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Abstract 
A plane problem is considered for an infinite elastic medium with a circular 
elastic inclusion and a crack reaching the interface. The Boundary Element 
Method implemented in BEASY software package is used to the stress field 
calculation. A modification of an average stress non-local fracture criterion i,ii , iii, 
is applied in this work to predict the crack propagation and evaluate the 
possibility of its further reflection, refraction or interface delamination. The two 
criterion parameters are obtained from classical tensile test and standard fracture 
test results. A numerical integration of the singular stress field needed for 
implementation of the criterion is performed using the weighted trapezoidal rule. 
Several examples are examined for various crack lengths. Applications to some 
structural materials, particularly, to reinforced concrete are discussed. 
 

1. Introduction 

In the classical approach, the failure of a body at a point is characterised 
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by some function of the stress tensor evaluated only at the investigated 
point. This kind of approach give good description of experimental data 
when the stresses do not present high gradients on dimensions of the 
material structure scale. However when the stresses vary abruptly on such 
dimension, size effects are observed. In fact the body survive higher 
stresses under these conditions than under the corresponding (accounting 
the stress concentration) uniform ones. 

In a cracked body, principles of Linear Elastic Fracture Mechanics 
(L.E.F.M.) could be applied when cracks are sufficiently large. However 
when the crack length becomes comparable with one of the material 
structure scale, L.E.F.M. do not describe properly the experimental data 
and in the limit when the crack length tend to zero the strength predicted 
by L.E.F.M. becomes infinite. Moreover when the singularity of the 
stresses at the crack tip differs from the inverse of the square root, simple 
Stress Intensity Factor based failure criteria are not valid. 

Non-local failure criteria overcome these difficulties and give a more 
general approach to the strength evaluation. In fact they are applicable to 
homogeneous or heterogeneous bodies, with or without cracks and with 
or without singular or smooth concentrators. Such criteria uses stresses 
and strain not only at the investigated point but also in some 
neighbourhood.  

There are several non-local fracture criteria in literature. One of them, 
based on the average stress over a fixed interval, and its generalisation on 
bonded materials is considered in this work . 

2. Non-local failure criteria 

2.1 Safety and Loading factors 

Let us consider a body Ω having a stress field σij(x) induced by some 
mass and boundary loading. To predict the strength at a point y under 
such loading, let suppose λ(σij)>0 is the safety factor i i ,iv, that is a 
minimal positive number λ′ such as the stress field σij

*(x):=λ′σij(x) is the 
fracturing one; if λ′σij is not fracturing at any positive λ′, then λ(σij)  is 
equal to infinity. It is evident, that if 

 ( )λ σ ij > 1, (1) 

then the stress σij is not fracturing and vice versa. Therefore inequality (1) 
is a strength condition. The previous inequality can be rewritten in the 
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form 

 ( )Λ σ ij < 1 (2) 

where Λ is defined by the formula. 

 ( ) ( )Λ σ
λ σij := 1

ij

 (3) 

The function Λ is the so called loading factor if the condition stated in 
(2) is satisfied or overloading factor if not. Generally each material has 
each own strength condition. The strength condition for whole body Ω 
take the form 

( ) ( )Λ Ω ΛΩσ σij ij, sup ,= <∈y y 1 (4)  

2.2 Average Stress Criterion 

One of the popular non-local failure criteria for two-dimensional 
problems is the Average Stress Criterion. This criterion was considered 
by Neuber i, Novozhilov, and other authors. Some generalisations were 
presented by Mikhailov ii.  

Let (ρ,θ) be a local coordinate system with the centre at an 
investigated point y of the body; let η(θ) be a unit vector making an angle 
θ with the coordinate axis; and let σρρ , σθθ ,  σρθ be the stress component 
in this coordinate system. The (over)loading factor for the average stress 
strength condition has the form 2, 
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 where σc is the ultimate tensile stress and the characteristic length d1 is a 
material constant. 

Condition (2), (5) can not be used when the integration path intersects 
an interface between two bonded materials. To extend the condition to 
such cases we present the overloading factor in the following modified 
form: 
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where n is the number of materials through that the integration path goes. 
The geometric parameters l(i) are the interval length between two 
intersection. Particularly l(1) is the distance in the considered direction 
between the investigated point and the first intersection found, l(n) is 
evaluated from the equation: 
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2.3 Material constants 

The Average stress criterion depends on two material parameters. The 
ultimate tensile stress has to be determined experimentally by the 
classical tensile test. After this, the d1 parameter can be determined by a 
standard fracture test performed on a specimen with a crack large in 
comparison with the material structure dimension. In fact, for large 
cracks both L.E.F.M. and non-local criteria predict properly the failure. 
Applying singular stress asymptotic at the crack tip for the critical state, 
we obtain that the circumferential stress σθθ reaches its maximum at the 
crack prolongation direction θ=0, and for this direction we have, 

θθθ =0 2
( , )σ ρ θ

π ρ
=

⋅
KIc . (8)  

Substituting (8) in (2), (5) and performing the integration, we achieve 
the following formula 
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Expression (8) shows that the parameter d1 increases with the 
toughness and decreases with the ultimate tensile stress incrise. 

3. Stress field evaluation 

The BEASY software package, that implements the Boundary 
Element Method, is used in these work to evaluate the stress field. 
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3.1 Numerical integration 

It is known (see, e.g., Fenner v and references there) that the stress 
singularities 

 ( ) γ−σ ρ θ ρ γθθ , ~ ,< <,    0 1  (10) 

occur at the crack tip reaching an interface. The numerical integration of 
the circumferential stresses that appear in the Average Stress Criterion 
are performed in this case using weighted trapezoidal rules. It means we 
use the approximation 
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in a discretization subinterval ρ ρ ρi i< < +1 , and the weighted function is 
defined by the following formula 

( )w ρ ρ γ= −

( )

. (12)  

The integral is calculated by dividing the interval (0, d1) on n 
subintervals (ρi , ρi+1), i=0...n-1, such that ρ0=0, ρn=d1, and summing the 
contribution from each subinterval, 
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The integration along the first subinterval including singularity is 
performed using (11) as extrapolation formula for ρ∈(0,ρ1) and i=1. 

4. Algorithm implementation 

In order to apply efficiently non-local criterion to two dimensional 
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problem, some FORTRAN routines have been written. They interact with 
BEASY using some peculiar features of the Boundary Element 
technique. The flow chart of the algorithm used to calculate stress field 
and the (over)loading factors is shown in Figure 1  . 

In a first step the user builds a boundary element model implementing 
the BEASY Interactive Modelling System and solves the main algebraic 
system in order to obtain the solution at the boundary. After this stage, a 
FORTRAN routine generates some integration points, used in (13), in a 
data file. They are placed on a radial path around the investigated points 
specified by the user and the appropriate material zone membership is 
assigned.  

 
The material proprieties and 

the integration interval are 
written in an intermediate file. 
In the next step, BEASY runs 
in a restart mode in order to 
calculate the stress tensor only 
at the integration points without 
solving the system of linear 
algebraic equations. Then 
another FORTRAN routine 
reads the results and integrates 
them in order to obtain the 
(over)loading factor by (5)-(7) 
for each investigated point. 

BEASY 
Solve Model

BEASY 
Calculate internal

point result

Numerical
Integration 

BEASY IMS 
 Model

Geometry
model Loads Materials

Internal Point
generation

Non-local
Failure 
Criteria  

Figure 1: Algorithm 
implementation 

A geometry of the model is 
written explicitly in a subroutine of the code. In this work, a plate with a 
circular inclusion has been analysed but the user can easily modify this 
geometry updating only the last subroutine. 

5. Results 

5.1 Plate with circular inclusion and crack 
 
A reinforced concrete  structure is considered as an example of 
heterogeneous media but the same consideration could be done also for 
other composites. 
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A plane strain problem for a 

concrete rectilinear plate with a 
circular steel inclusion is 
considered. The geometry and the 
boundary condition of the boundary 
element model is shown on  Figure 
2 were r and L have been taken 
respectively 1 cm and 15 m. The 
parameter 2a represents the crack 
length and varies from 0.065 cm to 
0.39 cm.  

The proprieties of the two 
materials are listed in Table 1 
where d1 was evaluated by (9). 

2a

2r
X

Y
q

L

L  

If we take the Poisson ratios of the both material equal to 0.3, then the 
stress singularity is γ ≈ 0.3 for the plane strain case according to Fenner 5. 

Figure 1 - Geometric Model and 
Boundary condition 

The plate is loaded by a uniform tensile traction, which  magnitude is 
equal to the fracturing one  

 MPa 775.2=
⋅

=
a

Kq IC

π
 (15) 

Material Proprieties Concrete Steel 

Young Modulus E (MPa) 34,300 210,000 

Ultimate tensile stress σc (MPa) 5.3 650 

Toughness KIc ( )MPa m⋅ 1.7 54 
d1 (m) 0.065 0.00439 

Table 1 - Material Proprieties 

for the infinite concrete plate without inclusion and with the crack of the 
length 2a = 0.39 cm. 
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The location of the internal points is shown in Figure 3. The integration 
path at θ∈[90°, 92°] is split according to (6), (7) into two intervals since 
the radial path intersects the interface in this case. (Angles θ<90° 
correspond to concrete, θ>90°  correspond to inclusion.) 

Figure 3 - Internal Point Locations  

The resulting loading factors for different crack lengths are presented 
in Figures 4 and 5 respectively for the crack tips at the interface and far 
from it. The values of Λ+(σ)<0 (shadow zone) do not describe the 
strength since Λ(σ)=max[0, Λ+(σ)] (see (5)). The results are not available 
in the case when the integration paths in (5), (6) lay near the interface, 
i.e., for angles θ  between 80° and 112°  (dashed zone), since numerical 
instabilities occur during the stress evaluation in internal points near the 
interface. The loading factor maximum for the crack tip at the interface is 
reached in inclusion at 180°, excluding the case of short crack (of the 
order of d1). In the last case the integration include the field of the far 
crack tip and the maximum appears at small angles. 

For the crack tip far from the interface the maximum is reached at 
zero angle. The maximum overloading factor is much greater then for the 
crack tip near the inclusion but is less the unity. Because of the choice of 
the load, this means that the steel inclusion increases the strength at the 
both crack tips. 
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Figure 4 - Loading factor for the crack at the interface 
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Figure 5 - Loading factor for the crack far from the interface 
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6. Conclusions 

An application of a non-local criterion was presented to evaluate the 
strength of a concrete plate with a circular steel inclusion and a crack 
reaching the interface. Such approach allows to evaluate strength both at 
the far from inclusion crack tip, where the square root stress singularity 
occurs, and at the crack tip reaching the interface where another stress 
singularity occurs. The numerical examples presented show that the most 
loaded is the crack tip far from the interface, and the crack propagation 
will start there at the sufficiently high loading in the direction of crack 
prolongation. If the strength of this crack tip is ensured, the crack will 
propagate from the crack tip at the interface in the direction of crack 
prolongation (if the crack is not too short). It was supposed in the analysis 
that the interface strength coincides with the strength of one of the 
bonded materials and that the crack is normal to the interface and to the 
applied tractions. A change of these assumptions can change the analysis 
results too. 
 

References 
 

i Neuber, H.: Kerbspannungslehre. Springer, Berlin 1937. 
ii Mikhailov, S.E.: A functional approach to non-local strength conditions and 

fracture criteria - I Body and point fracture. Engng Fracture Mech., 52 (4), 
731-743. 

iii Mikhailov, S.E.: A functional approach to non-local strength conditions and 
fracture criteria - II Discrete fracture. Engng Fracture Mech., 52 (4), 745-754. 

iv Isupov, L.P. & Mikhailov, S.E. Comparative analysis of several non local 
fracture criteria. Univ. Stuttgart. - SFB 404 ''Mehrfeldprobleme in der 
Kontinuumsmechanik''. - Preprint 97/43. -1997. - P. 1-24. 

v Fenner, D.N.: Stress singularities in composite materials with an arbitrarily 
oriented crack meeting an interface, Int. J. of Fracture, 1976, 12, 705-721.  


	1. Introduction
	2. Non-local failure criteria
	2.1 Safety and Loading factors
	2.2 Average Stress Criterion
	2.3 Material constants

	3. Stress field evaluation
	3.1 Numerical integration

	4. Algorithm implementation
	5. Results
	6. Conclusions

