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15.1 Preliminaries

In this paper, the Dirichlet boundary value problem for the second order
“stationary heat transfer" elliptic partial differential equation with variable
coefficient is considered in 2D. Using an appropriate parametrix (Levi func-
tion), this problem is reduced to some direct segregated systems of Boundary-
Domain Integral Equations (BDIEs). Although the theory of BDIEs in 3D is
well developed, the BDIEs in 2D need a special consideration due to their dif-
ferent equivalence properties. Consequently, we need to set conditions on the
domain for the invertibility of corresponding parametrix-based integral layer
potentials and hence the unique sovability of BDIEs. The properties of corre-
sponding potential operators are investigated. The equivalence of the original
BVP and the obtained BDIEs are analysed and the invertibility of the BDIE
operators is proved.

Let Ω be a domain in R2 bounded by simple closed infinitely differen-
tiable curve ∂Ω, the set of all infinitely differentiable function on Ω with
compact support is denoted by D(Ω). The function space D′(Ω) consists
of all continuous linear functionals over D(Ω). For s ∈ R, we denote by
Hs(R2) the Bessel potential space. Note that the space H1(R2) coincides
with the Sobolev space W 1

2 (R2) with equivalent norm and H−s(R2) is the
dual space to Hs(R2). For any non-empty open set Ω ∈ Rn we define
Hs(Ω) = {u ∈ D′(Ω) : u = U |Ω for some U ∈ Hs(Rn)}. The space H̃s(Ω) is
defined to be the closure of D(Ω) with respect to the norm of Hs(Rn). For
s ∈ (− 1

2 ,
1
2 ), H

s(Ω) can be identified with H̃s(Ω), see e.g. [McL00, HW08].
We shall consider the scalar elliptic differential equation
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Au(x) =

2∑
i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f(x) in Ω (15.1)

with a(x) ∈ C∞(R2), a(x) > 0.
For given functions ϕ0 ∈ H

1
2 (∂Ω) and f ∈ L2(Ω), we will consider the

Dirichlet boundary value problem for function u ∈ H1(Ω),

Au = f in Ω, (15.2)
γ+u = ϕ0 on ∂Ω. (15.3)

Here equation (15.2) is understood in the distributional sense and (15.3) in
the trace sense.

In applications, the BVP (15.2)-(15.3) may describe a stationary heat
transfer boundary value problem in isotropic inhomogeneous two-dimensional
body Ω, where u(x) is an unknown temperature, a(x) is a known variable
thermo-conductivity coefficient, f(x) is a known distributed heat source, ϕ0(x)
is known temperature on the boundary.

We define as in [Gri85, Cos88, Mik11], the subspace

H1,0(Ω;A) := {g ∈ H1(Ω) : Ag ∈ L2(Ω)}

endowed with the norm ‖g‖2H1,0(Ω;A) := ‖g‖2H1(Ω) + ‖Ag‖2L2(Ω). For u ∈
H1.0(Ω;A) we can define the (canonical) co-normal derivative T+u ∈ H− 1

2 (∂Ω)
in the weak form (see, e.g. [Cos88, Mik11] and the references therein),

〈T+u,w〉 :=
∫
Ω

[(γ+−1w)Au+ E(u, γ+−1w)]dx ∀w ∈ H 1
2 (∂Ω), (15.4)

where γ+−1 : H
1
2 (∂Ω)→ H1(Ω) is a continuous right inverse of the continuous

interior trace operator γ+ : H1(Ω)→ H
1
2 (∂Ω), while E(u, v) := a(x)∇u(x) ·

∇v(x) is the symmetric bilinear form.
For u ∈ Hs(Ω), s > 3/2, the canonical conormal derivative defined by

(15.4) coincides with the classical one, defined in the trace sense, i.e.,

T+u = an · γ+∇u, (15.5)

where n(x) is the exterior unit normal vector.

Remark 1. The first Green identity holds for any u ∈ H1,0(Ω;A) and v ∈
H1(Ω) ([Cos88, Mik11]), i.e,∫

Ω

E(u, v)dx = −〈Au, v〉Ω + 〈T+u, γ+v〉∂Ω

and the second Green identity holds for any u, v ∈ H1,0(Ω;A),∫
Ω

(vAu− uAv)dx = 〈T+u, γ+v〉∂Ω − 〈T+v, γ+u〉∂Ω .
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15.2 Parametrix-Based Potential Operators

A function P (x, y) is a parametrix (Levi function) for the operator A if

AxP (x, y) = δ(x− y) +R(x, y),

where δ is the Dirac-delta distribution, while R(x, y) is a remainder possessing
at most a weak singularity at x = y.

In particular, see e.g. [Mik02], the function

P (x, y) =
1

2πa(y)
log |x− y|, x, y ∈ R2

is a parametrix for the operator A and the corresponding remainder is

R(x, y) =

2∑
i=1

xi − yi
2πa(y)|x− y|2

∂a(x)

∂xi
, x, y ∈ R2.

If a(x) = 1, then A becomes the Laplace operator, ∆, and the parametrix
P (x, y) becomes its fundamental solution, P∆(x, y).

If u ∈ H1,0(Ω;A), then from the second Green’s identity, we have the
following parametrix-based third Green identity for y ∈ Ω, [Mik02],

u(y) =

∫
∂Ω

[γ+u(x)T+
x P (x, y)− P (x, y)T+u(x)]dx

−
∫
Ω

R(x, y)u(x)dx+

∫
Ω

P (x, y)f(x)dx, y ∈ Ω. (15.6)

Note that the direct substitution of v(x) by P (x, y) in the second Green
identity is not possible as it has singularity at x = y. This difficulty is avoided
by replacing Ω by Ω \B(y, ε), where B(y, ε) is a disc of radius ε centered at
y; taking the limit ε→ 0 we then arrive at (15.6), cf. e.g. [Mir70].

The parametrix-based logarithmic and remainder potential operators are
defined, similar to [CMN09a] in the 3D case, as

Pg(y) :=
∫
Ω

P (x, y)g(x)dx, Rg(y) :=
∫
Ω

R(x, y)g(x)dx.

The single and double layer potential operators, corresponding to the
parametrix P (x, y), are defined for y /∈ ∂Ω as

V g(y) := −
∫
∂Ω

P (x, y)g(x)dsx, Wg(y) := −
∫
∂Ω

T+
x P (x, y)g(x)dsx.

The following boundary integral (pseudo-differential) operators are also
defined for y ∈ ∂Ω,



4 T.T. Dufera, S.E. Mikhailov

Vg(y) := −
∫
∂Ω

P (x, y)g(x)dsx, Wg(y) := −
∫
∂Ω

T+
x P (x, y)g(x)dsx,

W ′g(y) := −
∫
∂Ω

T+
y P (x, y)g(x)dsx, L+g(y) := T+

y Wg(y).

Let P∆, V∆,W∆,V∆,W∆,L+
∆ denote the potentials corresponding to the

operator A = ∆. Then the following relations hold (cf. [CMN09a] for 3D case),

Pg =
1

a
P∆g, Rg =

−1
a(y)

2∑
i=1

∂iP∆[g(∂ia)], (15.7)

V g =
1

a
V∆g, Wg =

1

a
W∆(ag) (15.8)

Vg =
1

a
V∆g, Wg =

1

a
W∆(ag), (15.9)

W ′g =W ′∆g +
[
a
∂

∂n

(
1

a

)]
V∆g, (15.10)

L+g = L+
∆(ag) +

[
a
∂

∂n

(
1

a

)]
W+
∆ (ag). (15.11)

Theorem 1. For s ∈ R, the following operators are continuous,

V : Hs(∂Ω)→ Hs+ 3
2 (Ω),

W : Hs(∂Ω)→ Hs+ 1
2 (Ω),

V : Hs(∂Ω)→ Hs+1(∂Ω),

W,W ′ : Hs(∂Ω)→ Hs+1(∂Ω),

L+ : Hs(∂Ω)→ Hs−1(∂Ω).

Proof. We have the corresponding mappings for the corresponding constant-
coefficient operators. Then (15.8)-(15.11) imply the theorem claim. ut

Theorem 2. Let u ∈ H− 1
2 (∂Ω) and v ∈ H 1

2 (∂Ω). Then the following jump
relation hold on ∂Ω

γ+V u(y) = Vu(y), (15.12)

γ+Wv(y) = −1

2
v(y) +Wv(y), (15.13)

T+V u(y) =
1

2
u(y) +W ′u(y). (15.14)

Proof. For the constant coefficient case, this theorem is well known. Then
taking into account the relations (15.8)-(15.10), we can prove the theorem for
the variable positive coefficient a ∈ C∞(R2) as well.
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Theorem 3. Let Ω be a bounded open domain in R2 with closed, infinitely
smooth boundary ∂Ω. The following operators are continuous.

P : H̃s(Ω)→ Hs+2(Ω), s ∈ R; (15.15)

: Hs(Ω)→ Hs+2(Ω), s > −1

2
; (15.16)

R : H̃s(Ω)→ Hs+1(Ω), s ∈ R; (15.17)

: Hs(Ω)→ Hs+1(Ω), s > −1

2
; (15.18)

γ+P : H̃s(Ω)→ Hs+ 3
2 (∂Ω), s > −3

2
; (15.19)

: Hs(Ω)→ Hs+ 3
2 (∂Ω), s > −1

2
; (15.20)

γ+R : H̃s(Ω)→ Hs+ 1
2 (∂Ω), s > −1

2
; (15.21)

: Hs(Ω)→ Hs+ 1
2 (∂Ω), s > −1

2
; (15.22)

T+P : H̃s(Ω)→ Hs+ 1
2 (∂Ω), s > −1

2
; (15.23)

: Hs(Ω)→ Hs+ 1
2 (∂Ω), s > −1

2
; (15.24)

T+R : H̃s(Ω)→ Hs− 1
2 (∂Ω), s >

1

2
; (15.25)

: Hs(Ω)→ Hs− 1
2 (∂Ω), s >

1

2
. (15.26)

Proof. The operator P∆ is a homogeneous pseudo-differential operator of or-
der −2 on R2, mapping P∆ : Hs

comp(R2) → Hs+2
loc (R2) continuously for any

s ∈ R. Hence the application of trace theorem along with the relations (15.7),
the operators (15.15), (15.17),(15.19),(15.21), (15.23) and (15.25) are contin-
uous. For s ∈ (− 1

2 ,
1
2 ), H̃

s(Ω) is identified with Hs(Ω), and (15.16) directly
follows from (15.15). To prove the case s ∈ ( 12 ,

3
2 ), we implement the Gauss

divergence theorem and the fact that
∂

∂xj
log |x − y| = − ∂

∂yj
log |x − y| and

obtain

∂

∂yj
(P∆g)(y) = −

1

2π

∫
Ω

g(x)
∂

∂xj
log |x− y|dx

=
1

2π

∫
Ω

log |x− y| ∂
∂xj

g(x)dx− 1

2π

∫
∂Ω

log |x− y|njγ+g(x)dsx

= P∆(∂jg)(y) + V∆(njγ
+g)(y). (15.27)

Now for s ∈ ( 12 ,
3
2 ), since ∂j : Hs(Ω) → Hs−1(Ω) is continuous, we have

P∆∂j : Hs(Ω) → Hs+1(Ω) is continuous, and from trace theorem γ+g ∈
Hs− 1

2 (∂Ω) and the properties of the single layer potential, we conclude that



6 T.T. Dufera, S.E. Mikhailov

∇P∆ : Hs(Ω) → Hs+1(Ω) is continuous. This implies that P∆ : Hs(Ω) →
Hs+2(Ω) is continuous, which along with the relation Pg = 1

aP∆ leads to the
continuity of operator (15.16) for s ∈ ( 12 ,

3
2 ).

Further, with the help of these results and the relation (15.27), we can ver-
ify by induction that the operator (15.16) is continuous for s ∈ (k− 1

2 , k+
1
2 ),

where k is an arbitrary nonnegative integer. For the values s = k+ 1
2 the con-

tinuity of the operator (15.16) then follows due to the complex interpolation
properties of Bessel potential spaces.

The trace theorem will give the continuity proof for the operators (15.19)
and (15.20). We can follow the same procedure to prove the claim of the
theorem concerning the operator R. The continuity of the operators (15.23)-
(15.26) follows if we remark that for the chosen s the conormal derivative can
be understood in the classical sense (15.5). ut

By the Rellich compact embedding theorem (see e.g [McL00, Theorem
3.27]), Theorems 1 and 3 imply the following two assertions.

Corollary 1. Let s ∈ R. The following operators are compact,

V : Hs(∂Ω)→ Hs(∂Ω) (15.28)
W : Hs(∂Ω)→ Hs(∂Ω) (15.29)
W ′ : Hs(∂Ω)→ Hs(∂Ω) (15.30)

Corollary 2. The following operators are compact for any s > 1
2 ,

R : Hs(Ω)→ Hs(Ω),

γ+R : Hs(Ω)→ Hs− 1
2 (∂Ω),

T+R : Hs(Ω)→ Hs− 3
2 (∂Ω).

15.3 Invertibility of the single layer potential operator.

This is well-known (see e.g. [CC00, Remark 1.42(ii)], [Ste08, proof of Theorem
6.22]) that for some 2D domains the kernel of the operator V∆ is non-zero,
which by (15.9) also implies that kerV 6= {0} for the same domains.

In order to have invertibility for the single layer potential operator in 2D,
we define the following subspace of the space H−

1
2 (∂Ω), see e.g. [Ste08, Eq.

(6.30)],
H
− 1

2
∗ (∂Ω) := {φ ∈ H− 1

2 (∂Ω) : 〈φ, 1〉∂Ω = 0},

where the norm in H−
1
2

∗ (∂Ω) is the induced by the norm in H−
1
2 (∂Ω).

Theorem 4. If ψ ∈ H−
1
2

∗ (∂Ω) satisfies Vψ = 0 on ∂Ω, then ψ = 0.

Proof. The theorem holds for the operator V∆ (see e.g. [McL00, Corollay
8.11(ii)]), which by (15.9) implies it for the operator V as well. ut
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Theorem 5. Let Ω ⊂ R2 have the diameter diam(Ω) < 1. Then the single
layer potential V : H−

1
2 (∂Ω)→ H

1
2 (∂Ω) is invertible.

Proof. By [Ste08, Theorem 6.23], for diam(Ω) < 1 the operator V∆ :

H−
1
2 (∂Ω) → H

1
2 (∂Ω) is H−

1
2 (∂Ω)−elliptic and since it is also bounded,

c.f. Theorem 1 for s = −1/2, the Lax-Milgram theorem implies its invert-
ibility. Then by the first relation in (15.10) the invertibility of the operator
V : H−

1
2 (∂Ω)→ H

1
2 (∂Ω) also follows. ut

15.4 The Third Green Identity

For u ∈ H1,0(A;Ω), let us write the third Green’s identity (15.6) using the
surface and volume potential operator notations,

u+Ru− V T+u+Wγ+u = PAu in Ω. (15.31)

Applying the trace operator to equation (15.31) and using the jump relations
from Theorem 2, we have

1

2
γ+u+ γ+Ru− VT+u+Wγ+u = γ+PAu on ∂Ω. (15.32)

Similarly, applying the co-normal derivative operator to equation (15.31), and
using again the jump relation, we obtain

1

2
T+u+ T+Ru−W ′T+u+ L+γ+u = T+PAu on ∂Ω. (15.33)

For some functions f , Ψ and Φ let us consider a more general indirect
integral relation associated with equation (15.31).

u+Ru− V Ψ +WΦ = Pf in Ω. (15.34)

Lemma 1. Let u ∈ H1(Ω), f ∈ L2(Ω), Ψ ∈ H−
1
2 (∂Ω), and Φ ∈ H

1
2 (∂Ω)

satisfy equation (15.34). Then u belongs to H1,0(Ω;A) and is a solution of
PDE Au = f in Ω and

V (Ψ − T+u)(y)−W (Φ− γ+u)(y) = 0, y ∈ Ω

Proof. The proof follows word for word the corresponding proof in 3D case in
[CMN09a, Theorem 4.1]. ut

Lemma 2. (i) Let either Ψ∗ ∈ H−
1
2 (∂Ω) and diam(Ω) < 1, or Ψ∗ ∈

H
− 1

2
∗ (∂Ω). If V Ψ∗ = 0 in Ω, then Ψ∗ = 0 on ∂Ω.
(ii) Let Φ∗ ∈ H 1

2 (∂Ω). If WΦ∗ = 0 in Ω, then Φ∗ = 0 on ∂Ω.
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Proof. (i) Taking the trace of equation in Lemma 2(i) on ∂Ω, by the jump
relation (15.13) we have VΨ∗(y) = 0 on ∂Ω. If Ψ∗ ∈ H− 1

2 (∂Ω) and diam(Ω) <
1, then the result follows from the invertibility of the single layer potential
given by Theorem 5. On the other hand, if Ψ∗ ∈ H−

1
2

∗ (∂Ω), then the result is
implied by Theorem 4.

(ii) Let us take the trace of equation in Lemma 2(ii) on ∂Ω, and use the
jump relation (15.14) to obtain,

−1

2
Φ∗ +WΦ∗ = 0 on ∂Ω.

Multiplying this equation by a(y), denoting Φ̂∗ = aΦ∗ and using the second
relation in (15.9), we obtain equation

−1

2
Φ̂∗ +W∆Φ̂

∗ = 0 on ∂Ω.

It is well known that this equation has only the trivial solution. It is partic-
ularly due to the contraction property of the operator 1

2I +W∆, see [SW01,
Theorem 3.1]. Since a(y) 6= 0, the result follows. ut

15.5 Boundary-Domain Integral Equations (BDIEs)

To reduce the variable-coefficient Dirichlet BVP (15.2)-(15.3) to a segregated
boundary-domain integral equation system, let us denote the unknown conor-
mal derivative as ψ := T+u ∈ H− 1

2 (∂Ω) and will further consider ψ as for-
mally independent on u.

Assuming that the function u satisfies PDE Au = f , by substitut-
ing the Dirichlet condition into the third Green identity (15.31) and ei-
ther into its trace (15.32) or into its co-normal derivative (15.33) on ∂Ω,
we can reduce the BVP (15.2)-(15.3) to two different systems of Boundary
Domain-Integral Equations for the unknown function u ∈ H1,0(Ω;A) and
ψ := T+u ∈ H− 1

2 (∂Ω).

BDIE system (D1) obtained from equations (15.31) and (15.32) is

u+Ru− V ψ = F0 in Ω,

γ+Ru− Vψ = γ+F0 − ϕ0 on ∂Ω,

where
F0 := Pf −Wϕ0 in Ω. (15.35)

The system can be written in matrix form as A1U = F1, where U := [u, ψ]
> ∈

H1,0(Ω;A)×H− 1
2 (∂Ω) and

A1 :=

[
I +R −V
γ+R −V

]
, F1 =

[
F0

γ+F0 − ϕ0

]
.
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From the mapping properties of W in Theorem 1 and P in Theorem 3, we
get the inclusion F0 ∈ H1,0(Ω;A), and the trace theorem implies γ+F0 ∈
H

1
2 (∂Ω). Therefore, F1 ∈ H1(Ω)×H 1

2 (∂Ω). Due to the mapping properties
of the operators involved in A1, the operator A1 : H1,0(Ω;A)×H− 1

2 (∂Ω)→
H1(Ω)×H 1

2 (∂Ω) is bounded.

BDIE system (D2) obtained from equations (15.31) and (15.33) is

u+Ru− V ψ = F0 in Ω,
1

2
ψ + T+Ru−W ′ψ = T+F0 on ∂Ω,

where F0 is given by (15.35). In matrix form it can be written as A2U = F2,
where

A2 =

[
I +R −V
T+R 1

2I −W
′

]
, F2 =

[
F0

T+F0

]
Note that the operator A2 : H1,0(Ω;A)×H− 1

2 (∂Ω)→ H1(Ω)×H− 1
2 (∂Ω)

is bounded.

15.6 Equivalence and Invertibility Theorems

In the following theorem we shall see the equivalence of the original Direchlet
boundary value problem to the boundary domain integral equation systems.

Theorem 6. Let ϕ0 ∈ H
1
2 (∂Ω) and f ∈ L2(Ω).

(i) If some u ∈ H1(Ω) solves the BVP(15.2)-(15.3), then the pair (u, ψ),where

ψ = T+u ∈ H− 1
2 (∂Ω), (15.36)

solves BDIE systems (D1) and (D2).
(ii)If a pair (u, ψ) ∈ H1(Ω) × H−

1
2 (∂Ω) solves BDIE system (D1), and

diam(Ω) < 1, then u solves BDIE system (D2) and BVP(15.2)-(15.3),
this solution is unique, and ψ satisfies (15.36).

(iii) If a pair (u, ψ) ∈ H1(Ω) × H− 1
2 (∂Ω) solves BDIE system (D2), then u

solves BDIE system (D1) and BVP(15.2)-(15.3), this solution is unique,
and ψ satisfies (15.36).

Proof. (i) Let u ∈ H1(Ω) be solution of the BVP(15.2)-(15.3). Since f ∈
L2(Ω), we have that u ∈ H1,0(Ω;A). Setting ψ by (15.36) and recalling how
BDIE systems (D1) and (D2) were constructed, we obtain that (u, ψ) solve
them.

Let now a pair (u, ψ) ∈ H1(Ω) × H− 1
2 (∂Ω) solves system (D1) or (D2).

Due to the first equations in the BDIE systems, the hypotheses of Lemma (1)
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are satisfied implying that u belongs to H1,0(Ω;A) and solves PDE (15.2) in
Ω, while the following equation also holds,

V (ψ − T+u)(y)−W (ϕ0 − γ+u)(y) = 0, y ∈ Ω. (15.37)

(ii) Let (u, ψ) ∈ H1(Ω) ×H− 1
2 (∂Ω) solve system (D1). Taking the trace

of the first equation in (D1) and subtracting the second equation from it, we
get γ+u = ϕ0 on ∂Ω. Thus, the Dirichlet boundary condition is satisfied, and
using it in (15.37), we have V (ψ − T+u)(y) = 0, y ∈ Ω. Lemma 2(i) then
implies ψ = T+u.

(iii) Let now (u, ψ) ∈ H1(Ω) × H− 1
2 (∂Ω) solve system (D2). Taking the

conormal derivative of the first equation in (D2) and subtracting the second
equation from it, we get ψ = T+u on ∂Ω. Then inserting this in (15.37) gives
W (ϕ0 − γ+u)(y) = 0, y ∈ Ω and Lemma 2(ii) implies ϕ0 = γ+u on ∂Ω.

The uniqueness of the BDIE system solutions follows form the fact that
the corresponding homogeneous BDIE systems can be associated with the
homogeneous Dirichlet problem, which has only the trivial solution. Then
paragraphs (ii) and (iii) above imply that the homogeneous BDIE systems
also have only the trivial solutions. ut

Theorem 7. If diam(Ω) < 1, then the following operators are invertible,

A1 : H1(Ω)×H− 1
2 (∂Ω)→ H1(Ω)×H 1

2 (∂Ω), (15.38)

A1 : H1,0(Ω;A)×H− 1
2 (∂Ω)→ H1,0(Ω;A)×H 1

2 (∂Ω). (15.39)

Proof. Theorem 6(ii) implies that operators (15.38) and (15.39) are injective.

Let us denote A1
0 :=

[
I −V
0 −V

]
. Then A1

0 : H1(Ω) × H−
1
2 (∂Ω) →

H1(Ω) × H
1
2 (∂Ω) is bounded. It is invertible due to its triangular struc-

ture and invertibility of its diagonal operators I : H1(Ω) → H1(Ω) and
−V : H−

1
2 (∂Ω)→ H

1
2 (∂Ω) (see Theorem 5). By Corollary 2 the operator

A1 −A1
0 =

[
R 0
γ+R 0

]
: H1(Ω)×H− 1

2 (∂Ω)→ H1(Ω)×H 1
2 (∂Ω)

is compact, implying that operator (15.38) is a Fredholm operator with zero
index, see e.g. [McL00, Theorem 2.26]. Then the injectivity of operator (15.38)
implies its invertibility, see e.g. [McL00, Theorem 2.27].

To prove invertibility of operator (15.39), we remark that for any F1 ∈
H1,0(Ω;A) ×H 1

2 (∂Ω), a solution of the equation A1U = F1 can be written
as U = (A1)−1F1, where (A1)−1 : H1(Ω) ×H 1

2 (∂Ω) → H1(Ω) ×H− 1
2 (∂Ω)

is the continuous inverse to operator (15.38). But due to Lemma 1 the first
equation of system (D1) implies that U = (A1)−1F1 ∈ H1,0(Ω;A)×H− 1

2 (∂Ω)

and moreover, the operator (A1)−1 : H1,0(Ω;A) ×H 1
2 (∂Ω) → H1,0(Ω;A) ×

H−
1
2 (∂Ω) is continuous, which implies invertibility of operator (15.39). ut
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The following similar assertion for the operator A2 holds without the lim-
itation on the diameter of Ω.

Theorem 8. The following operators are invertible.

A2 : H1(Ω)×H− 1
2 (∂Ω)→ H1(Ω)×H− 1

2 (∂Ω), (15.40)

A2 : H1,0(Ω;A)×H− 1
2 (∂Ω)→ H1,0(Ω;A)×H− 1

2 (∂Ω). (15.41)

Proof. Theorem 6(iii) implies that operators (15.40) and (15.41) are injective.

Let us denote A2
0 =

[
I −V
0 1

2I

]
. Then A2

0 : H1(Ω) × H−
1
2 (∂Ω) →

H1(Ω) × H−
1
2 (∂Ω) is bounded. It is invertible due to its triangular struc-

ture and invertibility of its diagonal operators I : H1(Ω) → H1(Ω) and
I : H−

1
2 (∂Ω)→ H−

1
2 (∂Ω). By Corollaries 1 and 2 the operator

A2 −A2
0 =

[
R 0

T+R −W ′
]
: H1,0(Ω;A)×H− 1

2 (∂Ω)→ H1(Ω)×H− 1
2 (∂Ω)

is compact. This implies that operator (15.40) is a Fredholm operator with
zero index and then the injectivity of operator (15.40) implies its invertibility.

The invertibility of operator (15.41) is then proved similar to the last
paragraph of the proof of Theorem 7. ut

15.7 Conclusion

In this paper, we have considered the interior Dirichlet problem for variable
coefficient PDE in a two-dimensional domain, where the right hand side func-
tion is from L2(Ω) and the Dirichlet data from the space H

1
2 (∂Ω). The BVP

was reduced to two systems of Boundary-Domain Integral Equations and their
equivalence to the original BVP was shown. The invertibility of the associated
operators in the corresponding Sobolev spaces was also proved.

In a similar way one can consider also the 2D versions of the BDIEs for the
Neumann problem, mixed problem in interior and exterior domains, united
BDIEs as well as the localised BDIEs, which were analysied for 3D case in
[CMN09a, CMN13, Mik06, CMN09b].
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