we deduce that uy, = 0 in ., and by the Brinkman equation (192), z° = 0 (up to an additive constant). O

Note that for p = 2, Theorem 5.1 (ii) has been obtained by Z. Shen® Theorem 5.5 by yising another double-layer potential
approach.

The following regularity result has been obtained in Theorem 4.3.1 of Mitrea and Wright” and Theorem 7.1 in Mitrea
and Taylor® in the case of the Stokes system (ie, for « = 0). We prove a similar result in the case of the Brinkman system
(ie, for @ > 0) by using the main ideas of the proof of Theorem 7.1 in Mitrea and Taylor® (see also Eq. (2.95) and remark
Vin p. 37 in Mitrea et al,** Theorem 2 in Choe and Kim,* Lemma 3.3 in Kohr et al,?® and Medkova*).

Theorem 5.2. Let Q, C R”" be a bounded Lipschitz domain with connected boundary 0Q. Let @ > 0, p € (1,00)

and p* := max{p, 2}. Assume that a pair (u, ) satisfies the homogeneous Brinkman system (192). Then the following
properties hold.

(i) There exists € = £(dQ) > 0 such that for any p € (2 — &, ), the condition M(u) € L,(0Q) implies that there exists the
nontangential limit of u almost everywhere on 0Q and u;z € Ly, (082, R"). Moreover,

Il 0orn < CLIM@IL,e0,  lull b R < CHIM@) |1, 00 (209)
pp*
with some constants C; = C1(0Q,p,a) > 0, C; = C}(0Q,p,a) > 0.
(if) There exists e = £(dQ) > 0 such that for any p € Ro(n, €) U (2, ), the assumption M(w), M(Vu), M(z) € Ly(0L2)
implies that there exist the nontangential limits of u, Vu, = almost everywhere on 0L and that u:t S H;,;V(OQ, R™) and
t:[(u, 7) € Ly(02, R"). In addition, there exist some constants C; = C»(0L2, p, @) > 0, C; = C’Z(OQ, D, @) > 0such that

”u:[”H;(JQ,R“) + It (u, DIz, 00 Ry < Ca (”M(u)”Lp(dQ) + IM(VW)lL 00) + ||M(7f)||Lp(aQ)) , (210)
lall 1 o, Y +lzll 1 < C, (IM@)|lz, 00 + IM(VW)|lL, 00 + IM()]lL,00) - (211)
p’p* '+ P‘p* '+

Proof. (i) We will use arguments similar to the ones in the proof of Lemma 8 in Choe and Kim.* First, let {€;};>; be
a sequence of subdomains in Q, that converge to Q. in the sense described in Lemma 2.2, with the corresponding
notations ®@;, v¥, and w; also introduced there. Due to ellipticity of the homogeneous Brinkman system in Q,, we
have (u, 7) € C®(Q,,R") x C*(Q,). Now, let h¥ := usg,. Then (w;, 7)) := (ulﬁj ,7r|§—2j ) satisfies the homogeneous

Brinkman system in Q; and the Dirichlet boundary condition uj|sq, = h? on 0Q;, where h? € L, (9Q;, R"). The
solution of such a problem is unique, up to an additive constant for the pressure (see, eg, Theorem 5.1).

According to Lemma 4.4 applied to the smooth domain €;, such a solution can be expressed in terms of the
double-layer potential u; = W50 h’ 0 7 = Qz; dgjh’ 7, with a density 'Y € L, (dQ;, R") satisfying the equation
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(—%]I + Kﬁ) h'? = h?, where K{‘x 1= Ka;ogj is associated (as in (121)) with the double-layer potential W,,;,;gj defined
on Lp.,»(0€;,R"), and, in view of Lemma 4.4, the operator —%I + K’a D Ly (09, R") — Lp,0(02;,R") is an
isomorphism for any p € (1, o).

Note that the operator —%I + K, @ Ly (0Q,R") = L, (0Q,R") is an isomorphism for any p € R(n, €) (see Lemma
4.4). After performing a change of variable as in Lemma 2.2, the operator —%I + K, defined on 0Q; can be identified
with an operator Taj acting on functions defined on dQ. Then, using the arguments, eg, similar to those in the last
paragraph in p116 in Mitrea and Wright,” which are based on Lemmas 11.9.13 and 11.12.2 in Mitrea and Wright,” and
taking into account of Proposition 1 in Medkovéa* (see also Theorems 3.8 (iv) and 4.15 in Fabes et al°), one can show
that the sequence of operators 7 converges to the operator 7, := —%I + K, in the operator norm and the sequence

of the inverses of the operators Tof converges to the inverse of the operator 7, in the operator norm for p € R;(n, ¢).
o\ -1

Hence, if p € R1(n, €), the operator norms || (—%]I + K{,) I 1,00, R) are bounded uniformly in j, implying that there

exists a constant ¢y depending only on p, n, «, and the Lipschitz character of Q. (thus, not depending on j) such that

p

1G) 1P [OIN4
[l < e[| A

L,(09,Rm) L, (09, Rn)

=co [ |uyplPdoy = co / [u(@;(y)Pwj(y)doy < ¢ / IM(u(y))Pdoy = i IM@IPE ..
00 ! 00 0Q Lp(0x 1K)

i

= Col[ul|

(212)

Recall that we have approximated the domain €, with a sequence of smooth domains Q; with uniform Lipschitz
characters from inside, and we have used here the change of variable y; 1= @i(y), y € 0Q,y; € 0%, and wj is the
Jacobian of @; : 0Q — 0Q; (cf Lemma 2.2). Hence, the constants ¢y and ¢; depend only on p, n, a, and the Lipschitz
character of Q.

Further, the double-layer potential Wa;agjh’ 0 becomes

Uuy(x) = / Se (3. X)vs (ki (v))doy, = / S (DY), X)vs(@i(y)H, " (y)doy, ¥V x € Q;, (213)
o 0
where H''(y) := W@yDoym) b’ = 1,7, ... .R)), HO = @), .. H']).
In view of (212) and of the uniform boundedness of {®;};>1, there exist some constants c¢;,c, > 0 (which depend
only on Q. and p) such that

/ 0O (y)Pdoy < ¢, / [u(yp|Pdoy, < ¢ / IM(u(y)Pdoy, ¥j21. (214)
o0 0%, ! oQ

Hence, {H'? }j=1 is a bounded sequence in L,(0Q, R"), and, thus, there exists a subsequence, still denoted as the
sequence, and a function H' € L,(dQ, R"), such that H' — H’ weakly in L,(dQ, R"). By this property and letting
j — oo in (213), we obtain u = W, H'inQ,. According to Lemma 3.4 (i,iv), there exists the nontangential limit
u' = (W, H' + of u at almost all points of 0Q, and by estimates (72) and (214), we obtain that

||ugt||Lp(ag,Rn) = ”(WaH/):;t”LP(BQ,R") < C3”H,||LP(0Q,]R") <c lirnji_r)lfo ”H,(I)”Lp(aQ,R") < MWL, 00), (215)

where the constants c3,cs > 0 do not depend on j. Moreover, the divergence theorem shows that u;'t = (W,H ;t €
Ly, (0Q,R"). Estimate (209) is provided by the representation u = W,H, by continuity of operator (102), and by
estimates (215). This completes the proof of item (i) for any p € R1(n, €).

Let us now consider item (i) for any p > 2 (not covered yet when n > 3). Note that inclusions 2 € R;(n, ) and
L,(0Q2) C L,(0Q) particularly imply that for such p, there exist nontangential limits of u almost everywhere on 0Q.
Implementing now, Proposition 3.29 in Mitrea and Mitrea® completes the proof for any p > 2.

(ii) Now assume that u and # satisfy the Brinkman system and that M(u), M(Vu), M(z) € L,(0Q). As in the proof
of item (i), we consider again a sequence of smooth domains {Qj }jeN’ such that ﬁj CQrand Q; - Q, asj — .

As we already mentioned, (. 7)) := (ulg.7lg) € C2(Q;, R") x C*(Q). Thus, h? = ulsg € C®(0Q;,R") C
H;(OQ-,R") and h¥ € Ly, (09, R"), for any j € N. Then the pair (w;,z;) € C*(Q;, R") x C*(L) satisfies the
Brinkman system in €; with the Dirichlet boundary condition uj|agj =h' e H;;VU)(()QJ-, R™). The solution of such
a problem is unique up to an additive constant pressure (see Theorem 5.1 (i)) and can be expressed in terms of a



32 Wl LEY GUTT ETAL.

double-layer potential as in item (i), but now with a density in H;,VU)(()Q,-, R™). Proceeding similar to the proof of item
(i), we prove item (ii). O

Remark 5.3. The condition requiring the existence of the nontangential limits of u, Vu, and z at almost all points of
the boundary 0Q in Lemma 3.8 is particularly satisfied if p € Ry(n, £)U(2, oo) with € > 0 asin Theorem 5.2 (ii). Indeed,
for such p, the condition is implied by the inclusions M(u), M(Vu), M(x) € L,(dQ) and by the Brinkman system (161).

Having in view Theorem 5.1 (iii), we are now able to consider the Poisson-Dirichlet problem for the Brinkman system,

(216)

Au—au-Vz=f diva=0 inQ,
y+u = hy on 0Q

with the Dirichlet datum for the Gagliardo trace y_,u (see also Theorem 10.6.2 in Mitrea and Wright’ for a« = 0).

Theorem 5.4. Let Q. C R"*(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Let a € (0, o0) and
0 < s < 1. Then there exists e = (0Q) > 0such that foranyp € R,_s(n, €) (cf. (167)), the Dirichlet problem (216) with f €
1

+2 +11
Ly(Q, R3* andhy € H;;V(aQ, R™) has a solution (u, x) € B;!pi (Q,,R™) xB;’pi (), which is unique up to an arbitrary
additive constant for the pressure &, where p* = max{2, p}. In addition, there exists a constant C = C(s,p,Q+) > 0
such that

lull .1 +llzll o < C(lIfllz, @, ey + ol s o0,Rr))-
B 7@, R B’ @,)/R L@ R0 HpR89

pp* S b.p* +

Proof. Iff = 0, the existence of a solution of the problem (216) for 0 < s < 1 is implied by Theorem 5.1 (iii) together
with the asserted estimate, while for s = 1, it follows from Theorems 5.1 (i) and 2.5 (iii).
If f # 0, we will look for a solution of problem (216) in the form

u=Ngof+v, 7=0qf+q, (217)
where the Newtonian velocity and pressure potentials N0 f and Qq f are defined by (53). By Remark 3.3,
A Ngo f—aNgo f— VO, f=f, div N,,;Qif =0in Q,,
(Nuo,£.Q0 ) € B, (@1 R X By, (Q)),  7+(Nug, f) € HLOQRY, £} (Nuo,f,Qq, f) € L,0Q R,

Then problem (216) reduces to the one for the corresponding homogeneous Brinkman system,

{Av_av_quo, divv=0 in Q,, (218)

Y+V = h()() on ()Q,
where hyy :=hgy — . (Nu;g+f ) € H},, (0Q,R"), already discussed in the first paragraph of the proof. Therefore, there
s+1 s+3i-1
exists a solution (u, 7) € Bp’p’; (Qy4, R")pr,pZ (Q.) of the Poisson problem (216), which satisfies the asserted estimate.
Let us prove the uniqueness of the solution to the Poisson problem (216) for 0 < s < 1. To do so, we consider a
s+ s+1-1

solution (u°, z°%) € Bp’p‘i (Q,R3) x Bp’pi (Q) of the homogeneous version of the problem (216). Let us take the trace of

the Green representation formula (160) for (u°, z°). Since y,u® = 0, we obtain the equation
Ve (t7(°, 7°)) = 0 on 0Q,

for tt(u® z%) € B;;pﬁ (0€2), which by Corollary 4.7 has a one-dimensional set of solutions, t}(u®, z°) = cv, where
¢ € R. Substituting this back into the Green representation formula (160), we obtain u® = ¢V,v = 0 in Q. (cf the
arguments in the proof of Lemma 4.6), and by the homogeneous Brinkman equation, z° is an arbitrary constant.
Finally, uniqueness for 0 < s < 1 implies also uniqueness for s = 1. O

5.2 | The Neumann problem for the Brinkman system

Using an argument similar to the one for the Robin boundary value problem for the Brinkman system in Kohr et al,® we
obtain in this section the well-posedness of the Neumann problem for the linear Brinkman system,
{ Au—qu—-Vz=0inQ,

divu=0in Q,, (219)
t'.(u, 7) = gy on oQ,
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in L,-based Bessel potential and Besov spaces for some ¢ > 0 and extend the results obtained in the case p = 2 and for a
conormal derivative given by 3—‘; = —nv+ 3—':, in Theorem 5.3 by Shen*® (see also Theorem 5.5.2 by Mitrea and Wright’
in the case @ = 0). Note that the Neumann boundary condition in (219) is understood in the sense of nontangential limit
almost everywhere on 0Q.

Theorem 5.5. Let Q,; Cc R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Let a € (0, +o0).
Then there exists € > 0, such that forany p € Ro(n, ), see (166) and for any given datum go € L,(0Q,R"), the Neumann
problem (219) has a unique solution (u, z) such that M(u), M(Vu), M() € Ly(0Q). The solution can be represented by

the single-layer velocity and pressure potentials
1 AT /1 -1
u—Va<(5H+K;) go>, 7 =Q <(5H+K:) g0>~ (220)

141 :
Moreover, (u, ) € prpf (Qy,RMx B;’p*(QJr), and there exist some constants Cy;, C, and C’ depending only on Q., a, and
p such that

IM(VW)|IL, 00 + IM@W)IL,00) + IM(7)]L,00 < Cullgollr, 0o R (221)
]l 1.1 + 7]l 1 < CllgollL (a0,rm> (222)
Bl+f(9+,R") B a, 8 L,(0Q,Ix")
pp pp
”7+u||H;(0Q,R") + It (u, Dz, 00 Ry < C/“gOHLp(aQ,R”)' (223)

Proof. We use an argument similar to that for Theorem 4.15 in Fabes et al® (see Theorem 3.1 and Proposition 3.3 in

Mitrea and Taylor®). By Lemma 4.2, there exists ¢ > 0 such that operator %]I +K; : L0, R") - L,(0Q,R") is an

isomorphism for p € Ry(n, €). Along with Lemma 3.4, Theorem 3.5, and Lemma 3.6, this implies that representation
1

1
(220) gives a solution of problem (219) that belongs to the space B;;?ﬁ (Q4, R™) x Bj,p* (Q,) and satisfies estimates (221)
to (223).
To show the uniqueness assertion, we assume that (u°, z°) is a solution of the homogeneous version of (219) such
that M(u®), M(Vu®), M(z)° € L,(0Q) and satisfies the Neumann condition almost everywhere on dQ in the sense of
nontangential limit. Then the Green representation formula (162) gives

u’ =V, (tf@’, 7)) - W, (u)f) = -W, (u)f) inQ,, (224)

nt nt

which, combined with formulas (114), leads to the boundary integral equation
1
(EH + Ka> u®* = 0 on 0Q. (225)

Here, ug:“ € H;(dQ, R"™) due to Lemma 3.4 (i). Then invertibility of operator (171) in Lemma 4.2 implies that ug:“ =0
on 0Q and thus, by (224), u® = 0 in Q.. Moreover, by the homogeneous Neumann condition satisfied by (u°, z°), we
obtain that z° = 0 in Q,. This concludes the proof of uniqueness of the solution of the Neumann problem (219) and
hence the proof of the theorem. O

Having in view Theorem 5.5, we are now able to consider the Poisson-Neumann problem for the Brinkman system,

{Au—au—V;r=f, divu=0 in Q,

th(u, 7) = gp on 0Q (226)

with the Neumann datum for the canonical conormal derivative t} (u, =) (see also Theorem 10.6.4 in Mitrea and Taylor®
for a = 0).

Theorem 5.6. LetQ, C R"(n > 3) be a bounded Lipschitz domain with connected boundary 0Q. Let a € (0, +0). Then
there exists € = €(0Q) > 0 such that for any p € Ro(n, €), cf (166), the Neumann problem (226) with f € L,(Q,,R?)

1+1 H
and gy € L,(0Q,R") has a unique solution (u, ) € Bp pf (Qy,R™") x B;‘p* (Q,), where p* = max{2, p}. In addition, there
exists a constant C = C(p, Q) > 0 such that
ul| 1 + |zl 1 <C(If ny + n),
[[u] P, Rn) (B4l P @, 1 ”LP(Q+,R ) ||g0||Lp(aQ,R )
p.p’ p.p

”7+u”H’}(z)Q,R") < ClIfllz, @, R + 8ollz,00.Rn)-
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Moreover, if f = 0, then M(u), M(Vu), M(z) € Ly(0L2) and there exists a constant Cy; > 0 such that

IM@)|L,00) + IM(VW)IL,00) + IM(7)llL,00) < Crllgollz, o0 Rn-

Proof. If f = 0, there exists a solution of problem (226) given by the solution of the corresponding problem (219)
with the nontangential conormal derivative in the Neumann condition, whose existence is provided by Theorem 5.5
together with the asserted estimate. Here, we rely also on the equivalence of the conormal derivatives, t}(u, z) =
t*.(u, 7), due to Theorem 2.13.

If f # 0, we will look for a solution of problem (226) in the form

u=Ngo f+v, 7=Qqf+gq, (227)

where the Newtonian velocity and pressure potentials Ny.o f and Qq_f are defined by (53). According to Remark 3.3,
we obtain the relations

A Na;g+f — aNa;g+f - VQQ+f = f, div Na;g+f =01in Q+,
(No,£.Q0,6) € B2, (@ RY) X B, (@), 7+(Nu, £) € HE,OQRY,  t* (Nug,f. Qo f) € Ly(0R.RY).

Then problem (226) reduces to the problem for the corresponding homogeneous Brinkman system,

{Av—av—Vq=0, div v=0inQ,,

t;(u’ 7) = goo ON 012, (228)

where gy 1= go — t} < *Q +f+, Qo + f+> € L,(02, R") already discussed in the first paragraph of the proof. There-

fore, there exists a solution (u, z) € B it (Q+, R™) x B” .(Q,) of the Poisson problem (226), which satisfies all the
asserted estimates.
Let us prove unlqueness of the solution to the Poisson problem (226). Indeed, let us consider a solution (u°, z°) €

p P P(Q,R3})x B" .(Q) of the homogeneous version of problem (226). Let us take the trace of the Green representation
formula (160) for (u®, z°), considered for any s € (0, 1). Since t} (u, #) = 0, we obtain the equation

yau® = %eruO - K,y7,u’ on 0Q,

with the unknown y,u® € B; .(0Q,R™), which, by Corollary 4.3, has only the trivial solution. Subst1tut1ng this back
to the Green representation formula (160), we obtain u® = 0 in Q,. Then the Brinkman system implies z° = ¢ € R,
and taking again into account that t} (u, ) = 0, we obtain z° = 0 in Q,, as asserted. O

6 | THE MIXED DIRICHLET-NEUMANN PROBLEM FOR THE BRINKMAN
SYSTEM

In this section, we show the well-posedness of the mixed Dirichlet-Neumann boundary value problem for the Brinkman
system

u;t|SD = h07 (229)

{ NAu—au—-Vr=0, divu=0in Q,,
t..(u, 7)ls, = go

on a bounded, creased Lipschitz domain Q. C R"(n > 3) with connected boundary 0Q, which is decomposed into two
disjoint admissible patches Sp and Sy (see Definition 6.3), -|s, is the operator of restriction from H;(0Q, R") to Hy(Sp, R"),
and -|s, is defined similarly. We show that for hy € H;(SD, R") and gy € L,(Sn,R") given and for some range of p, there
exists a unique solution (u, ) of the mixed problem (229), such that M(u), M(Vu), M(x) € L,(0€Q), and the Dirichlet and
Neumann boundary conditions in (229) are satlsﬁed in the sense of nontangentlal limits at almost all points of Sp and Sy,

respectively. Moreover, we will show that (u, z) € Bp ”(Q+, R™) x B;’p*(QJr).

We consider also a counterpart mixed problem

{Au—au—V;rzO, divu=0in Q.

-p*

y+u|SD = h09 (230)
ty(u, 7)ls, = go.
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where, unlike the mixed problem setting (229), the trace is considered in the Gagliardo sense and the conormal deriva-
tive in the canonical sense. We will show that for hy, € Hl(SD,R") and gy € Lp(Sy,R") given and for some range

1+
of p, there exists a unique solution (u, =) € B "(Q+, R™) x B" .(Q,) of problem (230). Moreover, we will obtain that
M(u), M(Vu), M(x) € L,(09).

The corresponding mixed problems for the Poisson-Brinkman system, ie, with nonzero right hand side of the Brinkman
system, will be also considered.

6.1 | Creased Lipschitz domains
Next, we recall the definition of admissible patch (cf, eg, Definition 2.1 in Mitrea and Mitrea® and Brown et al'°).

Definition 6.1. Let Q C R"(n > 3) be a Lipschitz domain. Let S be an open set of 0Q, such that for any x, € 95, there
exists a new orthogonal system obtained from the original one by a rigid motion with X, as the origin and with the
property that one can find a cube Q = Q; X Q2 X - - - X Q, C R" centered at 0 and 2 Lipschitz functions

O :Q :=Q1x ><Qn1—>Qn,q>(0)
{ =X ... XQp1 = Qy, W(0) = (231)

such that
SNQ={, ) : ¥ e, Y&")<x},
(0@\5)ne= {00y : ¥ e, Y& zx}, (232)
oSN Q= {(P"),x", oPx"),x")) : x" € Q"}.
Such a set S is called an admissible patch of 0Q2.

Definition 6.1 shows that if S c 0Q is an admissible patch, then dQ \ S is also an admissible patch (cf, eg, Mitrea and
Mitrea?®). Next, we recall the definition of a creased Lipschitz graph domain (cf Definition 2.2 in Mitrea and Mitrea®).

Definition 6.2. Let Q C R™(n > 3) be an open, connected set. Suppose that Sp, Sy C 0Q are 2 nonempty, disjoint

admissible patches such that SD N SN = 0Sp = Sy and SD U SN = 0Q. The set Q is a creased Lipschitz graph domain
if the following conditions are satisfied:

(@) There exists a Lipschitz function ¢ : R"! — R such that
Q={(.x)) €R" : x, > p(x)} .
(b) There exists a Lipschitz function ¥ : R*~2 — R such that

Sy = {Car,xe, x,) € R" 1 x1 > P(xe)} N0, (233)

Sp = {(x1,xe,x,) € R" : x; < P(xe)} N oQ. (234)

(c) There exist some constants ép, 6y > 0, 6p + 6y > 0 with the property that

0 0
99 > 5y a.e. on Sy, % < —8p a.e.on Sp. (235)
0x1 axl

Let us now refer to a creased bounded Lipschitz domain (cf Definition 2.3 in Mitrea and Mitrea?®).

Definition 6.3. Assume that Q c R" is a bounded Lipsclﬁz dimain with connectei bou_ndary 09, and that Sp, Sy C
0Q are 2 nonempty, disjoint admissible patches such that Sp NSy = dSp = dSy and SpU Sy = 0Q. Then Q is creased if

(a) Thereexistm € N,a >0andz € 0Q,i=1, ... ,m, such that 0Q C U, Ba(zi), where B,(z;) is the ball of radius
a and center at z;.
(b) For any point z;, i = 1, ... ,m, there exist a coordinate system {xi, ... ,x,} with origin at z; and a Lipschitz

function ¢; from R"! to R such that the set Q; := {(X',x,) € R" : x,, > ¢;(x')}, whose boundary 0Q; admits the



36 Wl LEY GUTT ETAL.

decomposition 0Q; = S_D,. U] S_N,., is a creased Lipschitz graph domain in the sense of Definition 6.2, and

QN Byg(zi) = Qi N By(Zi), Sp N Baa(Zi) = Sp, N B2a(Z), Sy N B2a(Zi) = Sn, N B2a(2:). (236)

The geometric meaning of Definitions 6.2 and 6.3 is that Sp and Sy are separated by a Lipschitz interface (% n E
is a creased collision manifold for ) and that Sp and Sy meet at an angle which is strictly less than = (cf, eg, previous
studies®®). A main property of a (bounded or graph) creased Lipschitz domain is the existence of a function ¢ € C*(Q, R")
and of a constant § > 0 such that

@-v>54 aeon Sy, @-v<-5ae.onSp, (237)

ie, the scalar product ¢ - v, between @ and the unit normal v, changes the sign when moving from Sp, to Sy (cf, eg, Brown
and Mitrea'> (122 and Brown et al'>?2?). For such a domain, Brown® showed that the mixed problem for the Laplace
equation has a unique solution whose gradient belongs to L,(0®) when the Dirichlet datum belongs to H;(SD) and the
Neumann datum to L,(Sy). For the same class of domains, well-posedness of the mixed problem for the Laplace equation
in a range of L,-based spaces has been obtained in Mitrea and Mitrea.®

6.2 | Mixed Dirichlet-Neumann problem for the Brinkman system with boundary data
in L,-based spaces

Mitrea and Mitrea® have proved sharp well-posedness results for the Poisson problem for the Laplace operator with mixed
boundary conditions of Dirichlet and Neumann type on bounded creased Lipschitz domains in R" (n > 3), whose bound-
aries satisfy a geometric condition, and with data in Sobolev and Besov spaces. Brown et al in another work'® Theorem 1.1
have obtained the well-posedness result for the mixed Dirichlet-Neumann problem for the Stokes system with boundary
data in L,-based spaces on creased Lipschitz domains in R*(n > 3), by reducing such a boundary value problem to the
analysis of a boundary integral equation (see also the references therein). Well-posedness of the mixed Dirichlet-Robin
problem for the Brinkman system in a creased Lipschitz domain with boundary data in L,-based spaces has been recently
proved in Theorem 6.1 by Kohr et al.? Using the main ideas of that proof, we show in this section well-posedness of the
mixed Dirichlet-Neumann boundary value problem for the Brinkman system in L,-based Bessel potential spaces defined
on a bounded, creased Lipschitz domain Q,.

Theorem 6.4. Assume that Q, C R"(n > 3) is a bounded, creased Lipschitz domain with connected boundary o<,
which is decomposed into 2 disjoint admissible patches Sp and Sy. Then the mixed problem (229) with given data
(ho,go) IS Hl(SD,R")XLZ(SN,R")hasaumquesolutlon(u 7) such that M(u), M(Vu), M(r) € L,(0Q2). Moreover,(u, ) €

H (Qy,R™) x H (Q.), and there exist some constants Cy; and C depending only on Sp, Sy, and a such that

IM(Vw)||L, 00 + IM@)||L,60) + IM()|L,00 < CMm (||h0||H;(sD,Rn) + ||g0||L2(sN,Rn)> , (238)
ul| : + izl . gc<h "+ ) 239
|l 2; @R | ”H} @ holl s, ey + lI8ollz, (s, k) (239)

Proof. First, we note that if a couple (u,r) satlsfles the Brlnkman system (229) and the condltlons M(u),
M(Vu), M(rn) € L,(0Q), then, taklng into account thatB (Q+,R") = H (Q,,R™) andB (Q+) H (Q,), Theorem
5.2 (i) implies that (u, 7) € 2

and 2.13.
Let us show that the mixed boundary value problem (229) has at most one L,-solution. Indeed ifa couple (u©®, z(©)

(Q L,), then by the first

5 dlv(Q L) foranyt > —= whlle y+u = u/ and t;(u, 7) = t’ (u, r) by Theorems 2.5

satisfies the homogeneous problem associated to (229), and moreover (u©®, z®) € b
Green identity (28), we obtain the equality

(tt@, 79, 7,u)0 = 2(E@?), E@))g, + a(u@,u®)q , (240)

2,div

where the left hand side vanishes, due to the homogeneous boundary conditions satisfied by y,u® = u(ot)+ and
ti®, 7@ =t} (@, 7©) on Sp and Sy, respectively. Then by (240), we immediately obtain thatu® = 0 and z© = 0
inQ,.
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Next, we consider the operator
. n 1 n n . 1 *
Su : L0 R") = Hy (S0, RN X LSw. B, S,¥ 1= (70 Is,. (514K ) ¥) s, ) (241)

(cf Kohr et al*»©0-(68)) and show that this is an isomorphism, which will yield the well-posedness of the mixed
problem (229). To this end, we note that S, can be written as S, = Sy + S0, Where

c((Grexi) ),

Suo 1 Ly(0Q.R™) > HY(Sp, R") X Ly(Sy, R"), Sy := ((va;o'{') ls, (Koo | SN) . (243)

So : Ly(09Q, Rn) ad H;(SD,]RYL) XLz(SN,]Rn), S = < > , (242)

Here, Vo : L,(0Q,R") — H; (0Q,R™) and KZ;O : Ly(0Q,R™") — L,(0L2,R") are the complementary layer potential
operators defined as
Vo 1= V¥ = VyWandK (¥ 1= K;¥ — KW (244)
The operator S, defined in (242) is an isomorphism and this property is equivalent with the well-posedness result of the
mixed Dirichlet-Neumann problem for the Stokes system on a creased Lipschitz domain with Dirichlet and Neumann
boundary data in L,-based spaces (cf the proof of Theorem 6.3 in Brown et al'°), when the BVP solution is looked for in
the form of the Stokes single-layer potential. In addition, the continuity of the restriction operators from H;(agz, R") to
H;(SD, R"™) and from L,(0Q, R") to L,(Sy, R"), respectively, and the compactness of the complementary operators in
(244) (cf Theorem 3.4 in Kohr et al'®) imply that the operator S, in (243) is compact as well. Therefore, the operator S,
in (241) is Fredholm with index zero. This operator is also injective. Indeed, if ¥© € L,(0Q, R") satisfies the equation
S P© = 0 then the single-layer velocity and pressure potentials u® := V,%® and z© := Q*¥© will determine a
3 1

solution of the homogeneous mixed problem associated to (229), such that (u®, @) e H; (Q4, R™) x HZE (€;) and
Mu©®), M(Vu©®), M(z®) € L,(0Q). Thenu® = 0 and ¥ = 0in Q,, as shown above. Consequently, t* (u®, z©) = 0
a.e. on 092, which, in view of (115), can be written as

(%]I+Kj;> PO =g,

Moreover, the invertibility of the operator %]I + K& 1 Ly(0Q,R") > Ly(0Q,R") (see Lemma 4.2) shows that ¥© = 0.
Consequently, operator (241) is an isomorphism, as asserted. Then the fields
u=V, (S, (ho.g0),7 = Q" (S;" (ho, ) (245)
determine the unique solution of the mixed Dirichlet-Neumann problem (229). According to Lemma 3.4, Theorem
3 1

3.5, and (245), the solution belongs to the space HZE (Q,R") x HZE (2,) and satisfies the estimate (238) with some
constant Cy; > 0 depending on Sp, S, and a, as well as estimate (239) with the constant C = (|[V,||+ ||Q°|) IS 1.0

6.3 | Mixed Dirichlet-Neumann problem for the Brinkman system with data in L,-spaces

Next, we extend the results established in Theorem 6.4, to L-based spaces with p in some neighborhood of 2, for the mixed
Dirichlet-Neumann problem for the Brinkman system (229) with the boundary data (hy,g,) € H 1(SD, R™) x Ly(Sn,R™).

We will obtain the well-posedness result in the space B, +P Py, RY) x B” . (Q,), where p* = max{2, p}.
We further need the space

HO(So, R™) 2= {q> € Ly(0Q,R") : supp ® C s_o} Sy C 0Q. (246)

6.3.1 | The Neumann-to-Dirichlet operator for the Brinkman system

As in the work by Mitrea and Mitrea® devoted to the mixed Dirichlet-Neumann problem for the Laplace equation in a
creased Lipschitz domain, we consider the Neumann-to-Dirichlet operator Y., which associates to g € L,(0Q, R"), the
restriction of the nontangential trace u;;t to the patch Sp, where (u, 7) is the unique L,-solution of the Neumann problem
(219) for the Brinkman system with the nontangential conormal derivative g. Thus, (u, z) satisfies the Neumann condition
almost everywhere on 0Q in the sense of nontangential limit, as well as the conditions M(u), M(Vu), M(z) € L,(0Q), and

Y8 = ul’-'l—t|SD' (247)
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Similarly, we consider the Neumann-to-Dirichlet operator Y,, which associates to g € L,(0Q, R"), the restriction of the
trace y,u to the patch Sp, where (u, ) is the unique solution of the Neumann problem (226) for the Brinkman system
with f = 0 and the canonical conormal derivative g, ie,

Yog = r4uls,. (248)

A way to extend the well-posedness result in Theorem 6.4 to Ly-based spaces is to show the invertibility of the
Neumann-to-Dirichlet operator Yy, on such spaces. An intermediary step to obtain this property is given by the following
result.

Lemma 6.5. Let Q. C R*(n > 3) be a bounded, creased Lipschitz domain with connected boundary 0, which is
decomposed into 2 disjoint admissible patches Sp and Sy. Let a € (0, 00). Then there exists € = £(0Q2) > 0 such that for
any p € Ro(n, €) the following properties hold.

®

(it)

The operators Y., and Y, coincide and are given by

Yore = Y, = (vao(%ﬂ + K*)1> (249)

Sp

The mixed Dirichlet-Neumann problem (229) with given data (hy, go) € H;(SD,R”) X Ly(Sy,R") has a unique
solution (u, ), such that M(u), M(Vu), M(z) € L,(0Q), if and only if the operator

Yoo ¢ HY(Sp, R") — H)(Sp, R™) (250)

is an isomorphism.

(iii) The mixed Dirichlet-Neumann problem (230) with given data (hy, go) € H;(SD,R”) x Ly,(Sy,R") has a unique
1+1 :
solution (u, r) € Bp,pf (Qy,R™) x B;’p*(QJr) if and only if the operator
Y, : Hy(Sp, R") = Hy(Sp,R") (251)
is an isomorphism.
1+1 z
Moreover, when the solution (u, r) in item (ii) or (iii) exists, then it belongs to the space Bp’pf Q,RM)x BI’)’ p*(QJr) and
there exist some constants Cp; = Cy(a, p, Sp, Sn), C = C(a, p, Sp, Sn), and C' = C'(a, p, Sp, Sy) such that
IM(VW)llz,00) + IM@)||L,00) + IM()||L,00) < Cum (||h0||H;(sD,Rn) + ”gOlle(SN,R")) , (252)
il o 0Ly <€ (MRollgs, o)+ goll sy ) p° = max(2.p), (253)
p-p p-p
I7+wllm ook + Itz @, Dl o R < C' <||h0||H;(sD,Rn) + ||g0||Lp(sN,]Rn)> . (254)

Proof.

(i) By Theorem 5.5, there exists ¢ = £(0Q) > Or any p € Rao(n, €), the Neumann problem (219) has a unique
solution, and it can be expressed in form (220). Then due to Theorem 3.5 and Lemma 3.6, we deduce that the
operator (247) has the expression (249) and is continuous, due to the continuity of both operators in the right
hand side of (249).

(ii) First, we assume that problem (229) is well-posed and show the invertibility of operator (250).

To prove the injectivity property of this operator, we consider a function g° € INJS(SD, R™), such that Yp.,g° = 0.
Denoting by (u’, z°) the unique Ly-solution of the Neumann problem (219) for the homogeneous Brinkman
system with boundary datum g° € Hg (Sp, R™) on 0, in view of (247), we have

u:tlsD = Yn.g’ =0, (255)
and

(256)

Au’ —aqu® -z =0, divu®’=0in Q,,
tt (u°, z°) = g° on 0Q.
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In addition, (u®, z°) satisfies the conditions M(u®), M(Vu®), M(z°) € L,(0€2), and the Neumann condition holds
almost everywhere on 0Q in the sense of nontangential limit.
According to relation (255) and the inclusion g° € HS(S p, R™"), we have

u)t|s, =0on Sp, thm®,n%|s, =0on Sy, (257)

and hence by the assumed well-posedness of the mixed Dirichlet-Neumann problem (229), we deduce thatu® = 0
and 7° = 0in Q,. Thus, g° = t (u° 7z°) = 0 on 9Q, which implies that the operator Y, is injective.

We show that the operator Yy, is also surjective. Due to the assumed well-posedness of the mixed
Dirichlet-Neumann problem (229), for any Dirichlet datum hy € H;(SD, R™) on Sp and the Neumann datum
8, = 0 on Sy, there exists a unique L,-solution, (1, 7o), of this problem. In particular, we deduce that the vector
field g := t;t(uo, 7o) € Lp(0Q, R") belongs to ﬁg(SD, R"™), due to Definition (246). In addition, the uniqueness
result in Theorem 5.5 shows that (ug, 7o) is the unique solution of the Neumann problem for the Brinkman sys-
tem in Q, with the Neumann datum g° € ﬁg(s p, R") C L,(0Q,R"). Then by Definition (247) of the operator Yy,q,
we obtain that Yn.8o = ug |5, = he. Consequently, for a given hy € H,(Sp, R"), there exists gy € FIS(SD, R™)
such that Yy,,8, = he. This shows that the operator Yy, is surjective, and thus, it is an isomorphism, as asserted.

Next, we show the converse result, ie, that the invertibility of the operator Yy, implies the well-posedness
of the mixed Dirichlet-Neumann problem (229). Let us first show uniqueness of the solution to problem (229).
To this end, we assume that (u®, () is an L,-solution of the homogeneous version of (229). Hence, g :=
th(m©,7) e ﬁg(SD,R”) since t* (u®, 7|5, = 0, implying that (u®, z) is (by Theorem 5.5) the unique
solution of the Neumann problem for the Brinkman system with Neumann datum g® on 0Q. Then by (247),
Yo g? = uiﬁ”l s, = 0, and injectivity of Yy, implies that g = 0. Hence, t* (u®, 7(0) = 0 on 0Q and Theorem
5.5 implies that u® = 0, z° = 0 in Q,. This concludes the proof of uniqueness of the solution to the mixed
problem (229).

To show existence of an Lp-solution to the mixed problem (229), let us consider such a problem with arbitrary
boundary data (he, g) € Hy(Sp, R") X Ly(Sy, R"). Also, let G € fIg(SN, R™) be such that

Glsy = 8o (258)

Then by Theorem 5.5, there exists a unique L,-solution (v, q) of the Neumann problem (219) with the Neu-
mann datum G, such that there exist the nontangential limits of u, Vu, and = at almost all points of 0Q,
M(v), M(Vv),M(q) € L,(0Q) and satisfies the Neumann boundary condition in the sense of nontangential limit
at almost all points of 0Q. Note that v can be expressed in terms of a single-layer potential with a density in the
space L,(0Q, R"), and hence v}, € H[l,(dQ, R") (see Lemma 3.6).

On the other hand, the invertibility of the operator Yy, : ﬁg(S p, R") — H; (Sp, R™) assures that the equation

Ynio8’ = (ho —Vils,) € Hy(Sp. R") (259)

has a unique solution g° € I?IS(S p, R") C Lp(0Q, R"). Next, let (u®, z°) be the unique L,-solution of the Neumann
problem (219) with the Neumann datum g°. Also, let

W, ) :=wv+u’ g+ 7. (260)

Then we obtain the relations
u;tlsn = V:tlSD + u?l:-ISD = (hO - Ynt;otgo) + Ynt;ago = h,, (261)
th(u, )ls, =t (v, qls, +t @, 7[5, = Gls, +&°ls, = 8o, (262)

where the last equality follows from (258) and the inclusion g° € FIS(SD, R"™). Moreover, the estimates (252) and
(253) corresponding to item (ii) are due to (260) and the mapping properties of the pairs (v, q) and (u®, z°) given
by Theorem 5.5. Consequently, the mixed Dirichlet-Neumann problem (229) is well-posed and estimates (252)
to (254) hold true.

The proof for item (iii) of the lemma and estimates (252) to (254) follow from similar arguments as those for

item (ii), by referring to Theorems 5.4 and 5.6 instead of Theorems 5.1 and 5.5. -
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By combining Theorem 6.4 and Lemma 6.5, we are now able to obtain the well-posedness results for the mixed
Dirichlet-Neumann problem (229) with boundary data in L,-based Bessel potential spaces and with p in a neighborhood
of 2, which is the main result of this section. Recall that p* = max{2, p}.

Theorem 6.6. Assume that Q, C R"*(n > 3) is a bounded, creased Lipschitz domain with connected boundary 0%,
which is decomposed into 2 disjoint admissible patches Sp and Sy. Then there exists a number € > 0 such that for any
D € (2—¢,2+ ¢) and for all given data (he, go) € H},(SD, R™) x L,(Sn,R"), the following properties hold.

(i) The mixed Dirichlet-Neumann problem for the Bnnkman system (229) has a unique solution (u, z), such that

M(u), M(Vu), M(r) € Lp(0Q2). Moreover, (u, ) € B "(Q+,R") X B" .(Q,), and there exist some constants Cp; =
Cy(a, p, Sp, Sn) > 0, C = C(a, p, Sp, Sn) > 0, and C’ = C'(a,p, SD,SN) > 0 such that

IM(VW)||z,00) + IM@||L,00) + IM@)lL,00 < CMm (||h0||H;(sD,Rn> + ||go||Lp(sN,Rn>), (263)
||zl - + ||zl 1 <C <||h0||H;(sD,Rn) + ”gOlle(SN,R")) ) (264)

pp* @,.Rn pp* +)
||J/+u||ng(ag,Rn) + It5 (u, Dl 00 R < c (”hO”Hé(SD,R") + ||go||Lp(sN,Rn)> . (265)

1+1
(ii) The mixed Dirichlet-Neumann problem for the Brinkman system (230) has a unique solution (u, ) € Bp’pf (Qy, RMx

1

Bp‘_’p* (Q,). Moreover, the solution satisfies estimates (263) to (265).

Proof.

(i) By Theorem 6.4, the mixed Dirichlet-Neumann problem (229) is well-posed for p = 2. Then by Lemma 6.5 (ii)
and Theorem 5.5 for p = 2, the operator Yy, : H (Sp,R") — Hl(SD,R") is an isomorphism. Moreover, by
Lemma A.1, the sets {FI?(SD, R™)},>1 and {Hll,(SD, IR{”)} p>1 are complex interpolation scales. Then by the stability
of the invertibility property given in Lemma B.2, there exists a number &; > 0, such that the operator Yp., :
flg(SD, R") — H;(SD, R"™) is an isomorphism as well, for any p € (2—¢1, 2+¢&;). Finally, by choosing the parameter
€ := min{e, &1} > 0, where ¢ is the parameter in Theorem 5.5, and by using again Lemma 6.5 (ii), we deduce
the well-posedness result of the mixed Dirichlet-Neumann problem (229) and estimates (263) to (265), whenever
pE2—¢2+¢).

(ii) Let € be as in the proof of item (i). Let p € (2 — €,2 + ¢). Then Lemma 6.5 (i) implies that Y, = Yy, and hence
Y, : FII?(S p, R") - H 11,(5 D, R™) is an isomorphism, and by Lemma 6.5 (ii), the mixed Dirichlet-Neumann problem
(230) is well-posed and estimates (263) to (265) hold. O

Remark 6.7. Under the conditions of Theorem 6.6, the solution (u, 7) of the mixed Dirichlet-Neumann problem (229)
can be expressed by the single-layer velocity and pressure potentials

u=V, (S;'(he.g)), 7=05 (S (ho.g)), (266)

where the operator

Se t Ly(0Q,R") — H)(Sp, R") X Ly(Sy, R™), S, ¥ := <(v,,‘{')|SD, ((%]HK;)‘P) ¢ > (267)

is an isomorphism. Indeed, as shown in the proof of Theorem 6.4, the operator S, : L,(0Q,R") — H;(SD,R") X
L,(Sn,R™) is an isomorphism, and then, by using again Lemmas A.1 and B.2, we can extend the isomorphism
property of the operator (267) to L,-spaces, with p in a neighborhood of 2, which can be chosen to coincide with that
in Theorem 6.6.
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6.4 | Poisson problem of mixed Dirichlet-Neumann type for the Brinkman system
with data in Ly-based spaces

Having in view Theorem 6.6, we are now able to consider the well-posedness of the following Poisson problem of mixed
Dirichlet-Neumann type for the Brinkman system in a creased Lipschitz domain ., with data in some L,-based spaces,

Au—au-Vz=feLy(Q;,R%, divu=0inQ,
y+uls, =ho € Hy(Sp, R") (268)
ty(u,m)|s, =go € Ly(Sn.R").

Remark 6.8.

(i) By a solution of the Poisson problem of mixed Dirichlet-Neumann type (268), we mean a pair (u,z) €
1

+_ l
BP pf (Q;,R™) x B; - (Q;), where p* = max{2, p}, which satisfies the nonhomogeneous Brinkman system in Q,,
the Dirichlet boundary condition on Sp in the Gagliardo trace sense, and the Neumann boundary condition on
Sy in the canonical sense described i in Definition 2.10.

(ii) If a pair (u,z) € B (Q+,]R”) X Bp .(Q1), p € (1, ), solves the nonhomogeneous Brinkman system in the

1

first line of (268) with f € L,(0Q,R"), then (u,z) € %pp‘_’ aiv(Q+3 Lo) by Deﬁnition 2.6. Hence, by Lemma

2.4, Definition 2.10, Lemma 2.11, and the embeddings B f(Q+,R”) < B p(Q+,R”) %ppgdw(QJr, L)) <

%p p” b div (Q+, L), forany0 < s < 1, the trace y,u and canonical conormal derivative t} (u, ) are well defined and
belong to BS L(0Q,R") and BS 1 (0Q, R™), respectively. Thus, the boundary conditions in (268) are well defined as
well. In What follows, we show that the sharper inclusions, y,u € H, 1(()Q R") and t] (u, 7) € L,(dQ,R™), hold if

the spaces of the given boundary data in the boundary conditions are those mentioned in (268).

Theorem 6.9. Assume that Q, C R" (n > 3) is a bounded, creased Lipschitz domain with connected boundary 0 and
that 0Q is decomposed into 2 disjoint admissible patches Sp and Sy. Then there exists a number € > 0 such that for any
D € (2—¢,2+¢) and for all given data (f,hy, g) € LP(Q+, R™) le(SD, R™) X Lp(Sn, R™), the Poisson problem of mixed

Dirichlet-Neumann type (268) has a solution (u, r) € B i (Q+, R™) x B" .(Q,) that can be represented in the form

u=Nyo f+V, (S (hooagoo)) . m=0Q0.f+Q, (Si (hoo.8w)) . (269)
where S, : L,(0Q,R") — H})(SD, R"™) X L,(Sn, R") is the isomorphism defined in (267) and
hoo :=ho — 74 (Nag,f) Is, € Hy(Sp, R"),  goo := 8o — ti (Nmf, Quo,f) Is, € Lp(Sn, R™). (270)

1+
Moreover, the solution (u, ) is unique in the space B "(Q+,R”) X B" .(Q,), and there exist some constantsC =
C(a,p,Sp,Sn) > 0and C' = C'(a, p, Sp, Sn) > 0 such that the following lnequalities hold

|L73| +||z|| 1 Sc(f”L o, Rn + ol (s, Rry + 180l (s, R" >’ (271)
7@, Rn) BY (@) (@08 o R 180l 5 R
p.p p.p
||3’+u||H;(aQ,]Rn) + It (u, Dz, 00 R < o <f”LP(Q+,R") + ”hO”H;(SD,R") + ”gOHLp(SN,R")> . (272)

In addition, there exists a linear continuous operator

1+1 1
Ly(@,, R") X Hy(Sp, R) X Ly(Sy, R") = B, (@4, R) X B] . (@)

delivering this solution, ie, Ap(f, hy, go) = (u, 7).

Proof. Lete > 0asin Theorem 6.6, and let p € (2 — ¢, 2 + £). We will look for a solution of problem (268) in the form
u=Ngo f+v, 7=0Qqf+gq, (273)

where the Newtonian velocity and pressure potentials No.o, f and Qq_f are defined by (53). By properties (55) to (58),
Corollary 3.2, and Remark 3.3, we obtain that
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AN(X;QJrf - (XNa;Q+f - VQQ+f = f, div Na;Qif =0in Q+, (274)

1+1 1
(o, £.Q0,f) € HQp R X HAQ,) © B, (@4 R X B] . (24), (275)
7+Nuo f € HYOQR"), t/(Nug f.Qq ) € L,(0Q.R"), (276)

where y, is the Gagliardo trace operator from Hﬁ(QJr,R") to H},(@Q, R™). Then the mixed Poisson problem (268)
reduces to the mixed problem for the corresponding homogeneous system,

Av—av—-Vg=0, divv=0 in Q,,
¥+Vls, = hoo € Hy(Sp,R"), (277)
te(V,q)ls, = 8o € Lp(Sn.R"),

where hyy € H;(SD, R") and goo € L,(Sy,R") are given by (270), and these inclusions follow from (275).

1+1 1
By Theorem 6.6 (ii), there exists a unique solution (v, q) € Bp pf (Qy,R™) XB; p*(QJ,) of problem (277), and it satisfies
the following estimates

< n n

Vg o ol e (ool o + gl 5,20 ) (278)
PP pp

||7+V||H;(aQ,Rn) + It (v, Dllz,00.Rm) < ¢ <||h00||H‘§(SD,Rn) + ”gOO”Lp(SN,R")> ) (279)

with some constants ¢ = ¢(«, p, Sp, Sy) > 0 and ¢’ = /(a, p, Sp, Sy) > 0.
According to Lemma 3.6, the single-layer velocity and pressure potentials

v =V, (S; (hoo.800)) . g = (Sz" (hoo. 8oo)) - (280)

where S, : L,(0Q,R") - H, ;(SD, R™)xL,(Sn,R") is the isomorphism defined by (267), determine the unique solution
of problem (277). Moreover, in view of Theorem 3.5 (i) and Lemma 3.6, the pair (v, q) given by (280) belongs indeed

1+1 L
to the space Bp’pf (Qy,R") x Bp"’p* (Qy),

1 1
Therefore, there exists a solution (u, z) € B:;E (Q;,R") x B‘l‘;”p*(QJr) of the mixed Poisson problem (268), which is
given by representation (269) and satisfies estimates (271) and (272). The uniqueness result of such a solution follows
from Theorem 6.6 (ii). Moreover, linearity and continuity of the Newtonian potential operators (57) and (58) and
estimate (278) imply the continuity of the operator A, delivering such a solution. O

7 | MIXED DIRICHLET-NEUMANN PROBLEM FOR THE SEMILINEAR
DARCY-FORCHHEIMER-BRINKMAN SYSTEM IN BESOV SPACES

Next, we consider the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system
Au—au-pfluju-Vz=£f diva=0inQ,. (281)

Such a nonlinear system describes flows in porous media saturated with viscous incompressible fluids (see, eg, Nield and
Bejan*P17) and the constants a, § > 0 are related by the physical properties of such a porous medium, as they describe
the viscosity and the convection of the fluid flow.

Due to some embedding results that play a main role in our arguments, we will restrict our analysis in this section to
the cases n = 3.

A numerical study of a mixed Dirichlet-Neumann problem for system (281) in the particular case of a two-dimensional
square cavity driven by a moving wall has been obtained in Gutt and Grosan.*? Well-posedness and numerical results for
an extended nonlinear system, called the Darcy-Forchheimer-Brinkman system, where both semilinear and nonlinear
terms |u|u and (u - V)u are involved, have been obtained in Grosan et al,* and boundary value problems of Robin type
for the Darcy-Forchheimer-Brinkman system with data in L,-based Bessel potential (Sobolev) spaces have been studied
in other studies.?**!

In what follows, we extend an existence and uniqueness result obtained in Theorem 7.1 in Kohr et al? for the mixed
problem (283) with the given data in L,-based Sobolev spaces, to the case of L,-based Bessel potential spaces, ie, when
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the given boundary data (hy, g,) belong to the space H;(SD, R"™) x L,(Sn,R™), with p € (2 — ¢,2 + €), and the parameter
€ > 0 as in Theorem 6.9. In addition, the given data should be sufficiently small in a sense that will be specified below.

Theorem 7.1. Assume that Q. C R? is a bounded creased Lipschitz domain with connected boundary 02 and that 0Q
is decomposed into 2 disjoint admissible patches Sp and Sy. Let a, f > 0 be given constants. Then there exists a number
€ > 0 such that forany p € (2 —¢,2+¢) and p* = max{2,p}, there exist 2 constants §, = {,(Q,a,f,p) > 0and
M, = np(Q,a, f,p) > 0 with the property that for all given data (f }he,go) € Ly(Q4,R?) X Hy(Sp, R?) x Ly(Sy, R?)
satisfying the condition
”h()”HIl)(SD,R3) + “g0||Lp(SN,R3) + ||f“Lp(£2+,R3) < &, (282)
the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-Brinkman system
ANu—ou—-plulu—Vr=Ff divu=0in Q,,
v+uls, =hg on Sp, (283)
ty(u, m)s, = 8o on Sy,

141 L
has a unique solution (u, r) € Bp’pf (Q,R") x Bp 1 *(Q+), which satisfies the inequality

(|l 1+1( < p. (284)

Moreover, y,u € H;(GQ, R"), tf(u,7) € L,(0Q,R") and the solution depends continuously on the given data, which
means that there exist some constants C, = C.(Qy4,a, f,p) > 0 and C. =C.Q4, a, B,p) > 0such that

< . " ]

llu“BH%(Q,Rn) + ”ﬂ”B% s C. (”f”Lp(Q+,R y + ||h0||H;(sD,]R ) + I8l s, R )) , (285)
p.p p.p’

ly+ull i oo + Itz (. Dl 0aRe) < Ci <|If||Lp(Q+,]R") + lIholl s, rn + ||go||Lp(sN,]Rﬂ)> - (286)

Proof. We use the arguments similar to those in the proof of Theorem 5.2 in Kohr et al** devoted to transmission
problems with Lipschitz interface in R” for the Stokes and Darcy-Forchheimer-Brinkman systems in L,-based Sobolev
spaces.

According to (A7) and the second formula in (A8), for n <

< 5and p > 3/2, we obtain the following continuous
embeddings,

1
p(Q+,R") < B) 1 (@4, R & HY (Q1,R™) = Lyp(Q4, RY). (287)

2p,min{2p,(2p)' }
Now, by (287) and the Holder inequality, we obtain the estimates

141
|||V|W”LP(Q+,R") < ”V“LZP(SL,R")||W||LZP(Q+,R”) <clvll 141 o Rn [[w| “ﬁ(g R VVv,wEeE Bp’pf (Q4, R™), (288)

pp* T
with some constants ck’ = ck’'(Q,,p) > 0, k = 0,1, implying that|vlw € L,(Q,R"), Vv, we B i (Q+, R™).

1+21
Next, for a given fixed v € B, ,* (Q, R"), we consider the linear Poisson problem of mixed type for the Brinkman
system

AV —av® — Va0 =f+p|vlv, divv’=0inQ,,
7+V°|s, = he € Hy(Sp,R™), (289)
th (v0,70) |s, = 8o € Lp(Sn. R™),

1+1 1
with the unknown fields (v°, z°) € B, Q. RN XB) (Q).
Let2 —e < p < 2 + ¢, where € > 0 is as in Theorem 6.9 and such that2 — ¢ > % Then by Theorem 6.9, problem
(289) with given data (f +8|v|v.he.go) € Ly(Q1,R") x Hy(Sp, R") X L,(Sy.R") has a unique solution

(v, 7°) 1= (U'(v),P(V) = A, (f+BIv|v, ho, &) € &, (290)

where the linear and continuous operator A, : Y, — &), has been defined in Theorem 6.9, and



44 Wl LEY GUTT ETAL.

1+1 :
X, =B T(Qu R X B! (@), Yy 1= Ly(Qe RN X HASp, RY) X Ly(Sy, R). (291)

Hence, for fixed data (f,ho,go) € Lp(Q4,R") X H,(Sp,R") X Ly(Sn, R™), the nonlinear operators

v, P) B "(Q+, R") = &, (292)
defined in (290) are continuous and bounded, we obtain,
| (v w), Pw) |, < CIl (£ +8Iwiw. ho. go) Ily,

<cC (” (f» ho,go) ||LP(Q+,Rn)xH;(sD,Rn)pr(sN,Rn) + Bl [wlw ||LP(Q+,R”)>

(293)
141
< C|l (£, hy,go) lly, + CC2||W||2 . VweB, (R,
B P(Q Rn)
||)’+U(W)||Hl(ag Ry + (It (V' (W), P(W))“L @aRkm) < C'|l (£, ho, ) ly, + C’C2||W||2 ) (294)
B ”(g Rn)

where C; :=c¢;f > 0,and ¢; = ¢;(Q,,p) > 0 is the constant that appears in inequality (288), and C can be taken as
C = | Apll £y, x,)- In addition, in view of (290) and due to the definition of .A,, we obtain that (v°, z°) = (U'(v), P(v))

1+1
and satisfy (289). Therefore, if we show that the nonlinear operator " has a fixed point u € Bp pf (Q4,R™), ie, such
that U°(uw) = u, then u together with the pressure function # = P(u) determines a solution of the nonlinear mixed
problem (283) in the space &,. To show the existence of such a fixed point, we introduce the constants

3 1

=—>0, =——>0 295
= Tec00 LIV TeNG (295)
(cf Theorem 5.2 in Kohr et al?*) and the closed ball
B, = {weB QL RY Wl <np}, (296)
’ B, P P (@, Rn)
and assume that the given data satisfy the inequality
Il (f. 1o, o) lly, < & (297)
Then by (293) and (295) to (297), we deduce that
1
VW), PV)) llx, < ac,c - VweB,. (298)

Consequently, V" maps B, into B, .
Moreover, we now prove that " is a contraction on B, . Indeed, by using the expression of U given in (290), the
linearity and continuity of the operator .4,, and inequality (288), we obtain that

) -UW) 1 < I Ap (BlvIv = flw|w, 0,0) || 1
B (@R P @,.Rn

S CIIVIV = [WIW I o, Ry = CBII(V] = W)V + [W|(V=W) |, @, Rn)

299
e T I [V 7 (299)
B P(Q,Rn) B PG, Rn B, ”(Q Rmy
p.p’ P-P
L 27, CChllv =W 4,1 = —||v w]| H, , Yvwwe Bnp,
B P(@Q,Rm o (@ R

p-p
see also (293). Then the Banach-Caccioppoli fixed point theorem implies that there exists a unique fixed pointu € B,
of U, ie, U'(u) = u. Moreover, u and the pressure functlon x = P(u), given by (290), determine a solution of the

1+
semilinear problem (283) in the space B » (Q+, R™) x B” .(€,). In addition, since the solution satisfies the condition
u € B, by inequality (293), we obtain the estimate
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1
u + ||x < C|| (£, hy, + =|lu|| ,1 s 300
[lull 5 R Izl by S Il (£, ho. go) Ily, 2l ”‘:}@,Rn) (300)
PP p-p PP
implying that
4
Il iy o+l < SCI(E o go) Il (301)
'p.p* '+ p.p* '+

which is just the inequality (285) with the constant C, = §C = % ||A;1 I LX) Similarly, (294) and (301) lead to (286)
with the constant C!, = %C’ .

Next, we prove the uniqueness of the semilinear mixed problem (283) solution (u, ) € X, that satisfies inequality
(284), when the given data satisfy conditions (282). Assume that (u’ , ) € &), is another solution of problem (283),
which satisfies inequality (284), implying u’ € B, . Then U'(W) € B,, where (U'(u’ ), P(u’ )) are given by (290) and
satisfy (289) with v replaced by u'. Then by (283) and (301) (both written in terms of (u’ 7 )), we obtain the linear
mixed Dirichlet-Neumann problem

A (V@) -v) - (V@)-u') -V (P@)-7')=0 div(U@)-u')=0inQ,,
(r+ (V@) —u'))|s, =0 on Sp, (302)
(tr (V@) -vu',P@)-1'))ls, =0on Sy,
and 7, (V(w') - ') € Hy(0Q,.R"), tf (V) -w',P)-x') € L,(0Q,,R"). This problem has only the trivial
solution in the space X, (see Theorem 6.9), ie, U"(w’) = v/, P(u’) = #’. Thus, u' is a fixed point of U". Since U : B, —

B,, is a contraction, it has a unique fixed point in B, , which has been already denoted by u. Consequently, u=u,
and, in addition, =’ = x. O
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APPENDIX A: BESOV SPACES IN R”

olul
recall the definition of Besov spaces in R” (cf, eg, Section 11.1 in Mitrea and Wright’). By =, one denotes the collection of

all sets {¢; }ji'zo of Schwartz functions with the following property:

Let 4 = (uy, ... , up) be an arbitrary multi-index in Z% of length |u| := y; +--- + pu,, and let 0* := . Next, we

(i) There are some constants b, ¢,d > 0 such that

supp(&) C {x @ |x| < b}, supp(&) C {x: 2le<|x| <2Md}, j=1.2, ... (A1)

(ii) Let u be an arbitrary multi-index in R”. Then there exists a constant cyp > 0 such that

sup sup 2194 &(x)| < con. (A2)
xeRr jeN
(iii) The following equality holds
Y& =1, VxeR" (A3)
j=0

Lets € R, p,q € (0, o). Then for a sequence {¢; }Ji’io C E, the Besov space Bj, ,(R") is defined by

:
By, (R") : {f € SR : | fllgy ooy 1= (21) 129 GFNII (Rn)> < oo} , (A4)
Jj=
where f is the Fourier transform and S’(R") denotes the space of tempered distributions in R". Note that the above
definition of the Besov space Bj, ,(R") is independent of the choice of the set {¢; }J?:O C E, which means that another
sequence in = leads to the same space with an equivalent norm. In particular, for any s € R, the Besov space B; ,(R")
coincides with the Sobolev space H3(R"), ie, B;z(R") = H;(R"). Moreover, denoting by Wj(R") the Sobolev-Slobodeckij
spaces (defined in the classical way through their norms), we have the relations (see, eg, Triebel*® and Behzadan and
Holst®)

W3R = B

(R, seR\Z, (A5)

WE[R") = HY(R"), k€ Z. (A6)

Let $o,51 € R, 1 < py < p1 < oo be such thats; — pﬁ < So — pi, and 0 < qo,q; < co. Then the embedding
1 0

By o (R") = B} . (R") (A7)

is continuous (cf Theorem in section 2.7.1 and Proposition 2(ii) in Section 2.3.2 of Triebel* and Remark 2 in Section 2.2.3
by Runst and Sickel®). Note that R" in (A7) can be replaced by a domain Q € R".

Let us also recall the following useful inclusions between Besov spaces and Bessel potential spaces. Assume that 1 <
1 £ £ 0,1 <p,q<oo0,ands; < s < 5. Let p’ denote the conjugate exponent of p, ie, 1% =1- 11). Then we have the
following continuous embeddings,

R < B ®Y, B RS HERYSB (R, (AS)

P‘h p.min{p,p’}

BS,(R") = Hy(R"), By (R") — HyR") BSII(JR" (A9)

(cf, eg, Chapter 6 in Bergh and Lofstrom,* Toft,” 32 and Mitrea and Taylor> *19), which imply the continuity of the
embedding

B2 (R" < By (R™). (A10)

These embeddings hold also when R" is replaced by a bounded Lipschitz domain (see Chapter 6 in Bergh and Lofstrom®
and Eq. (8) in Triebel*).
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The scales of Bessel potential and Besov spaces can be obtained by the method of complex interpolation. Indeed, if
50,81 € R, 89 # 51, po,P1 € (1,+00), qo,q1 € (1,+0), and 8 € (0, 1), then (cf, eg, Triebel,* Theorem 11.1.2 in Mitrea and
Wright,” and Theorem 3.1 in Behzadan and Holst%):

[Hp, (R™), Hy, (RM)], = Hp(R"),  [By, 4, (R"), By, ¢, (R")], = By g(R™), (A11)
where s = (1—0)s0+0s1,11) = 1p_—‘g+pi,and é =10 qﬁ

Moreover, the scale of Besov spaces can be also obtained by using the method of real interpolation of Sobolev spaces.
Indeed, for p,q € (1, +), sy # 51, and 6 € (0, 1), we have the following real interpolation property

(H,'(R™), H,? (R”))Q’q =B} ,(R",R"), (A12)

where s = (1 — 0)s + 0s; (cf, eg, Theorem 14.1.5 in Agranovich,* p.329 in Fabes et al,** Jerison and Kenig,*' Eq. (5.38) in
Mitrea and Mitrea,? Triebel,”® and Theorem 3.1 in Behzadan and Holst%)

Formulas (A11) and (A12) remain true if R" is replaced by a Lipschitz domain (cf, eg, Theorem 3.2 and Remark 3.3 in
Behzadan and Holst®).

For the following property, we refer the reader to, eg, Mitrea and Mitrea.® relations (3.11) and Proposition 4.2

Lemma A.1. Let Q C R" be a bounded Lipschitz domain. Let S C 0Q be an admissible patch. If po,p1 € (1, ),
50,81 € [0,1] or 59, 8; € [-1,0], and 6 € (0,1), then the following complex and real interpolation properties hold

[H, (0Q), H,. (0Q)]g = Hy(0Q),  [Hy (), H,.(Dlo = Hy(S),  [Hy (), Hy (5)lg = Hy(S), (A13)
(Hy (09), Hy, (00,4 = By o(0Q),  (H, (S), Hy' (S)og = Byg(S),  [Hy (), Hy! (S)log = B 4(S), (A14)

wherell) = 1p—_9 + 2 ands = (1 = 6)sp + 0s7. In (A14), also sy # s; and q € (1, ).

o P

APPENDIX B.. SOME GENERAL ASSERTIONS ON INTERPOLATION THEORY AND
CONTINUOUS OPERATORS

Let us consider 2 compatible couples of Banach spaces, Xj, X; and Yy, Y;. Let Xy and Y} be interpolation spaces with
respect to Xy, X; and Y, Y3, according to Definition 2.4.1 in Bergh and Lofstrom.*® If 4; : X; — Y}, j = 0,1 are linear
continuous compatible operators (ie, Ao |x,nx, = A1lx,nx, ), then they induce the operator A, : X, + X; — Y, + Y3, such
that A, x := Agxo + A1x;, for any x € X, + X;, where x = xo + x1, xj € Xj and ||A4|| < max(||Aoll, [|A1]]), cf Bergh and
Lofstrom. 56 section 23, ¢4 3) Purther, Xy C X, + X; and the operator Ay := A, | x, i linear and continuous. In the following
assertion, we consider some cases when the interpolation preserves isomorphism properties of operators.

Lemma B.1. Let X, X; and Yy, Y; be 2 compatible couples of Banach spaces. Let Xy and Yy be interpolation spaces with
respect to Xy, X; and Yy, Y;. Let Aj : X; — Y, j = 0,1, be linear continuous compatible operators that are isomorphisms.
Let Ay . Xp — Yp be the operator induced by A;.

(i) If the operators R; . Y; — X;, inverse to the operators A; : X; — Y}, j = 0,1, respectively, are compatible (ie,
Roly,ny, = Rily,ny,)s then Ay : Xy — Yy is an isomorphism.
(i) IfXo C Xy, then Ay : Xy — Yy is an isomorphism.
(iii) If there exist linear subspaces X, C Xo N X7 and Y, C Yy N Y7 such that Y, is dense in Yy N Y7 and the operator
A, 1= Aolx, =Ailx, 1 X. = Y. isanisomorphism, then Ay : Xy — Yy is an isomorphism.

Proof. Let us prove item (i). Since the inverse operators R; : Y; — X; are compatible, they induce a continuous
operator Ry : Yo + Y1 — Xo + Xj, such that R,y 1= Roy, + Riyy, forany y € Yo + Y1, wherey =y, +y;,y; € Y}, and
continuous operator Ry = R, |y, : Yy — Xy. Let us show that the operator Ry is inverse to Ay. Indeed, any x € Xy can
be represented as x = xy + x;, where x; € Xj, and then

RyApx = RLAx = R{A(Xo + X1) = Ry (Apxp + A1X1) = RoAgxp + R1A1X1 = Xp + X1 = X.
Similarly, any y € Yy can be represented as y = y, +y;, where y; € Y}, and then
AgRgy = A+Ry = AR (Yo + y1) = A+ (Royo + Riy1) = AoRoyo + A1Riy1 = Yo +y1 = ).

This proves that Ry : Yy — X, is the operator inverse to Ay : Xy — Yy and hence the latter one is an isomorphism.
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To prove item (ii), we remark that the inclusion X, C X;, the compatibility of the operators 4; : X; — Y;,j =0,1,and
the invertibility of the operator Ay : Xy — Y, imply that Y, C Y;. Then the invertibility of the operator A; : X; - Y;
implies R, |y, = Ry, ie, the compatibility of the inverse operators to the operators A4; : X; — Yj, j = 0, 1, which reduces
items (ii) to (i).

Let us prove item (iii). If 4; : X; — Y}, j = 0,1, are isomorphisms then there exist continuous inverse operators
R : Y; = X;,j =0,1. Let us prove that R; are compatible operators. Let R.. : Y, — X, be the inverse to the operator
A, 1= Aolx. = Ailx, : Xi — Y.. Then for any y € Y, there exists ¢ € X, such that y = A.¢ = Agpp = A1¢. Hence,
R*l// = (]') = R()l// = Rll//, ie, R* = R0|Y* = R1|Y*.

Due to the density of Y, in Yy N Y7, for any y € Yy n Y3, there exists a sequence {y'}2, C Y. converging to y in
Yy Nn'Y; and hence in Y, and in ;. Then R,y € X, C X, U X, and due to continuity of the operators R; : Y; — Xj,
j=0,1,lim;_ Ry’ = limi_,ijy/i = Rjy in X for j = 0, 1, which implies Rily,ny, = R:ly,ny,, i€, the inverse operators
R; : Y; = Xj,j = 0,1 are compatible.

Using now item (i) concludes the proof of item (iii). O

Note that item (iii) of Lemma B.1 is available in Lemma 8.4 by Fabes et al** for the cases, when the image and domain
spaces coincide, ie, Xj = Y}, under the additional assumptions that X, = Y, is a Banach space.

Let us give the following useful result in the complex interpolation theory (cf, eg, Theorem 2.7 and Corollary 2.8 in Cao
and Sagher® and the references therein, see also Appendix B in McLean).

Lemma B.2. Let Xy, X; and Yy, Y; be 2 compatible couples of Banach spaces and A; © X; — Y, j = 0,1, be 2 con-
tinuous compatible linear operators. Let Xy = [Xp,X1]lg and Yy := [Yy, Y;1]o denote the complex interpolation spaces
of Xo,X; and Yy, Y, respectively, for each 6 € (0,1). If there exists a number 6y € (0,1) such that Ag, : X5, — Y,
is an isomorphism, then there exists € > 0 such that the operator Ay : Xy — Yy is an isomorphism as well, for any
0e€@y—¢e,0p+¢).

Remark B.3. The extension of Lemma B.2 to the case of 2 compatible couples of quasi-Banach spaces, X,, X; and
Yo, Y1, such that X, + X; and Y, + Y; are analytically convex can be found in Theorem 11.9.24 by Mitrea and Wright’
and the references therein. Note that any Banach space is analytically convex (cf., e.g., Mitrea and Wright?: P223),

Finally, let us mention the following useful result (cf, eg, Lemma 11.9.21 in Mitrea and Wright”).

Lemma B.4. Let X;, X, and Y;, Y, be Banach spaces such that the embeddings X; < X, and Y; < Y, are continuous,
and also that the embedding Y; < Y, has dense range. Assume that T : X3 - Yyand T : X, — Y, are Fredholm
operators with the same index, ind (T : X; —» Y1) =ind(T : X; - Y3). ThenKer{T : X; - Y1} =Ker{T : X; — Y, }.
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