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Abstract

A static mixed boundary value problem (BVP) of physically nonlinear elasticity for a continuously inhomogeneous body is considered. Using

the two-operator Green-Betti formula and the fundamental solution of an auxiliary linear operator, a non-standard boundary-domain integro-

differential formulation of the problem is presented, with respect to the displacements and their gradients. Using a cut-off function approach, the

corresponding localized parametrix is constructed to reduce the nonlinear BVP to a nonlinear localized boundary-domain integro-differential

equation. Algorithms of mesh-based and mesh-less discretizations are presented resulting in sparsely populated systems of nonlinear algebraic

equations.
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1. Introduction

Application of the boundary integral equation (BIE) method

(boundary element method, elastic potential method) to linear

elasticity problems for homogeneous bodies has been

intensively developed over recent decades. Using fundamental

solutions of auxiliary linear elastic problems (with the initial

elastic coefficients), the non-linearly elastic or elasto-plastic

problems for homogeneous material also can be reduced to

non-linear boundary-domain integral equations with hyper-

singular integrals, see e.g. [1–4]. However, the fundamental

solution is usually highly non-local, which leads after

discretization to a system of algebraic equations with a dense

matrix. Moreover, the fundamental solution is generally not

available in an explicit form if the coefficients of the auxiliary

problem vary in space, i.e. if the material is inhomogeneous

(functionally graded).

To prevent such difficulties, some parametrices localized by

cut-off function multiplication were constructed and

implemented in [5] for linear scalar (heat transfer) equation

in inhomogeneous medium. This reduced the linear Boundary

Value Problem (BVP) with variable coefficient to a linear
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Localized Boundary-Domain Integral or Integro-Differential

Equation (LBDIE or LBDIDE), which leaded after a mesh-

based or mesh-less discretization to a linear algebraic system

with a sparse matrix. Some numerical implementations of the

linear LBDIE were presented in [6,7], while slightly different

LBDI(D)Es were employed in [8,9].

Another approach based on local parametrices that are

Green functions for an auxiliary problem on local spherical

domains, was used in [10,11,12] to reduce some linear and

nonlinear scalar problems with variable coefficients, and in

[13] a linear elasticity problem for a body with a special

inhomogeneity, to a local boundary-domain integral equations.

Note also that the Green function of the plane Laplace equation

was used in [14] as a parametrix for the axially symmetric

problem of heat transfer with variable coefficients.

Extending approach of [5], the mixed BVP for a second

order scalar nonlinear (quasi-linear) elliptic PDE with the

variable coefficient dependent on the unknown solution was

reduced in [15,17] to quasi-linear LBDIDEs. When the

variable coefficient depends also on the BVP solution gradient,

some quasi-linear two-operator LBDIDEs were obtained in

[16,17].

In this paper, we extend the approach of [5,16,17] to the

mixed BVP for the system of quasi-linear partial differential

equations of physically nonlinear elasticity (with small

deformation gradients) for continuously inhomogeneous

body. First, we reduce the BVP to a direct two-operator
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nonlinear BDIDE of the second kind. The equation includes at

most first derivatives of the unknown solution, weakly singular

integrals over the domain and at most Cauchy-type singular

integrals over the boundary. Then we present a localized

version of the BDIDE and describe its mesh-based and mesh-

less discretizations. A short description of the method was

presented in [18], while its formulation for inhomogeneous

elastoplasticity was given in [19].

2. Nonlinear elasticity problem, two-operator

Green-Betti identity and BDIDE

Let us consider an inhomogeneous material, occupying an

n-dimensional domain U2R
n, where nZ2 or 3. Its physically-

nonlinear elastic constitutive relations (presuming small

displacement gradients) can be written in the form

sijðVuðxÞ; uðxÞ; xÞ Z aijklðVuðxÞ; uðxÞ; xÞ
vukðxÞ

vxl

; (1)

where sZsij is the stress tensor, u(x)Zui(x) is the

displacement vector; the tensor aZaijkl(Vu,u,x) is a known

function of u(x) and of its gradient Vu(x)Zui,j. The comma in

front of a superscript means derivative in the corresponding

coordinate, and summation in repeated indices is supposed

from 1 to n unless stated otherwise. The dependence of a and s

on the displacement u (in addition to the dependence on Vu) is

left here for generality.

Note that a dependence sijZsij(Vu(x),u(x),x), such that

sij(0,u(x),x)Z0 can always be presented in form (1), since the

mean value theorem implies,

sijðVuðxÞ; uðxÞ; xÞ Z
vsijðg; uðxÞ; xÞ

vgkl

uk;lðxÞ; where g Z tVuðxÞ

for some t in the segment [0,1].

Substituting (1) in the equilibrium equations

vsijðVuðxÞ; xÞ

vxj

Z fiðxÞ; i Z 1;.; n;

and taking into account boundary conditions, we arrive at the

following mixed boundary-value problem of physically non-

linear elasticity in a bounded domain U for the unknown

displacement vector u,

½LikðuÞuk�ðxÞ :Z
v

vxj

aijklðVuðxÞ;uðxÞ;xÞ
vukðxÞ

vxl

� �
Z fiðxÞ;x2U;

ð2Þ

uiðxÞZ �uiðxÞ;x2vDU; (3)

½TikðuÞuk�ðxÞ :ZaijklðVuðxÞ;uðxÞ;xÞ
vukðxÞ

vxl

njðxÞZ �tiðxÞ;

x2vNU:
(4)

Here aijklZajiklZaijlkZaklij; fi(x) is a known volume force

vector (taken with the opposite sign); ni(x) is an outward

normal vector to the boundary vU; [T(u)u](x)Z[Tik(u)uk](x) is
the traction vector at a boundary point x, while T(u)ZTik(u) is

the traction differential operator; �uðxÞ and �tðxÞ are known

displacements and tractions on the parts vDU and vNU of the

boundary, respectively.

Let us fix a point y and consider the following auxiliary

differential operators of the linear elasticity with constant

(frozen) coefficients,

½L
ðyÞ
ik ðuÞvk�ðxÞ :Z

v

vxj

aijklðVuðyÞ; uðyÞ; yÞ
vvkðxÞ

vxl

� �
; (5)

½T
ðyÞ
ik ðuÞvk�ðxÞ :Z aijklðVuðyÞ; uðyÞ; yÞ

vvkðxÞ

vxl

njðxÞ: (6)

Integrating by parts, we have the first Green identities for the

differential operators

[L(u)u](x)Z[Lik(u)uk](x) and ½LðyÞðuÞv�ðxÞZ ½L
ðyÞ
ik ðuÞvk�ðxÞ,Ð

U viðxÞ½LikðuÞuk�ðxÞdUðxÞ

Z
Ð

vU viðxÞ½TikðuÞuk�ðxÞdGðxÞ

K
Ð

U

vviðxÞ

vxj

aijklðVuðxÞ; uðxÞ; xÞ
vukðxÞ

vxl

dUðxÞ;

Ð
U uiðxÞ½L

ðyÞ
ik ðuÞvk�ðxÞdUðxÞ Z

Ð
vU uiðxÞ½T

ðyÞ
ik ðuÞvk�ðxÞdGðxÞ

K
Ð

U

vuiðxÞ

vxj

aijklðVuðyÞ; uðyÞ; yÞ
vvkðxÞ

vxl

dUðxÞ;

where u(x) and v(x) are arbitrary vector-functions for that the

operators and integrals in the above expressions have sense.

Subtracting the identities from each other and taking into

account the symmetry of the tensor aijkl, we derive the two-

operator second Green-Betti identity,

ð
U

fuðxÞ½LðyÞðuÞv�ðxÞKvðxÞ½LðuÞu�ðxÞgdUðxÞ

Z

ð
vU

fuðxÞ½T ðyÞðuÞv�ðxÞKvðxÞ½TðuÞu�ðxÞgdGðxÞ

C

ð
U

½VvðxÞ� ~aðu; x; yÞVuðxÞdUðxÞ; (7)

~aðu;x;yÞZ~aijklðu;x;yÞ:Z½aijklðVuðxÞ;uðxÞ;xÞKaijklðVuðyÞ;uðyÞ;yÞ�:

ð8Þ

Note that if L(u)ZL(y)(u), i.e. L(u) is a linear operator with

constant coefficients, then the last domain integral disappears

in Eq. (7), which thus degenerates into the classical second

Green-Betti identity.

For a fixed u and y, let FðyÞðu; x; yÞZF
ðyÞ
kmðuðyÞ;VuðyÞ; x; yÞ

F(y)(u;x,y) be a fundamental solution for the linear differential

operator ½L
ðyÞ
ik ðuÞvk�ðxÞ with constant (with respect to x)
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coefficients, i.e.
½L
ðyÞ
ik ðuÞF

ðyÞ
kmðu; $; yÞ�ðxÞ :Z

aijklðVuðyÞ; uðyÞ; yÞ
v2F

ðyÞ
kmðuðyÞ;VuðyÞx; yÞ

vxjvxl

Z dimdðxKyÞ;
where dim is the Kronecker symbol and d(xKy) is the Dirac

delta-function. Note that generally F(y)(u, x, y) is not a

parametrix for the original operator L(u) if the tensor a depends

on Vu.

If the material is isotropic, then
aijklðVuðyÞ; uðyÞ; yÞ Z lðVuðyÞ; uðyÞ; yÞdijdkl

CmðVuðyÞ; uðyÞ; yÞðdikdjl CdildjkÞ;

mðVuðyÞ; uðyÞ; yÞOCO0;

lðVuðyÞ; uðyÞ; yÞC
2

3
mðVuðyÞ; uðyÞyÞOCO0:

(9)
In this case, F
ðyÞ
im ðu; x; yÞ is the Kelvin–Somigliana solution,
F
ðyÞ
im ðu; x; yÞ Z

K1

4p

Kdim ln rKr;ir;m

lðVuðyÞ; uðyÞ; yÞC2mðVuðyÞ; uðyÞ; yÞ

�

C
Kdim ln r Cr;ir;m

mðVuðyÞ; uðyÞ; yÞ

�
(10)
for the plane strain state; for the plane stress, l in (9) and (10)

should be replaced by l�Z2lm=ðlC2mÞ. In the 3D case,
F
ðyÞ
im ðu; x; yÞ Z

K1

8pr

dimKr;ir;m

lðVuðyÞ; uðyÞ; yÞC2mðVuðyÞ; uðyÞ; yÞ

�

C
dim Cr;ir;m

mðVuðyÞ; uðyÞ; yÞ

�
(11)
Here r :Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi KyiÞðxi KyiÞ

p
, r;i :Zvr=vxiZ ðxiKyiÞ=r. For ani-

sotropic material, the fundamental solution can be written down

in an analytical form for arbitrary anisotropy in the 2D case and

for some particular anisotropy in the 3D case; otherwise, it can be

expressed as a linear integral over a circle [20–22].

Assuming u(x) is a solution of nonlinear system (2) and

using the fundamental solution F(y)(u; x, y) as v(x) in the Green

identity (7) similar to the linear case, c.f. [23,5], we obtain the
following non-linear two-operator third Green identity,

cðyÞuðyÞK

ð
vU

uðxÞ½T ðyÞFðyÞðu; $; yÞ�ðxÞdGðxÞ

C

ð
vU

FðyÞðu; x; yÞ½TðuÞu�ðxÞdGðxÞ

K

ð
U

½VðxÞFðyÞðu; x; yÞ� ~aðu; x; yÞVuðxÞdUðxÞ

Z

ð
U

FðyÞðu; x; yÞf ðxÞdUðxÞ; (12)

where c is a tensor, cij, such that cim(y)Zdim if y2U; cim(y)Z0

if y; �U; cim(y)Z(1/2)dim if y is a smooth point of the boundary

vU; and cim(y)Zcim(a(y), a(y)) is a function of the anisotropy

tensor a(y) and the interior space angle a(y) at a corner point y

of the boundary vU.

Substituting boundary conditions (3), (4) into Eq. (12) and

using it at y2 �U, we arrive at a (united) nonlinear two-operator

BDIDE for u(x) at x2 �U

cðyÞuðyÞK

ð
vN U

uðxÞ½T ðyÞðuÞFðyÞðu; $; yÞ�ðxÞdGðxÞ

C

ð
vDU

FðyÞðu; x; yÞ½TðuÞu�ðxÞdGðxÞ

K

ð
U

½VðxÞFðyÞðu; x; yÞ� ~aðu; x; yÞVuðxÞdUðxÞ Z FðyÞ; y2 �U;

(13)

FðyÞ :Z

ð
vDU

�u ðxÞ½T
ðyÞðuÞFðyÞðu; ,; yÞ�ðxÞdGðxÞ

K

ð
vN U

FðyÞðu; x; yÞ�t ðxÞdGðxÞ

C

ð
U

FðyÞðu; x; yÞf ðxÞdUðxÞ:

BDIDE (13) is the second kind equation, which includes at

most the first derivatives of the unknown solution u(x), both

directly in the domain integral term in the left hand side and

through the coefficient a(Vu, u, $) in the operators T(u), T(y)(u)

and the functions F(y)(u; x, y) and ã(u; x, y). The function

[V(x)F(y)(u; x, y)] is at most weakly singular in U, and taking

into account that ã(u; x, y)/0 as x/y, we obtain that the

domain integral is a smoothing operator with respect to u, for

(sufficiently) smooth functions a and u. The boundary integrals

have at most the Cauchy-type singularity.

Some other (e.g. segregated) BDIDEs can be obtained if one

substitutes ŭ(x) for u(x) also in the out-of-integral term of (13)

at y2vDU, considers the unknown boundary displacements u

on vNU and/or tractions T(u)u on vDU as new variables
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formally segregated from u in U, or applies the boundary

traction operator to (13).

BDIDE (13) can be reduced after some discretization to

a system of nonlinear algebraic equations and solved

numerically. The system will include unknowns not only

on the boundary but also at internal points. Moreover, since

the fundamental solutions, cf. (10), (11), are highly non-

local, the matrix of the system will be fully populated and

this makes its numerical solution more expensive. To avoid

this difficulty, we present below some ideas of constructing

localized parametrices and consequently Localized BDIDEs

(LBDIDEs).

3. Localized parametrix and LBDIDE

Let c(x,y) be a cut-off function, such that c(y,y)Z1 and c(x,

y)Z0 at x not belonging to closure of an open localization

domain u(y) (a vicinity of y), see Fig. 1, and let

P
ðyÞ
u ðu; x; yÞZcðx; yÞFðyÞðu; x; yÞ. The simplest example is

cðx;yÞZ
1; x2 �u

0; x; �u
0PðyÞ

u ðu;x;yÞZ
FðyÞðu;x;yÞ; x2 �uðyÞ

0; x; �uðyÞ
:

((

(14)

Other examples of the cut-off functions having different

smoothness are presented in [5,6,17] for some shapes of u.
Ω

Ω∂N

Ω∂D

y1•

• ω(y2)

•y3

ω(y3)

ω(y1)

y2

•
y4

ω(y4)

Fig. 1. Body U with localization domains u(yi).
Then P
ðyÞ
u ðu; x; yÞ is a localized parametrix of the linear

operator L(y), i.e.

L
ðyÞ
ik ðuÞP

ðyÞ
kmuðu; x; yÞ Z dimdðxKyÞCR

ðyÞ
imuðu; x; yÞ;

where the remainder

R
ðyÞ
imu ZKL

ðyÞ
ik ðð1KcÞF

ðyÞ
kmÞ

ZaijklðVuðyÞ;uðyÞ;yÞ F
ðyÞ
km

v2c

vxjvxl

C
vF

ðyÞ
km

vxj

vc

vxl

C
vF

ðyÞ
km

vxl

vc

vxj

" #

is at most weakly singular at xZy, at least if c is smooth

enough on �uðyÞ. The parametrix P
ðyÞ
u ðu;x;yÞ has the same

singularity as F(y)(x,y) at xZy. Both P
ðyÞ
u ðu;x;yÞ and R

ðyÞ
u ðu;x;yÞ

are localized (non-zero) only on �uðyÞ.
Suppose c(x,y) is smooth in x2 �uðyÞ but not necessarily

zero at x2vu(y). Then P
ðyÞ
u ðu; x; yÞ is a discontinuous localized
parametrix at x2R
n and P

ðyÞ
u ðu; x; yÞZR

ðyÞ
u ðu; x; yÞZ0 if

x; �uðyÞ. Substituting P
ðyÞ
u ðu; x; yÞ for v(x) in Eq. (7) and

replacing U by the intersection u(y)hU, we arrive at

the localized parametrix-based two-operator third Green

identity on �uðyÞh �U,

cuðyÞuðyÞK

ð
�uðyÞhvU

�
uðxÞ½T ðyÞðuÞPðyÞ

u ðu; $; yÞ�ðxÞ

KPðyÞ
u ðu; x; yÞ½TðuÞu�ðxÞ

�
dGðxÞ

K

ð
UhvuðyÞ

�
uðxÞ½T ðyÞðuÞPðyÞ

u ðu; $; yÞ�ðxÞ

KPðyÞ
u ðu; x; yÞ½TðuÞu�ðxÞ

�
dGðxÞ

K

ð
uðyÞhU

½VðxÞPðyÞ
u ðu; x; yÞ� ~aðu; x; yÞVuðxÞdUðxÞ

C

ð
uðyÞhU

RðyÞ
u ðu; x; yÞuðxÞdUðxÞ

Z

ð
uðyÞhU

PðyÞ
u ðu; x; yÞf ðxÞdUðxÞ: ð15Þ

The last integral in the left hand side of (15) disappears if c(x,

y) is given by (14). If the point y is situated inside the

localization domain u(y) or on the intersection of the local and

global boundaries, vu(y)hU, the coefficient cu(y) in (15) is the

same as c(y) in Eq. (12). However, if y is situated inside the

global domain U but on the boundary of localization domain

u(y), then cuim(y)Z(1/2)dim if y is a smooth point of the

boundary vu; and cuim(y)Zcuim(a(y), au(y)) is a function of

the anisotropy tensor a(y) and the interior space angle au(y) at a

corner point y of the boundary vu.

Substituting boundary conditions (3) and (4) into the

integral terms of Eq. (15) and employing it at y2 �U, we arrive

at the united formulation of nonlinear two-operator localized

boundary-domain integro-differential equation (LBDIDE) of

the second kind, for u(x), x2 �U,

cuðyÞuðyÞK

ð
�uðyÞhvN U

uðxÞ½T ðyÞðuÞPðyÞ
u ðu; $; yÞ�ðxÞdGðxÞ

C

ð
�uðyÞhvDU

PðyÞ
u ðu; x; yÞ½TðuÞu�ÞðxÞdGðxÞ

K

ð
UhvuðyÞ

fuðxÞ½T ðyÞðuÞPðyÞ
u ðu; $; yÞ�ðxÞ

KPðyÞ
u ðu; x; yÞ½TðuÞu�ðxÞgdGðxÞ

K

ð
uðyÞhU

f½VðxÞPðyÞ
u ðu; x; yÞ� ~aðu; x; yÞVuðxÞ

KRðyÞ
u ðu; x; yÞuðxÞgdUðxÞ Z Fuðu; yÞ; y2 �U;

(16)
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Fuðu; yÞ :Z

ð
�uðyÞhvDU

�u ðxÞ½T
ðyÞðuÞPðyÞ

u ðu; $; yÞ�ðxÞdGðxÞ

K

ð
�uðyÞhvN U

PðyÞ
u ðu; x; yÞ�t ðxÞdGðxÞ

C

ð
uðyÞhU

PðyÞ
u ðu; x; yÞf ðxÞdUðxÞ: (17)

If a cut-off function c(x,y) vanishes at x2vu(y) with vanishing

normal derivatives, then the integral along Uhvu(y) dis-

appears in Eq. (16).
4. Discretization of nonlinear two-operator LBDIE

To reduce quasi-linear LBDIDE (16) to a sparsely populated

system of quasi-linear algebraic equations e.g. by the collocation

method, one has to employ a local interpolation or approximation

formula for the unknown function u(x), for example associated

with a mesh-based or mesh-less discretization.
4.1. Mesh-based discretization

Suppose the domain U is covered by a mesh of closures of

disjoint domain elements ek with nodes set up at the corners,

edges, faces, or inside the elements. Let J be the total number

of nodes xi(iZ1,2,.,J). One can use each node xi as a

collocation point for the LBDIDE with a localization domain

u(xi). Let the part of u(xi) covered by an element ek is denoted

by uikZu(xi)hek.

Let the union of closures of the domain elements that

intersect with u(xi) be called the total localization domain ~ui,

Fig. 2. Evidently the closure ~uðxiÞh �U belongs to ~ui. If u(xi) is

sufficiently small, then ~ui consists only of the elements

adjacent to the collocation point xi. If u(xi) is ab initio chosen

as consisting only of the elements adjacent to the collocation

point xi, then ~ui Z �uðxiÞ. Let uf ~uig be the array of the function

values u(xj) at the node points xj 2 ~ui and J ~ui be the number of

those node points.
Ω∂

ω∂

ω~∂
x i

x i

 i

Fig. 2. Localization domain u(xi) and a total localization domain �ui associated

with a collocation point xi of a body U for mesh-based discretizations.
Let

uðxÞ Z
X

j

uðxiÞfkjðxÞ
be a continuous piece-wise smooth interpolation of u(x) at any

point x2U along the values u(xj) at the node points xj

belonging to the same element �ek 3U as x, and the shape

functions fkj(x) be localized on �ek. Collecting the interpolation

formulae, we have for any x2 ~ui,
uðxÞ Z
X
xj2~ui

uðxjÞFjðxÞ; FjðxÞ Z
fkjðxÞ if x; xj 2 �ek

0 otherwise

(

(18)
VuðxÞ Z
X
xj2~ui

uðxjÞVFjðxÞ;

VFjðxÞ Z
VfkjðxÞ if x; xj 2 �ek

0 otherwise
:

( (19)
Consequently, Fj(x)ZVFj(x)Z0 if x2 ~ui but xj ; ~ui.

Since interpolation (18) is piece-wise smooth, expressions

(19) deliver different values for Vu(x) on the element interfaces

and particularly at apexes xi of different adjoint elements ek.

For LBDIDE (16), one has to estimate Vu(y) to calculate the

coefficient a(Vu(y), u(y), y) and, consequently T(y)(u), P(y)(u; x,

y) and R(y)(u; x, y) at yZxi. For this reason, one cannot directly

substitute interpolation (18) and (19) in LBDIDE (16) and

employ the equation at the collocation points.

To circumvent this, let us consider LBDIDE (16) at a

collocation point xi not over the whole localization domain

u(xi) but over its pieces uikZu(xi)hek, substitute interp-

olation (18) and (19), and then sum up the LBDIDEs for all k

with non-empty uik. The procedure is similar to the one for

piece-wise smooth localization considered in [5, Section 3.3].

The resulting out-of-integral coefficient cuðx
iÞZ

P
cuik ðxiÞZ

cðxiÞ will correspond to the position of xi in the whole

localization domain u(xi) (or, the same, in U) but a(Vu(xi),

u(xi), xi) and, consequently ~aðu; x; xiÞT ðxiÞðuÞ, PðxiÞðu; x; yÞ and

RðxiÞðu; x; yÞ will depend on the integration element ek and will

be denoted by ak(Vu(xi), u(xi), xi), ~akðu; x; xiÞ, Tik(u), Pik(u; x, y)

and Rik(u; x, y), respectively.

Then we arrive at the following system of J!n quasi-linear

algebraic equations for J!n unknowns um(xj), xj 2 �U, mZ1,

.,n,
cðxiÞuðxiÞC
X
xj2~ui

Kijðuf ~u
igÞuðxjÞ Z Fuðuf ~u

ig; xiÞ;

xi 2 �U; no sum in i:

(20)
For fixed indices i, j, the n!n tensor Kijðuf ~u
igÞ is



Þ

Ω∂

ω~∂

ω∂ xi

i

xi

ω0 x  

Fig. 3. Localization domain u(xi) and a total localization domain ~ui associated

with a collocation point xi of a body U for mesh-less discretizations.
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Kijðuf ~u
igÞZ

X
k:uiksf

K

ð
�uikhvN U

fkjðxÞ½T
ðxiÞðuf ~uigÞPðxiÞ

u ðuf ~uig;$;xiÞ�ðxÞdGðxÞ

2
64

C

ð
�uikhvDU

PðxiÞ
u ðuf ~uig;x;xiÞ½Tðuf ~uigÞfkj�ðxÞdGðxÞ

K

ð
Uhvuik

fkjðxÞ½T
ðxiÞðuf ~uigÞPðxiÞ

u ðuf ~uig;,;xiÞ�ðxÞdGðxÞ

C

ð
Uhvuik

PðxiÞ
u ðuf ~uig;x;xiÞ½Tðuf ~uigÞfkj�ðxÞdGðxÞ

K

ð
uikhU

VðxÞPðxiÞ
u ðuf ~uig;x;xiÞ� ~aðuf ~uig;x;xiÞVfkjðxÞdUðx

C

ð
uikhU

RðxiÞ
u ðuf ~uig;x;xiÞfkjðxÞdUðxÞ

3
75; ð21Þ

no sum in i. It is taken into account here that the domains uik

and U are open (do not include their boundaries vuik and vU).

The approximate traction operators Tðuf ~uigÞ and Tikðuf ~uigÞ, the

localized parametrix Pik
u ðuf ~u

ig;x;xiÞ and the localized remain-

der Rik
u ðuf ~u

ig;x;xiÞ in (21) are expressed in terms of the set of

unknowns uf ~uig :ZfuðxjÞ;xj2 ~uig. The expressions are

obtained after substituting interpolation formulae (18) and

(19) for u in the coefficient a(u; $) in the definitions for T(u),

T ðxiÞðuÞ, P
ðyÞ
u ðu;x;yÞ and R

ðyÞ
u ðu;x;yÞ. The normal vector nj(x) for

the operators T(u), T ðxiÞðuÞ in the boundary integrals is taken

outward to the corresponding domains, while for a its limiting

values are taken from inside of the domains. Integration is

taken twice over the interfaces Uhvuik between the adjoined

domains uik. The right hand side components Fuðuf ~u
ig;xiÞ in

(20) are obtained after similar employing interpolation

formulae (18) and (19) for u in (17).

Note that the term with Rik
u disappears in the last integral of

(21) if the parametrix Pik
u ðx; x

iÞ is given by (14). On the other

hand, if the cut-off function c(x, xi) and its normal derivative

are equal zero at x on the boundary vu(xi), then the the third

and fourth integrals along Uhvu(xi) disappear in (21).

4.2. Mesh-less discretization

For a mesh-less discretization, one needs a method of local

interpolation or approximation of a function along randomly

distributed nodes xi. We will suppose all the approximation

nodes xi belong to �U and will use them also as collocation

points for the LBDIDEs discretization. Let, as before, J be the

total number of nodes xj(iZ1,2,.,J). Let us consider a mesh-

less method, for example, the moving least squares (MLS) (see

e.g. [24]), that leads to the following approximation of a

function u(x)

uðxÞ Z
X

xj2u0ðxÞ

û ðxjÞFjðxÞ; x2U: (22)
Here Fj(x) are known smooth shape functions such that Fj(x)Z
0 if xj;u0, u0(x) is a localization domain of the approximation

formula, and û ðxjÞ are unknown values of an auxiliary function

ûðxÞ at the nodes xj, that is, the so-called d-property is not

assumed for approximation (22).

Let u(xi) be a localization domain around a node xi. Then

for any x2 �uðxiÞ, the total approximation of u(x) can be written

in the following local form,

uðxÞ Z
X
xj2~ui

ûðxjÞFjðxÞ; VuðxÞ Z
X
xj2~ui

û ðxjÞVFjðxÞ; x2 �uðxiÞ;

(23)

where ~ui :Zgx2�uðxiÞh �Uu0ðxÞ is a total localization domain,

Fig. 3. Consequently, Fj(x)ZVFj(x)Z0 if x2 �uðxiÞ and

xj ; ~ui. Let J ~ui be the number of nodes xj 2 ~ui and ûf ~uig be

the array of the function values ûðxjÞ at the node points xj 2 ~ui.

Since our approximation (23) for u is smooth, its gradient

approximation Vu(x) is continuous, and can be directly applied

in LBDIDE (16), unlike the mesh-based discretization.

After substitution of approximation (23) in LBDIDE (16),

we arrive at the following system of quasi-linear system of J!
n algebraic equations with respect to J!n unknowns ûmðx

jÞ,

xj 2 �U, mZ1,.,n,X
xj2~ui

½cðxiÞFjðx
iÞC K̂ijðûf ~u

igÞ�ûðxjÞ Z Fuðûf ~u
ig; xiÞ;

xi 2 �U; no sum in i:

(24)

For any i, j, the n!n tensor K̂ij in (24) is

K̂ijðûf ~u
igÞZ

K
Ð

�uðxiÞhvN U

FjðxÞ½T
ðxiÞðûf ~uigÞPðxiÞ

u ðûf ~uig;,;xiÞ�ðxÞdGðxÞ

C
Ð

�uðxiÞhvDU

PðxiÞ
u ðûf ~uig;x;xiÞ½Tðûf ~uigÞFj�ðxÞdGðxÞ

K
Ð

UhvuðxiÞ

FjðxÞ½T
ðxiÞðûf ~uigÞPðxiÞ

u ðûf ~uig;,;xiÞ�ðxÞdGðxÞ

C
Ð

Uhvuðx
iÞ

PðxiÞ
u ðûf ~uig;x;xiÞ½Tðûf ~uigÞFj�ðxÞdGðxÞ

K
Ð

uðxiÞhU

½VðxÞPðxiÞ
u ðûf ~uig;x;xiÞ� ~aðûf ~uig;x;xiÞVFjðxÞdUðxÞ

C
Ð

uðxiÞhU

RðxiÞ
u ðûf ~uig;x;xiÞFjðxÞdUðxÞ;

(25)

with the shape functions Fj from (23). Expressions for Tðûf ~uigÞ,

Puðûf ~u
ig;x;xiÞ and Ruðûf ~u

ig;x;xiÞ in terms of the set of

unknowns û f ~uig :ZfûðxjÞ;xj 2 ~uig are obtained after substitut-

ing interpolation formulae (23) for u in the coefficient a(u; $) in
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the definitions for T(u), Pu(u; x, y) and Ru(u; x, y). The right hand

side components Fuðûf ~u
ig;xiÞ are obtained after similar

employing interpolation formulae (23), for u in (17).
5. Concluding remarks

The parametrix localization by multiplication by a cut-off

function with a local support allows to reduce a BVP of the

non-linear elasticity to a two-operator direct localized quasi-

linear boundary-domain integro-differential equation of the

second kind. The equation includes at most the first derivative

of the unknown solution, weakly singular integrals over the

domain, and at most Cauchy-type singular integrals over the

boundary. The second kind structure of the nonlinear LBDIDE

and of the corresponding mesh-based discrete system look very

promising for constructing simple and fast converging iteration

algorithms.

From the definitions in both mesh based and mesh-less

discretization methods, we have fkj(x)ZVfkj(x)ZFj(x)Z
VFj(x)Z[T(u)fkj](x)Z[T(y)(u)fkj](x)Z[T(u)Fj](x)Z[T(y)(u)

Fj(x)]Z0 if x2 �uðxiÞ but xj ; ~ui. Consequently KijZ0 and

K̂ijZ0 if xj ; ~ui, and moreover, Kij and K̂ij depend only on

uf ~uig or ûf ~uig, respectively. Thus, each equation in (20) and

(24) has not more than J ~ui !n/J !n non-zero entries, i.e.

the systems are sparse. The number J ~ui !n of non-zero entries

is practically independent of the mesh refinement but depends

on the domain element types in the mesh-based discretization.

The similar effect takes place also in the mesh-less

discretization if the global localization domain ~uðxiÞ shrinks

with the refinement of the nodes distribution.

Deriving two-operator BDIDE (13), we employed the

auxiliary linear constant-coefficient operators L(y) and T(y),

given by (5) and (6) in terms of the secant ‘frozen’ elastic

tensor aijkl(Vu(y), u(y), y). Another possible option would be to

use for this purpose the initial linear constant-coefficient

operators L(0y) and T(0y) associated with the initial ‘frozen’

elastic tensor aijkl(0, 0, y). The resulting BDIDE would then be

given by the same Eq. (13) after replacing there aijkl(Vu(y),

u(y), y) by aijkl(0, 0, y) everywhere, including the operators L(y)

and T(y), and fundamental solution F(y). The localization and

discretization procedures described for the secant-coefficient

LBDIDE will be equally applicable also to this initial-

coefficient LBDIDE. However, the difference tensor ~a0
ijklðu; x;

yÞ :Z½aijklðVuðxÞ; uðxÞ; xÞKaijklð0; 0; yÞ� will not tend to zero as

x/y, unlike its counterpart ~aijklðu; x; yÞ given by (8), which can

influence properties of the integral equation and its discrete

counterparts.

Investigation of the equivalence of the BDIDEs to the

original BVPs, solvability, uniqueness of solution, and the

iteration algorithm convergence, including analysis of

spectral properties of the corresponding linear BDIDEs,

needs to be done for constructing robust numerical methods

based on this information (cf. [25]), and for an optimal

choice of the cut-off functions, localization domains and

node points.
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