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For functions from the Sobolev space Hs(Ω), 1
2

< s < 3
2
, definitions of non-unique

generalized and unique canonical co-normal derivative are considered, which are related

to possible extensions of a partial differential operator and its right-hand side from the

domain Ω , where they are prescribed, to the domain boundary, where they are not.

Revision of the boundary value problem settings, which makes them insensitive to the

generalized co-normal derivative inherent non-uniqueness are given. It is shown, that the

canonical co-normal derivatives, although defined on a more narrow function class than the

generalized ones, are continuous extensions of the classical co-normal derivatives. Some

new results about trace operator estimates and Sobolev spaces characterizations, are also

presented.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

While considering a second order partial differential equation for a function from the Sobolev space Hs(Ω), 1
2

< s < 3
2
,

with a right-hand side from Hs−2(Ω), the strong co-normal derivative of u defined on the boundary in the trace sense, does

not generally exist. Instead, a generalized co-normal derivative operator can be defined by the first Green identity. However

this definition is related to an extension of the PDE operator and its right-hand side from the domain Ω , where they are

prescribed, to the domain boundary, where they are not. Since the extensions are non-unique, the generalized co-normal

derivative operator appears to be non-unique and non-linear unless a linear relation between the PDE solution and the

extension of its right-hand side is enforced. This leads to the need of a revision of the boundary value problem settings,

which makes them insensitive to the co-normal derivative inherent non-uniqueness. For functions u from a subspace of

Hs(Ω), 1
2

< s < 3
2
, which can be mapped by the PDE operator into the space H̃t(Ω), t � − 1

2
, one can still define a canonical

co-normal derivative, which is unique, linear in u and coincides with the co-normal derivative in the trace sense if the latter

does exist.

These notions were developed, to some extent, in [15,16] for a PDE with an infinitely smooth coefficient on a domain

with an infinitely smooth boundary, and a right-hand side from Hs−2(Ω), 1 � s < 3
2
, or extendable to H̃t(Ω), t � −1/2.

In [17] the analysis was generalized to the co-normal derivative operators for some scalar PDE with a Hölder coefficient and

right-hand side from Hs−2(Ω), 1
2

< s < 3
2
, on a bounded Lipschitz domain Ω .

In this paper updating [18], we extend the previous results on the co-normal derivatives to strongly elliptic second order

PDE systems on bounded or unbounded Lipschitz domains with infinitely smooth coefficients, with complete proofs. We
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also give the week BVP settings invariant to the generalized co-normal derivatives non-uniqueness. To obtain these results,

some new facts about trace operator estimates and Sobolev spaces characterizations are also proved in the paper.

The paper is arranged as follows. Section 2 provides a number of auxiliary facts on Sobolev spaces, traces and exten-

sions, some of which might be new for Lipschitz domains. Particularly, we proved Lemma 2.4 on two-side estimates of

the trace operator, Lemma 2.6 on boundedness of extension operators from boundary to the domain for a wider range of

spaces, Theorem 2.9 on characterization of the Sobolev space Hs
0(Ω) = H̃ s(Ω) on the (larger than usual) interval 1

2
< s < 3

2
,

Theorem 2.10 on characterization of the space Ht
∂Ω , t > − 3

2
, Theorem 2.12 on equivalence of Hs

0(Ω) and Hs(Ω) for s � 1
2
,

Theorem 2.13 on non-existence of the trace operator, Lemma 2.15 and Theorem 2.16 on extension of Hs(Ω) to H̃ s(Ω) for

all s < 1
2
, s �= 1

2
− k.

The results of Section 2 are applied in Section 3 to introduce and analyze the generalized and canonical co-normal

derivative operators on bounded and unbounded Lipschitz domains, associated with strongly elliptic systems of second

order PDEs with infinitely smooth coefficients and right-hand side from Hs−2(Ω), 1
2

< s < 3
2
. The weak settings of Dirichlet,

Neumann and mixed problems (revised versions for the latter two) are considered and it is shown that they are well posed

in spite of the inherent non-uniqueness of the generalized co-normal derivatives. It is proved that the canonical co-normal

derivative coincides with the classical (strong) one for the cases when they both do exist.

The results of Section 3 are generalized to Hölder–Lipschitz coefficients in [14], see also [18].

2. Sobolev spaces, trace operators and extensions

2.1. Notations

Suppose Ω = Ω+ is a bounded or unbounded open domain of R
n , which boundary ∂Ω is a simply connected, closed,

Lipschitz (n − 1)-dimensional set. Let Ω denote the closure of Ω and Ω− = R
n \ Ω its complement. In what follows

D(Ω) = C∞
comp(Ω) denotes the space of Schwartz test functions, and D∗(Ω) denotes the space of Schwartz distributions;

Hs(Rn) = Hs
2(R

n), Hs(∂Ω) = Hs
2(∂Ω) are the Sobolev (Bessel potential) spaces, where s ∈ R is an arbitrary real number

(see, e.g., [12]).

We denote by H̃ s(Ω) the closure of D(Ω) in Hs(Rn), which can be characterized as H̃ s(Ω) = {g: g ∈ Hs(Rn),

supp g ⊂ Ω}, see e.g. [13, Theorem 3.29]. The space Hs(Ω) consists of restrictions on Ω of distributions from Hs(Rn),

Hs(Ω) := {g|Ω : g ∈ Hs(Rn)}, and Hs
0(Ω) is closure of D(Ω) in Hs(Ω). We recall that Hs(Ω) coincide with the Sobolev–

Slobodetski spaces Ws
2(Ω) for any non-negative s. We denote Hs

loc
(Ω) := {g: ϕg ∈ Hs(Ω) ∀ϕ ∈ D(Ω)}. For infinite

(unbounded) domains Ω we will use also the notation Hs
loc

(Ω) := {g: ϕg ∈ Hs(Ω) ∀ϕ ∈ D(Ω)} (for bounded domains

Hs
loc

(Ω) = Hs(Ω)).

Note that distributions from Hs(Ω) and Hs
0(Ω) are defined only in Ω , while distributions from H̃ s(Ω) are defined in

R
n and particularly on the boundary ∂Ω . For s � 0, we can identify H̃ s(Ω) with the subset of functions from Hs(Ω),

whose extensions by zero outside Ω belong to Hs(Rn), cf. [13, Theorem 3.33], i.e., identify functions u ∈ H̃ s(Ω) with their

restrictions, u|Ω ∈ Hs(Ω). However generally we will distinguish distributions u ∈ H̃ s(Ω) and u|Ω ∈ Hs(Ω), especially for

s � − 1
2
.

We denote by Hs
∂Ω the subspace of Hs(Rn) (and of H̃ s(Ω)), which elements are supported on ∂Ω , i.e., Hs

∂Ω := {g:
g ∈ Hs(Rn), supp g ⊂ ∂Ω}. To simplify notations for vector-valued functions, u : Ω → C

m , we will often write u ∈ Hs(Ω)

instead of u ∈ Hs(Ω)m = Hs(Ω;C
m), etc.

As usual (see e.g. [12,13]), for two elements from dual complex Sobolev spaces the bilinear dual product 〈·,·〉Ω associated

with the sesquilinear inner product (·,·)Ω := (·,·)L2(Ω) in L2(Ω) is defined as

〈u, v〉Rn :=
∫
Rn

[F−1u
]
(ξ)[F v](ξ)dξ =: (Fu,F v)Rn =: (u, v)Rn , u ∈ Hs

(
R

n
)
, v ∈ H−s

(
R

n
)
, (2.1)

〈u, v〉Ω := 〈u, V 〉Rn =: (u, v)Ω if u ∈ H̃ s
(
R

n
)
, v ∈ H−s(Ω), v = V |Ω with V ∈ H−s

(
R

n
)
,

〈u, v〉Ω := 〈U , v〉Rn =: (u, v)Ω if u ∈ Hs
(
R

n
)
, v ∈ H̃−s(Ω), u = U |Ω with U ∈ Hs

(
R

n
)

(2.2)

for s ∈ R, where g is the complex conjugate of g , while F and F−1 are the distributional Fourier transform operator and

its inverse, respectively, that for integrable functions take form

ĝ(ξ) = [F g](ξ) :=
∫
Rn

e−2π ix·ξ g(x)dx, g(x) = [F−1 ĝ
]
(x) :=

∫
Rn

e2π ix·ξ ĝ(ξ)dξ.

For vector-valued elements u ∈ Hs(Rn)m , v ∈ H−s(Rn)m , s ∈ R, definition (2.1) should be understood as

〈u, v〉Rn :=
∫
Rn

û(ξ) · v̂(ξ)dξ =
∫
Rn

û(ξ)
�
v̂(ξ)dξ =: (û, v̂)Rn =: (u, v)Rn ,

where û · v̂ = û� v̂ = ∑m
k=1 ûk v̂k is the scalar product of two vectors.
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Let J s be the Bessel potential operator defined as[J s g
]
(x) = F−1

ξ→x

{(
1+ |ξ |2)s/2 ĝ(ξ)

}
.

The inner product in Hs(Ω), s ∈ R, is defined as follows,

(u, v)Hs(Rn) := (J su,J s v
)
Rn =

∫
Rn

(
1+ ξ2

)s
û(ξ)v̂(ξ)dξ = 〈

u,J 2s v
〉
Rn , u, v ∈ Hs

(
R

n
)
,

(u, v)Hs(Ω) := (
(I − P )U , (I − P )V

)
Hs(Rn)

, u = U |Ω, v = V |Ω, U , V ∈ Hs
(
R

n
)
. (2.3)

Here P : Hs(Rn) → H̃ s(Rn \ Ω) is the orthogonal projector, see e.g. [13, p. 77].

For a general Lipschitz domain Ω , let {ω j} J
j=1 ⊂ R

n be a finite open cover of ∂Ω and {ϕ j(x) ∈ D(ω j)} J
j=1 be a

partition of unity subordinate to it,
∑ J

j=1 ϕ j(x) = 1 for any x ∈ ∂Ω . For any j there exists a half-space domain Ω j

such that ω j ∩ Ω j = ω j ∩ Ω and Ω j can be linearly transformed by a rigid translation κ j to a Lipschitz hypograph

Ω̃ j = {x′ ∈ R
n−1: xn > ζ j(x

′)}, where ζ j are some uniformly Lipschitz functions. Let also 
 j : R
n → R

n be the Lipschitz-

smooth invertible functions (evidently related to ζ j and κ j) such that R
n+ � x �→ 
 j(x) ∈ Ω j , while D j(x

′) are the Jacobians

of the corresponding boundary mappings R
n−1 � x′ �→ 
 j(x

′) ∈ ∂Ω j and D j ∈ L∞(Rn−1).

Similar to [19, p. 85] we introduce the following definition.

Definition 2.1. Let Ωk , Ω be Lipschitz domains. We say that Ωk → Ω as k → ∞ if ∂Ωk are represented using the same

system of covering charts ω j as ∂Ω for all sufficiently large k, and

lim
k→∞

|ζ jk − ζ j|C0,1(ω j)
= 0, (2.4)

where ζ jk and ζ j are the corresponding Lipschitz functions for the boundary representation.

2.2. Sobolev spaces characterization, traces and extensions

To introduce generalized co-normal derivatives in Section 3, we will need several facts about traces and extensions in

Sobolev spaces on Lipschitz domain. First we give the following usual definition of the trace operator.

Definition 2.2. An operator γ + : Hs(Ω+) → Hσ (∂Ω) is a trace operator if for each u ∈ Hs(Ω) and for any sequence φk ∈
D(Ω) converging to u in Hs(Ω), the sequence of the boundary values φk|∂Ω converges to γ +u in Hσ (∂Ω). The trace

operator γ − : Hs(Ω−) → Hσ (∂Ω) is defined similarly. If γ +u = γ −u we denote them as γ u.

We have the following well-known trace theorem [4, Lemma 3.6].

Theorem 2.3. If 1
2

< s < 3
2
, then the trace operators

γ : Hs
(
R

n
) → Hs− 1

2 (∂Ω) and γ ± : Hs
(
Ω±) → Hs− 1

2 (∂Ω), (2.5)

are continuous for any Lipschitz domain Ω .

Let γ ∗ : H 1
2 −s(∂Ω) → H−s(Rn) denote the operator adjoined to the trace operator,〈

γ ∗v, w
〉 = 〈v, γ w〉 ∀w ∈ Hs

(
R

n
)
, v ∈ H

1
2−s(∂Ω).

Now we can prove two-side estimates for the trace operator and its adjoined, which particularly imply a statement about

the trace operator unboundedness (cf. [12, Chapter 1, Theorem 9.5] for the unboundedness statements in domains with

infinitely smooth boundary).

Lemma 2.4. Let Ω be a Lipschitz domain and 1
2

< s � 1. Then

C ′√Cs‖v‖
H

1
2

−s
(∂Ω)

�
∥∥γ ∗v

∥∥
H−s(Rn)

� C ′′√Cs‖v‖
H

1
2

−s
(∂Ω)

∀v ∈ H
1
2−s(∂Ω) (2.6)

and thus

C ′√Cs � ‖γ ‖
Hs(Rn)→H

s− 1
2 (∂Ω)

= ∥∥γ ∗∥∥
H

1
2

−s
(Rn−1)→H−s(Rn)

� C ′′√Cs, (2.7)
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where

Cs :=
∞∫

−∞

(
1+ η2

)−s
dη,

C ′ and C ′′ are positive constants independent of s and v. The norm of the trace operator γ : Hs(Rn) → Hs− 1
2 (∂Ω) tends to infinity as

s ↘ 1
2
since Cs → ∞, while the operator γ : H 1

2 (Rn) → L2(∂Ω), if it does exist, is unbounded.

Proof. Let first consider the lemma for the half-space, Ω = R
n+ = {x ∈ R

n: xn > 0}, where x = {x′, xn}, x′ ∈ R
n−1. For v ∈

H
1
2 −s(Rn−1), taking into account the uniqueness of the trace operator for s > 1

2
, the distributional Fourier transform gives

Fx→ξ

{
γ ∗v

} = Fx′→ξ ′
{
v
(
x′)} =: v̂(

ξ ′).
Then we have,∥∥γ ∗v

∥∥2

H−s(Rn)
=

∫
Rn

(
1+ |ξ |2)−s∣∣v̂(

ξ ′)∣∣2 dξ
=

∫
Rn−1

[ ∫
R

(
1+ ∣∣ξ ′∣∣2 + |ξn|2

)−s
dξn

]∣∣v̂(
ξ ′)∣∣2 dξ ′ = Cs‖v‖2

H
1
2

−s
(Rn−1)

, (2.8)

where the substitution ξn = (1+ |ξ ′|2) 1
2 η was used, cf. [3, Chapter 2, Proposition 4.6]. Thus

‖γ ‖
Hs(Rn)→H

s− 1
2 (Rn−1)

= ∥∥γ ∗∥∥
H

1
2

−s
(Rn−1)→H−s(Rn)

= √
Cs → ∞ as s ↘ 1

2
.

On the other hand, by (2.8) the norm ‖γ ∗v‖
H

− 1
2 (Rn)

is not finite for any non-zero v . This means the operator

γ ∗ : H0(Rn−1) → H− 1
2 (Rn) and thus the operator γ : H 1

2 (Rn) → H0(Rn−1) is not bounded, which completes the lemma

for Ω = R
n+ with C ′ = C ′′ = 1.

Let now Ω be a general Lipschitz domain. For v ∈ L2(∂Ω), w ∈ D(Rn), using the boundary cover and corresponding

partition of unity as in Section 2.1 we have,

〈
γ ∗v, w

〉
Rn = 〈v, γ w〉∂Ω =

∫
∂Ω

v(x)w(x)dσ(x) =
J∑

j=1

∫
∂Ω

ϕ j(x)v(x)w(x)dσ(x)

=
J∑

j=1

∫
Rn−1

[
(ϕ j v) ◦ 
 j

](
x′)[w ◦ 
 j]

(
x′)D j

(
x′)dx′

=
J∑

j=1

〈
D j(ϕ j v) ◦ 
 j, γ0[w ◦ 
 j]

〉
Rn−1 =

J∑
j=1

〈
γ ∗
0

[
D j(ϕ j v) ◦ 
 j

]
, w ◦ 
 j

〉
Rn ,

where γ0, γ ∗
0 are the trace operator on R

n+ and its adjoined, respectively. Taking into account density of D(Rn) in Hs(Rn)

and of L2(∂Ω) in H
1
2 −s(∂Ω), we have,

∥∥γ ∗v
∥∥
H−s(Rn)

= sup
w∈Hs(Rn)

|〈γ ∗v, w〉Rn |
‖w‖Hs(Rn)

= sup
w∈Hs(Rn)

∣∣∣∣∣
J∑

j=1

〈
γ ∗
0

[
D j(ϕ j v) ◦ 
 j

]
,

w ◦ 
 j

‖w‖Hs(Rn)

〉
Rn

∣∣∣∣∣ (2.9)

for any v ∈ H
1
2 −s(∂Ω).

It is well known (see e.g. [13, Theorem 3.23 and p. 98]) that

‖v‖2
H

1
2

−s
(∂Ω)

=
J∑

j=1

∥∥D j(ϕ j v) ◦ 
 j

∥∥2

H
1
2

−s
(Rn−1)

,
1

2
< s � 3

2
, (2.10)

C̃ ′‖w‖Hs(Rn) � ‖w ◦ 
 j‖Hs(Rn) � C̃ ′′‖w‖Hs(Rn), j = 1, . . . , J , 0 � s � 1, (2.11)

where C̃ ′, C̃ ′′ are some positive constants independent of s. By (2.8) and (2.10),∥∥γ ∗
0

[
D j(ϕ j v) ◦ 
 j

]∥∥
H−s(Rn)

= √
Cs

∥∥D j(ϕ j v) ◦ 
 j

∥∥
H

1
2

−s
(Rn−1)

�
√
Cs‖v‖

H
1
2

−s
(∂Ω)

.
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Then (2.9) and (2.11) imply∥∥γ ∗v
∥∥
H−s(Rn)

� C̃ ′′ J
√
Cs‖v‖

H
1
2

−s
(∂Ω)

∀v ∈ H
1
2−s(∂Ω),

which is the right inequality in (2.6).

On the other hand, we have for v ∈ L2(∂Ω), w ∈D(Rn),

〈
ϕ jγ

∗v, w
〉
Rn = 〈

v, γ (ϕ j w)
〉
∂Ω

=
∫

∂Ω

v(x)ϕ j(x)w(x)dσ(x)

=
∫

∂Ω∩ω j

v(x)ϕ j(x)w(x)dσ(x) =
∫

Rn−1

[
(ϕ j v j) ◦ 
 j

](
x′)[w ◦ 
 j]

(
x′)D j

(
x′)dx′

= 〈
D j

[
(ϕ j v j) ◦ 
 j

]
, γ0[w ◦ 
 j]

〉
Rn−1 = 〈

γ ∗
0

{
D j

[
(ϕ j v j) ◦ 
 j

]}
, w ◦ 
 j

〉
Rn .

By (2.11) this implies,

∥∥ϕ jγ
∗v

∥∥
H−s(Rn)

= sup
w∈Hs(Rn)

∣∣∣∣
〈
γ ∗
0

{
D j

[
(ϕ j v) ◦ 
 j

]}
,

w ◦ 
 j

‖w‖Hs(Rn)

〉
Rn

∣∣∣∣
= sup

w∈Hs(Rn)

∣∣∣∣
〈
γ ∗
0

{
D j

[
(ϕ j v) ◦ 
 j

]}
,

w ◦ 
 j

‖w ◦ 
 j‖Hs(Rn)

〉
Rn

‖w ◦ 
 j‖Hs(Rn)

‖w‖Hs(Rn)

∣∣∣∣
� C̃ ′ sup

w∈Hs(Rn)

∣∣∣∣
〈
γ ∗
0

{
D j

[
(ϕ j v) ◦ 
 j

]}
,

w ◦ 
 j

‖w ◦ 
 j‖Hs(Rn)

〉
Rn

∣∣∣∣
= C̃ ′∥∥γ ∗

0

{
D j

[
(ϕ j v) ◦ 
 j

]}∥∥
H−s(Rn)

, (2.12)

that is by (2.8) and (2.10),

J∑
j=1

∥∥ϕ jγ
∗v

∥∥2

H−s(Rn)
� C̃ ′2

J∑
j=1

∥∥γ ∗
0

{
D j

[
(ϕ j v) ◦ 
 j

]}∥∥2

H−s(Rn)

= C̃ ′2Cs

J∑
j=1

∥∥D j

[
(ϕ j v) ◦ 
 j

]∥∥2

H
1
2

−s
(Rn−1)

= C̃ ′2Cs‖v‖2
H

1
2

−s
(∂Ω)

. (2.13)

Since

C̃ j

∥∥γ ∗v
∥∥
H−s(Rn)

�
∥∥ϕ jγ

∗v
∥∥
H−s(Rn)

(2.14)

for ϕ j ∈D(Rn), (2.13) gives the left inequality in (2.6).

Obviously, (2.6) implies (2.7) for γ ∗ and thus for γ .

As was shown in the first paragraph of the proof, the functional γ ∗
0 {D j[(ϕ j v) ◦ 
 j]} is not bounded on H

1
2 (Rn)

for any non-zero v , then (2.12), (2.14) imply that the operator γ ∗ : H0(∂Ω) → H− 1
2 (Rn) and thus the operator

γ : H 1
2 (Rn) → H0(∂Ω) is not bounded. �

For s > 3/2 the trace operators (2.5) are not continuous on Lipschitz domains, however the following weaker statement

holds, which was mentioned in [5] without a proof but can be indeed proved by appropriate estimates of an integral on

p. 598 of [5] for this case.

Lemma 2.5. If Ω is a Lipschitz domain and s > 3/2, then the trace operators

γ : Hs
(
R

n
) → H1(∂Ω) and γ ± : Hs

(
Ω±) → H1(∂Ω)

are continuous.

Lemma 2.6. For a Lipschitz domain Ω there exists a linear bounded extension operator γ−1 : Hs− 1
2 (∂Ω) → Hs(Rn), 1

2
� s � 3

2
,

which is right inverse to the trace operator γ , i.e., γ γ−1g = g for any g ∈ Hs− 1
2 (∂Ω). (For s = 1

2
the trace operator γ is understood

not as in Definition 2.2 but in the non-tangential sense; see, e.g. [8].) Moreover, ‖γ−1‖
H

s− 1
2 (∂Ω)→Hs(Rn)

� C, where C is independent

of s.
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Proof. For Lipschitz domains and 1
2

< s � 1, the boundedness of the extension operator is well known, see e.g. [13, Theo-

rem 3.37].

To prove it for the whole range 1
2

� s � 3
2
, let us consider the Green operator G� that solves the Dirichlet Problem for

the Laplace equation in Ω and continuously maps Hs− 1
2 (∂Ω) to Hs(Ω) if Ω is a bounded domain and to Hs

loc
(Ω) if Ω is

an unbounded domain. Particularly one can take G� = V�V−1
� , where the single layer potential V�ϕ with a density ϕ =

V−1
� g ∈ Hs− 3

2 (∂Ω), solves the Laplace equation in Ω with the Dirichlet boundary data g and V� is the direct value of the

operator V� on the boundary. The operators V−1
� : Hs− 1

2 (∂Ω) → Hs− 3
2 (∂Ω) and V� : Hs− 3

2 (∂Ω) → Hs
loc

(Rn) are continuous

for 1
2

� s � 3
2

as stated in [9,8,10,21,4]. Thus it suffice to take γ−1 = χG� , where χ ∈ D(Rn) is a cut-off function such

that χ = 1 in a sufficiently large open ball such that it includes the boundary ∂Ω . The estimate ‖γ−1‖
H

s− 1
2 (∂Ω)→Hs(Rn)

� C ,

where C is independent of s, then follows. �
Note that continuity of the operator γ was not needed in the proof.

Let us denote by E0 the operator of extension of a function defined in Ω by zero outside Ω to a function defined in R
n .

Theorem 2.7. Let Ω be a Lipschitz domain and s � 0 while s �= 1
2

+ k for any integer k � 0. Then

H̃s(Ω) = Hs
0(Ω)

in the sense that u|Ω ∈ Hs
0(Ω) for any u ∈ H̃ s(Ω), and E0v ∈ H̃ s(Ω) for any v ∈ Hs

0(Ω). Moreover

‖u|Ω‖Hs(Ω) � ‖u‖H̃ s(Ω), ‖E0v‖H̃ s(Ω) � C‖v‖Hs(Ω), (2.15)

where C depends only on s and on the maximum of the Lipschitz constants of the representation functions ζ j for the boundary ∂Ω , see

Section 2.1.

Proof. The first claim is proved in [13, Theorem 3.33]. The first estimate in (2.15) is evident, while the second follows from

the proofs of the same Theorem 3.33 and Lemma 3.32 in [13]. �
To characterize the space Hs

0(Ω) = H̃ s(Ω) for 1
2

< s < 3
2
, we will need the following statement.

Lemma 2.8. If Ω is a Lipschitz domain and u ∈ Hs(Ω), 0 < s < 1
2
, then∫

Ω

dist(x, ∂Ω)−2s
∣∣u(x)

∣∣2 dx � C‖u‖2Hs(Ω) (2.16)

and for a given boundary cover the constant C depends only on s and on the maximum of the Lipschitz constants of the boundary

representation functions ζ j , see Section 2.1.

Proof. Note first that the lemma claim for u ∈D(Ω) follows from the proof of [13, Lemma 3.32]. To prove it for u ∈ Hs(Ω),

let first the domain Ω be such that

dist(x, ∂Ω) < C0 < ∞ (2.17)

for all x ∈ Ω , which holds true particularly for bounded domains. Let {φk} ∈ D(Ω) be a sequence converging to u in

Hs(Ω). If we denote w(x) = dist(x, ∂Ω)−2s , then w(x) > C−2s
0 > 0. Since (2.16) holds for functions from D(Ω), the sequence

{φk} ∈D(Ω) is fundamental in the weighted space L2(Ω, w), which is complete, implying that φk ∈D(Ω) converges in this

space to a function u′ ∈ L2(Ω, w). Since both L2(Ω, w) and Hs(Ω) are continuously imbedded in the non-weighted space

L2(Ω), the sequence {φk} converges in L2(Ω) implying the limiting functions u and u′ belong to this space and thus

coincide. Then from (2.16) for φk we immediately obtain it for arbitrary u ∈ Hs(Ω).

For the unbounded domains for which condition (2.17) is not satisfied, let χ(x) ∈ D(Rn) be a cut-off function such that

0 � χ(x) � 1 for all x, χ(x) = 1 near ∂Ω , while w(x) < 1 for x ∈ supp(1−χ). Then (2.17) is satisfied in Ω ′ = Ω ∩ suppχ(x)

and ∫
Ω

w(x)
∣∣u(x)

∣∣2 dx =
∫
Ω

(
1− χ(x)

)
w(x)

∣∣u(x)
∣∣2 dx+

∫
Ω

χ(x)w(x)
∣∣u(x)

∣∣2 dx
� ‖u‖2L2(Ω) +

∫
Ω ′

w(x)
∣∣√χ(x)u(x)

∣∣2 dx � ‖u‖2Hs(Ω) + C
∥∥√

χ(x)u
∥∥2

Hs(Ω ′) � C1‖u‖2Hs(Ω)

due to the previous paragraph. �
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Lemma 2.8 allows now extending the following statement known for 1
2

< s � 1, see [13, Theorem 3.40(ii)], to a wider

range of s.

Theorem 2.9. If Ω is a Lipschitz domain and 1
2

< s < 3
2
, then

Hs
0(Ω) = {

u ∈ Hs(Ω): γ +u = 0
}
. (2.18)

Proof. Equality (2.18) for 1
2

< s � 1 is stated in [13, Theorem 3.40(ii)].

Let 1 < s < 3
2
. If u ∈ Hs

0(Ω) then evidently γ +u = 0 since D is dense in Hs
0(Ω) and the trace operator γ + is bounded

in Hs(Ω). To prove that any u ∈ Hs(Ω) with γ +u = 0 belongs to Hs
0(Ω), it remains, due to Theorem 2.7, to prove that

E0u ∈ Hs(Rn). We remark first of all that E0u ∈ H1(Rn) due to the previous paragraph and Theorem 2.7, and then make

estimates similar to those in the proof of [13, Theorem 3.33],

‖E0u‖2Hs(Rn) ∼ ‖E0u‖2
W 1

2 (Rn)
+

∫
Rn

∫
Rn

|∇E0u(x) − ∇E0u(y)|2
|x− y|2(s−1)+n

dxdy

= ‖u‖2
W 1

2 (Ω)
+

∫
Ω

∫
Ω

|∇u(x) − ∇u(y)|2
|x− y|2(s−1)+n

dxdy

+
∫

Rn\Ω

∫
Ω

|∇u(x)|2
|x− y|2(s−1)+n

dxdy +
∫
Ω

∫
Rn\Ω

|∇u(y)|2
|x− y|2(s−1)+n

dxdy

= ‖u‖2
Ws

2(Ω)
+ 2

∫
Ω

∣∣ws−1(x)∇u(x)
∣∣2 dx,

where

ws−1(x) :=
∫

Rn\Ω

dy

|x− y|2(s−1)+n
, x ∈ Ω,

and Ws
2(Ω) is the Sobolev–Slobodetski space. Introducing spherical coordinates with x as an origin, we obtain, ws−1(x) �

αn
2(s−1)

dist(x, ∂Ω)−2(s−1) for x ∈ Ω , where αn is the area of the unit sphere in R
n . Then, taking into account that ∇u ∈

Hs−1(Ω) and ‖∇u‖Hs−1(Ω) � ‖u‖Hs(Ω) , we have by Lemma 2.8,

‖E0u‖2Hs(Rn) � ‖u‖2
Ws

2(Ω)
+ 2C‖u‖2Hs(Ω) � Cs‖u‖2Hs(Ω).

Theorem 2.7 completes the proof. �
Let us now give a characterization of the space Ht

∂Ω .

Theorem 2.10. Let Ω be a Lipschitz domain in R
n.

(i) If t � − 1
2
, then Ht

∂Ω = {0}.
(ii) If − 3

2
< t < − 1

2
, then g ∈ Ht

∂Ω if and only if g = γ ∗v, i.e.,

〈g,W 〉Rn = 〈v, γ W 〉∂Ω ∀W ∈ H−t
(
R

n
)
, (2.19)

with v = γ ∗−1g ∈ Ht+ 1
2 (∂Ω), i.e.,

〈v, w〉∂Ω = 〈g, γ−1w〉Rn ∀w ∈ H−t− 1
2 (∂Ω), (2.20)

where v is independent of the choice of the non-unique operators γ−1 , γ
∗−1 , and the estimate ‖v‖

H
t+ 1

2 (∂Ω)
� C‖g‖Ht (Rn) holds

with C independent of t.

Proof. We will follow an idea in the proof of Lemma 3.39 in [13] (see also [3, Proposition 4.8]), extending it from a half-

space to a Lipschitz domain Ω .

Let Ω+ = Ω and Ω− = R
n \ Ω . For any φ ∈D(Rn), let us define

φ±(x) =
{

φ(x) if x ∈ Ω±,

0 if x /∈ Ω±.
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Let t > − 1
2
. Then φ± ∈ H̃−t(Ω±) (see e.g. [13, Theorem 3.40] and Theorem 2.7 for − 1

2
< t � 0, for greater t it then follows

by embedding), ‖φ − φ+ − φ−‖H−t (Rn) = 0, and there exist sequences {φ±
k

} ∈ D(Ω±) converging to φ± in H̃−t(Ω±) as

k → ∞. Hence 〈g, φ〉Rn = limk→∞〈g, φ+
k

+ φ−
k

〉Rn = 0 for any φ ∈ D(Rn) proving (i) for t > − 1
2

since D(Rn) is dense in

H−t(Rn) = [Ht(Rn)]∗ .
Let us prove (ii). For g ∈ Ht

∂Ω , − 3
2

< t < − 1
2
, let v ∈ Ht+ 1

2 (∂Ω) be defined by (2.20), where existence and continuity of

γ−1 : H−t− 1
2 (∂Ω) → H−t(Ω) is proved in Lemma 2.6. Observe that∣∣〈v, w〉∂Ω

∣∣ � ‖g‖Ht (Rn)‖w‖
H

−t− 1
2 (∂Ω)

‖γ−1‖
H

−t− 1
2 (∂Ω)→H−t(Rn)

,

so ‖v‖
H

t+ 1
2 (∂Ω)

� ‖γ−1‖
H

−t− 1
2 (∂Ω)→H−t (Rn)

‖g‖Ht (Rn) � C‖g‖Ht (Rn) , where C is independent of t due to Lemma 2.6 if γ−1 is

chosen as in that lemma. We also have that

〈g,W 〉Rn − 〈v, γ W 〉∂Ω = 〈g,ρ〉Rn ∀W ∈ H−t
(
R

n
)
,

where

ρ = W − γ−1γ W ∈ H−t
(
R

n
)
.

Then we have γρ = 0, which due to Theorems 2.7, 2.9 implies ρ̃± ∈ H̃−t(Ω±), where ρ̃± are extensions of ρ|Ω± by

zero outside Ω± , and ρ = ρ̃+ + ρ̃− . Thus there exist sequences {ρ±
k

} ∈ D(Ω±) converging to ρ̃± in H̃−t(Ω±), implying

〈g,ρ〉Rn = 0 since g ∈ Ht
∂Ω , and thus ansatz (2.19). To prove that v is uniquely determined by g , i.e., independent of γ−1,

let us consider v ′ and v ′′ corresponding to different operators γ ′−1 and γ ′′−1. Then by (2.19),〈
v ′ − v ′′, w

〉
∂
Ω = 〈

γ ∗ ′−1g − γ ∗ ′′−1 g, w
〉
∂Ω

= 〈
g, γ ′−1w − γ ′′−1w

〉
Rn

= 〈
v ′, γ

(
γ ′−1w − γ ′′−1w

)〉
∂Ω

= 0 ∀w ∈ H−t− 1
2 (∂Ω).

It remains to deal with the case t = − 1
2

in (i). Let g ∈ H
− 1

2

∂Ω . Since H
− 1

2

∂Ω ⊂ Ht
∂Ω for − 3

2
< t < − 1

2
, then g = γ ∗v for

some v ∈ Ht+ 1
2 (∂Ω) ∀t ∈ (− 3

2
,− 1

2
), and ‖g‖Ht

∂Ω
= ‖γ ∗v‖Ht

∂Ω
� C ′√C−t‖v‖

H
1
2

+t
(∂Ω)

owing to Lemma 2.4. Since C−t → ∞
as t ↗ − 1

2
, this means ‖v‖

H
1
2

+t
(∂Ω)

→ 0 as t ↗ − 1
2
implying v = 0. �

Combining (2.19) and (2.20) we have the following useful statement.

Corollary 2.11. Let Ω be a Lipschitz domain in R
n. If g ∈ Ht

∂Ω with − 3
2

< t < − 1
2
, then g = γ ∗γ ∗−1g for any choice of γ ∗−1 .

Theorem 2.12. Let Ω be a Lipschitz domain in R
n and s � 1

2
. ThenD(Ω) is dense in Hs(Ω), i.e., Hs(Ω) = Hs

0(Ω).

Proof. The proof for 0 � s � 1
2

is available in [13, Theorem 3.40(i)]. To prove the statement for any s � 1
2

we remark that

if w ∈ Hs(Ω)∗ = H̃−s(Ω) satisfies 〈w, φ〉 = 0 for all φ ∈ D(Ω), then w ∈ H−s
∂Ω and Theorem 2.10(i) implies w = 0. Hence,

D(Ω) is dense in Hs(Ω), i.e., Hs(Ω) = Hs
0(Ω). �

Theorem 2.12 implies that for any u ∈ D(Ω) and s � 1
2

there exists a sequence {φk} ∈ D(Ω) converging to u in Hs(Ω).

Evidently φk|∂Ω converges to 0 in Hσ (∂Ω) for any σ since φk|∂Ω = 0. On the other hand, u ∈ D(Ω) is the limit in Hs(Ω)

of the sequence {φ′
k
} = u, meaning that φ′

k
|∂Ω converges in Hσ (∂Ω) to u|∂Ω , which is generally non-zero. This leads to the

following conclusion of non-existence.

Corollary 2.13. For s � 1
2
the trace operators γ ± : Hs(Ω±) → Hσ (∂Ω), understood as in Definition 2.2, do not exist for any σ .

Remark 2.14. (i) Evidently, Corollary 2.13 holds also if the space Hσ (∂Ω) is replaced with any Banach space of distributions

on ∂Ω .

(ii) The trace operator γ ± : B(Ω±) → Hσ (∂Ω) can, of course, still exist on some Banach subspaces on Ω± , B(Ω±) ⊂
Hs(Ω±), s � 1

2
, with the norms stronger than the norm in Hs(Ω±), particularly on Ht(Ω±), t > 1

2
.

The following two statements give conditions when distributions from Hs(Ω) can be extended to distributions from

H̃ s(Ω) and when the extension can be written in terms of a linear bounded operator. The first of them can be considered

as a counterpart of Theorem 2.7 for negative s.

Lemma 2.15. Let Ω be a Lipschitz domain, s < 1
2
, s �= 1

2
− k for any integer k > 0. Then for any g ∈ Hs(Ω) there exists g̃ ∈ H̃ s(Ω)

such that g = g̃|Ω and ‖g̃‖H̃ s(Ω) � C‖g‖Hs(Ω) , where C > 0 does not depend on g.
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Proof. Any distribution g ∈ Hs(Ω) is a bounded linear functional on H̃−s(Ω). On the other hand, for any v ∈ H−s
0 (Ω) ⊂

H−s(Ω) its zero extension ṽ = E0v belongs to H̃−s(Ω) with

‖ṽ‖H̃−s(Ω) � C‖v‖H−s(Ω) (2.21)

for s � 0, s �= 1
2

− k, by Theorem 2.7. This holds true also for 0 < s < 1
2

since then H̃−s(Ω) = [Hs(Ω)]∗ = [Hs
0(Ω)]∗ =

[H̃ s(Ω)]∗ = H−s(Ω) by Theorems 2.12 and 2.7, while the extension ṽ ∈ H̃−s(Ω) is defined as

〈ṽ, w〉 := 〈v, E0w〉 ∀w ∈ Hs(Ω), 0 < s <
1

2
,

and by Theorems 2.12 and 2.7,

‖ṽ‖H̃−s(Ω)
= sup

w∈Hs(Ω)\{0}
|〈ṽ, w〉|

‖w‖Hs(Ω)

= sup
w∈Hs(Ω)\{0}

|〈v, E0w〉|
‖w‖Hs(Ω)

� C sup
w∈Hs(Ω)\{0}

|〈v, E0w〉|
‖E0w‖H̃ s(Ω)

� C‖v‖H−s(Ω)

giving estimate (2.21).

Thus the functional g ∈ Hs(Ω) continuous on H̃−s(Ω) and thus on H−s
0 (Ω) can be extended by the Hahn–Banach the-

orem to a functional g̃ ∈ H̃ s(Ω) continuous on H−s(Ω) such that ‖g̃‖H̃ s(Ω) = ‖g̃‖[H−s(Ω)]∗ = ‖g‖[H−s
0 (Ω)]∗ . Then by estimate

(2.21) for s < 1
2
, s �= 1

2
− k, we have,

‖g‖[H−s
0 (Ω)]∗ = sup

v∈H−s
0 (Ω)\{0}

|〈g, v〉|
‖v‖H−s

0 (Ω)

� C sup
ṽ∈H̃−s(Ω)\{0}

|〈g, ṽ〉|
‖ṽ‖H̃−s(Ω)

� C‖g‖[H̃−s(Ω)]∗ = C‖g‖Hs(Ω),

which completes the proof. �
Theorem 2.16. Let Ω be a Lipschitz domain and − 3

2
< s < 1

2
, s �= − 1

2
. There exists a bounded linear extension operator Ẽs : Hs(Ω) →

H̃ s(Ω), such that Ẽs g|Ω = g, ∀g ∈ Hs(Ω). For − 1
2

< s < 1
2
the extension operator is unique, (Ẽ s)∗ = Ẽ−s and∥∥Ẽ s g

∥∥
H̃ s(Ω)

� C‖g‖Hs(Ω), (2.22)

where C depends only on s and on the maximum of the Lipschitz constants of the representation functions ζ j for the boundary ∂Ω , see

Section 2.1.

Proof. If 0 � s < 1
2
, then H̃ s(Ω) = {E0u, u ∈ Hs(Ω)}, which implies that one can take Ẽ s = E0, where the operator

E0 : Hs(Ω) → H̃ s(Ω) of extension by zero is continuous by the Theorems 2.7 and 2.12 with the estimate (2.22) follow-

ing from estimate (2.15).

If − 1
2

< s < 0, we define Ẽ s as〈
Ẽ s g, v

〉
Ω

:= 〈g, E0v〉Ω, ∀g ∈ Hs(Ω), ∀v ∈ H−s(Ω),

i.e., Ẽ s = E∗
0 = (Ẽ−s)∗ , which is continuous with the estimate (2.22) following from the previous paragraph.

Theorem 2.10 implies that the extension operator Ẽ s : Hs(Ω) → H̃ s(Ω) is unique for − 1
2

< s < 1
2
.

Let now − 3
2

< s < − 1
2
. For s in this range, the trace operator γ + : H−s(Ω) → H−s− 1

2 (∂Ω) is bounded due

to [4, Lemma 3.6] (see also [13, Theorem 3.38]), and there exists a bounded right inverse to the trace operator

γ−1 : H−s− 1
2 (∂Ω) → H−s(Ω), see Lemma 2.6. Then (I −γ−1γ

+) is a bounded projector from H−s(Ω) to H−s
0 (Ω) = H̃−s(Ω)

due to Theorem 2.7. Thus any functional v ∈ Hs(Ω) can be continuously mapped into the functional ṽ ∈ H̃ s(Ω) such that

〈ṽ,u〉 = 〈v, E0(I − γ−1γ
+)u〉 for any u ∈ H−s(Ω). Since ṽu = vu for any u ∈ H̃−s(Ω), we have,

Ẽ s := [
E0

(
I − γ−1γ

+)]∗ : Hs(Ω) → H̃ s(Ω)

is a bounded extension operator. �
Since the extension operator Ẽ s : Hs(Ω) → H̃ s(Ω) is unique for − 1

2
< s < 1

2
, we will call it canonical extension operator (as

opposite to other possible extensions from Hs(Ω) to H̃σ (Ω), σ < − 1
2
). For − 3

2
< s < − 1

2
, on the other hand, the operator

γ−1 : H−s− 1
2 (∂Ω) → H−s(Ω) in the proof of Theorem 2.16 is not unique, implying non-uniqueness of Ẽ s : Hs(Ω) → H̃ s(Ω).

We will later need the following two results.

Lemma 2.17. Let Ω and Ω ′ ⊂ Ω be open sets, and s � 0. If u ∈ Hs(Ω), then ‖u‖Hs(Ω ′) → 0 as the Lebesgue measure of Ω ′ tends to
zero.
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Proof. Let φ ∈D(Ω). Then

‖u‖Hs(Ω ′) � ‖u − φ‖Hs(Ω ′) + ‖φ‖Hs(Ω ′) � ‖u − φ‖Hs(Ω) + ‖φ‖L2(Ω ′).

For any ε > 0 we can chose φ such that ‖u − φ‖Hs(Ω) < ε/2 due to the density of D(Ω) in Hs(Ω) and then chose Ω ′ with

sufficiently small measure so that ‖φ‖L2(Ω ′) < ε/2. �
Lemma 2.18. Let Ωk ⊂ Ω be a sequence of Lipschitz domains converging to a Lipschitz domain Ω and − 1

2
< s < 1/2. If u ∈ Hs(Ω)

and ũk = Ẽ su|Ωk
, then there exists a constant C independent of u and k such that ‖ũk‖H̃ s(Ωk)

� C‖u‖Hs(Ω) for all sufficiently large k.

Proof. By Theorem 2.16,

‖ũk‖H̃ s(Ωk)
� Ck‖u|Ωk

‖Hs(Ωk) � Ck‖u‖Hs(Ω),

where Ck depend only on s and on the maximum of the Lipschitz constants of the representation functions ζ jk for the

boundaries ∂Ωk . By (2.4), the Lipschitz constants are bounded and henceforth so are Ck . �
3. Partial differential operator extensions and co-normal derivatives for infinitely smooth coefficients

Let us consider in Ω a system of m complex linear differential equations of the second order with respect to m unknown

functions {ui}mi=1 = u : Ω → C
m , which for sufficiently smooth u has the following strong form,

Au(x) := −
n∑

i, j=1

∂i
[
aij(x)∂ ju(x)

] +
n∑
j=1

b j(x)∂ ju(x) + c(x)u(x) = f (x), x ∈ Ω, (3.1)

where f : Ω → C
m , ∂ j := ∂/∂x j ( j = 1,2, ...,n), a(x) = {aij(x)}ni, j=1 = {{akli j(x)}mk,l=1

}ni, j=1, b(x) = {{bkli (x)}m
k,l=1

}ni=1 and c(x) =
{ckl(x)}m

k,l=1
, i.e., aij,bi, c : Ω → C

m×m for fixed indices i, j. If m = 1, then (3.1) is a scalar equation. In this paper we assume

that a,b, c ∈ C∞(Ω); the case of non-smooth coefficients is addressed in [14], see also [18].

The operator A is (uniformly) strongly elliptic in an open domain Ω if there exists a bounded m × m matrix-valued

function θ(x) such that

Re

{
ζ�θ(x)

n∑
i, j=1

aij(x)ξiξ jζ

}
� C |ξ |2|ζ |2

for all x ∈ Ω , ξ ∈ R
n and ζ ∈ C

m , where C is a positive constant, see e.g. [7, Definition 3.6.1] and references therein. We

say that the operator A is uniformly strongly elliptic in a closed domain Ω if its is uniformly strongly elliptic in an open

domain Ω ′ ⊃ Ω . We will need the strong ellipticity in relation with the solution regularity, starting from Theorem 3.11.

3.1. Partial differential operator extensions and generalized co-normal derivative

For u ∈ Hs(Ω), f ∈ Hs−2(Ω), s ∈ R, equation system (3.1) is understood in the distribution sense as

〈Au, v〉Ω = 〈 f , v〉Ω ∀v ∈ D(Ω),

where v : Ω → C
m and

〈Au, v〉Ω := E(u, v) ∀v ∈ D(Ω), (3.2)

E(u, v) = EΩ(u, v) :=
n∑

i, j=1

〈aij∂ ju, ∂i v〉Ω +
n∑
j=1

〈b j∂ ju, v〉Ω + 〈cu, v〉Ω. (3.3)

Bilinear form (3.3) is well defined for any v ∈ D(Ω) and moreover, the bilinear functional E : {Hs(Ω), H̃2−s(Ω)} → C is

bounded for any s ∈ R. Since the set D(Ω) is dense in H̃2−s(Ω), expression (3.2) defines then a bounded linear operator

A : Hs(Ω) → Hs−2(Ω) = [H̃2−s(Ω)]∗ , s ∈ R,

〈Au, v〉Ω := E(u, v) ∀v ∈ H̃2−s(Ω). (3.4)

Let now 1
2

< s < 3
2
. In addition to the operator A defined by (3.4), let us consider also the aggregate partial differential

operator Ǎ, defined as,

〈 Ǎu, v〉Ω := Ě(u, v) ∀v ∈ H2−s(Ω), (3.5)
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where

Ě(u, v) = ĚΩ(u, v) :=
n∑

i, j=1

〈
Ẽ s−1(aij∂ ju), ∂i v

〉
Ω

+
n∑
j=1

〈
Ẽ s−1(b j∂ ju), v

〉
Ω

+ 〈
Ẽ s−1(cu), v

〉
Ω

(3.6)

and Ẽ s−1 : Hs−1(Ω) → H̃ s−1(Ω) is a bounded extension operator, which is unique by Theorem 2.16. Note that by (2.2) one

can rewrite (3.5) also as

( Ǎu, v)Ω := Φ(u, v) ∀v ∈ H2−s(Ω),

where Φ(u, v) = Ě(u, v) is the sesquilinear form.

If s = 1, i.e. u, v ∈ H1(Ω), evidently

Ě(u, v) = E(u, v) =
∫
Ω

[
n∑

i, j=1

(aij∂ ju) · ∂i v +
n∑
j=1

(b j∂ ju) · v + cu · v
]
dx.

The aggregate operator Ǎ : Hs(Ω) → H̃ s−2(Ω) = [H2−s(Ω)]∗ is bounded since ∂i v ∈ H1−s(Ω), v ∈ H2−s(Ω) ⊂ H1−s(Ω).

For any u ∈ Hs(Ω), the functional Ǎu belongs to H̃ s−2(Ω) and is an extension of the functional Au ∈ Hs−2(Ω) from the

domain of definition H̃2−s(Ω) ⊂ H2−s(Ω) to the domain of definition H2−s(Ω).

The functional Ǎu is not the only possible extension of the functional Au, and any functional of the form

Ǎu + g, g ∈ Hs−2
∂Ω (3.7)

gives another extension. On the other hand, any extension of the domain of definition of the functional Au from H̃2−s(Ω)

to H2−s(Ω) has evidently form (3.7). The existence of such extensions is provided by Lemma 2.15.

For u ∈ Hs(Ω), s > 3
2
, the strong (classical) co-normal derivative operator

T+
c u(x) :=

n∑
i, j=1

aij(x)γ
+[

∂ ju(x)
]
νi(x) (3.8)

is well defined on ∂Ω in the sense of traces. Here γ +[∂ ju] ∈ Hs− 3
2 (∂Ω) ⊂ L2(∂Ω) if 3

2
< s < 5

2
, while the outward (to Ω)

unit normal vector ν(x) at the point x ∈ ∂Ω belongs to L∞(∂Ω) for the Lipschitz boundary ∂Ω , implying T+
c u ∈ L2(∂Ω).

Note that for Lipschitz domains one can not generally expect that T+
c u belongs to Hs(∂Ω), s > 0, even for infinitely

smooth u.

We can extend the definition of the generalized co-normal derivative, given in [13, Lemma 4.3] for s = 1 (cf. also [11,

Lemma 2.2] for the generalized co-normal derivative on a manifold boundary), to a range of Sobolev spaces as follows.

Definition 3.1. Let Ω be a Lipschitz domain, 1
2

< s < 3
2
, u ∈ Hs(Ω), and Au = f̃ |Ω in Ω for some f̃ ∈ H̃ s−2(Ω). Let us define

the generalized co-normal derivative T+( f̃ ,u) ∈ Hs− 3
2 (∂Ω) as〈

T+( f̃ ,u), w
〉
∂Ω

:= Ě(u, γ−1w) − 〈 f̃ , γ−1w〉Ω = 〈 Ǎu − f̃ , γ−1w〉Ω ∀w ∈ H
3
2−s(∂Ω), (3.9)

where γ−1 : H 3
2 −s(∂Ω) → H2−s(Ω) is a bounded right inverse to the trace operator.

The notation T+( f̃ ,u) corresponds to the notation T̃+( f̃ ,u) in [17].

Theorem 3.2. Under the hypotheses of Definition 3.1, the generalized co-normal derivative T+( f̃ ,u) is independent of the opera-

tor γ−1 , the estimate∥∥T+( f̃ ,u)
∥∥
H

s− 3
2 (∂Ω)

� C1‖u‖Hs(Ω) + C2‖ f̃ ‖H̃ s−2(Ω)
(3.10)

takes place, and the first Green identity holds in the following form,〈
T+( f̃ ,u), γ +v

〉
∂Ω

= Ě(u, v) − 〈 f̃ , v〉Ω = 〈 Ǎu − f̃ , v〉Ω ∀v ∈ H2−s(Ω). (3.11)

Proof. For s = 1 the theorem proof is available in [13, Lemma 4.3], which idea is extended here to the whole range
1
2

< s < 3
2
.

By Lemma 2.6, a bounded operator γ−1 : H 3
2 −s(∂Ω) → H2−s(Ω) does exist. Then estimate (3.10) follows from (3.9).

To prove independence of the co-normal derivative T+( f̃ ,u) of γ−1, let us consider two co-normal derivatives generated

by two different operators γ ′−1 and γ ′′−1. Then their difference is〈
T ′+( f̃ ,u) − T ′′+( f̃ ,u), w

〉
∂Ω

= 〈
Ǎu − f̃ , γ ′−1w − γ ′′−1w

〉
Ω

∀w ∈ H
3
2−s(∂Ω).
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By definition, Ǎu − f̃ ∈ Hs−2
∂Ω , which by Corollary 2.11 implies that〈

Ǎu − f̃ , γ ′−1w − γ ′′−1w
〉
Ω

= 〈
Ǎu − f̃ , γ ′−1w − γ ′′−1w

〉
Rn = 〈

γ ∗γ ∗−1( Ǎu − f̃ ), γ ′−1w − γ ′′−1w
〉
Rn

= 〈
γ ∗−1( Ǎu − f̃ ), γ γ ′−1w − γ γ ′′−1w

〉
∂Ω

= 〈
γ ∗−1( Ǎu − f̃ ), w − w

〉
∂Ω

= 0 ∀w ∈ H
3
2−s(∂Ω).

To prove (3.11), let V ∈ H2−s(Rn) be such that v = V |Ω implying γ +v = γ V . Taking again into account that Ǎu − f̃ ∈
Hs−2

∂Ω , we have by Corollary 2.11,〈
T+( f̃ ,u), γ +v

〉
∂Ω

= 〈
Ǎu − f̃ , γ−1γ

+v
〉
Ω

= 〈 Ǎu − f̃ , γ−1γ V 〉Rn

= 〈
γ ∗γ ∗−1( Ǎu − f̃ ), V

〉
Rn = 〈 Ǎu − f̃ , V 〉Rn = 〈 Ǎu − f̃ , v〉Ω

as required. �
Because of the involvement of f̃ , the generalized co-normal derivative T+( f̃ ,u) is generally non-linear in u. It becomes

linear if a linear relation is imposed between u and f̃ (including behavior of the latter on the boundary ∂Ω), thus fixing an

extension of f̃ |Ω into H̃ s−2(Ω). For example, f̃ |Ω can be extended as f̌ := Ǎu, which generally does not coincide with f̃ .

Then obviously, T+( f̌ ,u) = T+( Ǎu,u) = 0, meaning that the co-normal derivatives associated with any other possible ex-

tension f̃ appears to be aggregated in f̌ as

〈 f̌ , v〉Ω = 〈 f̃ , v〉Ω + 〈
T+( f̃ ,u), γ +v

〉
∂Ω

(3.12)

due to (3.11). This justifies the term aggregate for the extension f̌ , and thus for the operator Ǎu.

As follows from Definition 3.1, the generalized co-normal derivative is still linear with respect to the couple ( f̃ ,u), i.e.,

T+(α1 f̃1,α1u1) + T+(α2 f̃2,α2u2) = T+(α1 f̃1 + α2 f̃2,α1u1 + α2u2)

for any complex numbers α1,α2.

In fact, for a given function u ∈ Hs(Ω), 1
2

< s < 3
2
, any distribution τ ∈ Hs− 3

2 (∂Ω) may be nominated as a co-normal

derivative of u, by an appropriate extension f̃ of the distribution Au ∈ Hs−2(Ω) into H̃ s−2(Ω). This extension is again given

by the second Green formula (3.11) re-written as follows (cf. [2, Section 2.2, item 4] for s = 1),

〈 f̃ , v〉Ω := Ě(u, v) − 〈
τ ,γ +v

〉
∂Ω

= 〈
Ǎu − γ +∗τ , v

〉
Ω

∀v ∈ H2−s(Ω). (3.13)

Here the operator γ +∗ : Hs− 3
2 (∂Ω) → H̃ s−2(Ω) is adjoined to the trace operator, 〈γ +∗τ , v〉Ω := 〈τ ,γ +v〉∂Ω for all τ ∈

Hs− 3
2 (∂Ω) and v ∈ H2−s(Ω). Evidently, the distribution f̃ defined by (3.13) belongs to H̃ s−2(Ω) and is an extension of the

distribution Au into H̃ s−2(Ω) since γ +v = 0 for v ∈ H̃2−s(Ω).

For u ∈ C1(Ω) ⊂ H1(Ω), one can take τ equal to the strong co-normal derivative, T+
c u ∈ L∞(∂Ω), and relation (3.13) can

be considered as the classical extension of f = Au ∈ H−1(Ω) to f̃ c ∈ H̃−1(Ω), which is evidently linear.

3.2. Boundary value problems

Consider the BVP weak settings for PDE system (3.1) on Lipschitz domain for 1
2

< s < 3
2
.

The Dirichlet problem: for f ∈ Hs−2(Ω) and ϕ0 ∈ Hs− 1
2 (∂Ω), find u ∈ Hs(Ω) such that

〈Au, v〉Ω = 〈 f , v〉Ω ∀v ∈ H̃2−s(Ω), (3.14)

γ +u = ϕ0 on ∂Ω. (3.15)

The Neumann problem: for f̌ ∈ H̃ s−2(Ω), find u ∈ Hs(Ω) such that

〈 Ǎu, v〉Ω = 〈 f̌ , v〉Ω ∀v ∈ H2−s(Ω). (3.16)

Here Au and Ǎu are defined by (3.4) and (3.5), respectively.

To set the mixed problem, let ∂DΩ and ∂NΩ = ∂Ω \ ∂DΩ be nonempty, open sub-manifolds of ∂Ω , and Hs
0(Ω, ∂DΩ) =

{w ∈ Hs(Ω): γ +w = 0 on ∂DΩ}. We introduce the mixed aggregate operator Ǎ∂DΩ : Hs(Ω) → [H2−s
0 (Ω, ∂DΩ)]∗ , defined as

〈 Ǎ∂DΩu, v〉Ω := 〈 Ǎu, v〉Ω = Ě(u, v) ∀v ∈ H2−s
0 (Ω,∂DΩ).

The mixed operator Ǎ∂DΩ is bounded by the same argument as the aggregate operator Ǎ. For any u ∈ Hs(Ω), the dis-

tribution Ǎ∂DΩu belongs to [H2−s
0 (Ω, ∂DΩ)]∗ and is an extension of the functional Au ∈ Hs−2(Ω) from the domain of
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definition H̃2−s(Ω) = H2−s
0 (Ω) ⊂ H2−s

0 (Ω, ∂DΩ) to the domain of definition H2−s
0 (Ω, ∂DΩ), and a restriction of the func-

tional Ǎu ∈ H̃ s−2(Ω) from the domain of definition H2−s(Ω) ⊃ H2−s
0 (Ω, ∂DΩ) to the domain of definition H2−s

0 (Ω, ∂DΩ).

For v ∈ H2−s
0 (Ω, ∂DΩ), the trace γ +v belongs to H̃ (∂NΩ). If Au = f̃ |Ω in Ω for some f̃ ∈ H̃ s−2(Ω), then the first

Green identity (3.11) gives,

〈 Ǎ∂DΩu, v〉Ω = 〈 f̌m, v〉Ω,

〈 f̌m, v〉Ω = 〈 f̃ , v〉Ω + 〈
T+( f̃ ,u), γ +v

〉
∂NΩ

∀v ∈ H2−s
0 (Ω,∂DΩ), (3.17)

where, evidently, f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]∗ . This leads to the following weak setting.

The mixed (Dirichlet–Neumann) problem: for f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]∗ and ϕ0 ∈ Hs− 1

2 (∂DΩ), find u ∈ Hs(Ω) such that

〈 Ǎ∂DΩu, v〉Ω = 〈 f̌m, v〉Ω ∀v ∈ H2−s
0 (Ω,∂DΩ), (3.18)

γ +u = ϕ0 on ∂DΩ. (3.19)

The Neumann and the mixed problems are formulated in terms of the aggregate right-hand sides f̌ and f̌m , respectively,

prescribed on their own, i.e., without necessary splitting them into the right-hand side inside the domain Ω and the part

related with the prescribed co-normal derivative. If a right-hand side extension f̃ and an associated non-zero generalized

co-normal derivative T+( f̃ ,u) are prescribed instead, then f̌ and f̌m can be expressed through them by relations (3.12),

(3.17). Thus the co-normal derivative does not enter, in fact, the weak settings of the Dirichlet, Neumann or mixed problem,

implying that the non-uniqueness of T+( f̃ ,u) for a given function u ∈ Hs(Ω), 1
2

< s < 3
2
, does not influence the BVP weak

settings (cf. [2, Section 2.2, item 4] for s = 1). On the other hand, for a given u ∈ Hs(Ω) the aggregate right-hand sides f̌

and f̌m are uniquely determined by (3.16), (3.18), as are, of course, f and ϕ0 by (3.14), (3.15)/(3.19).

Note that one can take v = w to make the settings (3.14)–(3.15), (3.16) and (3.18)–(3.19) look closer to the usual varia-

tional formulations, cf. e.g. [12].

3.3. Canonical co-normal derivative

As we have seen above, for an arbitrary u ∈ Hs(Ω), 1
2

< s < 3
2
, the co-normal derivative T+( f̃ ,u) is generally non-

uniquely determined by u. An exception is T+( Ǎu,u) ≡ 0 but such co-normal derivative evidently differs from the strong co-

normal derivative T+
c u, given by (3.8) for sufficiently smooth u. Another one way of making generalized co-normal derivative

unique in u ∈ H1(Ω) was presented in [7, Lemma 5.1.1] and is in fact associated with an extension of Au ∈ H−1(Ω) to

f̃ ∈ H̃−1(Ω), such that f̃ is orthogonal in H−1(Rn) to H−1
∂Ω ⊂ H−1(Rn). However it appears (see Lemma A.1), that even for

infinitely smooth functions f such extension f̃ does not generally belong to L2(R
n), which implies that the so-defined co-

normal derivative operator τ from [7, Lemma 5.1.1] is not a bounded extension of the strong co-normal derivative operator.

Nevertheless, it is still possible to point out some subspaces of Hs(Ω), 1
2

< s < 3
2
, where a unique definition of the co-

normal derivative by u is possible and leads to the strong co-normal derivative for sufficiently smooth u. We define below

one such sufficiently wide subspace.

Definition 3.3. Let s ∈ R and A∗ : Hs(Ω) → D∗(Ω) be a linear operator. For t � − 1
2
, we introduce a space Hs,t(Ω; A∗) :=

{g: g ∈ Hs(Ω), A∗g|Ω = f̃ g |Ω, f̃ g ∈ H̃t(Ω)} equipped with the graphic norm, ‖g‖2
Hs,t (Ω;A∗)

:= ‖g‖2Hs(Ω) + ‖ f̃ g‖2
H̃t (Ω)

.

The distribution f̃ g ∈ H̃t(Ω), t � − 1
2
, in the above definition is an extension of the distribution A∗g|Ω ∈ Ht(Ω), and the

extension is unique (if it does exist), since otherwise the difference between any two extensions belongs to Ht
∂Ω but Ht

∂Ω =
{0} for t � − 1

2
due to the Theorem 2.10. The uniqueness implies that the norm ‖g‖Hs,t (Ω;A∗) is well defined. Note that

another subspace of such kind, where A∗g|Ω belongs to Lp(Ω) instead of Ht(Ω), was presented in [6, p. 59]. A particular

case, Hs,0(Ω; A∗), was extensively employed in [4].

If s1 � s2 and t1 � t2, then we have the embedding, Hs2,t2 (Ω; A∗) ⊂ Hs1,t1 (Ω; A∗).

Remark 3.4. If s ∈ R, − 1
2

< t < 1
2
, and A∗ : Hs(Ω) → Ht(Ω) is a linear continuous operator, then Hs,t(Ω; A∗) = Hs(Ω) by

Theorem 2.16.

Lemma 3.5. Let s ∈ R. If a linear operator A∗ : Hs(Ω) → D∗(Ω) is continuous, then the space Hs,t(Ω; A∗) is complete for any

t � − 1
2
.

Proof. Let {gk} be a Cauchy sequence in Hs,t(Ω; A∗). Then there exists a Cauchy sequence { f̃k} in H̃t(Ω) such that

f̃k|Ω = A∗gk|Ω . Since Hs(Ω) and H̃t(Ω) are complete, there exist elements g0 ∈ Hs(Ω) and f̃0 ∈ H̃t(Ω) such that
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‖gk − g0‖Hs(Ω) → 0, ‖ f̃k − f̃0‖H̃t (Ω) → 0 as k → ∞. On the other hand, continuity of A∗ implies that |〈A∗(gk − g0),φ〉| → 0

for any φ ∈D(Ω). Taking into account that A∗gk|Ω = f̃k|Ω , we obtain∣∣〈 f̃0 − A∗g0, φ〉∣∣ �
∣∣〈 f̃0 − f̃k, φ〉∣∣ + ∣∣〈 f̃k − A∗g0, φ〉∣∣ � ‖ f̃0 − f̃k‖H̃t (Ω)‖φ‖H−t (Ω) + ∣∣〈A∗(gk − g0),φ

〉∣∣ → 0,

k → ∞, ∀φ ∈ D(Ω),

i.e., A∗g0|Ω = f̃0|Ω ∈ Ht(Ω), which implies A∗g0 is extendable to f̃0 ∈ H̃t(Ω) and thus g0 ∈ Hs,t(Ω; A∗). �
We will further use the space Hs,t(Ω; A∗) for the case when the operator A∗ is the operator A from (3.2) or the

operator A∗ formally adjoined to it (see Section 4).

Definition 3.6. Let s ∈ R, t � − 1
2
. The operator Ã mapping functions u ∈ Hs,t(Ω; A) to the extension of the distribution

Au ∈ Ht(Ω) to H̃t(Ω) will be called the canonical extension of the operator A.

Remark 3.7. If s ∈ R, t � − 1
2
, then ‖ Ãu‖H̃t (Ω)

� ‖u‖Hs,t (Ω;A) by definition of the space Hs,t(Ω; A), i.e., the linear operator

Ã : Hs,t(Ω; A) → H̃t(Ω) is continuous. Moreover, if − 1
2

< t < 1
2
, then by Theorem 2.16 and uniqueness of the extension of

Ht(Ω) to H̃t(Ω), we have the representation Ã := Ẽt A.

As in [17, Definition 3] for scalar PDE, let us define the canonical co-normal derivative operator. This extends [6,

Theorem 1.5.3.10] and [4, Lemma 3.2] where co-normal derivative operators acting on functions from H
1,0
p (Ω;�) and

H1,0(Ω; A), respectively, were defined.

Definition 3.8. For u ∈ Hs,− 1
2 (Ω; A), 1

2
< s < 3

2
, we define the canonical co-normal derivative as T+u := T+( Ãu,u) ∈

Hs− 3
2 (∂Ω), i.e.,〈

T+u, w
〉
∂Ω

:= Ě(u, γ−1w) − 〈 Ãu, γ−1w〉Ω = 〈 Ǎu − Ãu, γ−1w〉Ω ∀w ∈ H
3
2−s(∂Ω),

where γ−1 : Hs− 1
2 (∂Ω) → Hs(Ω) is a bounded right inverse to the trace operator.

Theorem 3.2 for the generalized co-normal derivative and Definition 3.3 imply the following statement.

Theorem 3.9. Under the hypotheses of Definition 3.8, the canonical co-normal derivative T+u is independent of the operator γ−1 , the

operator T+ : Hs,− 1
2 (Ω; A) → Hs− 3

2 (∂Ω) is continuous, and the first Green identity holds in the following form,〈
T+u, γ +v

〉
∂Ω

= 〈
T+( Ãu,u), γ +v

〉
∂Ω

= Ě(u, v) − 〈 Ãu, v〉Ω = 〈 Ǎu − Ãu, v〉Ω ∀v ∈ H2−s(Ω).

Thus unlike the generalized co-normal derivative, the canonical co-normal derivative is uniquely defined by the function

u and the operator A only, uniquely fixing an extension of the latter on the boundary.

Definitions 3.1 and 3.8 imply that the generalized co-normal derivative of u ∈ Hs,− 1
2 (Ω; A), 1

2
< s < 3

2
, for any other

extension f̃ ∈ H̃ s−2(Ω) of the distribution Au|Ω ∈ H− 1
2 (Ω) can be expressed as〈

T+( f̃ ,u), w
〉
∂Ω

= 〈
T+u, w

〉
∂Ω

+ 〈 Ãu − f̃ , γ−1w〉Ω ∀w ∈ H
3
2−s(∂Ω).

Note that the distributions Ǎu − f̃ , Ǎu − Ãu and Ã − f̃ belong to H2−s
∂Ω since Ãu, Ǎu, f̃ belong to H̃2−s(Ω), while

Ãu|Ω = Ǎu|Ω = f̃ |Ω = Au|Ω ∈ Hs−2(Ω).

Since by Theorem 3.9 the canonical co-normal derivative does not depend on the extension operator γ−1, the latter can

be always chosen such that γ−1w has a support only near the boundary, which means that the co-normal derivative T+u

is determined by the behavior of u near the boundary. We can formalize this in the following statement.

Theorem 3.10. Let Ω and Ω ′ ⊂ Ω be bounded or unbounded open Lipschitz domains, ∂Ω ⊂ ∂Ω ′ , u ∈ Hs,− 1
2 (Ω; A), u ∈

Hs,− 1
2 (Ω ′; A), 1

2
< s < 3

2
, while T+u and T ′+u be the canonical co-normal derivatives on ∂Ω and ∂Ω ′ respectively. Then T+u =

r
∂Ω

T ′+u.

Proof. By the definition of the restriction operator r
∂Ω

and Definition 3.8 we have,〈
T ′+u, w

〉
∂Ω ′ := ĚΩ ′

(
u, γ ′−1w

) − 〈
ÃΩ ′u, γ ′−1w

〉
Ω ′ ∀w ∈ H

3
2−s

(
∂Ω ′): r

∂Ω′\∂Ω
w = 0,
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where γ ′−1 : Hs− 1
2 (∂Ω ′) → Hs(Ω ′) is a bounded right inverse to the trace operator. Since γ γ ′−1w = 0 on ∂Ω ′ \ ∂Ω , we can

extend γ ′−1w by zero on Ω \ Ω ′ to γ−1w . The operator γ−1 : Hs− 1
2 (∂Ω) → Hs(Ω) is continuous, and we arrive at〈

T ′+u, w
〉
∂Ω

= ĚΩ(u, γ−1w) − 〈 ÃΩ ′u, γ−1w〉Ω = ĚΩ(u, γ−1w) − 〈 ÃΩu, γ−1w〉Ω = 〈
T+u, w

〉
∂Ω

∀w ∈ H
3
2−s(∂Ω). �

Theorem 3.10 can be considered as an alternative definition of the canonical co-normal derivative, where the domain Ω ′
can be chosen arbitrarily small, and particularly can be taken bounded when Ω is unbounded (with compact boundary).

Note that similar reasoning holds also for the generalized co-normal derivative.

To give conditions when the canonical co-normal derivative T+u coincides with the strong co-normal derivative T+
c u,

if the latter does exist in the trace sense, we prove in Lemma 3.12 below that D(Ω) is dense in Hs,t(Ω; A). The proof is

based on the following local regularity theorem well known for the case of infinitely smooth coefficients, see e.g. [20,1,12].

Theorem 3.11. Let Ω be an open set in R
n, s1 ∈ R, function u ∈ H

s1
loc

(Ω)m, m � 1, satisfy strongly elliptic system (3.1) in Ω with

f ∈ H
s2
loc

(Ω)m, s2 > s1 − 2, and infinitely smooth coefficients. Then u ∈ H
s2+2
loc

(Ω)m.

Now we are in the position to prove the density theorem.

Theorem 3.12. If Ω is a bounded Lipschitz domain, s ∈ R, − 1
2

� t < 1
2
and the operator A is strongly elliptic on Ω , then D(Ω) is

dense in Hs,t(Ω; A).

Proof. We modify appropriately the proof from [6, Lemma 1.5.3.9] given for another space of such kind associated with the

Laplace operator.

For every continuous linear functional l on Hs,t(Ω; A) there exist distributions h̃ ∈ H̃−s(Ω) and g ∈ H−t(Ω) such that

l(u) = 〈h̃,u〉Ω + 〈g, Ãu〉Ω.

To prove the lemma claim, it suffice to show that any l, which vanishes on D(Ω), will vanish on any u ∈ Hs,t(Ω; A).

Indeed, if l(φ) = 0 for any φ ∈D(Ω), then

〈h̃, φ〉Ω + 〈g, Ãφ〉Ω = 0. (3.20)

Let us consider the case − 1
2

< t < 1
2
first and extend g outside Ω to g̃ = Ẽ−t g ∈ H̃−t(Ω). Eq. (3.20) gives by Theorem 2.16,

〈h̃, φ〉Ω ′ + 〈g̃, Aφ〉Ω ′ = 〈h̃, φ〉Ω + 〈g̃, Aφ〉Ω = 〈h̃, φ〉Ω + 〈
Ẽ−t g, Aφ

〉
Ω

= 〈h̃, φ〉Ω + 〈
g, Ẽt Aφ

〉
Ω

= 〈h̃, φ〉Ω + 〈g, Ãφ〉Ω = 0

for any φ ∈D(Ω ′) on some domain Ω ′ ⊃ Ω , where the operator A is still strongly elliptic. This means

A∗ g̃ = −h̃ in Ω ′ (3.21)

in the sense of distributions, where A∗ is the operator formally adjoint to A. If t � s − 2, then evidently g̃ ∈ H̃2−s(Ω). If

t > s − 2, then (3.21) and Theorem 3.11 imply g̃ ∈ H2−s
loc

(Ω ′) and consequently g̃ ∈ H̃2−s(Ω).

In the case t = − 1
2
, one can extend g ∈ H

1
2 (Ω) outside Ω by zero to g̃ ∈ H̃

1
2 −ε(Ω), 0 < ε , and prove as in the previous

paragraph that g̃ ∈ H̃2−s(Ω).

If − 1
2

< t < 1
2
or [t = − 1

2
, s � 3

2
] then for any u ∈ Hs,t(Ω; A), we have,

l(u) = 〈−A∗ g̃,u
〉
Ω

+ 〈g, Ãu〉Ω = −〈g̃, Au〉Ω + 〈g̃, Au〉Ω = 0.

Thus l is identically zero.

On the other hand, if t = − 1
2
, s > 3

2
, let {g̃k} ∈ D(Ω) be a sequence converging, as k → ∞, to g in H

1
2

0 (Ω) = H
1
2 (Ω), cf.

Theorem 2.12, and thus to g̃ in H̃2−s(Ω). Then for any u ∈ Hs, 12 (Ω; A), we have,

l(u) = 〈−A∗ g̃,u
〉
Ω

+ 〈g, Ãu〉Ω = lim
k→∞

{〈−A∗ g̃k,u
〉
Ω

+ 〈g̃k, Ãu〉Ω
} = lim

k→∞
{−〈g̃k, Au〉Ω + 〈g̃k, Au〉Ω

} = 0,

which completes the proof. �
Lemma 3.13. Let u ∈ Hs,− 1

2 (Ω; A), 1
2

< s < 3
2
, and {uk} ∈D(Ω) be a sequence such that

‖uk − u‖
H

s,− 1
2 (Ω;A)

→ 0 as k → ∞. (3.22)

Then ‖T+
c uk − T+u‖

H
s− 3

2 (∂Ω)
→ 0 as k → ∞.
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Proof. Using the definition of T+u and the classical first Green identity for uk , we have for any w ∈ H
3
2 −s(∂Ω),

∣∣〈T+u − T+
c uk, w

〉
∂Ω

∣∣ = ∣∣Ě(u − uk, γ−1w) − 〈
Ã(u − uk), γ−1w

〉
Ω

∣∣ � C‖u − uk‖
H

s,− 1
2 (Ω;A)

‖w‖
H

3
2

−s
(∂Ω)

.

This implies∥∥T+
c uk − T+u

∥∥
H

s− 3
2 (∂Ω)

� ‖u − uk‖
H

s,− 1
2 (Ω;A)

→ 0 as k → ∞. �
Note that a sequence satisfying (3.22) does always exist for bounded Lipschitz domains by Theorem 3.12.

The following statement gives the equivalence of the classical co-normal derivative (in the trace sense) and the canonical

co-normal derivative, for functions from Hs(Ω), s > 3
2
.

Corollary 3.14. If u ∈ Hs(Ω), s > 3
2
, then T+u = T+

c u ∈ L2(∂Ω).

Proof. If u ∈ Hs(Ω), 3
2

< s < 5
2
, then γ +[∂ ju] ∈ Hs− 3

2 (∂Ω), T+
c u ∈ L2(∂Ω) and u ∈ Hs,s−2(Ω; A) ⊂ Hs,− 1

2 (Ω; A) ⊂
H1,− 1

2 (Ω; A) by Remark 3.4. Let {uk} ∈D(Ω) be a sequence such that ‖uk − u‖Hs(Ω) → 0 and thus

‖uk − u‖
H

1,− 1
2 (Ω;A)

� ‖uk − u‖
H

s,− 1
2 (Ω;A)

� C‖uk − u‖Hs(Ω) → 0, k → ∞.

Then ∥∥T+u − T+
c u

∥∥
H

− 1
2 (∂Ω)

�
∥∥T+u − T+

c uk

∥∥
H

− 1
2 (∂Ω)

+ ∥∥T+
c (uk − u)

∥∥
H

− 1
2 (∂Ω)

,

where the first norm in the right-hand side vanishes as k → ∞ by Lemma 3.13, while for the second norm we have,

∥∥T+
c (uk − u)

∥∥
H

− 1
2 (∂Ω)

�
∥∥∥∥∥

n∑
i, j=1

aijγ
+[

∂ j(uk − u)
]
n j

∥∥∥∥∥
L2(∂Ω)

� C1‖a‖L∞(∂Ω)

∥∥γ +∇(uk − u)
∥∥
L2(∂Ω)

� C2‖a‖L∞(∂Ω)‖uk − u‖Hs(Ω) → 0, k → ∞.

For s � 5
2
the corollary follows by imbedding. �

For a Lipschitz domain Ω , the membership u ∈ H
s,t
loc

(Ω; A) with 1
2

< s < 3
2
, − 1

2
< t < 1

2
implies by Theorem 3.11 that u ∈

Ht+2
loc

(Ω). Thus u ∈ Ht+2
loc

(Ω1) for any Lipschitz subdomain Ω1 of Ω such that Ω1 ⊂ Ω . On ∂Ω1 then T+u = T+
c u ∈ L2(∂Ω1)

by Corollary 3.14.

Lemma 3.15. Let Ω and {Ωk} be Lipschitz domains such that Ωk ⊂ Ω and Ωk → Ω as k → ∞ (cf. Definition 2.1). If u ∈ H
s,t
loc

(Ω; A)

for some s ∈ ( 1
2
, 3
2
) and t ∈ (− 1

2
, 1
2
), then 〈T+u, v+〉∂Ω = limk→∞〈T+

c u, v+〉∂Ωk
for any v ∈ H2−s(Ω+).

Proof. By Theorem 3.10 it suffice to consider only a bounded domain Ω . Let Ω ′
k

:= Ω \ Ωk be the layer between ∂Ω

and ∂Ωk . By Theorem 3.11, u ∈ Ht+2
loc

(Ω), which by Corollary 3.14 implies T+u = T+
c u ∈ L2(∂Ωk) on ∂Ωk . Then〈

T+u, v+〉
∂Ω

− 〈
T+
c u, v+〉

∂Ωk
= 〈

T+u, v+〉
∂Ω ′

k
= ĚΩ ′

k
(u, v) − 〈 ÃΩ ′

k
u, v〉Ω ′

k
= ĚΩ ′

k
(u, v) − 〈Au, ṽΩ ′

k
〉Ω ′

k
, (3.23)

where ÃΩ ′
k
u = Ẽt

Ω ′
k

rΩ ′
k
Au ∈ H̃t(Ω ′

k
) and ṽΩ ′

k
= Ẽ−t

Ω ′
k

rΩ ′
k
v ∈ H̃−t(Ω ′

k
) are the unique extensions of rΩ ′

k
Au ∈ Ht(Ω ′

k
) and rΩ ′

k
v ∈

H2−s(Ω ′
k
) ⊂ H−t(Ω ′

k
), respectively.

By (3.6) and Theorem 2.16 we have for the first term in the right-hand side of (3.23),

∣∣ĚΩ ′
k
(u, v)

∣∣ � C

n∑
i, j=1

‖aij‖L∞(Ω ′
k
)‖∂ ju‖Hs−1(Ω ′

k
)‖∂i v‖H1−s(Ω ′

k
)

+ C

n∑
j=1

‖b j‖L∞(Ω ′
k
)‖∂ ju‖Hs−1(Ω ′

k
)‖v‖H1−s(Ω ′

k
) + C‖c‖L∞(Ω ′

k
)‖u‖Hs−1(Ω ′

k
)‖v‖H1−s(Ω ′

k
),

where C does not depend on k for sufficiently large k. Then for 1
2

< s � 1,
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∣∣ĚΩ ′
k
(u, v)

∣∣ � C

n∑
i, j=1

‖aij‖L∞(Ω)‖∂ ju‖Hs−1(Ω ′
k
)‖∂i v‖H1−s(Ω)

+ C

n∑
j=1

‖b j‖L∞(Ω)‖∂ ju‖Hs−1(Ω ′
k
)‖v‖H1−s(Ω) + C‖c‖L∞(Ω)‖u‖Hs−1(Ω ′

k
)‖v‖H1−s(Ω)

�
{
C1‖∇u‖Hs−1(Ω ′

k
) + C2‖u‖Hs−1(Ω ′

k
)

}‖v‖H2−s(Ω) → 0, k → ∞
by Lemma 2.17 since the Lebesgue measure of Ω ′

k
tends to zero. For 1 < s < 3

2
similarly,

∣∣ĚΩ ′
k
(u, v)

∣∣ � C

n∑
i, j=1

‖aij‖L∞(Ω)‖∂ ju‖Hs−1(Ω)‖∂i v‖H1−s(Ω ′
k
)

+ C

n∑
j=1

‖b j‖L∞(Ω)‖∂ ju‖Hs−1(Ω)‖v‖H1−s(Ω ′
k
) + C‖c‖L∞(Ω)‖u‖Hs−1(Ω)‖v‖H1−s(Ω ′

k
)

�
{
C3‖∇v‖H1−s(Ω ′

k
) + C4‖v‖H1−s(Ω ′

k
)

}‖u‖Hs(Ω) → 0, k → ∞.

For the last term in (3.23) we have by Lemmas 2.18 and 2.17,∣∣〈Au, ṽΩ ′
k
〉Ω ′

k

∣∣ � ‖Au‖Ht (Ω ′
k
)‖ṽΩ ′

k
‖H̃−t (Ω ′

k
) � C‖Au‖Ht (Ω ′

k
)‖v‖H−t (Ω)

� C‖Au‖Ht (Ω ′
k
)‖v‖H2−s(Ω) → 0, k → ∞,

if − 1
2

< t � 0. On the other hand, if 0 < t < 1
2
, then again by Lemmas 2.18 and 2.17,∣∣〈Au, ṽΩ ′

k
〉Ω ′

k

∣∣ = ∣∣〈 ÃΩ ′
k
u, v〉Ω ′

k

∣∣ � ‖ ÃΩ ′
k
u‖H̃t (Ω ′

k
)‖v‖H−t (Ω ′

k
) � C‖Au‖Ht (Ω)‖v‖H−t (Ω ′

k
) → 0, k → ∞. �

Lemma 3.15 allows to show that the classical and canonical co-normal derivatives coincide also in another case (apart

from the one from Corollary 3.14). First note, that C1(Ω) ⊂ H1(Ω) for bounded domain Ω and C1(Ω ′) ⊂ H1(Ω ′) for any

bounded subdomain Ω ′ of unbounded domain Ω , but C1(Ω) is not a subset of H
1,t
loc

(Ω; A). For u ∈ C1(Ω), evidently,

limk→∞〈T+
c u, v+〉∂Ωk

= 〈T+
c u, v+〉∂Ω for any v ∈ H2−s(Ω+) if Ωk → Ω as k → ∞, Ωk ⊂ Ω . This immediately implies the

following statement.

Theorem 3.16. If Ω is a Lipschitz domain and u ∈ C1(Ω) ∩ H
1,t
loc

(Ω; A) for some t ∈ (− 1
2
, 1
2
), then T+u = T+

c u ∈ L∞(∂Ω).

4. Formally adjoined PDE system and the second Green identity

The PDE system formally adjoined to (3.1) is given in the strong form as

A∗v(x) := −
n∑

i, j=1

∂i
[
a�
ji(x)∂ j v(x)

] −
n∑
j=1

∂ j

[
b�
j (x)v(x)

] + c�(x)v(x) = f (x), x ∈ Ω.

Similar to the operator A, for any v ∈ H2−s(Ω), s ∈ R, the weak form of the operator A∗ is〈
A∗v,u

〉
Ω

:= E∗(v,u) ∀u ∈ H̃ s(Ω),

where

E∗(v,u) = E(u, v)

is the bilinear form and so defined operator A∗ : H2−s(Ω) → H−s(Ω) = [H̃ s(Ω)]∗ is bounded for any s ∈ R.

For 1
2

< s < 3
2
let us consider also the aggregate operator Ǎ∗ : H2−s(Ω) → H̃−s(Ω) = [Hs(Ω)]∗ , defined as,〈

Ǎ∗v,u
〉
Ω

:= Ě∗(v,u) ∀u ∈ Hs(Ω), (4.1)

where by (3.6),

Ě∗(v,u) = Ě(u, v) = Φ(u, v) =
n∑

i, j=1

〈
aij∂ ju, Ẽ1−s∂i v

〉
Ω

+
n∑
j=1

〈
b j∂ ju, Ẽ1−s v

〉
Ω

+ 〈
cu, Ẽ1−s v

〉
Ω

(4.2)

which implies that Ǎ∗ : H2−s(Ω) → H̃−s(Ω) is bounded. For any v ∈ H2−s(Ω), the distribution Ǎ∗v belongs to H̃−s(Ω) and

is an extension of the functional A∗v ∈ H−s(Ω) from the domain of definition H̃ s(Ω) to the domain of definition Hs(Ω).
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Relations (4.1), (4.2) and (3.5) lead to the aggregate second Green identity,

〈 Ǎu, v〉Ω = 〈
u, Ǎ∗v

〉
Ω

, u ∈ Hs(Ω), v ∈ H2−s(Ω),
1

2
< s <

3

2
. (4.3)

For a sufficiently smooth function v , let

T+∗c v(x) :=
n∑

i, j=1

a�
ji(x)γ

+[
∂ j v(x)

]
νi(x) +

n∑
i=1

b�
i (x)γ +v(x)νi

be the strong (classical) modified co-normal derivative (it corresponds to B̃ν v in [13]), associated with the operator A∗ .
If v ∈ H2−s(Ω), 1

2
< s < 3

2
, and A∗v = f̃∗|Ω in Ω for some f̃∗ ∈ H̃−s(Ω), we define the generalized modified co-normal

derivative T+∗ ( f̃∗, v) ∈ H
1
2 −s(∂Ω), associated with the operator A∗ , similar to Definition 3.1, as〈

T+∗ ( f̃∗, v), w
〉
∂Ω

:= Ě∗(v, γ−1w) − 〈 f̃∗, γ−1w〉Ω ∀w ∈ Hs− 1
2 (∂Ω).

As in Theorem 3.2, this leads to the following first Green identity for the function v ,〈
T+∗ ( f̃∗, v),u+〉

∂Ω
= Ě∗(v,u) − 〈 f̃∗,u〉Ω ∀u ∈ Hs(Ω), (4.4)

which by (4.2) implies〈
u+, T+∗ ( f̃∗, v)

〉
∂Ω

= Ě(u, v) − 〈u, f̃ ∗〉Ω ∀u ∈ Hs(Ω). (4.5)

If, in addition, Au = f̃ |Ω in Ω with some f̃ ∈ H̃ s−2(Ω), then combining (4.5) and the first Green identity (3.11) for u, we

arrive at the following generalized second Green identity,

〈 f̃ , v〉Ω − 〈u, f̃ ∗〉Ω = 〈
u+, T+∗ ( f̃∗, v)

〉
∂Ω

− 〈
T+( f̃ ,u), v+〉

∂Ω
. (4.6)

Taking in mind (4.4), (4.1) and (3.11), (3.5), this, of course, leads to the aggregate second Green identity (4.3).

If 1
2

< s < 3
2
and v ∈ H2−s,− 1

2 (Ω; A∗), then similar to Definitions 3.6 and 3.8 we can introduce the canonical extension Ã∗

of the operator A∗ , and the canonical modified co-normal derivative T+∗ v := T+∗ ( Ã∗v, v) ∈ H
1
2 −s(∂Ω), i.e.,〈

T+∗ v, w
〉
∂Ω

:= Ě∗(v, γ−1w) − 〈
Ã∗v, γ−1w

〉
Ω

∀w ∈ Hs− 1
2 (∂Ω).

Then the first Green identity (4.5) becomes,〈
u+, T+∗ v

〉
∂Ω

= Ě(u, v) − 〈
u, Ã∗v

〉
Ω

∀u ∈ Hs(Ω).

For u ∈ Hs(Ω), Au = f̃ |Ω in Ω , where f̃ ∈ H̃ s−2(Ω), the second Green identity (4.6) takes form,

〈 f̃ , v〉Ω − 〈
u, Ã∗v

〉
Ω

= 〈
u+, T+∗ v

〉
∂Ω

− 〈
T+( f̃ ,u), v+〉

∂Ω
. (4.7)

This form was a starting point in formulation and analysis of the extended boundary-domain integral equations in [15].

If, moreover, u ∈ Hs,− 1
2 (Ω; A), we obtain from (4.7) the second Green identity for the canonical extensions and canonical

co-normal derivatives,

〈 Ãu, v〉Ω − 〈
u, Ã∗v

〉
Ω

= 〈
u+, T+∗ v

〉
∂Ω

− 〈
T+u, v+〉

∂Ω
. (4.8)

Particularly, if u, v ∈ H1,0(Ω; A), then (4.8) takes the familiar form, cf. [4, Lemma 3.4],∫
Ω

[
v(x)Au(x) − u(x)A∗v(x)

]
dx = 〈

u+, T+∗ v
〉
∂Ω

− 〈
T+u, v+〉

∂Ω
.

Appendix A

Lemma A.1. There exist a distribution w ∈ H−1
∂Ω and a function f ∈ L2(R

n), f = 0 on Ω− , such that (w, f )H−1(Rn) �= 0.

Proof. Under the definition (2.3) of the inner product in Hs(Rn),

(w, f )H−1(Rn) = 〈
w,J −2 f

〉
Rn . (A.1)

By Theorem 2.10, for any distribution w ∈ H−1
∂Ω there exists a distribution v ∈ H−1/2(∂Ω) such that〈

w,J −2 f
〉
Rn = 〈

v, γJ−2 f
〉
∂Ω

, (A.2)

where γ is the trace operator.
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Denoting Φ = J −2 f ∈ H2(Rn), we have, J 2Φ = f in R
n , and taking in mind the explicit representation for the opera-

tor J 2, the latter equation can be rewritten as

J 2Φ ≡ − 1

4π2
�Φ + Φ = f in R

n (A.3)

and its solution as

J−2 f (y) = Φ(y) = P f :=
∫
Ω

F (x, y) f (x)dx, y ∈ R
n.

Here P is the Newton volume potential and F (x, y) is the well known fundamental solution of Eq. (A.3). For example, for

n = 3,

F (x, y) = C
e−2π |x−y|

|x− y| . (A.4)

Then (A.1), (A.2) give,

(w, f )H−1(Rn) = 〈
v, γJ−2 f

〉
∂Ω

= 〈v, γP f 〉∂Ω. (A.5)

If we assume (w, f )H−1(Rn) = 0 for any w ∈ H−1
∂Ω , then (A.5) implies γP f = 0, which is not the case for arbitrary f ∈ L2(Ω)

and particularly for f = 1 in Ω due to (A.4). �
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