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Several classes of functions of two variables (one complex and one real) are
considered. These functions belong to some weighted Hardy type classes with
respect to the complex variable in a wedge or in a strip and are either essentially
bounded, or bounded, or continuous in a sense with respect to the real parameter.
Properties of such functions and of their Mellin images are investigated. Classes of
functions of two real variables are also studied in order to describe boundary
properties of the one-parametric holomorphic functions. The analysis is based on
properties of the corresponding classes of functions of one variable, which are
studied here too.  © 1998 Academic Press

INTRODUCTION

For some two-dimensional boundary value problems, particularly, in the
continuum mechanics (see, e.g., [14, 5]), solving methods, based on a
representation of a general solution in terms of holomorphic functions
(complex potentials) are rather popular. Such representations together
with the Mellin transform are especially used for the stress singularity
analysis near the corner point of an elastic wedge (see, e.g., [1, 2, 6-8]). To
provide a rigorous analysis for these problems, it seems natural to consider
a solution (as complex potentials) in some weighted Hardy type classes of
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functions of one complex variable in a wedge. Functions from these classes
may possess weak singularities in the wedge apex, they satisfy some
singularity estimates, and their Mellin images can be expressed in terms of
the Mellin images of their boundary values. Such classes and the corre-
sponding weighted Lebesgue type classes of functions of one real variable
(for the boundary values) as well as weighted and usual Hardy type classes
of functions in a strip (for the Mellin images) are constructed in Section 1
of this paper. R

A pair of function classes is introduced first: L, (8, &.), being an
intersection of Lebesgue’s spaces on the half-axis with different power
weights, and the Hardy type class HPO(S) on a strip S(5,, 8.) of the
complex plane. It is proved that the Mellin transform (with respect to the
real variable) and its inversion map L,(8,, §,) and HJ(S(§,, 8.)) onto
each other. Another pair of classes is also constructed: HP(BO, S W),
being an intersection of Hardy type classes with power weights in a wedge
W(6_, 6.) of the complex plane, and H,’(6_, 6.; S) being an intersection
of the Hardy type classes with exponential weights on a strip S(5,, 8.). It
occurs that the Mellin transform (with respect to a complex variable) and
its inversion map H,(8,, 8.; W(0_,0,)) and H, (6_, 0,; S(§,, 8.)) onto
each other. Properties of functions from these classes are investigated.
Particularly, some pointwise estimates are obtained for functions from the
Hardy type classes in a strip or a wedge in terms of Hardy classes integral
guantities. The boundary values of the complex Mellin transform images
of functions belonging to H,(§,, d.; W) are expressed in terms of the real
Mellin transform images of their boundary values. The results presented
were applied in [13] to some problems of elasticity.

There are some more complicated problems in applications, when a
general solution may be represented in terms of holomorphic functions
depending additionally on a real parameter (time). For example, the
two-dimensional problems of visco-elasticity (hereditary elasticity) are de-
scribed by the operator Lamé equations being partial differential equa-
tions in space coordinates and integral equations in time. To investigate
the stress singularities in such problems (see [9-11]), all results obtained in
Section 1 of this paper must be extended to one-parametric holomorphic
functions. Since solutions of the visco-elastic problems may be essentially
bounded, bounded, or even continuous in time (depending on the bound-
ary loadings smoothness), it is necessary to consider different function
classes possessing these properties. In Section 2, classes are constructed
for functions of one real or complex variable and of one additional real
parameter, such that the functions belong to the corresponding classes
given in Section 1 with respect to the first variable and are either
essentially bounded, or bounded, or continuous in a sense with respect to
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the additional parameter. For example, the classes LmZp(éo, 5. J0),
BL (80, 8.3 ), cL (8¢, 8. J) of functions g( p,t) are the corresponding
counterparts of the class L (89, 8,) of functions g( p), where J is a finite
segment or a half-infinite mterval

It is important in visco-elasticity to consider the solution behavior not
only at finite time instants but also at time ¢ tending to infinity. In the last
case the solution may be in a sense either bounded, or tend to a function
harmonically oscillating in time, or tend to a definite limit if the applied
loadings possess such properties. To consider these particular cases, the
corresponding subclasses of functions having harmonically oscillating lim-
its are constructed in Section 2. For example, the class L. L (60, 5. J,)
includes the subclass LOC,L (84, 8,; J.; Q) of functions tendlng to ones
harmonically oscillating in ¢ with a frequency Q. All results of Section 1
are extended to these classes.

Some properties of partial Volterra operators in a real variable are
investigated in [12] on a finite segment as well as on the half-axis for
functions from the classes introduced in Section 2.

The analysis of this paper is essentially based on the results in [18, 3].
Particularly, the complex Mellin transform was considered in [18] for a set
of functions satisfying some power estimates at the wedge apex and at
infinity. Note, that such sets are too wide and do not possess the needed
boundary properties, in contrast to their subsets H,(§,, 8.; W) introduced
in this paper. Some proprties of the Mellin image of functions from Hardy
type classes without weight on a wedge were considered in [3]; however,
the functions from these classes cannot have sufficiently arbitrary singular-
ities at the wedge apex.

1. BASIC NOTATIONS, SOME CLASSES OF FUNCTIONS
OF ONE VARIABLE, AND MELLIN TRANSFORMS

Let us introduce an intersection of the weighted Lebesgue spaces on the
half-axis, where the weight power runs through an interval, and describe
some properties of this class.

1.1. DerINITION. (1) The space ZP(S; 0, ) consists of functions g(p)
defined on the half-axis 0 < p < with the finite norm |g; él, :=
[/51gCp)p®lp~t dpl/? < =,

(2) The class L (8¢, 8.) (8, < 8,) consists of the functions g(p)
belonging _to L (8,0, for all &€ (8,4, ie, L (8¢, 8,) =
Nsy<s<s, L (80, °°)
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Particularly, L (8¢, 8.) includes all functions g( p) locally integrable on
(0,%) with the power p and such that the estimates |g( p)l < C,p %0 ¢ -
(p—0),lg(pl<C.p%*"(p— =) hold for any & > 0.

We shall below suppose 1 < p < % unless otherwise stated.

1.2. LEMMA.  Let g(p) € L (8,,8,), 8, < 8. Then llg; 81I5 < llg; ;5
+1lg; &5 for any & € [8g, 8.] € (8, 8,). In particular, the norm ||g; 61|,
is uniformly bounded with respect to 8 on any internal segment of (5, 8,).

Proof. llg; 8lly = [olg(p)p®'p™" dp + [{lg(p)p®IPp~t dp <
Io1gCp)p®Pp " dp + [F1g(p)p>|Pp~  dp < llg; 8lI5 + llg; &5 1

Although the space L ,(8;0,%) is not embedded into L 4,(8;0,2) for

q < p, it is the case for the classes L (80, 8.) and L (80, 6 ,.). Thus, we
have

13.LEMMA. If 1 <q <p <, then L (8,,8,) < L (8,, 8.).

Proof. For any 6 € (§,, 8.), there is & > 0 such that § + & € (§,, 8,).
Then

1 o0
lg; 85 = f |g(p)p5“"|qp“’p_ldp+f lg(p)p° el *9p "  dp
0 1

](ﬁ—q)/p

1 q/p 1
< f|g(p)p5‘8|”p‘1dp fp”"““"‘”p‘ldp
0 0

}(pq)/p

o 9/PT
+ f lg(p)p° “1p~ dp fp’”’q/"””p’ldp
1 1

[p —q }(pqvp
<

llg; 6 —elld +1lg; 8+ ell?
epq ( g 2

epq

Here the Holder inequality is used with the measure p~* dp = d(In p).
|

— (p—q)/p
P —q
< 2[ ] (lg; 6 — &ll, +llg; 6+ &ll,)".

Let us introduce now some Hardy type classes of holomorphic functions
in a strip or in a wedge and consider their properties. We shall use below
the complex variables z = pe'?, y =8 +i&, { =x + iy, where p, 6, §, ¢,
x,y are real. We denote an open wedge (0 < p < «, §_< 6 < 6,) on the
complex z-plane as W(6_, 0.) and an open strip (—o < Imy < «, §, <
Rey < 8,) on the complex y-plane as S(8,, 8,); W(6_, 6,) is the closed
wedge (0 < p < »,0_< 0 < 0,); S(8,,8,) is the closed strip (—o < Im
y<® 8 <Rey<d,).
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First we describe some properties of the classical Hardy classes of
holomorphic functions in a strip.

1.4. DeErFINITION. (1) The class H[?(S) consists of the functions ®(¢)
holomorphic on S = S(a, b) such that the quantity

1/p

M[9((D;x) = [fjJ@(x + iy)|” dy

is uniformly bounded with respect to x on any segment [/, b’] € (a, b).

(2) The class H*(S) consists of the functions ® H°(S) such that
M (®; S) = supa<x<bM°(CI> X) < oo,

1.5. Remark. Obviously, HX(S) c hgpo(S) If ® € H(S(d, b)) for any
segment [a', b'] € (a, b), then ® € H,(S(a, b)), and V|ce versa if ®
0(S(a b)), then ® € HX(S(d', b)) for any segment [d’, b'] € (a, b).

Let us prove the boundedness of a function from H*(S) (and by
Remark 1.5 even from HO(S)) on any strictly internal strlp and the
membership of all denvatlves of a function from H(S) to the same class.

1.6. LEMMA. Let ® € H[j‘(S), S=25(a,b),S =85d,b)cS, andr =
min(a — a', b — b'). Then:

1/p
(i) |¢(§)IS(%) M (®;S), (€S, (1.1)

d
(i) d—g@(g) €H)(S) and

0 d .
Mp d—gq),x

1
SM*(—q’);S’) < M (®:S),x € [d,].

Proof. (i) Let { =x + iy € &', then

® 2 |
®(() =5 S %fo O+ pei)do (12)

2mim—¢1=pm — ¢

by the Cauchy theorem. Integrating (1.2) with respect to p dp, we obtain

PO = %for/:wd)(g_,_ pe)dopdp = %I/D@(n) db,
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where D is the disc [y — ¢| < r. Let §” == S(x —r,x +r), then §" C S.
Using the Holder inequality, we get

/p 1/p
Id)(()ls#[ffqu)(n)w dD] /(Wrz)lWﬁ[#ffsﬂ@(nﬂpcm}

1 x+r i/p 2 1/p
I 0 . _ * .
S[WFZLrMp(CD,x)dx} s(m) M*(®; ).

Point (i) has been proved. Now we prove point (ii). Let { € S’. Then by
the Cauchy theorem and the generalized Minkowski inequality (see, e.g.,
[15, point 1.3.2]), we receive

d _ 1 ®(n) _ 1 2m i0Y,—i0
d—gcb(g) = _.fln—zl=r(1] Y dn = 27”/0 O(L+re'’)e”'"do,

27
d 1 [ v
MO . -
(d§ ,x) 2mr [f_ao 0 dy}

1 2 © 1/p
. i0\[P
_f [f |D(x + iy + re'?)] dy] do

2ar 0

277<I)(x +iy +re'?)e " do

IA

_ Mo 0)do < ~M*(d: S
_27”[0 O(®;x +rcos ) <= (D S).

The estimate of point (ii) has been obtained. Since it is true for any ¢
on each §’' €S and is uniform with respect to x [d’,b'], we have
(d/d)®(¢) € HXS). |

Note that the estimate similar to (1.1) for p = 2 is contained in [4,
Lemma 1.6] (see also [17, point 1.1.4, Lemma 3]), where the result of [16,
Theorem I11] is refined.

It follows from [18, points 1.29, 3.17] and from the imbedding L (84, &)
c L(8,,8,) that the classes L,(8,, 8,) and H(S(8,, 8.)) are mapped
onto each other by the direct and inverse Mellin transform, that is, we
have the following

1.7. THEOREM. Let 8, < §,, S = S(§,, 8,).
() For any function g( p) from Zz( 8o, 8,), the Mellin transform

(#g)(y) = /0 g(p)p"~tdp
generates an image

(@) (v) = (#8)(7v) (1.3)
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belonging to HY(S), and
M({g);8) = (2m)"?lig; 8l (1.4)
The inverse Mellin transform has the form

1
[t ()l (p) = 5=

and

O+ i
(e rdy (8, <8<8.),

—1

g(p) = [27H()<](p) (15)
at the points p, where the function g( p) is continuous and has a finite
variation.

(1) For any function {g)(y) from HJ(S), the function g( p) given by
(1.5) belongs to L,(8,, 8.) and equalities (1.4), (1.3) hold.
We consider now some weighted Hardy type classes in a wedge.
1.8. DerINITION.  Let W= W(6_, 6.). The class H,(8,, 8.; W) consists
of the functions /(z) holomorphic on W such that the quantity

o _ 1/p
M, (h; 8;W) = sup [fom(Pe’e)p’slpp‘ldp

0_<0<0,
is bounded for any 6 € (§,, 4.).

1.9. Remark. f h(z) € H,(8,, 8,;W), then h(pe'®) € L,(8,, 8,) with
respect to p for any 6 € (6_, 6,). Hence by Lemma 1.2, the quantity
Mp(h; §; W) is uniformly bounded with respect to 8 on any segment
[84, 8.1 < (8, 8.). In addition, it follows from Lemma 1.3 that
H,(8y, 8., W) CH(8,8,W)ifl<q<p<w

Let us prove an analogue of Lemma 1.6 for the class H,(3,, d.; W).

_110. LemMA. Let h(z) € H(8, 8., W), W=W(0_,0,), W =
w(o.,0.) cW, and r =min(0"_— 6_,0,— 6,). Then for any segment
[8, 8.1 € (8¢, 8.,

() 1h(2)l < M(h; 8y, 8 W)zl (2,8} e W' x [85, 6],
(1.6)
~ 2 \/P
M(h; 8y, 8., W'") = (—) sup M, (h; 8., W),
mr Sh<8, <5,

d
(i) zah(z) € H,(8,,8.;W") and

d 1
MP(ZEh; S;W’) < (IBI + 7)Mp(h; 8, W), 8 [8,86.].
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Proof. By the conformal mapping z = e’¢, the wedge W transforms
onto the strip S == S(0_, 6,) while W’ transforms onto S’ := S(6’, 6").
Since h(z) € H,(8,, 6.; W), we have ®;({) = h(z({))e*® € H(S) and,
moreover, M (®s; S) = M, (h; §; W) for any & € (3§, 8.). Using estimate
(1.1) from lemma 1.6, taking into account that, according to Remark 1.9,
the constant M, (h; A; W) is uniformly bounded with respect to & on any
segment [ 8, 6.1 < (8,, 8,), and applying the inverse mapping, we obtain
estimate (1.6).

To prove point (i), we take into account z[(d/dz)h(2)]z° = —8D5(¢)
—i(d/d{)Ps(¢). By point (ii) of Lemma 1.6, we get (d/d{)®5({) €
H)(S) and M}((d/d{)®;; S") < A/rIM(®5; 8) = (1/r)M,(h; §; W).
Hence M, (z(d/d2)h; 8;W') = MF[8D;(¢) — i(d/d{)Ps; '] < (18] +
(1/r))Mp(h; S;W)<owfor s €[68),8.] |1

Consider now some weighted Hardy type classes in a strip.

1.11. DeriNiTION.  The class H,"(6_, 6. S) consists of functions ®(y)
holomorphic on S = S(§,, 8,) such that the quantity

o 1/p
M) (;6_,60,;8) = sup [f |D(8+if)e|” dé
0_<0<0, LV —
is uniformly bounded with respect to & on any [ 8, 6.1 € (8,, 8.).
1.12. Remark. Obviously, H,"(—¢’, 6"; S) c H)(S) for any 6’ > 0.
Give once more an analogue of Lemma 1.6 for the class H,"(6_, 6.; S).

113. LEMMA. Let ® € H,Y(6_,0,;5), S = 5(8y,8,), § = 8(8;,8) €
S, and r=min(8, — &), 8, — 8.)/2, &) = (8, + 8,)/2, & = (8, +
8,)/2. Then:

() 1O(y) <MY (®:6_,6,:8)e™],  {y.0) €8x (6_,¢,),
(1.7)

~ 2 \l/p
MY (D;0_,60,;S") :=(—) sup M, (d;6_,6,;3);
mr Sp<6< 8l

d
(i) d_y(Y)erv(O,,HgS) and

d 1
M| —®;0_,60,;8]| < |0,|+I6+I+7

p d'}/
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X sup M, (®;6_,0,;8,), 6€[8, 8]

85< 8, <o/

Proof. Since ® € H,’(6_,6.;S5), we have ®,(y) = P(yle "
H)(S)forany 6 € (6_, 6,). Let 8" := S(57, 87). According to Remark 1.5,
we have ®,(y) € H(S") and M (d,; S") <supyy . 5« 5o M, (P;6_,0.;8)
< o0, Using estimate (1.1), we obtain estimate (1.7).

To prove point (ii), we take into account that (d/dy)®(y) = [i0®,(v)
+ (d/dy)®,(y)le'?”. By point (ii) of Lemma 1.6, we have (d/dy)®,(y)
€ H)S") and MJ((d/dy)®,; 8) < (1/r)M}(D,; S") < (1/r)
SUPsy <5< 5y M, (®; 6_, 0.,; 8) for & € [§, 8.]. Therefore

d
Mpv(d_'yq);0’6+; 1)

d
= sup M,ﬁ’[i@d)e(y) + d_yq)"; 8

0_<0<0,

1
< (|0| +16,1 + —) sup M, (®;6_,6,;8,) <=
r

5p< 8, <8/

Since the estimate is valid for any S’ ¢ S and is uniform with respect to
8 € [8y, 8.1, we have (d/dy)®(y) € H,"(6_,6,; ). 1

Let us prove a statement about a product of two holomorphic functions,
important for applications in the stress singularity analysis (see, e.g., [10,
11, 13).

1.14. LEMMA.  Let ® € HJ(S). Suppose a function ®,(y) is holomorphic
on S and there is a number AZV(@l; S) <o such that |®(y)| <
MV(‘IEl; S)e™|, {y,0} €S X (0_,0,) for an interval (6_,0,) and for
every S' C S. Then ®®, € H,”(6_,6.,; 5).

Proof. Let us fix §' = 5(8;,6.) c S =5(5,,8,) and 6 €[5, 8.]. Let
8y = (8, + 8y)/2, 8. = (8. + 8))/2, §" = 8(83, 8.); then §" c S, §' c
S”. Hence

© 1/
M) (0D 60.,0,:8) = sup [/ |<1>(6+i§)<1>1(8+i§)ef*’|f’d§] ’

6_<6<0,
= o 1/p
st(q)l;S”)[/ (5 +i£)l” df}

=M (®y; S"YM(D; 6),

where, according to point (1) of Definition 1.4, the quantity M,?(CI), 8) is
uniformly bounded with respect to & on any segment [§;, 8.] € (5, 8.). 1
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Now we shall prove that H,(§,, d.;W(6_,6.)) and H,'(6_, 6, ; S(8,,
5,)) are mapped onto each other by the direct and inverse Mellin trans-
form in a complex variable. For z = pe'’ € W(6_, 6, ), we shall denote by
z¥ the branch e™»*%7 where 6_< 6 < 0,.

1.15. THEOREM. Let 6_< 0,, 8, < &, W= W(6_,0,), S = S(§,, 8,).

(D) If h(2) € H,(8y, 8.; W), then its Mellin transform with respect to
the complex argument z

[ﬁﬁ(ﬂ/)h](y):=.Lxh(z)zy’1dz, cew

generates an image
hY(y) = [MOW)A] (), (1.8)

which is independent of the integration contour in W and belongs to
H,"(6_,0,;9),

MY (hY50.,0,;8) = 2m)*My(h; ;W) (8,<8<8.), (1.9)

and

1 s4i
h(z) = [WMS)RY](2) = 5= [ ThY(y)z7rdy (8, <8< 8).

C 2mi s i
(1.10)

(1) Vice versa, if a function h¥(y) € H,’(6_, 0.;S), then the func-
tion h(z) defined by (1.10) belongs to H)(8,, 8.; W), is independent of 8, and
(1.9), (1.8) hold.

Proof. (1) Let h(z) € H,(§,, &.; W). Due to point (i) of Lemma 1.10,
h(z) satisfies the conditions of [18, Theorem 31] and consequently % Y(y)
is independent of the integration contour, is holomorphic on S, and (1.10)
holds. Then the usual Mellin image <% )(y, 6) of a holomorphic function
h(z) with respect to p along a ray z = pe'? with a fixed angle 6 € (6_, 6,)
is represented in the form

(hY(y,0) = foooh( peie)p7—1 dp = e—iyth(,y)_
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Taking into account the Plancherel theorem (see, e.g., [18, point 3.17]), we
get

My"?(hY;6_,60,;6)= sup f WY (8 +i&)e)>de

0_<6<0,

sup f IKh)(8 + i€, 9)61(8+z§)e €2 dé

0_<0<0,

sup f Kn)(5+ £, 0" dé

0_<0<0,

27 sup f|h(p€’9)p5|p td

0_<0<0,

=20 M2(h; W; 8) < . (1.11)

Here M,(h; W; &) is uniformly bounded with respect to § on any segment
[85, 8.1 € (8, 8.) (see Remark 1.9).

(DN Let h¥e H,’(6_,6,;S). By virtue of point (i) of Lemma 1.13,
hY () satisfies the conditions of the second part of Theorem 31 in [18],
and, consequently, A4(z) is independent of & € (§,, 8,), is holomorphic on
W, and (1.8) holds. Repeating relationships (1.11) in the reverse order we
obtain (1.9). 1

Let us consider the boundary properties of functions from H,(8,, &,; W)
and prove that the Mellin transform in a complex variable acting on such
functions may be represented in terms of the Mellin transform in a real
variable acting on their boundary values.

1.16. LEMMA. Let W= W(6_, 6.). If h(z) € H)(§8,, 8.; W), then:
(i) the functions h*( p) = lim h( pe'’) exist for almost all
00,

p € (0,%) and belong to 22(60, d,),
lim [|2( pe'®) —h*(p); dll, =0 forany 6 € (8, 8.); and
00,

(i) [MOW)h](y) =exp(ivo ) [#h=](v), vES(8,8.).
(1.12)

Proof. Point (i) is a direct consequence of [3, Theorem 7.5] if we apply
it to the function A(z)z® From [3, Lemma 8.7] the proof of point (ii)
follows for almost all points y from each line Rey = § € (§,, 8,). But,
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according to Theorems 1.7, 1.15, the functions [(W)hl(y) and [.Zh*]1(y)
are holomorphic in S(§,, 8,) and, consequently, (1.12) is fulfilled every-
where on §(5,,8.). 1

Consider now functions from HP(SO, 8.; W) and their derivatives as
functions of two real variables and prove their (with a weight) membership
in the usual Lebesgue space LP(W).

1.17. LEMMA.  Let h € H (8, 8., W(6_, 6.,.)). Then:

() h(2)p® P e L,W6_,0,)), 6 < (8, 8.
(i) (60— 6_XNd/d2)h(2)p®*'~2/? € L (W(6_,0),

(60— 0,)(d/dz)h(z)p?*"2/7 € L (W(6',0,))
forany & € (8,,8,), 0’ € (0_,6.).
Proof.  For (i)

(207275 Ly (W0 0| = [[ In(z)p% /1l

=/’0+d0/m|h(pei9)p5|Pp—l dp
0_ 0

<(0,— 0_)MP(h; 8, W(6_,0,)) <.

Point (i) has been proved. Let W' := W(6_, §'). Point (ii) of Lemma 1.10
gives
V4

d
(0= 0.)h(2)p* 27 L (W)

d
= [[ 16 = 0_)—h(z)p* *~2/7|"|aw|
w dz

/ w| d
_ (% _ p s+1
fe_le 0_| [fo ‘dzh(Z)p

0 d /
< fe_le — al”Mg(th(z); 8, W(6,0 )) de

4

p ! dpl de

/ 1 717
sf:IG— 017|185 + —} M2 (h; 8;W(6_,6.,))do

r(6)
<[I81(6' —0_) +d]"M2(h; 8;W(0_,0,))(0' — 6_) <=
Here r(6) = min(6 — 6_,0,— 6'), d=sup, _,.,[(6 —06_)/r(0)] <

max[1,(6" — 6_)/(6,— 6")].
The second statement of point (ii) is proved analogously. 1
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1.18. LEMMA. Let h € Hp(éo, S W(6_,0,)). Let a function b(0) €
CY6_,0.1, b(0;)+# 0, and the following memberships take place for a
function h(z): z(d/dz)h(z) + b(6_ Ya(z) € H (89, 8., W(6_, 6"),
z(d /dz)h(z) + b(6, Yi(z) € H (89, 8., W(6',6.)), V 0 € (0_, 0,). Then
[2(d /d2)h(z) + b(§)h(2)] p®~ /r L,(W(6_,0.)) forany & € (8, 5,).

Proof. Let ' € (6_,6,). Then

4

ldW|

d ~
[zzh(z) + b(@)h(z)} p>

Iy
Lo

b(o) [ d
{b(O ) [z—h(z) + b(6_ )h(z)}

4

b(0) ] d 2
+|1 - b(a)}zzh(z)}p ldw |
b(0)
= Li%‘ief b(@)‘
d _
2-h(2) + b(a)h(z)}p“w; L,(W(6_, 9’))”
b(0) — b(6_)
TP e=e)b(6)

P

d
60— 0_)d—zh(z)p5+1_2/”;LP(W(G_,0’)) w, (1.13)

The norms in the last inequality are bounded by Lemma 1.17. The
expression [b(6) — b(6_)]/(6 — 6_) is bounded since b(8) € C'[6_, 0, ].
Writing the analogous estimates for the integral along W(6’,0,) and
adding it to (1.13), we obtain the statement desired. ||

1.19. Remark. For any R € (0, ) and for any infinite wedge W, we can
define the truncated finite wedge Wy;: {z € W, |z| < R} and the truncated
infinite wedge W._,: {z € W, |z| > R}. Then the claims of Lemmas 1.17 and
1.18 hold also on W, for any 6 > §,, and on W, for any & < 4..
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Really, let § > 8,, 0 < & < min(d — &y, 8, — ;). Then

|n(2)p? 27 L, (Wor) | = ffWORIh(z)p‘s’z/”lpldWI

:ff |h(z) pPote=2/p|Fp(d=d0=eIn|gpy |
WOR

S||h(z)pao+e—2/p; LP(WOR)”PR(afaO—s)p
< RO~ ||p(z) pre=2/p; L (W)|IP < o0

The other claims are proved analogously.

2. SOME CLASSES OF TWO VARIABLES AND THE
MELLIN TRANSFORM

In this part, we shall extend the results of the previous one to functions
depending additionally on one real parameter ¢.

Let —o <, <t, < and let J(¢,,t,) be either a segment [7,,1,] if
t, < o or a half-infinite interval [¢;,%) if ¢, = . Keeping in mind the
limitations on ¢,,¢,, we shall write often J instead of J(¢,,¢,) and J,
instead of J(¢;,%) = [#;,). Let L(J) be the space of measurable and
essentially bounded functions on J with the norm [[f|l, =
esssup, . ;1 f(1)] < o, B(J) be the space of measurable and bounded func-
tions on J with the norm || 1|5 == sup, . ;| ()] < %, and C(J) be the space
of the continuous and bounded functions on J with the norm | f|l¢ =
Iflls < o=.

Consider first a class of functions of two real variables and a class of
one-parametric_holomorphic functions in a strip, i.e., some classes which
are similar to L (8, 8,) and HIS(S).

2.1. DErFINITION.  Let a function g( p, ¢) be given almost everywhere on
(0,) x J and
1/p

g (. ); 8, = [/jg( p.)p? 1’1 dp

1) Lwip(ao, 8.; J) consists of functions g( p, 1) such that [|g; &; J1l -
= esssup,  ,11g(, 1); 8, < o for any & € (8§, &,).

@ Bip(ao, 8., J) consists of functions g( p, ¢) such that [|g; &; /|l 5
= sup, . ,11g(., 1); 8ll, <  for any & € (§,, 8,).

?3) Cip(60, d,; J) consists of functions g( p,1) B]:p(b‘o, 8.; J) such
that |lg(.,1) —g(,t + A1); 6l[, >0 as At — 0 for any r€J and any
5 e (8, 5,).
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22. Remark. Obviously, CL,(8,, 8.;J) € BL,(8, 8.;J) € L.L,
(8y, 6,; J). It follows from Lemma 1.3 that L, L (80, 8.5 ) C
L,L (8, 8.;J), BL,(8, 8. J) < BL(8,, 8, J), CL (50, 8., J) c
CL (83, 8,;J) prowded l1<g<p<oo. It follows from Lemma 1.2 that

llg; 8;JI15- <llg; 84; JNIbe + llg; 05 JlI5-e,
llg; 8;Tllns < llg; 8g; TN + llg; &.; Tlins (2.1)

for any & € [§;, 8.1 € (8,, 8,) and for p > 1. Consequently, the norms
llg; 8; Jll . and |[lg; &; Jll,5 are uniformly bounded with respect to & on
any internal segment of (5, 8,).

2.3. DEFINITION. Lt § = S(§,, 8,), a function ®(y,?) be given on
S X J, and

1/p

ME(D(..1); 5) = [[1@(6 +iE ) dé

(1) We write ® € L HO(S J) if ®(y,t) is holomorphic with respect
to ye€ S at almost any te] and if the quantity M°(<I> 5;J) =
ess suptE,MO(tb( t); 8) is uniformly bounded with respect to 6 on any
segment [50, &1 € (8, 8.

(2) We write ® € BH)(S;J) if ®(y,1) is holomorphic with respect
to ye S at any r<J and if the quantity M (D 8; J) =
sup, ¢ ;M (®(.,1); 6) is uniformly bounded with respect to & on any

segment [ 83, .1 < (g, 8,).

(3 We write ® € CHJ(S;J) if ® € BH)(S;J) and if MJ[®D(,1) —
®(,t + At); 8] » 0as At - 0 for any ¢ € J uniformly with respect to &
on any segment [ 83, 8.1 < (8, 8,).

24.Lemva. (D) If @ € L HX(S; ), then (3/3y)®(y,t) € L .H)(S;J)
and there is a number ]\Z?(CI); S’ J) < o such that

esssupl(D(y,t)l<]\7£(<D;S’;J) <o (yef) (2.2)
teJ

for any §' C .

2 Ifde BHPO(S; J), then (3/dy)P(vy,t) € QHPO(S; J) and there is
a number MY(®; 8'; J) such that sup, . ,|®(y, 1) < MU®; §';J) < o (y €
S") forany §' C S.

3 Ifde CHPO(S; J), then (9/dy)P(vy,t) € CHPO(S; J) and ®(v, 1)
is continuous in t uniformly with respect to y on any S’ C S.
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Proof. Let S = 5(8,8,). If ® € L,HX(S;J), then ®(,1) € H)(S) for
a.e. t € J. Hence the function ®(,t) € H(S") according to Remark 1.5
for any [8;, 8.1 € (8,, 8,) and S” := S[(§, + 8;)/2,(5, + 8.)/2]. Let S’
= 8(8;, &,). Then we obtain from Lemma 1.6 for a.e. t € J

1/p
|¢(%t)|$(%) M (D(.,1);8"), yes;

Mﬁ(%qp(%t); 5) < %M;(@(.,t);s”), de 8. 8] (23)

where r = min(8, — &, 8, — 8,)/2. Taking the essential supremum with
respect to ¢ of both sides of these inequalities we obtain point (1).

Point (2) is proved analogously. Applying inequalities (2.3) to the differ-
ence ®(y,t + At) — (v, t), we prove point (3). 1

Let us present an analogue of Theorem 1.7 for functions of two
variables.

2.5. THEOREM. Let 6_< 6,,8, < 8,,W =W(0_,6,),S = S(§,, 8.).

) ) If gp,t) € L,L(8,,8,;J), then its Mellin image (with
respect to p) {g)Xy,t) = (#g)y,t) belongs to L,HYS;J), g(p,t)=
[.2715{g ) p, ) at almost any t € J and at almost any p € (0,*), and

M2({g); 8;7) = (2m)%llg; 6; Tl (8, <8<38,). (24)

() If g € BLy(8,,8,;J), then {g) = (#g) € BHY(S;J), g(p,1)
= [.27185{g))( p,t) at any t € J and at almost any p € (0,*), and

MP({g); 8:7) = (2m)?llg; 8; Tl (8, < 8<8,). (25)

(3) Moreover, if g € CL,(8,, 8.;J), then (.#g) € CHI(S; J).

(D @) If a function {g)(y,t) € L,H)(S;J), then g(p,t) =
[.27 Y (S)Xg)(p,t) € L.L,8,,8,;J), equality (2.4) takes place, and
(gXy, 1) = (#g)y,t) at almost any t € J.

(2) If (g> € BHJ(S;]), then g = [.#~(S)Xg)l € BZZ(SO, o.; ),
equality (2.5) takes place, and {g)(vy,t) = (#g)y,t) forany t € J.
(3 Moreover, if (g) € CHJ(S;J), then [.# " (S)Xg)] e
CL (89, 8. ).

Proof. (1) (1) Let g(p,1) € L,L,(8,,8,;7). Then g(, 1) € L,(5,,5,)
for a.e. t €J and, according to Theorem 1.7, {g)(.,1) € H)(S) for ae.
t € J. Equality (2.4) follows from the Parseval equality (1.4). The uniform
boundedness of M, (®; §;J) with respect to § on any segment [, 8] C
(8,, 8,) follows from the right hand side of (2.4) and from estimate (2.1).
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Point (1) has been proved. Point (2) is proved analogously. Point (3) is
the consequence of the Parseval equality,

M3*({g) (1) = {g)(. t + At); 8)

— ff Kg)(8+ it 1) — (g)(8+ it 1+ d1)2 dé

= [ Kg(at) = g(t+ A0))(3+i6)P dé

=27llg(., 1) —g(.t + At); 813
<27lig(., 1) —g(.,t + At); 8;ll3
+27llg(.,t) —g(.t+Ar); 805 >0  as At — 0.

Part (I11) of the theorem is proved analogously by use of part (Il) of
Theorem 1.7 and the Parseval equalities. i

Consider now weighted Hardy type classes of one-parametric holomor-
phic functions in a strip or in a wedge, i.e., analogues of the classes
H, (8, 8,;W)and H,”(6_,6,;5).

2.6. DEFINITION. Let W= W(0_,0,), a function h(z,t) be given on
W xJ, and

1/p

M, (h(.1); 8;W) = sup [/O lh(pe.t)p°1’p ™" dp

0_<0<06,

(1) We write h € L(8,,8,;W;J) if h(z,¢t) is holomorphic with
respect to z € W at almost any ¢ € J and if

M, (h; 8, W;J) = esssupM,(h(.,t);8; W) <o (8, <8<38,).

tel

(2) We write h eBHp(ao, o, W; J) if h(z,t) is holomorphic with
respectto z € Watany t €J and if

M,y(h; 8; W5 J) = supM,(h(.,t);8; W) < (6, <6<8,).

teJ

(3) We write h € CHP((SO, S Wi J)if h e BHP(SO, S..W:;J) and if
M[(h(,t) — h(.,t + At); 8; W] — 0 as At — 0 for any ¢t € J and for any
5 e8¢, 8.1 (8, 8.,).
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2.7. Remark. Due to Lemma 1.2, the inequalities
M,(h; ;W T) <M, (h; 8g; Wi J) + M,.(h; 8. W; ),
M,p(h; ;Wi J) < M,g(h; 8o, W3 J) + M,p(h; 85 W; )

hold for any & € [8;, 6.] € (8, 8.), i.e., the quantities Mpw(h; S: Wi ),
M, z(h; 8; W; J) are uniformly bounded with respect to & on any segment
[85, 8.] € (8, 8,) when h € LWHP(SO, S.W:J)or h BHP(SO, S W ),
respectively. If h € CH (8, 8., W;J), then M (h(,t)—h(,t+At); 8; W)
— 0 uniformly with respect to & on any [§;, 8.1 € (§,, 8.) as At — 0.

2.8. LEMMA. (1) Suppose h € Lpr(SO, S Wi J); then for any W cw
and any segment [ 8y, 8.1 € (8,, 8,), there is a number M_(h; 8, 8., W'; J)
< o such that

esssuplh(z, )| < M(h; 8y, 8. W' DzI™%, (2,8} € W' x [8},8.];
te]
and z(8/9z)W(z, 1) € LmHP(50. S W' ).
(2)  Suppose h € BH, (8, 8,; W, J); then for any W' c W and any
[65, 8.1 € (8, 8,), there is a numer ]\ZB(h; 84, 8L W' J) < o such that

suplh(z,t)l s]\?B(h; 8y, 8L Wi )zl 2, {z,8} e W' X [8;,8.];

tel]

and z(8/9z)W(z,t) € BH (50, S W' D).

(3)  Suppose h € CH,(8,, 8., W', J) then for any W' C W and any
[65, 8.1 € (8, 8.), the functlon h(z,0)|z|° is continuous in t uniformly with
respect to {z, 8} € W' X [8}, 8.], and z(8/dz)h(z,t) € CH (50, S W' ).

Proof. (1) Using Lemma 1.10, we obtain for almost all t € J

2 \l/p
lh(z, 1) < (—) sup M, (h(.t); 8*;W)|z|_3,
mr Sh<8, <5,
{z,86} e W' X [§),8.],
1% 1
Mp(th(z,t); 8;W’) < (|8| + 7)Mp(h(.,t); 8, W),
se[68,8.]. (2.6)

Taking the essential supremum with respect to ¢, we get the proof of point
(1). Point (2) is proved analogously.
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Point (3) is obtained if we apply inequalities (2.6) to the difference
Wz, t + A)z? — h(z,0)z°. 1

2.9. DeFINITION. Let S = S(§,, 8,), a function ®(y,t) be given on
S X J, and

o 1/p
M) (®(.,t);6_,6,;8):= sup [f |D(8 + i, t)e " d¢
6_<6<g, L7 —=
(1) We write ® €L, H,(6_,6,;S;J) if ®(y,1) is holomorphic
with respect to vy € § at almost any ¢ € J and if the quantity

M, (®;60_,0,;,8,7) = esssjupMpV(<b(.,t); 6_,0,;8)
te

is uniformly bounded with respect to & on any [ 8, 6.1 € (8, 8.).

(2) We write ® € BH,"(6_,0.;S;J) if ®(y,1) is holomorphic with
respect to y € S at any ¢ € J and if the quantity M, (P;60_,6.;8;J) =
sup,  ; M, (d(.,1); 6_, 6.; 8) is uniformly bounded with respect to & on
any [ 8, 8.1 € (8, 8,).

(3) We write ® € CH,”(6_,6,;S;J)if ®< BH,(0_,6,;S;J)and
if M[®(, 1) — ®(,t+ At);0_,0,;8] > 0as At —> 0 for any t €J uni-
formly with respect to & on any [}, 8.] < (§,, 8.).

2.10. LEmMA. (1) Suppose @ eLprV(G,, 6+;S;1); then (9/3dy)® -

(y,0) e LOCHPV(O_, 0,;S;J) and there is a number Z\ZOV(CI); 6_,6,;8;J))
such that

esssup|P(y, 1)| < MY (®;6_, 6.8 7)le™,

telJ

{v.0) €8 x(6_,6.)

for any §' C .
(2) Suppose ® € BH,’(6_, 0,;S;J); then (3/dy)®(y, 1) €
BHPV(G,, 6,;S;J) and there is a number[\ZBv(CD; 6_,0,;S";J) such that

sup|®(y, 1)l < A?BV(QD; 0_,0,.;8;0)e™,  {y,0} X (6_,0,)

telJ
for any §' C .

(3) Suppose ® € CH,’(0_, 6,;S;J); then (3/dy)P(y, 1) €
CH,”(0_,0,;S;J) and ®(y,0)le™"| is continuous in t uniformly with
respect to {y, 0} € §' X (6_,0,) forany S’ CS.
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Proof. (1) Using Lemma 1.13, we obtain for a.e. t €J

2.\ ~
. . iyl
[Py, 1)l < (;) sup M, (®(.,1);0_,0,;8)le™],

Sp<5<sl

{y.0} €8 x(6_,6,), (2.7)

J
Mpv(&—ycb(y,t);e,(h; 6)

1
s(|0_|+|6+|+—) sup M, (8(.,t);6_,6,;8),

I sg<s<s

se 8 8]

Taking essential supremum with respect to ¢, we get the proof of point (1).
Point (2) is proved analogously.

Point (3) is obtained if we apply inequalities (2.7) to the difference
®(y, t + At)e " — d(y,t)e” . |

2.11. LemmA. (1) Let ® € L HJ(S;J). Suppose a function ®(y,1) is
holomorphic on S with respect to 'y at almost any t € J and there is a number
Z\ZOV((Dl; S": J) < o such that

esssup|® (v, 1)l sﬁmv(tl)l;S’;J)le”"l, {y,0} €8 x(6_,0,)

teJ

for an interval (6_, 6,) and for every S' C S. Then dd, € L.H,(6_,6.;
S; .
(2) Let ® € BH,(S;J). Suppose ®(y,1) is_holomorphic on S with

respect to vy for any t € J, and there is a number MBV(CDl; S’ J) < o such
that

sup|®,(y, 1)l < ﬁBV(®1;S/;J)|ei79|, {y, 0} €85 x(6_,0,)

teJ

for an interval (0_,0,) and for every §' C S. Then ®®, € BH,"(6_, 0.
S; .

(3 Let ® € CHJ(S;J). Suppose ®(y,t) satisfies the conditions of
point (2) and additionally ®,(y,t)e """ is continuous in t uniformly with

respect to {7y, 0} € S' X (0_,6,) for every S' C S. Then ®d, € CHPV(G_,
6,.S;7).
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Proof. (1) Let S = 8(5,, 8,.) and & €[, 8.1 c (8, 8.). Then
M) (®(.,t)Py(.,1);60_,06,;8)

o) 1/
= sup [f ICD(6+i§,t)(1>1(3+i§,t)e§9|pd§} ’

0_<0<0,
~ © 1/p
< MxV(CIDI;S’;J)[/ |D(8+ i, 1)lP dg}

MY (@458 T)MO(D(.,1); 8)

for almost any ¢ Consequently, M (®®,;60_,6,;6;]) < ]\Zv(fbl; S’
DM2(D; §;J) < o, where MJ(®; &;J) is uniformly bounded with re-
spect to & on any [8¢, 8.] € (8,, 8.) according to point (1) of Definition
2.3.

The proof of point (1) is complete. Point (2) is proved analogously. To
prove point (3),

M) [®(, ) Dy(, 1) — P(t + AL)Dy(.,t + Ar);6_,0,; 8]

sup [fil(l)(& +ié,t)

0_<0<0,

X[ D8+ i&,t) — D(8+i&, 1+ Ar)]e®
+®, (6 +ig,t+ At)

1/p

X[®(S+ié, t) —D(S+ié, t + At)]e) d¢

IA

sup sup |[@(S+ié,t) — DS+ i, 1+ Ar)]e?]

0_<0<h, —o<E<m

XM)(®(.,1);8)

My (D4 S TYMO[®(. 1) — D(.t + Ar); 8] — 0

and this tendency is uniform with respect to 6 € [8;, 8.1 as At = 0. |

Let us present an analogue of Theorem 1.15 for one-parametric holo-
morphic functions.

2.12. THEOREM. Let 6_< 6,,8, < 8, W =W(6_,6,),S = S(8,, 5.).
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(D) Q) Suppose h(z,t) € L. H,(8,, 8.; W; J); then its Mellin image
(with respect to z) h"(y,t) == [IW)h](vy, t) belongs to L, H, (6_,6,;S;
D), h(z,t) = [MSh "z, t) for almost any t € J, and

My (hY50.,0,;8;0) = (2m) "My (h; 8;W;T) (8, <8<8,).
(2.8)

(2) Suppose h € BH,X(§,, 8,; W; J); then h" € BH,(6_,0.;S;J),
h(z,t) =[Sz, t) forany t €J, and

Myp(hV;6_,6,;8,7) = (2m) " Mys(h; 8; W;J) (8, <8< 8.).
(2.9)

(3)  Moreover, if h € CH)(§,,8,;W;J), then h"< CH, (0_, 6,;
S; J).

(1) (1) Suppose a function h"(y,t) belongs to L,H, (6_,0.;S;J);
then h(z,t) == [MY(Sh N(z,t) belongs to L,.H,.8,,8,.;W;J), equality
(2.8) holds, and h" (v, t) = [INW)Ih](vy, t) for almost any t € J.

(2) Suppose h¥ e BH,'(6_, 0.;S;J); then h € BH,(8,, 8,; W; J),
equality (2.9) holds, and h™ (vy,t) = [I(W)h](y,t) foranyt € J.
(3)  Moreover, if hVe CH,’(0_,0,;S;J), then h € CH)X$,, 4.,
W, ).
Points (1) and (2) of parts (I) and (11) follow directly from Theorem 1.15
and Remark 2.7. Points (3) are proved as in the proof of Theorem 2.5.
Let us give an extension of Lemma 1.16 and state boundary properties
of functions from L_H,(8,, 8.; W;J), BH,(8,, 8., W; J), and
CH,(8,, 8,; W; J) and their relations with the Mellin transforms.

2.13. LEMMA. Let W= W(6_,6,).

1 Suppose Wz, 1) € L,H)X8,, 8., W;J); then the functions h*( p,t)
= lim,_, , h(pe'®,t) are defined for almost any p € (0,%) and for almost
anyt €J, h*(p,t) € L, L,(§,,8,;J), and

[M(W)R] (v, 1) = exp(iv ) [#h*](v,1) (2.10)

for y € 8(8,, 8,) and for almost any t € J.

(2)  Moreover, if h € BHX8,, 8,, W; J), then h*e BZZ(SO, 5.;J) and
(2.10) is satisfied for any t € J.

(3)  Moreover, if h € CH,(8,, 8,,W; J), then h*& CL,(8,, 8,;]).
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Proof. (1) The existence of 1*( p,t) at a.e. p and ¢ as well as equality
(2.10) is the direct consequence of Lemma 1.16. From Lemma 1.16 we also
have that lim,_ ,llh(pe'®,t) — h*(p,1);8l, =0 at ae. t<J. Conse-
quently I2=(Cp, 1); 8ll, = lim, _,, Ih(pe’, DI, and

lh=(p,t); 8l < sup lh(pe o), = My(h(.,t); 8;W). (2.11)
0_<0<0,
Taking the essential supremum of the last inequality with respect to ¢ € J,
we get [|h*; 8; Jllow < My (h; 8; W;J) < =, ie, h*(p,t) €
L.,L,(8,, 5. J).

Point (1) has been proved. Point (2) is proved analogously. To prove
point (3) we apply (2.11) to the difference h*(p,t) — h*(p,t + A¢) and
obtain

lh*(p,t) —h*(p,t + At); 8llp
< M,[h(..t) —h(.,t+At);8;,W] -0 asAt— 0.

All the function classes defined in this section can be used also for the
case J =J, = [t;,%0). Functions from these classes are then bounded at
t — o for (almost) all p, z, or vy, but they may have no limits at ¢ — o.
Consider also more narrow classes consisting of functions that tend to
harmonically oscillating ones, or, particularly, have finite limits as ¢ — o.
Both these classes are sufficiently important for applications, e.g., in
visco-elasticity.

2.14. DEFINITION. Let 6_< 0,6, < &, W =W(0_,0,),S = S(8,, 8,).

(1) We write g € Lw,L (84,6, J; Q) [or g e B,L (8, 8,; J..; Q), or
ge CZL (8, 6, J; Q) if g belongs to theAcorrespondlng classes without /
and Q and if there is a function g, € L, (8, 8,) such that g(p,t) -
ga(ple’®, e, ligCp, 1) — go(ple'®; &; [T, ), - 0 [lgCp, 1) —
ga(p)e'®;8;[T,»)|l,5 — 0las T — « for any & € (§,, &,).

(2) We write ® € L,,H(S; J.; Q) [or ® € BH(S; ].; Q), or ®

0(S J,; Q)] if @ belongs to the corresponding classes without / and Q
and f there is a function ®,, € HX(S) such that ®(y, 1) — Oy(y)e'™, ie.,
MY [D(y, 1) — Oy(y)e'®; 8;[T, @) - 0 [M[D(y, 1) — Dy(y)e'™; 8;
[T ©)] = 0] as T — o, uniformly with respect to & on any [§;, &,] € (8,
o).

(3) We write h € Lw,Hp(SO, S W, J..;Q) [or h e B,HP(SO, S W,
L:Q) or h e C,HP(BO, o, W; I; Q)] if h belongs to the corresponding
classes without / and () and if there is a function &, € H,(8,, 8.; W) such
that h(z,t) - ho(2)e', ie., M, Ah(z, 1) — ho(2)e'; 8, W, [T,»)] - 0.
[M,5lh(z,t - Q(z)e’“’ 8. WiIT,=)] - 0] as T — = for any 8 € (8, 8,).
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(4 We write e L,,H,(6_,0,;S;].,;Q) [or e BH_,0,;
S;J;Q),or®eCH v(49_, 0,;S;J.; Q)] if ® belongs to the correspond—
ing classes without / and Q and if there is a function o, € H,(6_,6,;5)
such that ®(y, 1) — ®g(y)e'™, ie, M [D(y,1) - d)n(y)eim; 6_,0.;8;
[T,0)] = 0 [M3[D(y, 1) — Do(y)e'®; 6_,6,;68;[T,»)] —0] as T — o,
uniformly with respect to & on any [8}, 8.1 < (5, &.).

2.15. Remark. Obviously, if 1 = 0, then we obtain the corresponding

classes consisting of functions that tend with respect to ¢ (in the sense of
Definition 2.14) to finite limits.

2.16. THEOREM. Theorems 2.5 and 2.12 hold if one provides all the
function classes in these theorems by the subscript | and the parameter
Q. Moreover, (#g)y,t) = (#gy)(y)e ™, [MW)Hhl(y,t) -
[IMW )R, (y)e? in the sense of Definition 2.14 as t — .

The proof is easy to carry out by use of the Parseval equalities (2.4), (2.5)
and (2.8), (2.10).

2.17. LEMMA. (1) Suppose ® € LWZHPO(S; L Q), a function ®(y,1)
meets the conditions of point (1) of Lemma 2.11, and there is a limit function
®,(y, ) such that

ess sup sup [le||D,(y,t) — ®y(y,%)]| >0, T - (2.12)

te[T,») {y,0}eS'x(6_,0,)

for any §' € S. Then OP, Lw,HV(()_, 0,;8;7.;Q) and O(y, )P (v, 1)

= O, (y)P,(y,®)e' in the sense ofpomt (4) of Definition 2.14 as t — .
(2)  Suppose ® € BHX(S; J.; Q) [or ® € C,H)(S; J; Q)], a func-

tion ®(y, t) meets the conditions of point (2) [and pomt (3)] of Lemma 2.11,

and there is a limit function ®,(y,®) such that

SUD; < (7,)SUPyy 0y §'x(0_, 6 )[|6i76| |Dy(y,t) — q)l(')"w)ﬂ 20, T -

for any §' € S. Then ®®, € B,H,"(6_,6,;S; L; Q) [0, € C;H,'(9_,
0.;8;J,; Q)] and dD(y,t)le(y,t) - @Q(y)d)l(y,OO)e’Q’ in the sense of
point (4) of Definition 2.14 as t — o,

Proof. (1) From (2.12) and the properties of ® (v, ), it is easy to see
that ®,(y, ) meets the conditions of Lemma 1.14 for ®,(y), and, conse-

quently, ®,(y)®(y, ) € H,"(6_, 6.;5). Letus fixany §' = (5,8 c §
and 86 € [8}, 8.]. Then

MY [®(y, )iy, 1) = D7) oy, 2) e 0, 0,3 8;[T,)]
= M{[®(y,1) = Po(y)e ™ ] Dy(y,1)

+ 0o () e[ @y, 1) — Py(y, )] 6,6, 5; [T, )}
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< MO[®(y, 1) — Do(y)e™; 8; [T, )| MY (D) 6_, 0,51,
+M1§’(<I>Q;6)

X ess sup sup [le™[|®,(y, 1) — ®y(y, )| =0
te[T,») {y,0}eS'x(6_,0,)

as T — » due to the first multiplier in the first summand and to the
second multiplier in the second summand. Moreover, this tendency is
uniform in y € §'. Point (1) has been proved. Point (2) is proved analo-
gously. 1

It is easy to see that all the definitions and the results given above are

valid also for n-dimensional vector functions. Then |.| denotes the vector
norm, and, in addition, the function ®, in Lemmas 1.14, 2.11, 2.17 can be
considered either as a scalar function or as a matrix funciton with an
appropriate norm.
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12.
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