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Abstract. The first aim of this paper is to show well-posedness of Dirich-

let and transmission problems in bounded and exterior Lipschitz domains in
Rn, n ≥ 3, for the anisotropic Stokes system with L∞ viscosity tensor coef-

ficient satisfying an ellipticity condition in terms of symmetric matrices with

zero matrix trace, with data from standard and weighted Sobolev spaces. To
this end we reduce the linear problems to equivalent mixed variational formu-

lations and show that the variational problems are well-posed. Then we use

the Leray-Schauder fixed point theorem and establish the existence of a weak
solution for nonlinear Dirichlet and transmission problems for the anisotropic

Navier-Stokes system in bounded Lipschitz domains in R3, with general (in-
cluding large) data in Sobolev spaces. For exterior domains in R3, the analy-
sis of the nonlinear Dirichlet and transmission problems in weighted Sobolev

spaces relies on the existence result for the Dirichlet problem for the anisotropic
Navier-Stokes system in a family of bounded Lipschitz domains. The obtained

estimates for pressure in R3 look new also for the classical isotropic case.
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1. Introduction. Variational methods play a main role in the analysis of boundary
value problems for the Stokes and Navier-Stokes systems. Girault and Sequeira [25]
have used a mixed variational formulation for the exterior Dirichlet problem for the
constant coefficient Stokes system in weighted Sobolev spaces on exterior Lipschitz
domains in Rn, n = 2, 3, and obtained well-posedness and regularity results for
such a problem. Alliot and Amrouche [4] have used a variational approach to
obtain weak solutions for the exterior Stokes problem in weighted Sobolev spaces.
Existence and pointwise bounds of the fundamental solution for the Stokes system
with measurable coefficients in Rn (n ≥ 3) have been obtained by Choi and Yang
in [17] under the assumption of local Hölder continuity of weak solutions of the
Stokes system. They also discussed the existence and pointwise bounds of the
Green function for the Stokes system with measurable coefficients on unbounded
domains where the divergence equation is solvable, particularly on the half-space
(see also [15, 16]).

Mitrea and Wright [41] have used the layer potential theory and obtained well-
posedness results for boundary problems for the constant coefficient Stokes system
in arbitrary Lipschitz domains in Rn and in Lp, Sobolev, and Besov spaces. The
authors in [29] used a layer potential method and a fixed point technique to show
an existence result for a nonlinear Neumann-transmission problem for the constant-
coefficient Stokes and Brinkman systems in Lp, Sobolev, and Besov spaces (see also
[30]).

Dindos̆ and Mitrea [19] developed layer potential methods for the smooth coef-
ficient Stokes system on compact Riemannian manifolds, and used them to show
well-posedness of the Poisson problems for the Navier-Stokes system with Dirich-
let condition and large data in Sobolev spaces on Lipschitz domains in compact
Riemannian manifolds with dimension at most 4.

An alternative approach, which reduces various boundary problems for variable
coefficient elliptic partial differential equations to boundary-domain integral equa-
tions (BDIEs), by means of explicit parametrix-based integral potentials, was ex-
plored, e.g., in [13, 14, 40] and the references therein.

In [31] we have used a variational approach in the analysis of transmission prob-
lems in weighted Sobolev spaces and in the pseudostress setting for anisotropic
Stokes and Navier-Stokes systems with an L∞ strongly elliptic tensor coefficient.
For the nonlinear problems we have considered small data (see also the well-posedness

results in [33, 34] for the Stokes and Navier-Stokes systems with non-smooth coef-
ficients in compact Riemannian manifolds).

In this paper we continue the analysis of transmission problems for anisotropic
Stokes and Navier-Stokes systems, by imposing a less restrictive ellipticity condition
than that in [31]. Indeed, we consider the L∞ viscosity tensor coefficient satisfying
a strong ellipticity condition only with respect to all symmetric matrices in Rn×n
with zero matrix trace (see (1.4)). First, we explore equivalent mixed variational
formulations and prove the well-posedness of some Dirichlet and transmission prob-
lems for the anisotropic Stokes system in bounded Lipschitz domains of Rn with
given data in standard Sobolev spaces. Then we analyze the well-posedness of
the exterior Dirichlet and transmission problems for the Stokes system in weighted
Sobolev spaces. Next, we use the Leray-Schauder fixed point theorem and prove the
existence of weak solutions of the Dirichlet and transmission problems in bounded
Lipschitz domains in R3 for the anisotropic Navier-Stokes system with general (in-
cluding large) data in weighted Sobolev spaces. Finally, we prove the existence of
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weak solutions u of the exterior Dirichlet and transmission problems in R3 and in
exterior Lipschitz domains in R3 for the anisotropic Navier-Stokes system with gen-
eral data in L2-based weighted Sobolev spaces. The analysis relies on the existence
result for a Dirichlet problem for the anisotropic Navier-Stokes system in a family of
bounded Lipschitz domains (or, equivalently, for a Dirichlet-transmission problem
for the Navier-Stokes system in a family of bounded composite Lipschitz domains)
in R3. For R3 and exterior domains in R3, we particularly show the existence of a
pressure field π, which belongs locally to L2, such that (u, π) solves the transmission
problem, or the exterior Dirichlet problem, for the Navier-Stokes system.

The main results presented in this paper include:
• Analysis of the Stokes and Navier-Stokes equations for anisotropic fluids with

a new non-standard relaxed ellipticity condition for the viscosity tensor coef-
ficient.

• Analysis of rather general anisotropic transmission problems with jumps of
generalized conormal derivatives.

• Explicit estimates for solutions of the linear problems for the anisotropic Stokes
system that are used to obtain new estimates for the pressure in the nonlin-
ear problems for the anisotropic Navier-Stokes system in exterior Lipschitz
domains. These estimates look new also for the classical isotropic case.

The well-posedness results in the Hilbert L2-based Sobolev spaces developed in
this paper for linear boundary value problems can be extended to a more general
setting of Lp-based Sobolev or Besov spaces with p in some open interval containing
2, by exploiting the continuity in H1

p × Lp-Sobolev spaces, p > 1, of an operator
related to such a boundary value problem, its invertibility for p = 2, and the prop-
erty that such spaces and their duals determine complex interpolation scales (see
[41], [31] and [34] for further details). One can also extend the variational approach
to mixed conditions on polyhedral domains and domains with cuts following [36].

The analysis of boundary problems for the anisotropic Stokes and Navier-Stokes
systems may be employed in modelling physical, engineering, or industrial phenom-
ena related to immiscible fluid flows, as well as inhomogeneous fluid flows with
density dependent viscosity (see, e.g., [15]).

1.1. The anisotropic Stokes system with L∞ symmetrically elliptic tensor
coefficient. All along the paper we use the Einstein summation convention for
repeated indices from 1 to n, and the standard notation ∂α for the first order
partial derivative ∂

∂xα
, α = 1, . . . , n. Let Ω ⊆ Rn, n ≥ 2, be an open set and let L

be a second order differential operator in the divergence form

Lu = div (AE(u)) ⇐⇒ (Lu)i := ∂α

(
aαβij Ejβ(u)

)
, i = 1, . . . , n, (1.1)

where u = (u1, . . . , un)>, and E(u) = (Ejβ(u))1≤j,β≤n is the symmetric part of the

gradient ∇u. Therefore, the components of the tensor field E(u) are defined by
Ejβ(u) := 1

2 (∂juβ + ∂βuj).
The viscosity tensor coefficient A in the operator L consists of n×n matrix-valued

functions Aαβ = Aαβ(x) with essentially bounded, real-valued entries, i.e.,

A =
(
Aαβ

)
1≤α,β≤n =

(
aαβij

)
1≤α,β,i,j≤n

, aαβij ∈ L∞(Ω), 1 ≤ α, β, i, j ≤ n, (1.2)

satisfying the symmetry conditions

aαβij (x) = aiβαj(x) = aαjiβ (x), x ∈ Ω (1.3)
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(cf. [42, Eq. (3.2)], [20, Eqs. (6), (7)]). Note that the symmetry conditions (1.3)

do not imply the symmetry aαβij (x) = aβαji (x), which will be generally not assumed
in the paper. In addition, we assume that the coefficients satisfy the following
ellipticity condition, which asserts that there exists a constant cA > 0 such that for
almost all x ∈ Ω,

aαβij (x)ξiαξjβ ≥ c−1
A |ξ|

2, ∀ ξ = (ξiα)i,α=1,...,n ∈ Rn×n with ξ = ξ> and

n∑
i=1

ξii = 0,

(1.4)

where |ξ|2 = ξiαξiα. Note that the ellipticity condition (1.4) is assumed only for all
symmetric matrices ξ = (ξiα)i,α=1,...,n ∈ Rn×n, cf. [42, Eqs. (3.1), (3.3)], having
zero matrix trace,

∑n
i=1 ξii = 0.

In view of (1.2), A is endowed with the norm

‖A‖L∞(Ω) := max
i,j,α,β∈{1,...,n}

{
‖aαβij ‖L∞(Ω)

}
. (1.5)

The conditions (1.3) allow us to express the operator L in the equivalent forms

(Lu)i = ∂α

(
aαβij Ejβ(u)

)
= ∂α

(
aαβij ∂βuj

)
, i = 1, . . . , n, (1.6)

Lu = ∂α
(
Aαβ∂βu

)
. (1.7)

Note that the first equality in (1.6) has not been encountered in [31], where the
coefficients of the forth order tensor A have been assumed to satisfy the strong
ellipticity condition similar to the second condition in (1.4) but for all (not only
symmetric and zero-trace) matrices ξ (see [31, Eqs. (2)-(3)]). The more restrictive
ellipticity condition in [31] allowed to explore there the associated non-symmetric
pseudostress setting. In this paper we require the symmetry conditions (1.3) and the
ellipticity condition (1.4) only for symmetric zero-trace matrices ξ, and develop our
results in the symmetric stress setting. This approach allows us to obtain properties
of layer potentials for the Stokes system with L∞ variable coefficients generalizing
well known results for constant coefficients.

Let u be an unknown vector field, π be an unknown scalar field, and f be a given
vector field defined in Ω ⊆ Rn. Then the equations

L(u, π) := Lu−∇π = f , div u = g in Ω (1.8)

determine the Stokes system, which, under conditions (1.4), is elliptic in the sense
of Agmon-Douglis-Nirenberg, see [32, Theorem 5.3]. In the case n = 3, this system
describes viscous compressible fluid flows with variable anisotropic viscosity tensor
coefficient A depending on the physical properties of the fluid, such as, e.g., the
given fluid temperature (cf. [20]). If g = 0 then the fluid is incompressible.

In view of (1.6) and (1.7), the Stokes operator L can be written in any of forms

L(u, π) = ∂α
(
Aαβ∂βu

)
−∇π,

(L(u, π))i = ∂α

(
aαβij Ejβ(u)

)
− ∂iπ, i = 1, . . . , n .

(1.9)

1.2. Isotropic case. For the isotropic case, the viscosity tensor A in (1.2) has the
form (cf., e.g., Appendix III, Part I, Section 1 in [48]),

aαβij (x) = λ(x)δiαδjβ + µ(x) (δαjδβi + δαβδij) , 1 ≤ i, j, α, β ≤ n (1.10)
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where λ, µ ∈ L∞(Ω) and c−1
µ ≤ µ(x) ≤ cµ for a.e. x ∈ Ω with some constant cµ > 0.

Then

aαβij (x)ξiαξjβ = λ(x)(ξii)
2 + 2µ(x)ξiαξiα = 2µ(x)ξiαξiα = 2µ(x)|ξ|2 ≥ c−1

µ |ξ|2

for a.e. x ∈ Ω and for any symmetric matrix ξ = (ξiα)1≤i,α≤n ∈ Rn×n such that∑n
i=1 ξii = 0. Therefore, the symmetric ellipticity condition (1.4) is satisfied as well,

and hence our results are also applicable to the Stokes system in the isotropic case.
If µ > 0 is a constant and g = 0, then (1.8) reduces to the well known isotropic
incompressible Stokes system with constant viscosity µ.

2. Functional setting and preliminary results. Given a Banach space X , its
topological dual is denoted by X ′, and the notation 〈·, ·〉X means the duality pairing
of two dual spaces defined on a set X ⊆ Rn. We further assume that n ≥ 2 unless
explicitly stated otherwise.

In this paper we are concerned with Lipschitz domains in Rn as defined in,
e.g., [22, Definition II.1.1]. Therefore, a Lipschitz domain in Rn is a non-empty
open connected set, either bounded or unbounded, with compact (not necessarily
connected) boundary, which can be locally represented as the graph of a Lipschitz
function.

We say that Ω is a Lipschitz set in Rn if it is a finite union of Lipschitz domains
in Rn with disjoint closures. Particularly, any Lipschitz domain can be considered
as a Lipschitz set. The notion of Lipschitz set will be useful in the description of
transmission problems.

2.1. L2-based Sobolev spaces. Let D(Rn) := C∞0 (Rn) denote the space of in-
finitely differentiable functions with compact support in Rn, equipped with the
inductive limit topology. Let D′(Rn) denote the space of distributions, i.e., the
dual of the space D(Rn). Let L2(Rn) denote the Lebesgue space of equivalence
classes of measurable, square-integrable functions in Rn, and L∞(Rn) is the space
of equivalence classes of essentially bounded measurable functions in Rn.

Let H1(Rn) and H1(Rn)n denote the L2-based Sobolev spaces

H1(Rn) := {f ∈ L2(Rn) : ∇f ∈ L2(Rn)n}

=
{
f ∈ L2(Rn) : ‖f‖2H1(Rn) = ‖f‖2L2(Rn) + ‖∇f‖2L2(Rn)n <∞

}
,

H1(Rn)n := {f = (f1, . . . , fn) : fj ∈ H1(Rn), j = 1, . . . , n} .

The space H1(Rn) can be equivalently described as

H1(Rn) =
{
f ∈ S ′(Rn) :

∥∥F−1[(1 + |ξ|2)
1
2Ff ]

∥∥
L2(Rn)

<∞
}
,

where S ′(Rn) is the space of tempered distributions and F is the Fourier transform
(cf., e.g., [37, Theorem 3.18]). The dual of H1(Rn) is the space H−1(Rn).

Let Ω be a non-empty open subset of Rn. Then similar to the definition of
the space D(Rn), let D(Ω) := C∞0 (Ω) denote the space of infinitely differentiable
functions with compact support in Ω, equipped with the inductive limit topology,
and let D′(Ω) be its topological dual. Let D(Ω) denote the space of restrictions
of functions from D(Rn) onto Ω. Also, L2(Ω) is the Lebesgue space of equivalence
classes of measurable, square-integrable functions on Ω, and L∞(Ω) is the space of
equivalence classes of essentially bounded measurable functions on Ω. Let also

H1(Ω) := {f ∈ L2(Ω) : ∇f ∈ L2(Ω)n} , (2.1)
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endowed with the norm

‖f‖H1(Ω) =
√
‖f‖2L2(Ω) + ‖∇f‖2L2(Ω)n . (2.2)

The space H̃1(Ω) is the closure of D(Ω) in H1(Rn). The dual of H̃1(Ω) is the
space H−1(Ω). On the other hand, since D(Ω) is dense in H1(Ω) (see, e.g., [37, p.

77]), the dual of H1(Ω), denoted by H̃−1(Ω), is a space of distributions.

Let H1(Ω)n and H̃1(Ω)n the spaces of vector-valued functions whose components

belong to the spaces H1(Ω) and H̃1(Ω), respectively. Similar notations will be
employed also for all other Sobolev spaces of vector-valued functions, as well as
for the Sobolev spaces of matrix-valued functions, whose components belong to the
above mentioned Sobolev spaces of scalar functions.

Let now Ω be a Lipschitz set with boundary ∂Ω. Then the boundary Sobolev
space, Hs(∂Ω), 0 < s < 1, can be defined by

Hs(∂Ω′) =

{
f ∈ L2(∂Ω′) :

∫
∂Ω′

∫
∂Ω

|f(x)− f(y)|2

|x− y|n−1+2s
dσxdσy <∞

}
,

where σy is the surface measure on ∂Ω (see, e.g., [41, Proposition 2.5.1]). The dual
of Hs(∂Ω) is the space H−s(∂Ω), and we set H0(∂Ω′)=L2(∂Ω).

All L2-based Sobolev spaces mentioned above are Hilbert spaces.
We will further consider transmission problems and will often use the indices +

and − to denote adjacent Lipschitz sets, such as e.g. for Ω+ and Ω−. Sometimes we
will also use the notation Ω+ for bounded Lipschitz sets, and Ω− for unbounded sets
(even if they are not necessarily adjacent sets). The well-known trace theorem for
Lipschitz domains (see [18], [38, Lemma 2.6], [41, Theorem 2.5.2]) can be written
for Lipschitz sets as follows.

Theorem 2.1. Let Ω be a Lipschitz set in Rn, n ≥ 2, with the boundary ∂Ω.
Then there exists a linear bounded trace operator γΩ :H1(Ω)→H

1
2 (∂Ω) such that

γΩφ = φ|∂Ω for any φ ∈ C∞(Ω). The operator γΩ is surjective and has a linear

and bounded right inverse operator γ−1
Ω

: H
1
2 (∂Ω) → H1(Ω). The trace operator

γRn : H1(Rn) → H
1
2 (∂Ω) is also bounded linear and surjective and there exists a

linear and bounded right inverse operator γ−1
Rn

: H
1
2 (∂Ω) → H1(Rn)1. In addition,

any function u ∈ H1
loc(Rn) satisfies the condition γRnu ∈ H

1
2 (∂Ω).

We will use the simplified notation γ instead of γ
Ω

or γRn whenever the set Ω
or the space Rn is clear from the context and this simplification does not produce
any confusion. In addition, if the set, over which the trace operator is considered,
is labeled with the sign ±, then this operator will be denoted by γ±. For example,
we adopt the notation γ± instead of γΩ±

.

Note that the assumption that the set Ω has a compact Lipschitz boundary shows

that H̃1(Ω) can be identified isomorphically with the space H̊1(Ω) of all functions
in H1(Ω) with null traces on the boundary of Ω (cf., e.g., [37, Theorem 3.33]).

Further properties of Sobolev spaces can be found in [1, 37, 41].

2.2. Weighted Sobolev spaces. Let |x| = (x2
1 + · · ·+x2

n)
1
2 denote the Euclidean

distance of a point x = (x1, . . . , xn) ∈ Rn to the origin of Rn, n ≥ 3. Let ρ be the

1The trace operators defined on Sobolev spaces of vector fields on Ω or Rn are also denoted by
γΩ and γRn , respectively.



ANISOTROPIC STOKES AND NAVIER-STOKES SYSTEMS 4427

weight function

ρ(x) = (1 + |x|2)
1
2 . (2.3)

2.2.1. Weighted Sobolev spaces on Rn. The weighted Lebesgue space L2(ρ−1;Rn)
defined by

L2(ρ−1;Rn) :=
{
f ∈ D′(Rn) : ρ−1f ∈ L2(Rn)

}
, (2.4)

is a Hilbert space with respect to the inner product and the associated norm

(f, g)L2(ρ−1;Rn) :=

∫
Rn
fgρ−2dx, ‖f‖2L2(ρ−1;Rn) := (f, f)L2(ρ−1;Rn). (2.5)

We also consider the weighted Sobolev space

H1(Rn) :=
{
f ∈ D′(Rn) : ρ−1f ∈ L2(Rn), ∇f ∈ L2(Rn)n

}
(2.6)

(cf. [4, Definition 1.1], [26, Theorem I.1]), which is a Hilbert space with the norm

‖f‖2H1(Rn) :=
∥∥ρ−1f

∥∥2

L2(Rn)
+ ‖∇f‖2L2(Rn)n . (2.7)

The space D(Rn) is dense in H1(Rn) (cf., e.g., [2, p. 727], and [26, Théorème I.1]
and [45, Proposition 2.1] in the case n = 3), and, thus, the dual H−1(Rn) of H1(Rn)
is a space of distributions. Let us consider the semi-norm

|f |H1(Rn) := ‖∇f‖L2(Rn)n . (2.8)

This semi-norm is a norm on the space H1(Rn) and is equivalent to the norm
‖ · ‖H1(Rn), given by (2.7) (cf., e.g., [2, Theorem 1.1]).

2.2.2. Weighted Sobolev spaces on exterior Lipschitz domains and sets. Let Ω⊂Rn
be a non-empty open set, n ≥ 3. The weighted Sobolev space H1(Ω) can be defined
as in (2.6) with Ω in place of Rn (see [26, Definition I.1, p. 229-230]),

H1(Ω) :=
{
v ∈ D′(Ω) : ρ−1v ∈ L2(Ω), ∇v ∈ L2(Ω)n

}
, (2.9)

and is a Hilbert space with a norm given by

‖f‖2H1(Ω) :=
∥∥ρ−1f

∥∥2

L2(Ω)
+ ‖∇f‖2L2(Ω)n . (2.10)

The space H̃−1(Ω) denotes the dual of the space H1(Ω).
If Ω is a bounded open set, then H1(Ω) coincides with H1(Ω) with equivalent

norms. Moreover, the restriction of any function from H1(Ω) to any bounded open

set Ω0 contained in Ω belongs to H1(Ω0). The space H̊1(Ω) is defined as the closure
of the space D(Ω) with respect to the norm ‖ · ‖H1(Ω) defined in (2.10) (cf., e.g., [6],
[4, Definition 1.1]), and is a Hilbert space.

The space D(Ω) is dense in H̊1(Ω). Hence, the dual of H̊1(Ω) denoted by H−1(Ω)

is a subspace of D′(Ω). We need also the space H̃1(Ω) ⊂H1(Rn), defined as the
closure of D(Ω) in H1(Rn).

Let Ω0 ⊂ Ω be a bounded Lipschitz set containing the boundary of Ω. Since the
restriction of any function from H1(Ω) to Ω0 belongs to H1(Ω0), the statement of
Theorem 2.1 extends also to the weighted Sobolev space H1(Ω). Particularly, for
any unbounded Lipschitz set Ω with boundary ∂Ω there exists a bounded linear
and surjective trace operator

γ
Ω

: H1(Ω)→ H
1
2 (∂Ω) , (2.11)
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which has a bounded linear right inverse γ−1
Ω

: H
1
2 (∂Ω)→H1(Ω) (see [28, Lemma

2.2], [38, Theorem 2.3, Lemma 2.6], [45, p. 69]).

The trace operator γRn : H1(Rn) → H
1
2 (∂Ω) is bounded linear and surjective

as well (cf., e.g., [38, Theorem 2.3, Lemma 2.6]). The space H̊1(Ω) can be also
characterized as

H̊1(Ω) =
{
v ∈ H1(Ω) : γ

Ω
v = 0 on ∂Ω

}
= {v|Ω : v ∈ H1(Rn) and γv = 0 on ∂Ω} (2.12)

(see, e.g., [6, (1.2)]), while the space H̃1(Ω) can be characterized as

H̃1(Ω) =
{
u ∈ H1(Rn) : suppu ⊆ Ω

}
, (2.13)

and can be identified isomorphically with H̊1(Ω) via the operator E̊Ω of extension
by zero outside Ω (cf., e.g., [37, Theorem 3.33]).

If Ω is an unbounded (exterior) Lipschitz domain, then the semi-norm

|f |H1(Ω) := ‖∇f‖L2(Ω)n (2.14)

is a norm in H1(Ω) that is equivalent to the full norm ‖ · ‖H1(Ω) given by (2.10) (cf.,
e.g., [6, Theorem 1.2], [4, Theorem 1.2 (ii)]).

2.3. The conormal derivative for the anisotropic Stokes system. Let Ω+

and Ω− be two adjacent Lipschitz sets in Rn, n ≥ 2, and let ∂Ω+ and ∂Ω− be
the corresponding boundaries of them. Then ∂Ω+∩∂Ω− is their interface. Let
ν+ = (ν+

1 , . . . , ν
+
n )> denote the outward unit normal to Ω+, which is defined a.e.

on ∂Ω+. To facilitate the analysis of transmission problems in further sections, we
assume that the unit normal ν− to Ω− that exists a.e. on ∂Ω− is oriented inward
to this set, which implies that ν− = ν+ =: ν on the interface ∂Ω+ ∩ ∂Ω−.

As before, L is the divergence form second-order elliptic differential operator
given by (1.7), and the coefficients Aαβ of the anisotropic tensor A =

(
Aαβ

)
1≤α,β≤n

are n× n matrix-valued functions in L∞(Rn)n×n, with bounded measurable, real-

valued entries aαβij , satisfying the symmetry and ellipticity conditions (1.3) and (1.4).

Moreover, L is the Stokes operator given by (1.9).

In the special case when aαβij ∈ C0(Ω±) and (u, π) ∈ C1(Ω±)n×C0(Ω±), the

classical conormal derivatives (i.e., the boundary traction fields) of the Stokes system

L(u, π) = Lu−∇π = f , div u = g in Ω±, (2.15)

where f ∈ L2(Ω±)n, g ∈ L2(Ω±), are defined on ∂Ω± by the formula

tc±(u, π) := −(γ±π)ν± + Tc±u, (2.16)

where Tc±u are the conormal derivatives of u on ∂Ω± associated with the operator
L and defined by

Tc±u := γ±
(
Aαβ∂βu

)
ν±α (2.17)

(cf., e.g., [16]). In view of (1.3), we obtain (cf. [20]) that2(
Tc±u

)
i

= γ±
(
aαβij ∂βuj

)
ν±α = γ±

(
aαβij Ejβ(u)

)
ν±α , (2.18)

where Ejβ(u) := 1
2 (∂juβ + ∂βuj).

2Here and in the sequel, the notation ± applies to the conormal derivatives from Ω±.
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Note that in the isotropic case (1.10), the classical conormal derivatives tc±(u, π)
reduce to the well known formulas (cf., e.g., Appendix III, Part I, Section 1 in [48])(
tc±(u, π)

)
i
=−γ±π ν±i +γ± (λ div u) ν±i +2γ± (µEiα(u)) ν±α , i = 1, . . . , n. (2.19)

For the classical conormal derivatives defined by (2.16)-(2.18), the Green formula

±
〈
tc±(u, π),ϕ

〉
∂Ω±

=
〈
aαβij Ejβ(u), Eiα(ϕ)

〉
Ω±
− 〈π,divϕ〉Ω±

+ 〈L(u, π),ϕ〉Ω± ∀ϕ ∈ D(Rn)n (2.20)

holds in Lipschitz sets and suggests the following definition of the generalized conor-
mal derivative for the Stokes system with L∞ viscosity tensor coefficient in the set-
ting of weighted Sobolev spaces generalizing [37, Lemma 4.3], [28, Lemma 2.9], [38,
Definition 3.1, Theorem 3.2], [41, Theorem 10.4.1], see also [31, Definition 2.4].

Definition 2.2. Let Ω+ and Ω− be two adjacent Lipschitz sets in Rn, n ≥ 2, and
let ∂Ω+ and ∂Ω− be the corresponding boundaries of them. Let conditions (1.2),

(1.3) hold. Then for any (u±, π±, f̃±) ∈ H1(Ω±)n×L2(Ω±)×H̃−1(Ω±)n, the formal

conormal derivatives t±(u±, π±; f̃±) ∈ H−
1
2 (∂Ω±)n are defined in the weak form

by the formulas

±
〈
t±(u±, π±; f̃±),Φ

〉
∂Ω±

:=
〈
aαβij Ejβ(u±), Eiα(γ−1

± Φ)
〉

Ω±
−
〈
π±,div(γ−1

± Φ)
〉

Ω±

+
〈
f̃±, γ

−1
± Φ

〉
Ω±

, (2.21)

for any Φ ∈ H 1
2 (∂Ω±)n, where γ−1

± : H
1
2 (∂Ω±)n → H1(Ω±)n are bounded right

inverses to the trace operators γ± : H1(Ω±)n → H
1
2 (∂Ω±)n.

Moreover, if (u±, π±, f̃±)∈HHH1(Ω±,L), where

HHH1(Ω±,L) :=
{

(v±, q±, φ̃±) ∈ H1(Ω±)n × L2(Ω±)× H̃−1(Ω±)n :

L(v±, q±) = φ̃±|Ω± in Ω±

}
, (2.22)

then (2.21) define the generalized conormal derivatives t±(u±, π±; f̃±) ∈ H−
1
2 (∂Ω±)n.

Some properties of the conormal derivatives are presented (cf. [37, Lemma 4.3],
[38, Theorem 3.9], [39, Theorem 5.3], [28, Lemma 2.9], [41, Theorem 10.4.1]).

Lemma 2.3. Let the assumptions of Definition 2.2 hold. Then the following prop-
erties hold.

(i) The formal conormal derivative operators

t± : H1(Ω±)n × L2(Ω±)× H̃−1(Ω±)n → H−
1
2 (∂Ω±)n

are linear and bounded.
(ii) The generalized conormal derivative operators t± :HHH1(Ω±,L)→ H−

1
2 (∂Ω±)n

with L given by (1.8), are linear and bounded, and do not depend on the choice
of the right inverse operators γ−1

± in (2.21). In addition, for all w±∈H1(Ω±)n

and (u±, π±, f̃±) ∈ HHH1(Ω±,L), the following first Green identity holds

±
〈
t±(u±, π±; f̃±), γ±w±

〉
∂Ω±

=
〈
aαβij Ejβ(u±), Eiα(w±)

〉
Ω±
− 〈π±,div w±〉Ω±

+ 〈f̃±,w±〉Ω± . (2.23)
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Proof. We use similar arguments to those in [30, Lemma 2.2] (see also [38, Definition

3.1, Theorem 3.2], [39], [41, Theorem 10.4.1]). First, we note that for (u±, π±; f̃±) ∈
H1(Ω±)n × L2(Ω±) × H̃−1(Ω±)n, the right hand side in (2.21) defines a bounded

linear functional acting on Φ ∈ H 1
2 (∂Ω±)n, and, hence, the left hand side deter-

mines the formal conormal derivatives t±(u±, π±; f̃±) inH−
1
2 (∂Ω±)n and the formal

conormal derivative operators t± : H1(Ω±)n×L2(Ω±)×H̃−1(Ω±)n → H−
1
2 (∂Ω±)n

given by (2.21) are bounded. Therefore, the generalized conormal derivative oper-

ators t± :HHH1(Ω±,L)→ H−
1
2 (∂Ω±)n are bounded as well.

Now, the property that the conormal derivative operators t± : HHH1(Ω±,L) →
H−

1
2 (∂Ω±)n defined by (2.21) are invariant with respect to the choice of a right

inverse of the trace operator γ± : H1(Ω±)n → H
1
2 (∂Ω)n can be obtained with an

argument similar to that for Theorem 3.2 in [38].

Going on, let (u±, π±, f̃±) ∈ HHH1(Ω±,L). In view of formula (2.21), we have that

±
〈
t±(u±, π±; f̃±), γ±w±

〉
∂Ω±

=
〈
Aαβ∂β(u±), ∂α

(
γ−1
± (γ±w±)

)〉
Ω±

(2.24)

−
〈
π±,div

(
γ−1
± (γ±w±)

)〉
Ω±

+
〈
f̃±, γ

−1
± (γ±w±)

〉
Ω±

=
〈
Aαβ∂β(u±), ∂α(w±)

〉
Ω±
−
〈
π±,div w±

〉
Ω±

+
〈
f̃±,w±

〉
Ω±

+
〈
Aαβ∂β(u±), ∂α

(
γ−1
± (γ±w±)−w±

)〉
Ω±

−
〈
π±,div

(
γ−1
± (γ±w±)−w±

)〉
Ω±

+
〈
f̃±, γ

−1
± (γ±w±)−w±

〉
Ω±
∀w ∈ H1(Ω±)n.

Because γ−1
± are right inverses of the trace operators γ±, we have the equalities

γ±
(
γ−1
± (γ±w±)−w±

)
= 0 on ∂Ω±, and hence

γ−1
± (γ±w±)−w± ∈ H̊1(Ω±)n , (2.25)

where the spaces H̊1(Ω±)n are characterized as, cf. (2.12),

H̊1(Ω±)n =
{
v± ∈ H1(Ω±)n : γ±v± = 0 on ∂Ω±

}
. (2.26)

Therefore, the Green formula (2.23) follows from formula (2.24) if we show that〈
Aαβ∂β(u±), ∂α(v±)

〉
∂Ω±
−〈π±,div v±〉Ω±+

〈
f̃±,v±

〉
Ω±

= 0 ∀v± ∈ H̊1(Ω±)n.

(2.27)

Since the space D(Ω±)n is dense in H̊1(Ω±)n, we need to show identity (2.27) only

for the test functions v± in D(Ω±)n. Indeed, the membership of (u±, π±, f̃±) in

HHH1(Ω±,L) implies the equality L(u±, π±)= f̃±|Ω± in the sense of distributions, and
accordingly identity (2.27) holds for any v±∈D(Ω±)n.

Finally, we note that conditions (1.3) lead to the second equality in (2.23).

In the sequel we use the simplified notation t±(u±, π±) for t±(u±, π±; 0).

Remark 1. It is easy to verify that Definition 2.2 and all assertions of Section
2.3 can be stated also if the weighted Sobolev spaces are replaced by the standard
Sobolev spaces.
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2.4. Abstract mixed variational formulations. A major role in our analysis of
mixed variational formulations is played by the following well-posedness result by
Babus̆ka [7] and Brezzi [11, Theorem 1.1] (see also [21, Theorem 2.34 and Remark
2.35(i)] and [12]).

Theorem 2.4. Let X and M be two real Hilbert spaces. Let a(·, ·) : X ×X → R
and b(·, ·) : X ×M→ R be bounded bilinear forms. Let f ∈ X ′ and g ∈M′. Let V
be the subspace of X defined by

V := {v ∈ X : b(v, q) = 0 ∀ q ∈M} . (2.28)

Assume that a(·, ·) : V ×V → R is coercive, which means that there exists a constant
Ca > 0 such that

a(w,w) ≥ C−1
a ‖w‖2X ∀w ∈ V, (2.29)

and that b(·, ·) :X×M→R satisfies the Babus̆ka-Brezzi condition

inf
q∈M\{0}

sup
v∈X\{0}

b(v, q)

‖v‖X‖q‖M
≥ C−1

b , (2.30)

with some constant Cb > 0. Then the mixed variational formulation{
a(u, v) + b(v, p) = f(v) ∀ v ∈ X,
b(u, q) = g(q) ∀ q ∈M,

(2.31)

has a unique solution (u, p) ∈ X ×M and

‖u‖X ≤ Ca‖f‖X′ + Cb(1 + ‖a‖Ca)‖g‖M′ , (2.32)

‖p‖M ≤ Cb(1 + ‖a‖Ca)‖f‖X′ + ‖a‖C2
b (1 + ‖a‖Ca)‖g‖M′ , (2.33)

where ‖a‖ is the norm of the bilinear form a(·, ·).

We need also the following extension (cf. [21, Lemma A.40]) of the Babuška-
Brezzi result.

Lemma 2.5. Let X and M be reflexive Banach spaces. Let b(·, ·) : X×M→ R be
a bounded bilinear form. Let B : X →M′ and B∗ :M→ X ′ be the linear bounded
operator and its transpose operator defined by

〈Bv, q〉 = b(v, q), 〈v,B∗q〉 = 〈Bv, q〉 ∀ v ∈ X, ∀ q ∈M, (2.34)

where 〈·, ·〉 :=X′〈·, ·〉X denotes the duality pairing between the dual spaces X ′ and
X. The duality pairing between the spaces M′ and M is also denoted by 〈·, ·〉. Let
V := KerB and V ⊥= X ′⊥V := {g ∈ X ′ : 〈g, v〉 = 0 ∀ v ∈ V }. Then the following
assertions are equivalent:

(i) There exists a constant Cb > 0 such that b(·, ·) satisfies the inf-sup condition
(2.30).

(ii) The operator B : X/V →M′ is an isomorphism and

‖Bw‖M′ ≥ C−1
b ‖w‖X/V ∀w ∈ X/V. (2.35)

(iii) The operator B∗ :M→ V ⊥ is an isomorphism and

‖B∗q‖X′ ≥ C−1
b ‖q‖M ∀ q ∈M. (2.36)
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3. Dirichlet and Dirichlet-transmission problems for the anisotropic Stokes
system in a bounded Lipschitz domain. In this section we show well-posedness
of Dirichlet and Dirichlet-transmission problems for the anisotropic Stokes system
in a bounded Lipschitz domain of Rn, n ≥ 2. This property will facilitate the
analysis in Sections 5 and 6 of the same boundary problems for the anisotropic
Navier-Stokes system in bounded and exterior Lipschitz domains. All along Section
3, Ω is a bounded Lipschitz domain in Rn, n ≥ 2, with boundary ∂Ω (not necessarily
connected).

3.1. Notations and auxiliary results. Let us denote by H̊1(Ω)n the closed sub-
space of the Sobolev space H1(Ω) consisting of functions with zero traces on ∂Ω.
The semi-norm

|u|H̊1(Ω)n = |u|H1(Ω)n = ‖∇u‖L2(Ω)n×n . (3.1)

is also a norm in H̊1(Ω), which is equivalent to the norm

‖u‖H1(Ω)n = ‖u‖L2(Ω)n + ‖∇u‖L2(Ω)n×n (3.2)

(cf., e.g., Theorem II.5.1 and Remark II.6.2 in [22]).

Since H−1(Ω)n can be identified with
(
H̊1(Ω)n

)′
, let ||| · |||H−1(Ω)n denote the

corresponding norm in H−1(Ω)n generated by the seminorm | · |H̊1(Ω)n in (3.1), i.e.,

|||Φ|||H−1(Ω)n := sup
v∈H̊1(Ω)n, ‖∇v‖L2(Ω)n×n=1

|〈Φ,v〉Ω| ∀ Φ ∈ H−1(Ω)n. (3.3)

Let us introduce the spaces

Ddiv(Ω)n := {w ∈ D(Ω)n : div w = 0 in Ω}, (3.4)

H̊1
div(Ω)n := {w ∈ H̊1(Ω)n : div w = 0 in Ω}, (3.5)

(H̊1
div(Ω)n)⊥ = H−1(Ω)n⊥H̊1

div(Ω)n

:= {Φ ∈ H−1(Ω)n : 〈Φ,v〉Ω = 0 ∀v ∈ H̊1
div(Ω)n}, (3.6)

L2;0(Ω) = L2(Ω)⊥R := {φ ∈ L2(Ω) : 〈φ, 1〉Ω =

∫
Ω

φdx = 0}. (3.7)

The dual
(
H−1(Ω)n⊥H̊1

div(Ω)n
)′

can be identified with H̊1(Ω)n/H̊1
div(Ω)n, and the

dual (L2;0(Ω))
′

with the space L2(Ω)/R, (see, e.g., formula (5.118) in [41]).

For v ∈ H̊1(Ω)n/H̊1
div(Ω)n we also introduce the following norm in this quotient

space,

|v|H̊1(Ω)n/H̊1
div(Ω)n := infφ∈H̊1

div(Ω)n‖∇(v − φ)‖L2(Ω)n×n . (3.8)

The next result provides an isomorphism property of the divergence and gradient
operators in bounded Lipschitz domains (cf., e.g., [47, Lemmas 7-9 in p. 30], [24,
Corollary 2.4 and Theorem 2.3 in Chapter 1], [48, Proposition 1.2(i) and Remark
1.4 in Chapter 1], and [5, Theorem 3.1]).

Theorem 3.1. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. Then the
operators

div : H̊1(Ω)n/H̊1
div(Ω)n → L2;0(Ω), (3.9)

grad : L2(Ω)/R→ H−1(Ω)n⊥H̊1
div(Ω)n . (3.10)



ANISOTROPIC STOKES AND NAVIER-STOKES SYSTEMS 4433

are isomorphisms. The following norms of the operators inverse to operators (3.9)
and (3.10) are equal,

|||div−1|||L2;0(Ω)→H̊1(Ω)n/H̊1
div(Ω)n := sup

g∈L2;0(Ω), ‖g‖L2(Ω)=1

|div−1g|H̊1(Ω)n/H̊1
div(Ω)n

= |||grad−1|||H−1(Ω)n⊥H̊1
div(Ω)n→L2(Ω)/R

:= sup
f∈H−1(Ω)n⊥H̊1

div(Ω)n, |||f |||H−1(Ω)n=1

‖grad−1f‖L2(Ω)n/R =: CΩ <∞ , (3.11)

and hence

|v|H̊1(Ω)n/H̊1
div(Ω)n ≤ CΩ‖div v‖L2(Ω) ∀v ∈ H̊1(Ω)n/H̊1

div(Ω)n, (3.12)

‖q‖L2(Ω)/R ≤ CΩ|||grad q|||H−1(Ω)n ∀ q ∈ L2(Ω)/R . (3.13)

Moreover, the norm value, CΩ, may depend on the shape of Ω but not on the domain
scaling. Particularly, if Ω is a ball B, then CΩ = CB does not depend on its
diameter.

Proof. In view of Lemma 2.5, norms of the operators inverse to (3.9) and (3.10) are
equal. Moreover, the independence of CΩ of the domain size follows by considering
the simple scaling x̃ = λx in all the operators and norms, e.g., in (3.9) and in the
first two lines of (3.11), cf. [35, Corollary 2.1].

3.2. Dirichlet problem for the Stokes system in a bounded Lipschitz do-
main. Let L be the anisotropic Stokes operator defined in (1.9). Let us consider
the following Dirichlet problem for the anisotropic Stokes system{

L(u, π) = f , div u = g in Ω,
γu = 0 on ∂Ω ,

(3.14)

with the unknowns (u, π) ∈ H1(Ω)n×L2(Ω)/R and the given data (f , g)∈H−1(Ω)n×
L2;0(Ω). A variational approach (as in the proof of Theorem 3.4 corresponding to the
transmission problem) implies that the Dirichlet problem (3.14) has the following
equivalent mixed variational formulation with F = −f .

Given F ∈ H−1(Ω)n and g ∈ L2;0(Ω), find (u, π) ∈ H̊1(Ω)n×L2(Ω)/R such that{
aA;Ω(u,v) + bΩ(v, π) = 〈F,v〉Ω ∀v ∈ H̊1(Ω)n ,
bΩ(u, q) = −〈g, q〉Ω ∀ q ∈ L2(Ω)/R , (3.15)

where aA;Ω: H̊1(Ω)n×H̊1(Ω)n→R and bΩ : H̊1(Ω)n×L2(Ω)/R→R are the bounded
bilinear forms

aA;Ω(u,v) :=
〈
aαβij Ejβ(u), Eiα(v)

〉
Ω
∀u,v ∈ H̊1(Ω)n , (3.16)

bΩ(v, q) := −〈div v, q〉Ω ∀v ∈ H̊1(Ω)n ∀ q ∈ L2(Ω)/R . (3.17)

Then we obtain the following well-posedness result.

Theorem 3.2. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. Let conditions
(1.2)-(1.4) hold in Ω. Then for all F ∈ H−1(Ω)n and g ∈ L2;0(Ω), the linear
variational problem (3.15) and the Dirichlet problem (3.14) with f = −F have a

unique solution (u, π) ∈ H̊1(Ω)n × L2(Ω)/R and the following estimates hold,

‖∇u‖L2(Ω)n×n ≤ 2cA|||F|||H−1(Ω)n + C ′Ω‖g‖L2(Ω), (3.18)

‖π‖L2(Ω)/R ≤ C ′Ω|||F|||H−1(Ω)n + C∗Ω‖g‖L2(Ω), (3.19)
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where the ellipticity constant cA is defined in (1.4),

C ′Ω := CΩ(1 + 2cAn
4‖A‖L∞(Ω)n), C∗Ω := n4‖A‖L∞(Ω)nCΩC

′
Ω,

and the constant CΩ is defined in Theorem 3.1.

Proof. The bilinear form aA;Ω : H̊1(Ω)n × H̊1(Ω)n → R is bounded on the Hilbert

space H̊1(Ω)n and by (1.5), we have the following estimate

|aA;Ω(v,w)| ≤ n4‖A‖L∞(Ω)n‖∇v‖L2(Ω)n×n‖∇w‖L2(Ω)n×n ∀v,w ∈ H̊1(Ω)n. (3.20)

The first Korn inequality in H̊1(Ω)n (see, e.g., [37, Theorem 10.1]) and the ellipticity
condition (1.4) show that

1

2
c−1
A ‖∇v‖2L2(Ω)n×n = c−1

A ‖E(v)‖2L2(Ω)n×n

≤
〈
aαβij Ejβ(v), Eiα(v)

〉
Ω

= aA;Ω(v,v) ∀v ∈ H̊1
div(Ω)n , (3.21)

implying that aA;Ω is also coercive on H̊1
div(Ω)n.

By Theorem 3.1 and Lemma 2.5, the bilinear form bΩ(·, ·) : H̊1(Ω)n×L2(Ω)→ R
satisfies the inf-sup condition

inf
q∈L2(Ω)/R\{0}

sup
v∈H̊1(Ω)n\{0}

bΩ(v, q)

‖∇v‖L2(Ω)n×n‖q‖L2(Ω)/R
≥ C−1

Ω . (3.22)

Then due to estimates (3.20), (3.21), (3.22), Theorem 2.4 with X = H̊1(Ω)n, V =

H̊1
div(Ω)n andM = L2(Ω)/R implies that for any (F, g) ∈ H−1(Ω)n×L2;0(Ω), there

exists a unique solution (u, π) ∈ H̊1(Ω)n×L2(Ω)/R of the variational problem (3.15)
and inequalities (3.18), (3.19) hold.

3.3. Dirichlet-transmission problems for the Stokes system in a bounded
domain. Let n ≥ 2. We make the following geometrical assumption.

Assumption 3.3. Let Ω ⊂ Rn be a bounded Lipschitz domain, with (not necessar-

ily connected) boundary ∂Ω. Let Ω0 be a bounded Lipschitz set such that Ω0 ⊂ Ω.

Let Ω0
+ := Ω0 and Ω0

− := Ω \Ω0. Thus, the composite domain Ω can be written as

Ω = Ω0
+ ∪ Ω0

−, and the boundary ∂Ω0 = ∂Ω0
+ of Ω0

+ is also the interface between
Ω0

+ and Ω0
− (see Figure 1).

Figure 1. Bounded composite domain Ω = Ω0
+ ∪ Ω0

−
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Let us introduce the following spaces

H1(Ω0
−; ∂Ω)

n
:=
{
v ∈ H1(Ω0

−)n : γ+v = 0 on ∂Ω
}
, (3.23)

H̃−1(Ω0
−; ∂Ω0)n :=

{
ϕ ∈ H−1(Ω)n : ϕ = 0 on Ω0

+

}
, (3.24)

XΩ0
+,Ω

0
−

:=
{

(v+, q+,v−, q−) : v+ ∈ H1(Ω0
+)n, v− ∈ H1(Ω0

−)n,

q+ = q|Ω0
+
, q− = q|Ω0

−
, q ∈ L2(Ω)/R

}
, (3.25)

YΩ0
+,Ω

0
−

:= H̃−1(Ω0
+)n × H̃−1(Ω0

−; ∂Ω0)
n
× L2;0(Ω)×H− 1

2 (∂Ω0)n . (3.26)

The space H̃−1(Ω0
−; ∂Ω0)n can be identified with the dual of H1(Ω0

−; ∂Ω)
n

(cf., e.g.,
arguments of Theorems 3.29 and 3.30 in [37]).

Next, we consider the Dirichlet-transmission problem for the anisotropic Stokes
system

L(u+, π+) = f̃+|Ω0
+
, div u+ = g|Ω0

+
in Ω0

+ , (3.27)

L(u−, π−) = f̃−|Ω0
−
, div u− = g|Ω0

−
in Ω0

−, (3.28)

γ+u+ − γ−u− = 0 on ∂Ω0, (3.29)

t+(u+, π+; f̃+)− t−(u−, π−; f̃−) = ψ on ∂Ω0, (3.30)

γ−u− = 0 on ∂Ω , (3.31)

with given data (f̃+, f̃−, g,ψ) ∈ YΩ0
+,Ω

0
−

and unknown (u+, π+,u−, π−) ∈ XΩ0
+,Ω

0
−

.

Let us consider F ∈ H−1(Ω)n defined as

〈F,v〉Ω = −
〈
f̃+,v|Ω0

+

〉
Ω0

+

−
〈
f̃−,v|Ω0

−

〉
Ω0
−

+ 〈ψ, γv〉∂Ω0

= −
〈
f̃+,v

〉
Ω
−
〈
f̃−,v

〉
Ω

+ 〈γ∗ψ,v〉Ω ∀v ∈ H̊1(Ω)n , (3.32)

i.e.,

F = −(f̃+ + f̃−) + γ∗ψ , (3.33)

where γ∗ : H−
1
2 (∂Ω0)n → H−1(Rn)n is the adjoint of the trace operator γ :

H1(Rn)n → H
1
2 (∂Ω0)n, and the support of γ∗ψ is a subset of ∂Ω0.

Then we obtain the following well-posedness result.

Theorem 3.4. Let n ≥ 2 and Assumption 3.3 hold. Let conditions (1.2)-(1.4) hold

in Ω. Given (f̃+, f̃−, g,ψ) ∈ YΩ0
+,Ω

0
−

, let (u, π) ∈ H̊1(Ω)n×L2(Ω)/R be the solution

of variational problem (3.15) provided by Theorem 3.2 for the data (F, g) with F
given by (3.33). Then the linear Dirichlet-transmission problem (3.27)-(3.31) has a
unique solution in XΩ0

+,Ω
0
−

given by

u+ = u|Ω0
+
, u− = u|Ω0

−
, π+ = π|Ω0

+
, π− = π|Ω0

−
, (3.34)

and estimates (3.18) and (3.19) hold.

Proof. To show the equivalence between the transmission problem (3.27)-(3.31) and
the variations problem (3.15), let us first assume that (u+, π+,u−, π−) ∈ XΩ0

+,Ω
0
−

satisfy transmission problem (3.27)-(3.31). Then transmission condition (3.29) and
Lemma A.1(i,ii) along with boundary condition (3.31) imply that there exists a

unique pair (u, π) ∈ H̊1(Ω)n × L2(Ω)/R satisfying conditions (3.34).
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Due to the first equations in (3.27) and (3.28) along with Lemma 2.3 and Remark
1, the first Green identities (2.23) are valid. Employing transmission condition
(3.30) they show that the pair (u, π) satisfies〈

aαβij Ejβ(u+), Eiα(v)
〉

Ω0
+

− 〈π+,div v〉Ω0
+

+ 〈f̃+,v〉Ω0
+

+
〈
aαβij Ejβ(u−), Eiα(v)

〉
Ω0
−

− 〈π−,div v〉Ω0
−

+ 〈f̃−,v〉Ω0
−

= 〈ψ, γv〉∂Ω0 . (3.35)

for any v ∈ H̊1(Ω)n. Together with (3.32) this leads to the first equation in (3.15).
The second equation in (3.15) follows from the second equations in (3.27) and (3.28).

Let us now show that (u, π) ∈ H̊1(Ω)n×L2(Ω)/R solving the variations problem
(3.15) with F ∈ H−1(Ω)n given by (3.33) provides also a solution given by (3.34) of
the Dirichlet-transmission problem (3.27)-(3.31). The membership relation (u, π) ∈
H̊1(Ω)n × L2(Ω)/R yields (u+, π+,u−, π−) ∈ XΩ0

+,Ω
0
−

.

Choosing v ∈ D(Ω0
±)n and q ∈ D(Ω0

±), equations in (3.15) imply that the couples
(u±, π±) satisfy equations (3.27) and (3.28) in the sense of distributions. For any
v ∈ D(Rn)n in the first equation in (3.15), using again relation (3.33), we obtain
that (3.35) is satisfied.

Then by Lemma 2.3 and Remark 1 the first Green identity (2.23) shows that
equation (3.35) reduces to the equation〈

t+
(
u+, π+; f̃+ + (u+ · ∇)u+

)
− t−

(
u−, π−; f̃− + (u− · ∇)u−

)
, γv

〉
∂Ω0

= 〈ψ, γv〉∂Ω0 ∀v ∈ D(Ω)n,

or, equivalently, to the equation〈
t+
(
u+, π+; f̃+ + (u+ · ∇)u+

)
− t−

(
u−, π−; f̃− + (u− · ∇)u−

)
,φ
〉
∂Ω0 = 〈ψ,φ〉∂Ω0

for any φ ∈ H 1
2 (∂Ω0)n, due to the dense embedding of the space D(Ω)n in H̊1(Ω)n

and the surjectivity of the trace operator γ from H̊1(Ω)n to H
1
2 (∂Ω0)n. Therefore,

transmission condition (3.30) follows, as asserted. Transmission condition (3.29)

and boundary condition (3.31) are obviously satisfied since u ∈ H̊(Ω)n.

4. The anisotropic Stokes system in Rn and in exterior Lipschitz domains.
Girault and Sequeira in [25, Theorem 3.4] used a variational approach to show the
well-posedness in H1(Ω−)n × L2(Ω−) for the exterior Dirichlet problem for the
constant coefficient isotropic Stokes system in an exterior Lipschitz domain Ω− of
Rn, n = 2, 3, see also [4] for n ≥ 3 and settings in a wider range of weighted spaces.
We present here well-posedness of the corresponding problems for the anisotropic
variable-coefficient case with n ≥ 3.

4.1. The Stokes system in Rn. The spaces H1(Rn)n and H−1(Rn)n used in this
section are described in Section 2.2.1 together with some their properties. Recall
also that the semi-norm

|v|H1(Rn)n := ‖∇v‖L2(Rn)n×n ∀v ∈ H1(Rn)n,

is a norm in the space H1(Rn)n, which is equivalent to the norm ‖ · ‖H1(Rn)n given

by (2.7). Hence the dual H−1(Rn)n =
(
H̊1(Rn)n

)′
can be endowed with the norm

|||Φ|||H−1(Rn)n := sup
v∈H1(Rn)n, ‖∇v‖L2(Rn)n×n=1

|〈Φ,v〉Rn | ∀ Φ ∈ H−1(Rn)n. (4.1)
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Let us also denote

H1
div(Rn)n :=

{
w ∈ H1(Rn)n : div w = 0 in Rn

}
.

The subspace H1
div(Rn)n of H1(Rn)n has also the characterization

H1
div(Rn)n =

{
w ∈ H1(Rn)n : 〈div w, q〉Rn =0 ∀ q ∈ L2(Rn)

}
. (4.2)

We need the following assertion due to Proposition 2.1 and Theorem 2.5 in [2].

Theorem 4.1. Let n ≥ 3. Then the operators

div : H1(Rn)n/H1
div(Rn)n → L2(Rn), (4.3)

grad : L2(Rn)→ H−1(Rn)n⊥H1
div(Rn)n (4.4)

are isomorphisms,

|||div−1|||L2(Rn)→H1(Rn)n/H1
div(Rn)n := sup

g∈L2(Rn), ‖g‖L2(Rn)=1

|div−1g|H1(Rn)n/H1
div(Rn)n

= |||grad−1|||H−1(Rn)n⊥H1
div(Rn)n→L2(Rn)

:= sup
f∈H−1(Rn)n⊥H1

div(Rn)n, |||f |||H−1(Rn)n=1

‖grad−1f‖L2(Rn)n =: CRn <∞,

(4.5)

and hence

|v|H1(Rn)n/H1
div(Rn)n ≤ CRn‖div v‖L2(Rn) ∀v ∈ H1(Rn)n/H1

div(Rn)n, (4.6)

‖q‖L2(Rn) ≤ CRn |||grad q|||H−1(Rn)n ∀ q ∈ L2(Rn). (4.7)

Proof. In view of Proposition 2.1 in [2], the operator div : H1(Rn)n/H1
div(Rn)n →

L2(Rn) is an isomorphism. Then by Lemma 2.5 its adjoint, −grad : L2(Rn) →
H−1(Rn)n⊥H1

div(Rn)n is an isomorphism as well (cf. Theorem 2.5 in [2]) and the

corresponding norms of the operators div−1 and grad−1 as defined in (4.5) are
equal.

Let A satisfy conditions (1.2)-(1.4) and let aA;Rn : H1(Rn)n ×H1(Rn)n→R and
bRn : H1(Rn)n × L2(Rn)→R be the bilinear forms given by

aA;Rn(u,v) : =
〈
Aαβ∂βu, ∂αv

〉
Rn

=
〈
aαβij Ejβ(u), Eiα(v)

〉
Rn

∀ u ∈ H1(Rn)n, v ∈ H1(Rn)n , (4.8)

bRn(v, q) : = −〈div v, q〉Rn ∀ v ∈ H1(Rn)n, ∀ q ∈ L2(Rn) . (4.9)

Now we can show the following well-posedness result for the anisotropic Stokes
system in Rn, n ≥ 3, (cf. [31, Lemma 3.1] for the anisotropic case with the strong
ellipticity condition).

Theorem 4.2. Let conditions (1.2)-(1.4) hold in Rn, n ≥ 3. Let aA;Rn and bRn be
the bilinear forms defined in (4.8) and (4.9), respectively. Then for all given data
f ∈ H−1(Rn)n and g ∈ L2(Rn), the mixed variational problem{

aA;Rn(u,v) + bRn(v, π) = −〈f ,v〉Rn ∀v ∈ H1(Rn)n,
bRn(u, q) = 〈g, q〉Rn ∀ q ∈ L2(Rn)

(4.10)

has a unique solution (u, π) ∈ H1(Rn)n × L2(Rn) and the following estimates hold

‖∇u‖L2(Rn)n×n ≤ 2cA|||f |||H−1(Rn)n + C ′Rn‖g‖L2(Rn), (4.11)

‖π‖L2(Rn) ≤ C ′Rn |||f |||H−1(Rn)n + C∗Rn‖g‖L2(Rn), (4.12)
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where the ellipticity constant cA is defined in (1.4),

C ′Rn := CRn(1 + 2cAn
4‖A‖L∞(Rn)n), C∗Rn := n4‖A‖L∞(Rn)nCRnC

′
Rn ,

and the constant CRn is defined in (4.5).
Moreover, (u, π) is the unique solution of the Stokes system

L(u, π) = f , div u = g in Rn . (4.13)

Proof. The theorem has been proved in [32, Lemma 3.1 and Theorem 3.2] except
for the explicit expressions of the constants in estimates (4.11), (4.12), which can
be obtained by using similar arguments to those in the proof of Theorem 4.7.

4.2. Transmission problem for the Stokes system in Rn.

Assumption 4.3. Let Ω0 be a bounded Lipschitz set in Rn, n ≥ 3, with boundary
∂Ω0. Thus, the Lipschitz set Ω0

− := Rn \ Ω0 contains an unbounded (exterior)
Lipschitz domain. Let Ω0

+ := Ω0. The boundary ∂Ω0 = ∂Ω0
+ = ∂Ω0

− is the
interface between Ω0

+ and Ω0
− (see Figure 2).

Figure 2. Composite space Rn = Ω0
+ ∪ Ω0

−

Let us consider the transmission problem
L(u+, π+) = f̃+|Ω0

+
, div u+ = g+ in Ω0

+,

L(u−, π−) = f̃−|Ω− , div u− = g− in Ω0
−,

γ+u+ − γ−u− = 0 on ∂Ω0,

t+
(
u+, π+; f̃+

)
− t−

(
u−, π−; f̃−

)
= ψ on ∂Ω0,

(4.14)

with given data (f̃+, g+, f̃−, g−,ψ) ∈ YΩ0
+,Ω

0
−

and unknown (u+, π+,u−, π−) ∈
XΩ0

+,Ω
0
−

. Here,

XΩ0
+,Ω

0
−

:= H1(Ω0
+)n × L2(Ω0

+)×H1(Ω0
−)n × L2(Ω0

−) , (4.15)

YΩ0
+,Ω

0
−

:= H̃−1(Ω0
+)n × L2(Ω0

+)× H̃−1(Ω0
−)n × L2(Ω0

−)×H− 1
2 (∂Ω0)n . (4.16)

Following arguments similar to the ones for the well-posedness of transmission
problem in a bounded domain (see Theorem 3.4), one can prove the well-posedness
of the transmission problem (4.14) for the anisotropic Stokes system in Rn.

Theorem 4.4. Let Assumption 4.3 hold. Let conditions (1.2)-(1.4) be satisfied in

Rn, n ≥ 3. Let
(
f̃+, g+, f̃−, g−,ψ

)
∈ YΩ0

+,Ω
0
−

be given and let (u, π) ∈ H1(Rn)n ×
L2(Rn) be the solution of the variational problem (4.10) provided by Theorem 4.2

for F = −(f̃+ + f̃−) + γ∗ψ ∈ H−1(Rn)n and g = E̊Ω0
+
g+ + E̊Ω0

−
g− ∈ L2(En), where
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γ∗ : H−
1
2 (∂Ω0)n→H−1(Rn)n is the adjoint of the trace operator γ : H1(Rn)n →

H
1
2 (∂Ω0)n. Then the linear transmission problem (4.14) has a unique solution in

XΩ0
+,Ω

0
−

given by

u+ =u|Ω0
+
, u−=u|Ω0

−
, π+ =π|Ω0

+
, π−=π|Ω0

−
, (4.17)

and estimates (4.11), (4.12) hold.

Proof. Lemma A.1 (iii) implies that the transmission problem (4.14) has the mixed
variational formulation (4.10). Then the well-posedness result in Theorem 4.2 shows
that the transmission problem (4.14) is also well-posed. Moreover, the connection
between the solution (u, π) ∈ H1(Rn)n×L2(Rn) of problem (4.14) and the solution
(u+, π+,u−, π−) ∈ XΩ0

+,Ω
0
−

of problem (4.10) is given by relations (4.17), and each

of them satisfies estimates (4.11) and (4.12).

4.3. Exterior Dirichlet problem for the Stokes system. Let n ≥ 3 and Ω− ⊂
Rn be an exterior Lipschitz domain with compact boundary ∂Ω, not necessarily
connected. Thus,

Ω− = Rn \
m⋃
i=1

Ωi , (4.18)

where m ≥ 1, Ωi, i = 1, . . . ,m, are bounded Lipschitz domains with connected
boundaries ∂Ωi, such that Ωi ∩ Ωj = ∅, i 6= j. Let Ω :=

⋃m
i=1 Ωi and let ∂Ω :=⋃m

i=1 ∂Ωi denote the boundary of Ω. Moreover, ∂Ω is the boundary of Ω− as well.
Recall that L is the Stokes operator defined in (1.9), with the viscosity tensor

coefficient A satisfying conditions (1.2)-(1.4).

The spaces H1(Ω−)n, H−1(Ω−)n, H̊1(Ω−)n and H̃−1(Ω−)n used in this section
are described in Section 2.2.2 together with some of their properties. Recall also
that the semi-norm

|v|H1(Ω−)n := ‖∇v‖L2(Ω−)n×n ∀v ∈ H1(Ω−)n,

is a norm in the space H1(Ω−)n and in its subspace H̊1(Ω−)n, which is equivalent to
the norm ‖·‖H1(Ω−)n given by (2.10). The closure of the space D(Ω−)n with respect

to the semi-norm | · |H1(Ω−)n coincides with H̊1(Ω)n. Hence the dual H−1(Ω−)n =(
H̊1(Ω−)n

)′
can be endowed with the norm

|||Φ|||H−1(Ω−)n := sup
v∈H1(Ω−)n, ‖∇v‖L2(Ω−)n×n=1

|〈Φ,v〉Ω− | ∀ Φ ∈ H−1(Ω−)n. (4.19)

Let also

H̊1
div(Ω−)n :=

{
v ∈ H̊1(Ω−)n : div v = 0 in Ω−

}
. (4.20)

4.3.1. Properties of div and grad operators in an exterior domain. The next result
follows from Theorem 4 and Corollary 3 of Bogovskĭı [8] (see also [9, Theorem 3.3,
Theorem 4.2b and Corollary 4.5b]).

Theorem 4.5. Let Ω− be an exterior Lipschitz domain in Rn, n ≥ 3. Then the
following operators are isomorphisms

div : H̊1(Ω−)n/H̊1
div(Ω−)n → L2(Ω−), (4.21)

grad : L2(Ω−)→ H−1(Ω−)n⊥H̊1
div(Ω−)n . (4.22)
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Proof. In view of Theorem 4 and Corollary 3 of Bogovskĭı [8], the operator in (4.21)
is an isomorphism. Then by Lemma 2.5 its adjoint, the operator in (4.22), is an
isomorphism as well.

Theorem 4.6. Let the conditions of Theorem 4.5 hold. Then the following norms
of the operators inverse to operators (4.21) and (4.22) are equal,

|||div−1|||L2(Ω−)→H̊1(Ω−)n/H̊1
div

(Ω−)n := sup
g∈L2(Ω−), ‖g‖L2(Ω−)=1

|div−1g|H̊1(Ω−)n/H̊1
div

(Ω−)n

= |||grad−1|||H−1(Ω−)n⊥H̊1
div

(Ω−)n→L2(Ω−)

:= sup
f∈H−1(Ω−)n⊥H̊1

div
(Ω−)n, |||f |||H−1(Ω−)n

=1

‖grad−1f‖L2(Ω−)n =: CΩ− <∞, (4.23)

and hence

|v|H̊1(Ω−)n/H̊1
div(Ω−)n ≤ CΩ−‖div v‖L2(Ω−) ∀v ∈ H̊1(Ω−)n/H̊1

div(Ω−)n, (4.24)

‖q‖L2(Ω−) ≤ CΩ− |||grad q|||H−1(Ω−)n ∀ q ∈ L2(Ω−). (4.25)

Moreover, the norm value, CΩ− , may depend on the shape of Ω− but not on the
domain scaling. Particularly, if Ω− is the exterior of a ball B, then CΩ− = CRn\B
does not depend on the ball diameter.

Proof. In view of Proposition 2.1 in [2], the norms of the operators inverse to opera-
tors (4.21) and (4.22) are equal. Moreover, the independence of CΩ− of the domain
size follows by considering the simple scaling x̃ = λx in all the operators and norms,
e.g., in (4.21) and in the first two lines of (4.23) (cf. [35, Corollary 2.1] for bounded
domains).

4.3.2. Well-posedness for the exterior Dirichlet problem for the Stokes system. First,
we consider the following problem for the anisotropic Stokes system with homoge-
neous Dirichlet condition in the exterior Lipschitz domain Ω− with boundary ∂Ω
(as described in (4.18)),{

L(u, π) = f , div u = g in Ω−,
γ−u = 0 on ∂Ω,

(4.26)

for (u, π) ∈ H1(Ω−)n × L2(Ω−), which can be reformulated as the problem

L(u, π) = f , div u = g in Ω− (4.27)

for (u, π) ∈ H̊1(Ω−)n×L2(Ω−). We show that problem (4.27) has a unique solution
whenever f ∈ H−1(Ω−)n, g ∈ L2(Ω−)

Let aA;Ω− : H̊1(Ω−)n × H̊1(Ω−)n → R and bΩ−
: H̊1(Ω−)n×L2(Ω−)→ R be the

bilinear forms

aA;Ω−(v,w) :=
〈
Aαβ∂βv, ∂αw

〉
Ω−

=
〈
aαβij Ejβ(v), Eiα(w)

〉
Ω−

∀v,w ∈ H̊1(Ω−)n,

(4.28)

b
Ω−

(v, q) := −〈div v, q〉Ω− ∀v ∈ H̊1(Ω−)n, q ∈ L2(Ω−). (4.29)

A standard variational argument (cf. the proof of Theorem 3.4 for the transmis-
sion problem) implies that the Dirichlet problem (4.26) is equivalent to the following
mixed variational formulation for F = −f .

Given F ∈ H−1(Ω−)n, find (u, π) ∈ H̊1(Ω−)n × L2(Ω−) such that{
aA;Ω−(u,w) + bΩ−(w, π) = 〈F,w〉Ω− ∀w ∈ H̊1(Ω−)n,
b

Ω−
(u, q) = −〈g, q〉Ω− ∀ q ∈ L2(Ω−).

(4.30)
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Then we are in the position to prove the following well-posedness result.

Theorem 4.7. Let conditions (1.2)-(1.4) be satisfied in an exterior Lipschitz do-
main Ω−⊂Rn, n ≥ 3, with boundary ∂Ω not necessarily connected. Then for all F ∈
H−1(Ω−)n and g ∈ L2(Ω−), the linear variational problem (4.30) and the Dirichlet

problem (4.26) with f = −F have a unique solution (u, π) ∈ H̊1(Ω−)n × L2(Ω−),
and the following estimates hold

‖∇u‖L2(Ω−)n×n ≤ 2cA|||F|||H−1(Ω−)n + C ′Ω−‖g‖L2(Ω−) , (4.31)

‖π‖L2(Ω−) ≤ C ′Ω− |||F|||H−1(Ω−)n + C∗Ω−‖g‖L2(Ω−), (4.32)

where the ellipticity constant cA is defined in (1.4),

C ′Ω− := CΩ−(1 + 2cAn
4‖A‖L∞(Ω−)n), C∗Ω− := n4‖A‖L∞(Ω−)nCΩ−C

′
Ω− ,

and the constant CΩ− is defined in Theorem 4.6.

Proof. In view of (1.2), (1.5) and the Hölder inequality, we obtain that

|aA;Ω−(v,w)| ≤ n4‖A‖L∞(Ω−)‖∇v‖L2(Ω−)n×n‖∇w‖L2(Ω−)n×n , ∀v, w ∈ H̊1(Ω−)n.
(4.33)

Due to the ellipticity condition (1.4),

|u|2H1(Ω−)n ≤ ‖∇u‖2L2(Ω−)n×n

≤ 2‖E(u)‖2L2(Ω−)n×n

≤ 2cAaA;Ω−(u,u) ∀u ∈ H̊1
div(Ω−)n. (4.34)

Note that the second inequality in (4.34) is a version of the Korn type inequality in

the weighted Sobolev space H̊1(Ω−)n (cf. [45, Eq.(2.2)] for n = 3). It follows, e.g.,
from the proof of [37, Theorem 10.1], where it is shown that the Korn inequality is
valid for any function in D(Rn)n. Then the density of the space D(Ω−)n ⊂ D(Rn)n

in H̊1(Ω−)n implies that it is valid also in H̊1(Ω−)n.
Moreover, arguments similar to those for inequality (4.33) imply that the bilinear

form bΩ−
(·, ·) : H̊1(Ω−)n × L2(Ω−) → R given by (4.29) is also bounded. Then

Theorems 4.5 and 4.6 and Lemma 2.5 imply that it satisfies the inf-sup condition

inf
q∈L2(Ω−)\{0}

sup
w∈H̊1(Ω−)n\{0}

b
Ω−

(w, q)

‖w‖H̊1(Ω−)n‖q‖L2(Ω−)
≥ C−1

Ω−
(4.35)

(cf. [25, Theorem 3.3]).

Then due to estimates (4.33), (4.34), (4.35), Theorem 2.4 with X = H̊1(Ω−)n,

V = H̊1
div(Ω−)n andM = L2(Ω−) implies that for any (f , g) ∈ H−1(Ω−)n×L2(Ω−),

there exists a unique solution (u, π) ∈ H̊1(Ω−)n×L2(Ω−) of the variational problem
(4.30) and hence of problems (4.27) and (4.26), while inequalities (4.31) and (4.32)
hold.

4.4. Exterior Dirichlet-transmission problem for the Stokes system.

Assumption 4.8. Let n ≥ 3 and Ω− be an exterior Lipschitz domain in Rn with
compact (not necessarily connected) boundary ∂Ω. Let Ω0 ⊂ Rn be a bounded

Lipschitz set such that Ω0 ⊂ Ω−. Let Ω0
+ := Ω0 and Ω0

− := Ω− \ Ω0
+. Thus, Ω0

−
is an unbounded Lipschitz set, and the boundary ∂Ω0 of Ω0 is also the interface
between Ω0

+ and Ω0
− (see Figure 1 where the outer boundary should be dropped).
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Let us introduce the following spaces

H1(Ω0
−; ∂Ω)n :=

{
v ∈ H1(Ω0

−)n : γ+v = 0 on ∂Ω
}
, (4.36)

H̃−1(Ω0
−; ∂Ω0)n :=

{
ϕ ∈ H−1(Ω)n : ϕ = 0 on Ω0

+

}
, (4.37)

XΩ0
+,Ω

0
−

:= H1(Ω0
+)n × L2(Ω0

+)×H1(Ω0
−)n × L2(Ω0

−) , (4.38)

YDΩ0
+,Ω

0
−

:=H̃−1(Ω0
+)n×L2(Ω0

+)×H̃−1(Ω0
−; ∂Ω0)n×L2(Ω0

−)×H− 1
2 (∂Ω0)n . (4.39)

The space H̃−1(Ω0
−; ∂Ω0)n can be identified with the dual of H1(Ω0

−; ∂Ω)n (cf., e.g.,
arguments of Theorems 3.29 and 3.30 in [37]).

Next, we consider the exterior Dirichlet-transmission problem for the Stokes sys-
tem

L(u+, π+) = f̃+|Ω0
+
, div u+ = g+ in Ω0

+ , (4.40)

L(u−, π−) = f̃−|Ω0
−
, div u− = g− in Ω0

−, (4.41)

γ+u+ − γ−u− = 0 on ∂Ω0, (4.42)

t+(u+, π+; f̃+)− t−(u−, π−; f̃−) = ψ on ∂Ω0, (4.43)

γ−u− = 0 on ∂Ω , (4.44)

with data (f̃+, g+, f̃−, g−,ψ) ∈ YD
Ω0

+,Ω
0
−

and unknown (u+, π+,u−, π−) ∈ XΩ0
+,Ω

0
−

.

Following arguments similar to the ones for Theorem 3.4, which refers to the
transmission problem in a bounded domain, one can prove the following assertion
about the equivalence of the Dirichlet-transmission problem (4.40)-(4.44) and the
variational problem (4.30), and hence the well-posedness of the exterior Dirichlet-
transmission problem (4.40)-(4.44) for the anisotropic Stokes system.

Theorem 4.9. Let Assumption 4.8 hold. Let conditions (1.2)-(1.4) hold in Ω−.

Let
(
f̃+, g+, f̃−, g−,ψ

)
∈ YD

Ω0
+,Ω

0
−

and (u, π) ∈ H̊1(Ω)n×L2(Ω) be the solution of the

variational problem (4.30) provided by Theorem 4.7 for F = −(f̃+ + f̃−) + γ∗ψ ∈
H−1(Ω)n and g = E̊Ω0

+
g+ + E̊Ω0

−
g−, where γ∗ : H−

1
2 (∂Ω0)n → H−1(Ω)n is the

adjoint of the trace operator γ : H1(Ω)n → H
1
2 (∂Ω0)n. Then the linear exterior

Dirichlet-transmission problem (4.40)-(4.44) has a unique solution in XΩ0
+,Ω

0
−

given

by the relations u+ =u|Ω0
+
, u−=u|Ω0

−
, π+ =π|Ω0

+
, π−=π|Ω0

−
, and estimates (4.31),

(4.32) hold.

5. Dirichlet and transmission problems for the anisotropic Navier-Stokes
system with general data in a bounded Lipschitz domain. In this section
we combine a well-posedness result for the Stokes system with the Leray-Schauder
fixed point Theorem and show existence of solutions for the nonlinear Dirichlet
and Dirichlet-transmission problems for the anisotropic Navier-Stokes system in
a bounded Lipschitz composite domain (see Theorem 5.2). Further, in Section
6, we will use these results to construct solutions of the transmission and Dirichlet
problems in the sense of distributions in R3 and exterior domains for the anisotropic
Navier-Stokes system with general (including large) data.

We need the following version of the Leray-Schauder fixed point theorem (see,
e.g., [23, Theorem 11.3]).

Theorem 5.1. Let X be a Banach space. Let T : X → X be a continuous and
compact operator. If there exists a constant K > 0 such that ‖x‖X ≤ K for each
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pair (x, χ) ∈ X × [0, 1] satisfying x = χTx, then the operator T has a fixed point x0

(and ‖x0‖X≤K).

5.1. Dirichlet problem for the Navier-Stokes system in a bounded do-
main. Let us consider the following mixed nonlinear variational problem in a
bounded Lipschitz domain Ω of R3 with Lipschitz boundary ∂Ω (not necessarily
connected).

Given F ∈ H−1(Ω)n, find (u, π) ∈ H̊1(Ω)3 × L2(Ω)/R such that{
aA;Ω(u,v) + bΩ(v, π) = 〈F,v〉Ω −〈(u · ∇)u,v〉Ω ∀v ∈ H̊1(Ω)3,

bΩ(u, q) = 0 ∀ q ∈ L2(Ω)/R ,
(5.1)

where the bilinear forms aA;Ω : H̊1(Ω)3×H̊1(Ω)3→R and bΩ : H̊1(Ω)3×L2(Ω)/R→R
are defined in (3.16) and (3.17).

Let L be the Stokes operator defined in (1.9). Then a standard variational
argument (as in the proof of Theorem 3.4 for the linear transmission problem)
implies that the variational problem (5.1) is equivalent to the following Dirichlet
problem with F = −f .{

L(u, π) = f + (u · ∇)u , div u = 0 in Ω,
γu = 0 on ∂Ω,

(5.2)

with the unknown fields (u, π) ∈ H1(Ω)3 × L2(Ω)/R.
Now we can prove the existence result for the variational problem (5.1), and hence

for the Dirichlet problem (5.2) corresponding to the anisotropic L∞−coefficient
Navier-Stokes equation in a bounded Lipschitz domain (see also [46, Proposition
1.1] in the constant coefficient case).

Theorem 5.2. Assume that Ω is a bounded Lipschitz domain in R3. Let conditions
(1.2)-(1.4) hold in Ω. Then for any F ∈ H−1(Ω)3 there exists a pair (u, π) ∈
H̊1(Ω)3 × L2(Ω)/R which satisfies the nonlinear variational problem (5.1), as well
as the nonlinear Dirichlet problem (5.2) with f = −F. Moreover, the estimates

‖∇u‖L2(Ω)n×n ≤ 2cA|||F|||H−1(Ω)3 (5.3)

‖π‖L2(Ω)/R ≤ C ′Ω|||F|||H−1(Ω)3 + C ′′Ω|Ω|1/6|||F|||2H−1(Ω)3 (5.4)

hold, where cA is the constant defined in (1.4),

C ′Ω := CΩ(1 + 2cA34‖A‖L∞(Ω)3), C ′′Ω :=
16

3
CΩc

2
A , (5.5)

the constant CΩ is as in Theorem 3.1 and does not depend on the diameter of Ω.
Moreover, |Ω| =

∫
Ω
dx and the norm ||| · |||H−1(Ω)3 is defined in (3.3).

Proof. For any F ∈ H−1(Ω)3 and an arbitrary, fixed element w ∈ H̊1
div(Ω)3, we

define the functional

Fw : H̊1(Ω)3 → R, 〈Fw,v〉Ω := 〈F,v〉Ω − 〈(w · ∇)w,v〉Ω ∀v ∈ H̊1(Ω)3. (5.6)

Inequality (B.2) implies that Fw is well-defined, linear and continuous (cf. [46,
Proposition 1.1]), and hence Fw ∈ H−1(Ω)3.

By Theorem 3.2, there exists a unique solution (uw, πw) ∈ H̊1(Ω)3 × L2(Ω)/R
of the variational problem{

aA;Ω(uw,v) + bΩ(v, πw) = 〈Fw,v〉Ω ∀v ∈ H̊1(Ω)3,

bΩ(uw, q) = 0 ∀ q ∈ L2(Ω)/R
(5.7)
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and, in view of estimate (3.18), uw satisfies the inequality

‖∇uw‖L2(Ω)3×3 ≤ 2cA|||Fw|||H−1(Ω)3 . (5.8)

The second equation in (5.7) yields the membership relation uw ∈ H̊1
div(Ω)3, and

the first equation in (5.7) implies that uw satisfies the equation〈
aαβij Ejβ(uw), Eiα(v)

〉
Ω

= 〈Fw,v〉Ω ∀ v ∈ H̊1
div(Ω)3 . (5.9)

Note that the coercivity condition (3.21) yields that uw is the unique solution of
equation (5.9).

Consequently, we can define the operator

U : H̊1
div(Ω)3 → H̊1

div(Ω)3, U(w) := uw, (5.10)

which associates to any w ∈ H̊1
div(Ω)3 the unique solution uw ∈ H̊1

div(Ω)3 of the
variational problem (5.7), and, thus, of the variational equation (5.9).

Next we show that the nonlinear operator U has a fixed point u ∈ H̊1
div(Ω)3

(U(u) = u), and accordingly that u will be a weak solution of the nonlinear Dirichlet
problem (5.2). We intend to use the variant of the Leray-Schauder fixed point
Theorem given in Theorem 5.1.

First, we show that U is continuous. Let w,w0 ∈ H̊1
div(Ω)3. Then by (5.8), (5.6)

and (B.2) there exists a constant C1 = C1(Ω) > 0 such that

‖∇(U(w)−U(w0))‖L2(Ω)n×n ≤ 2cA|||Fw − Fw0
|||H−1(Ω)3

= 2cA|||(w · ∇)w − (w0 · ∇)w0|||H−1(Ω)3 (5.11)

= 2cA|||((w −w0) · ∇)w + (w0 · ∇)(w −w0)|||H−1(Ω)3

≤ 2C1cA‖w −w0‖H1(Ω)3

(
‖w‖H1(Ω)3 + ‖w0‖H1(Ω)3

)
.

Therefore, the operator U defined by (5.10) is continuous.
Let us now show that the operator U is compact. To this end, assume that

{(wk)}k∈N is a bounded sequence in the space H̊1
div(Ω)3. Thus, there exists a

constant M > 0 such that ‖∇wk‖L2(Ω)3×3 ≤ M , for any k ∈ N. We claim that the

sequence {U(wk)}k∈N contains a convergent subsequence in H̊1
div(Ω)3.

Indeed, the Rellich compactness theorem (see, e.g., [1, Theorem 6.3, Part I])

implies the compactness of the embedding of the space H̊1
div(Ω)3 into the space

L3(Ω)3. This, in turn, implies that there exists a subsequence of {wk}k∈N, labeled
as the sequence, which converges in L3(Ω)3, and, thus, is a Cauchy sequence in
L3(Ω)3. Then we show that the corresponding subsequence {uk}k∈N, uk = U(wk),

is a Cauchy sequence in H̊1
div(Ω)3.

By (5.8), (5.6), (B.4) and (B.7), we obtain similar to (5.11),

‖∇(U(wk)−U(w`))‖L2(Ω)3×3 ≤ 2cA|||Fwk
− Fw`

|||H−1(Ω)3

≤ 2cA|||(wk · ∇)wk − (w` · ∇)w`|||H−1(Ω)3

= 2cA|||((wk −w`) · ∇)wk + (w` · ∇)(wk −w`)|||H−1(Ω)3

≤ 2cA‖wk −w`‖L3(Ω)3

(
C2‖wk‖H1(Ω)3 + C3‖w`‖H1(Ω)3

)
≤ C∗‖wk −w`‖L3(Ω)3 , (5.12)

with some constants C2, C3 > 0 depending on Ω, and C∗ := 2cA(C2 + C3)M .
Therefore, the convergence of {wk}k∈N in L3(Ω)3 implies that {U(wk)}k∈N is a

Cauchy sequence and, thus, it converges in the space H̊1
div(Ω)3. Consequently, the

operator U defined by (5.10) is compact.
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In order to apply the statement of Theorem 5.1 to the operator U, it remains to
show that the following set is bounded

A :=
{

w ∈ H̊1
div(Ω)3 : w = λU(w), 0 ≤ λ ≤ 1

}
, (5.13)

i.e., there exists a constant K > 0 such that for each pair (w, λ) ∈ H̊1
div(Ω)3× [0, 1]

satisfying w = λU(w), we have ‖∇w‖L2(Ω)3×3 ≤ K. (We use the property that

‖∇(·)‖L2(Ω)3×3 is a norm on the space H̊1
div(Ω)3.)

Let λ ∈ (0, 1] and w ∈ H̊1
div(Ω)3 be such that w = λU(w). Thus, 1

λw = U(w).

Then taking uw = 1
λw in (5.9), we obtain that〈

aαβij Ejβ(w), Eiα(v)
〉

Ω
=λ〈Fw,v〉Ω

= λ〈F,v〉Ω − λ 〈(w · ∇)w,v〉Ω ∀v ∈ H̊1
div(Ω)3 . (5.14)

Let us take v = w in (5.14). Then by relation (B.9) we obtain the equality〈
aαβij Ejβ(w), Eiα(w)

〉
Ω

= λ〈F,w〉Ω . (5.15)

Finally, as in (3.21), the first Korn inequality, condition (1.4), definition (3.3) of the
norm ||| · |||H−1(Ω)3 of the space H−1(Ω)3, and equality (5.15) imply that

1

2
c−1
A ‖∇w‖2L2(Ω)3×3 ≤ c−1

A ‖E(w)‖2L2(Ω)3×3

≤
〈
aαβij Ejβ(w), Eiα(w)

〉
Ω

≤ λ|||F|||H−1(Ω)3‖∇w‖L2(Ω)3×3 .

Therefore, for any λ ∈ (0, 1], we have the inequality

‖∇w‖L2(Ω)3×3 ≤ 2λcA|||F|||H−1(Ω)3 ≤ 2cA|||F|||H−1(Ω)3 , (5.16)

and thus the set A is bounded (with respect to the norm ‖∇(·)‖L2(Ω) on H̊1(Ω)3).
Consequently, the operator U in (5.10) satisfies the assumption of Theorem 5.1

(with X = H̊1
div(Ω)3 and K = 2cA|||F|||H−1(Ω)3), and then there exists u ∈ H̊1

div(Ω)3

such that U(u) = u. Moreover, the couple (u, π) with some π = πu ∈ L2(Ω)/R
provided by Theorem 3.2 satisfies the variational problem (5.7) (with Fw = Fu

given by (5.6)) and, thus, is a solution of the nonlinear Dirichlet problem (5.2), as
asserted. In addition, estimate (5.16) holds with w = u and implies estimate (5.3).

To show estimate (5.4) we proceed as follows. The first equation in (5.2) yields

∇π = F = F + div (AE(u))− (u · ∇)u in Ω. (5.17)

We already remarked that Fu = F− (u · ∇)u ∈ H−1(Ω)3, and since u ∈ H̊1
div(Ω)3,

we obtain that F ∈ H−1(Ω)3. Moreover, (5.9) implies that F is bi-orthogonal

to H̊1
div(Ω)3 and hence F ∈ H−1(Ω)3⊥H̊1

div(Ω)3. Then by inequality (3.13) in
Theorem 3.1 along with equation (5.17), we obtain that

‖π‖L2(Ω)/R≤CΩ

(
|||F|||H−1(Ω)3 + |||div (AE(u)) |||H−1(Ω)3 + |||(u · ∇)u|||H−1(Ω)3

)
, (5.18)
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By (1.5) and (5.3) we obtain that

|||div (AE(u)) |||H−1(Ω)3 = sup
Ψ∈H̊1(Ω)3, ‖∇Ψ‖L2(Ω)3=1

∣∣∣ 〈div (AE(u)) ,Ψ〉Ω
∣∣∣

= sup
Ψ∈H̊1(Ω)3, ‖∇Ψ‖L2(Ω)3=1

∣∣∣ 〈AE(u),∇Ψ〉Ω
∣∣∣

≤ ‖AE(u)‖L2(Ω)3×3 ≤ 34‖A‖L∞(Ω)‖∇u‖L2(Ω)3×3

≤ 2cA34‖A‖L∞(Ω)|||F|||H−1(Ω)3 , (5.19)

From (B.13) and (5.16) we have

|||(u · ∇)u|||H−1(Ω)3 ≤ 4

3
|Ω|1/6‖∇u‖2L2(Ω)3×3 ≤

16

3
|Ω|1/6c2A|||F|||2H−1(Ω)3 . (5.20)

By substituting (5.19) and (5.20) in (5.18), we obtain (5.4), as asserted.

5.2. Dirichlet-transmission problem for the Navier-Stokes system in a
bounded composite domain. Let the geometry be as described in Assumption
3.3. Let us consider the Dirichlet-transmission problem for the Navier-Stokes system

L(u+, π+) = f̃+|Ω0
+

+ (u+ · ∇)u+ , div u+ = 0 in Ω0
+,

L(u−, π−) = f̃−|Ω0
−

+ (u− · ∇)u− , div u− = 0 in Ω0
−,

γ+u+ − γ−u− = 0 on ∂Ω0,

t+
(
u+, π+; f̃+ + E̊Ω0

+
((u+ · ∇)u+)

)
−t−

(
u−, π−; f̃− + E̊Ω0

−
((u− · ∇)u−)

)
= ψ on ∂Ω0,

γ−u− = 0 on ∂Ω

(5.21)

with given data
(
f̃+, f̃−,ψ

)
∈ H̃−1(Ω0

+)3 × H̃−1(Ω0
−; ∂Ω0)

3
×H− 1

2 (∂Ω0)3 and un-

known (u+, π+,u−, π−) ∈ XΩ0
+,Ω

0
−

, where the spaces H̃−1(Ω0
−; ∂Ω0)

3
and XΩ0

+,Ω
0
−

are defined in (3.24) and (3.25). Here Ω, Ω0
+ and Ω0

−, ∂Ω and ∂Ω0 are the Lipschitz
sets and boundaries satisfying Assumption 3.3, L is the Stokes operator defined in
(1.9), and E̊Ω0

+
and E̊Ω0

−
are the operators of extension by zero outside Ω0

+ and Ω0
−,

respectively.
A variational argument similar to the one in the proof of Theorem 3.4 for the lin-

ear transmission problem and based on Lemma A.1 shows that the nonlinear trans-
mission problem (5.21) is equivalent to the mixed variational formulation (5.1). This
result and Theorem 5.2 bring us to the following existence result for the nonlinear
Dirichlet-transmission problem (5.21).

Theorem 5.3. Let the geometry be as in Assumption 3.3. Let conditions (1.2)-

(1.4) hold in Ω. Given
(
f̃+, f̃−,ψ

)
in H̃−1(Ω0

+)3 × H̃−1(Ω0
−; ∂Ω0)3 × H− 1

2 (∂Ω0)3

let (u, π) ∈ H̊1(Ω)3×L2(Ω)/R be the solution of variational problem (5.1) provided

by Theorem 5.2 for the data (F, g) with F = −(f̃+ + f̃−) + γ∗ψ. Then there exists a
solution (u+, π+,u−, π−) ∈ XΩ0

+,Ω
0
−

of the nonlinear Dirichlet-transmission problem

(5.21) given by the relations u+ = u|Ω0
+
, u− = u|Ω0

−
, π+ = π|Ω0

+
, π− = π|Ω0

−
, and

estimates (5.3), (5.4) hold.

5.3. Uniqueness for the Navier-Stokes problems with small data in a
bounded Lipschitz domain. Let Ω ⊂ R3 be a bounded Lipschitz domain. Then
the space H̊1(Ω)3 is continuously embedded in L4(Ω)3. Moreover, the semi-norm
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‖∇v‖L2(Ω)3×3 is a norm on H̊1(Ω)3, which is equivalent to the norm ‖v‖H1(Ω)3

given by (2.2). Then, in view of (B.11) and (B.12), there exists a positive constant

C̊Ω independent of v such that

‖v‖L4(Ω)3 ≤ C̊Ω‖∇v‖L2(Ω)3×3 ∀ v ∈ H̊1(Ω)3. (5.22)

This inequality and an additional constraint to the given data of the nonlinear
problem (5.21) imply the following uniqueness result (see also [46, Lemma 3.1] and
[43, Corollary 1] in the isotropic case (1.10) with µ = 1, λ = 0 and homogeneous
Dirichlet condition, and [31, Theorem 4.2] for a pseudostress approach).

Theorem 5.4. Let Ω be a bounded Lipschitz domain in R3. Let conditions (1.2)-
(1.4) hold on Ω. Let F ∈ H−1(Ω)3 be such that

4c2AC̊
2
Ω|||F|||H−1(Ω)3 < 1, (5.23)

with the constants cA and C̊Ω given in (1.4) and (5.22), respectively. Then the
nonlinear Dirichlet problem (5.2) has a unique solution (u, π) ∈ H1(Ω)3×L2(Ω)/R.

In addition, if Ω is a composite domain satisfying Assumption 3.3 and the given

data
(
f̃+, f̃−,ψ

)
belong to the space H̃−1(Ω0

+)3×H̃−1(Ω0
−; ∂Ω0)3×H− 1

2 (∂Ω0)3, and

F = −(f̃+ + f̃−) + γ∗ψ, then the nonlinear Dirichlet-transmission problem (5.21)
has a unique solution (u+, π+,u−, π−) in the space XΩ0

+,Ω
0
−

defined in (3.25).

Proof. Assume that the variational problem (5.1) has two solutions (u1, π1) and

(u2, π2) in the space H̊1(Ω)3 × L2(Ω)/R. Then we obtain the following equality〈
aαβij Ejβ(u1 − u2), Eiα(v)

〉
Ω

+ 〈(u1 · ∇)u1 − (u2 · ∇)u2,v〉Ω
− 〈div v, π1 − π2〉Ω = 0 ∀ v ∈ D(Ω)3. (5.24)

Moreover, the dense embedding of the space Ddiv(Ω)3 in H̊1
div(Ω)3 (see, e.g., [47, p.

32, Lemma 10]) shows that relation (5.24) is satisfied also for any v ∈ H̊1
div(Ω)3.

Then by choosing v = u1 − u2 in (5.24), we obtain that〈
aαβij Ejβ(u1 − u2), Eiα(u1 − u2)

〉
Ω

=− 〈((u1 − u2) · ∇)) u1,u1 − u2〉Ω
− 〈(u2 · ∇)(u1 − u2),u1 − u2〉Ω . (5.25)

Due to the membership of u1 and u2 in H̊1
div(Ω)3, relation (B.9) yields the equality

〈(u2 · ∇)(u1 − u2),u1 − u2〉Ω = 0 , (5.26)

which shows that equation (5.25) reduces to〈
aαβij Ejβ(u1 − u2), Eiα(u1 − u2)

〉
Ω

=−
〈(

(u1 − u2) · ∇
)
u1,u1 − u2

〉
Ω
. (5.27)

On the other hand, in view of condition (1.4) and the first Korn inequality,

‖∇(u1 − u2)‖2L2(Ω)3×3 ≤ 2cA

〈
aαβij Ejβ(u1 − u2), Eiα(u1 − u2)

〉
Ω
. (5.28)

Note that inequality (5.16) implies that any solution of (5.1) satisfies inequality
(5.3). Thus, by the Hölder inequality and inequalities (5.22) and (5.3), we obtain

〈((u1 − u2) · ∇)) u1,u1 − u2〉Ω ≤ ‖u1 − u2‖2L4(Ω)3‖∇u1‖L2(Ω)3×3

≤ C̊2
Ω‖∇(u1 − u2)‖2L2(Ω)3×3‖∇u1‖L2(Ω)3×3

≤ 2cAC̊
2
Ω|||F|||H−1(Ω)3‖∇(u1 − u2)‖2L2(Ω)3×3 . (5.29)
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Then equality (5.27) and inequalities (5.28) and (5.29) imply that

‖∇(u1 − u2)‖2L2(Ω)3×3 ≤ 4c2AC̊
2
Ω|||F|||H−1(Ω)3‖∇(u1 − u2)‖2L2(Ω)3×3 . (5.30)

Assumption (5.23) shows that estimate (5.30) is possible only if u1 − u2 = 0.
Hence, equation (5.24) reduces to 〈div v, π1 − π2〉Ω = 0 for any v ∈ D(Ω)3, and

thus ∇(π1 − π2) = 0 in Ω. Then π1 − π2 is a constant, i.e., π1 = π2 in L2(Ω)/R.
Finally, the equivalence of the nonlinear Dirichlet problem (5.2) and of the non-

linear Dirichlet-transmission problem (5.21) with the mixed variational formulation
(5.1) completes the proof.

6. The anisotropic Navier-Stokes system and the transmission problem
with general data in R3 and in an exterior Lipschitz domain. In this section
we construct a sequence of weak solutions for the homogeneous Dirichlet problem
for the incompressible anisotropic Navier-Stokes system in a sequence of increasing
bounded Lipschitz domains which approximate R3, or an exterior Lipschitz domain.
From such a sequence we extract a convergent subsequence to a weak solution of the
nonlinear transmission problem in R3, or of the exterior Dirichlet problem for the
anisotropic Navier-Stokes system with general (including large) data in weighted
Sobolev spaces.

In the isotropic case (1.10) with µ = 1 and λ = 0, we refer to [3, Theorem 1.3] for
the existence of a weak solution of the exterior Dirichlet problem for Navier-Stokes
system, [43] for the Dirichlet problem for the Navier-Stokes system in a bounded
Lipschitz domain in R2, under singular sources, and to [28, Theorem 5.2]. Exis-
tence in the case of the anisotropic tensor A satisfying a more restrictive ellipticity
condition than in (1.4) was analyzed in [31, Theorem 4.2] in a pseudostress setting,
assuming small given data.

6.1. The Navier-Stokes system in R3. First, we show the existence of a solution
(u, π) ∈ H1(R3)3 × L2,loc(R3) of the Navier-Stokes system

L(u, π) = f + (u · ∇)u, div u = 0 in R3 (6.1)

in the sense of distributions. This result will imply that the pair (u, π) ∈ H1
div(R3)3×

L2,loc(R3) satisfies the equivalent mixed variational formulation with F = −f ,
〈
aαβij Ejβ(u), Eiα(v)

〉
R3

+ 〈(u · ∇)u,v〉R3 − 〈div v, π〉R3

= 〈F,v〉R3 ∀v ∈ D(R3)3 ,
〈div u, q〉R3 = 0 ∀ q ∈ D(R3) .

(6.2)

In particular, we will obtain some estimates of the pressure norm growth, which
seem to be new even in the simpler isotropic constant-coefficient case.

Theorem 6.1. Let conditions (1.2)-(1.4) hold in R3 and let L denote the Stokes
operator defined in (1.9). Then for any F ∈ H−1(R3)3 there exists a pair (u, π) ∈
H1(R3)3 × L2,loc(R3), which satisfies the nonlinear variational problem (6.2) as
well as the Navier-Stokes system (6.1) with f =−F in the sense of distributions. In
addition,

‖∇u‖L2(R3)3 ≤ 2cA|||F|||H−1(R3)3 , (6.3)

‖π‖L2(Ω̂)/R ≤ C
′
R3 |||F|||H−1(R3)3 + C ′′R3 |Ω̂|1/6|||F|||2H−1(R3)3 (6.4)
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for any bounded domain Ω̂ in R3. Here cA is the ellipticity constant introduced in
(1.4),

C ′R3 := CΩ̂(1 + 2cA34‖A‖L∞(R3)3), C ′′R3 :=
16

3
CΩ̂c

2
A ,

and the constant CΩ̂ is as in Theorem 3.1, while |Ω̂| =
∫

Ω̂
dx. The norm |||·|||H−1(R3)3

is defined in (4.1). The constant CΩ̂ and hence the constants C ′R3 and C ′′R3 in (6.4)

do not depend on Ω̂ if Ω̂ is a ball.

Proof. We follow the steps similar to those in the proof of [3, Theorem 1.3]. To this
end, we consider an increasing sequence of real numbers {Rk}k≥0 with R0 > 0, and
Rk→∞ as k →∞. Let Ωk :=BRk be the ball of radius Rk and center 0 in R3.

If F∈H−1(R3)3, then F|Ωk ∈ H−1(Ωk)3, and by Theorem 5.2 there exists a pair

(uk, πk) ∈ H̊1
div(Ωk)3×L2(Ωk), which satisfies the anisotropic Navier-Stokes system

L(uk, πk) = −F|Ωk + (uk · ∇)uk , div uk = 0 in Ωk, (6.5)

and the inequality

‖∇uk‖L2(Ωk)3×3 ≤ 2cA|||F|Ωk |||H−1(Ωk)3 . (6.6)

Equations (6.5) imply that〈
aαβij Ejβ(uk), Eiα(v)

〉
Ωk

+〈(uk ·∇)uk,v〉Ωk = 〈F|Ωk ,v〉Ωk ∀ v ∈ Ddiv(Ωk)3 . (6.7)

Note that F ∈ H−1(R3)3 satisfies the relations

|||F|Ωk |||H−1(Ωk)3 = sup
Ψ∈H̊1(Ωk)3, ‖∇Ψ‖L2(Ωk)3=1

∣∣∣ 〈F|Ωk ,Ψ〉Ωk ∣∣∣
= sup

Ψ∈H̊1(Ωk)3, ‖∇E̊Ωk
Ψ‖L2(R3)3=1

∣∣〈F, E̊ΩkΨ
〉
R3

∣∣
≤ sup

φ∈H1(R3)3, ‖∇φ‖L2(R3)3×3=1

| 〈F,φ〉R3 | = |||F|||H−1(R3)3 . (6.8)

Further, let us denote by ůk the extension of uk by zero in R3 \ Ωk. Hence
ůk ∈ H1

div(R3)3 (since ůk does not have jump across ∂Ωk, and then div ůk = 0 in
R3). Moreover, by inequalities (6.6) and (6.8), we have

‖∇ůk‖L2(R3)3×3= ‖∇uk‖L2(Ωk)3×3 ≤ 2cA|||F|||H−1(R3)3 . (6.9)

By inequality (6.9), the sequence {ůk}k∈N is bounded in the Hilbert space H1(R3)3

and also in its closed subspace H1
div(R3)3. Hence {ůk}k∈N contains a subsequence

(still labeled as the sequence) weakly convergent to an element u ∈ H1
div(R3)3. This

particularly implies that〈
aαβij Ejβ(ůk), Eiα(φ)

〉
R3

=
〈
Ejβ(ůk), aαβij Eiα(φ)

〉
R3
→
〈
Ejβ(u), aαβij Eiα(φ)

〉
R3

=
〈
aαβij Ejβ(u), Eiα(φ)

〉
R3

as k →∞ , ∀φ ∈ H1(R3)3.

(6.10)

According to the property that ‖∇(·)‖L2(R3)3×3 is a norm in H1(R3)3 and by using
[22, Theorem II.1.3(i)] and (6.9), we obtain that

‖∇u‖L2(R3)3×3 ≤ lim infk→∞‖∇ůk‖L2(R3)3×3 ≤ 2cA|||F|||H−1(R3)3 , (6.11)

i.e., u satisfies estimate (6.3), as asserted.
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Next we show that u satisfies the equation〈
aαβij Ejβ(u), Eiα(v)

〉
R3

+ 〈(u · ∇)u,v〉R3 =
〈
F,v

〉
R3 ∀ v ∈ Ddiv(R3)3. (6.12)

To this end, let φ ∈ Ddiv(R3)3 and let k0 ∈ N be such that suppφ⊂Ωk0
⊆Ωk for

any k ≥ k0. Then φ∈Ddiv(Ωk)3 for any k ≥ k0 and by (6.7),〈
aαβij Ejβ(ůk), Eiα(φ)

〉
Ωk

+ 〈(ůk · ∇)ůk,φ〉R3 = 〈F,φ〉R3 ∀ k ≥ k0. (6.13)

Moreover, the compactness of the embedding H1(Ωk0
)3 ↪→ L2(Ωk0

)3 yields that
there exists a subsequence of the sequence {uk}k∈N, labeled again as the sequence,
such that {uk}k∈N converges strongly to u in L2(Ωk0

)3. Let us prove that

〈(ůk · ∇)ůk,φ〉R3 → 〈(u · ∇)u,φ〉R3 as k →∞ ∀φ ∈ D(R3)3. (6.14)

Indeed, the Hölder inequality, (6.9) and the limiting relation ‖ůk − u‖L2(Ωk0
) →

0 as k →∞ yield that∣∣∣ ∫
R3

(((ůk − u) · ∇) ůk) · φdx
∣∣∣ =

∣∣∣ ∫
Ωk0

(((ůk − u) · ∇) ůk) · φdx
∣∣∣

≤ ‖ůk − u‖L2(Ωk0
)3‖∇ůk‖L2(R3)3×3‖φ‖L∞(Ωk0

)3

≤ 2cA|||F|||H−1(R3)3‖φ‖L∞(Ωk0
)3‖ůk − u‖L2(Ωk0

)3

→ 0 as k →∞. (6.15)

In addition, by using the assumption that suppφ⊂Ωk0 , identity (B.8), and again
the strong convergence property of {ůk}k∈N to u in L2(Ωk0

)3, we obtain that∣∣∣ ∫
R3

((u · ∇)(ůk − u)) · φ dx
∣∣∣ =

∣∣∣ ∫
Ωk0

((u · ∇)φ) · (ůk − u)dx
∣∣∣

≤ ‖∇φ‖L∞(Ωk0
)‖u‖L2(Ωk0

)‖ůk − u‖L2(Ωk0
) → 0 as k →∞. (6.16)

Then relations (6.15) and (6.16) lead to relation (6.14). Finally, passing to the limit
in formula (6.13) and using relations (6.10) and (6.14), we conclude that u satisfies
equation (6.12), and accordingly that u is a weak solution of the Navier-Stokes
equation (in the Leray sense).

Note that div (AE(u)) ∈ H−1(R3)3 ↪→ D′(R3)3 (∂α continuously maps the space
L2(R3) to H−1(R3)). In addition, the embedding H1(R3) ↪→ L6(R3) (see, e.g.,
Remark 3.8(i) in [2]) and the Hölder inequality imply for u ∈ H1(R3)3 that

(u · ∇)u∈L 3
2
(R3)3 ↪→L 3

2 ;loc(R3)3 ↪→H−1
loc (R3)3 ↪→D′(R3)3.

Thus, for given F ∈ H−1(R3)3 ↪→ D′(R3)3, we have

F̃ := F + div (AE(u))− (u · ∇)u ∈H−1
loc (R3)3 ↪→ D′(R3)3, (6.17)

and, by (6.12),

〈F̃ ,φ〉R3 = 0 ∀φ ∈ Ddiv(R3)3. (6.18)

Then due to the De Rham Theorem (cf., e.g., Proposition 1.1 in [48, Chapter 1],

see also Theorem 4.1), there exists π ∈ D′(R3) such that ∇π=F̃ in D′(R3)3, i.e.,

〈∇π,v〉R3 = 〈F + div (AE(u))− (u · ∇)u,v〉R3 ∀ v ∈ D(R3)3, (6.19)

and hence, the first equation in (6.2) is satisfied, while the second equation is sat-
isfied since u ∈ H1

div(R3)3.
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Moreover, by (6.18) F̃ defined by (6.17) belongs locally to H−1(R3)3 ⊥ H̊1
div(Ω)3.

Then equation ∇π = F̃ implies that π ∈ L2;loc(R3) (cf. Proposition 1.2 (ii) and
Remark 1.4 in [48, Chapter 1], [47, Lemma 9], [22, Lemma X.1.1]) and in addition,

by Theorem 3.1, we obtain for any bounded domain Ω̂ ⊂ R3 that

‖π‖L2(Ω̂)/R ≤ CΩ̂|||F̃ |||H−1(Ω̂)3 . (6.20)

In addition, by (6.17) we obtain that

|||F̃ |||H−1(Ω̂)3 ≤ |||F|||H−1(Ω̂)3 + |||div (AE(u)) |||H−1(Ω̂)3 + |||(u · ∇)u|||H−1(Ω̂)3 , (6.21)

Similar to (6.8), we have

|||F|||H−1(Ω̂)3 ≤ |||F|||H−1(R3)3 (6.22)

By (1.5), and (6.3),

|||div (AE(u)) |||H−1(Ω̂)3 = sup
Ψ∈H̊1(Ω̂)3, ‖∇Ψ‖L2(Ω̂)3=1

∣∣∣ 〈div (AE(u)) ,Ψ〉Ω̂
∣∣∣

= sup
Ψ∈H̊1(Ω̂)3, ‖∇Ψ‖L2(Ω̂)3=1

∣∣∣ 〈AE(u),∇Ψ〉Ω̂
∣∣∣

≤ ‖AE(u)‖L2(Ω̂)3×3 ≤ 34‖A‖L∞(Ω̂)‖∇u‖L2(Ω̂)3×3

≤ 34‖A‖L∞(Ω̂)‖∇u‖L2(R3)3×3

≤ 2cA34‖A‖L∞(Ω̂)|||F|||H−1(R3)3 , (6.23)

From (B.14) and (6.3) we have,

|||(u · ∇)u|||H−1(Ω̂)3 ≤
4

3
|Ω̂|1/6‖∇u‖2L2(R3)3×3 ≤

4

3
|Ω̂|1/64c2A|||F|||2H−1(R3)3 . (6.24)

Hence, substituting (6.22), (6.23) and (6.24) in (6.21) and then (6.21) in (6.20),

we obtain (6.4). Finally, the independence of the constant CΩ̂ of Ω̂ whenever the

domain Ω̂ is a ball follows from Theorem 3.1.

6.2. Transmission problem for the Navier-Stokes system in R3. Let n = 3
and Assumption 4.3 about the geometry hold. Let us consider the transmission
problem for the anisotropic Navier-Stokes system

L(u+, π+) = f̃+|Ω0
+

+ (u+ · ∇)u+ , div u+ = 0 in Ω0
+,

L(u−, π−) = f̃−|Ω− + (u− · ∇)u− , div u− = 0 in Ω0
−,

γ+u+ − γ−u− = 0 on ∂Ω0,

t+
(
u+, π+; f̃+ + E̊+ ((u+ · ∇)u+)

)
−t−

(
u−, π−; f̃− + E̊− ((u− · ∇)u−)

)
= ψ on ∂Ω0,

(6.25)

with given data (f̃+, f̃−,ψ) ∈ YN
Ω0

+,Ω
0
−

and unknown (u+, π+,u−, π−) ∈ XN
Ω0

+,Ω
0
−

.

Here,

XNΩ0
+,Ω

0
−

:= H1(Ω0
+)3 × L2(Ω0

+)×H1(Ω0
−)3 × L2,loc(Ω0

−) , (6.26)

YNΩ0
+,Ω

0
−

:= H̃−1(Ω0
+)3 × H̃−1(Ω0

−)3 ×H− 1
2 (∂Ω0)3 . (6.27)

Next we show the existence of a solution of the nonlinear transmission problem
(6.25) with general (including large) given data.
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Theorem 6.2. Let n = 3 and Ω0
+ and Ω0

− be as in Assumption 4.3. Let conditions

(1.2)-(1.4) hold in R3. Let
(
f̃+, f̃−,ψ

)
∈ YN

Ω0
+,Ω

0
−

and (u, π) ∈ H1
div(R3)3×L2,loc(Rn)

be the solution of the variational problem (6.2) provided by Theorem 6.1 for F ∈
H−1(R3)3 given by

F = −(f̃+ + f̃−) + γ∗ψ , (6.28)

where γ∗ : H−
1
2 (∂Ω0)3 → H−1(R3)3 is the adjoint of the trace map γ : H1(R3)3 →

H
1
2 (∂Ω0)3. Then there exists a solution (u+, π+,u−, π−) ∈ XN

Ω0
+,Ω

0
−

of the nonlinear

transmission problem (6.25) in the sense of distributions, given by the relations
u+ = u|Ω0

+
, u− = u|Ω0

−
, π+ = π|Ω0

+
, π− = π|Ω0

−
, and estimates (6.3), (6.4) hold.

Proof. We have to show that (u, π) ∈ H1
div(R3)3 × L2,loc(R3) solving system (6.1)

with F ∈ H−1(R3)3 given by (6.28) provides also a solution u± := u|Ω0
±

, π± := π|Ω0
±

of the transmission problem (6.25) in the sense of distributions. Since (u, π) ∈
H1

div(R3)3 × L2,loc(R3), we have u+ ∈ H1
div(Ω0

+)3, u− ∈ H1
div(Ω0

−)3, π+ ∈ L2(Ω0
+),

π− ∈ L2,loc(Ω0
−). System (6.1) implies that the couples (u±, π±) satisfy the Navier-

Stokes equations

L(u±, π±) = f̃±|Ω± + (u± · ∇)u± in Ω0
±. (6.29)

For any v ∈ D(R3)3 in (6.2), using again relation (6.28), we obtain that〈
aαβij Ejβ(u+), Eiα(v)

〉
Ω0

+

+ 〈(u+ · ∇)u+,v〉Ω0
+
− 〈π+,div v〉Ω0

+
+ 〈f̃+,v〉Ω0

+

+
〈
aαβij Ejβ(u−), Eiα(v)

〉
Ω0
−

+ 〈(u− · ∇)u−,v〉Ω0
−
− 〈π−,div v〉Ω0

−
+ 〈f̃−,v〉Ω0

−

= 〈ψ, γv〉∂Ω0 . (6.30)

Now let Ω∗ be a bounded Lipschitz domain (e.g., a ball) such that Ω0
+ ⊂ Ω∗ and

let Ω∗− :=Ω0
− ∩ Ω∗. By choosing v ∈ D(Ω∗)3, Ω0

− in (6.30) can be replaced by Ω∗−.
Then the first Green identity (2.23) shows that equation (6.30) reduces to〈

t+
(
u+, π+; f̃+ + (u+ · ∇)u+

)
− t−

(
u−, π−; f̃− + (u− · ∇)u−

)
, γv

〉
∂Ω0

= 〈ψ, γv〉∂Ω0 ∀v ∈ D(Ω∗)3,

or, equivalently, to the equation〈
t+
(
u+, π+; f̃+ + (u+ · ∇)u+

)
− t−

(
u−, π−; f̃− + (u− · ∇)u−

)
,φ
〉
∂Ω0 = 〈ψ,φ〉∂Ω0

for any φ ∈ H 1
2 (∂Ω0)3, due to the dense embedding of the space D(Ω∗)3 in H̊1(Ω∗)3

and the surjectivity of the trace operator γ from H̊1(Ω∗)3 to H
1
2 (∂Ω0)3. There-

fore, the second transmission condition in (6.25) follows, as asserted. The first
transmission condition is obviously satisfied since u ∈ H1(R3)3.

Theorem 6.2 as proved is a corollary of Theorem 6.1. Note that it could be also
proved directly, modifying the proof of Theorem 6.1 so that one considers there
weak solutions of the Dirichlet-transmission problem in an increasing sequence of
bounded composite Lipschitz domains Ωk, covering the entire space R3, and then
employs the results of Theorem 5.3.
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6.3. Exterior Dirichlet problem for the Navier-Stokes system. As in Sec-
tion 4.3, let Ω− be an exterior Lipschitz domain with a compact (not necessarily
connected) boundary ∂Ω.

Let us consider the exterior Dirichlet problem for the Navier-Stokes system{
L(u, π) = f + (u · ∇)u , div u− = 0 in Ω−,
γ−(u) = 0 on ∂Ω ,

(6.31)

with the given datum f ∈ H−1(Ω−)3 and unknown (u, π) ∈ H1(Ω−)3 × L2,loc(Ω−).
Let us also consider the mixed variational problem

〈
aαβij Ejβ(u), Eiα(v)

〉
Ω−

+ 〈(u · ∇)u,v〉Ω− − 〈div v, π〉Ω−
= 〈F,v〉Ω− ∀ v ∈ D(Ω−)3,

〈div u, q〉R3 = 0 ∀ q ∈ D(Ω−
3) .

(6.32)

with given F ∈ H−1(Ω−)3 and unknown (u, π) ∈ H̊1(Ω−)3 × L2,loc(Ω−).
Now we prove the following existence result for problem (6.31) (cf. [3, Theorem

1.3] for the exterior Dirichlet problem for the Navier-Stokes system with constant
coefficients).

Theorem 6.3. Let Ω− be an exterior Lipschitz domain in R3 with boundary ∂Ω. Let
conditions (1.2)-(1.4) hold in Ω−. Then for any F ∈ H−1(Ω−)3 there exists a pair

(u, π) ∈ H̊1(Ω−)3 × L2,loc(Ω−), which satisfies the nonlinear variational problem
(6.32) as well as the exterior Dirichlet problem (6.31) with f = −F in the sense of
distributions. In addition,

‖∇u‖L2(Ω−)3 ≤ 2cA|||F|||H−1(Ω−)3 , (6.33)

‖π‖L2(Ω̂)/R ≤ C
′
Ω− |||F|||H−1(Ω−)3 + C ′′Ω− |Ω̂|

1/6|||F|||2H−1(Ω−)3 (6.34)

for any bounded domain Ω̂ ⊂ Ω−. Here cA is the ellipticity constant in (1.4),

C ′Ω− := CΩ̂(1 + 2cA34‖A‖L∞(Ω−)3), C ′′Ω− :=
16

3
CΩ̂c

2
A,

and the constant CΩ̂ is as in Theorem 3.1, while |Ω̂| =
∫

Ω̂
dx. The norm ||| · |||H−1(Ω−)3

is defined in (4.19).

Proof. Let BR ⊆ R3 denote an open ball of radius R and center 0. We consider an
increasing sequence {Rk}k≥0 ⊂ R such that limk→∞Rk = ∞ and BR0

⊃ R3 \ Ω−.
Let us define the bounded domains Ωk := Ω− ∩BRk . Thus, ∂Ωk = ∂Ω ∪ ∂BRk .

The rest of the proof is omitted as it is very similar to the proof of Theorem 6.1
after replacing there H1(R3)3 by H̊1(Ω−)3 and also R3 by Ω−.

6.4. Exterior Dirichlet-transmission problem for the Navier-Stokes sys-
tem. Let Assumption 4.8 about the geometry holds and let us introduce the spaces

XNΩ0
+,Ω

0
−

:= H1(Ω0
+)3 × L2(Ω0

+)×H1(Ω0
−)3 × L2,loc(Ω0

−) , (6.35)

YNDΩ0
+,Ω

0
−

:= H̃−1(Ω0
+)3 × H̃−1(Ω0

−; ∂Ω0)3 ×H− 1
2 (∂Ω0)3 , (6.36)

where the space H̃−1(Ω0
−; ∂Ω0)3 is defined in (4.37).
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Next, we consider the exterior Dirichlet-transmission problem

L(u+, π+) = f̃+|Ω0
+

+ (u+ · ∇)u+ , div u+ = 0 in Ω0
+,

L(u−, π−) = f̃−|Ω− + (u− · ∇)u− , div u− = 0 in Ω0
−,

γ+u+ − γ−u− = 0 on ∂Ω0,

t+
(
u+, π+; f̃+ + E̊+ ((u+ · ∇)u+)

)
−t−

(
u−, π−; f̃− + E̊− ((u− · ∇)u−)

)
= ψ on ∂Ω0,

γ−u− = 0 on ∂Ω .

(6.37)

with given data (f̃+, f̃−,ψ) ∈ YD
Ω0

+,Ω
0
−

and unknown (u+, π+,u−, π−) ∈ XΩ0
+,Ω

0
−

.

Following arguments similar to the ones for Theorem 6.2, one can prove

Theorem 6.4. Let n = 3 and the geometry be as in Assumption 4.8. Let conditions
(1.2)-(1.4) hold on Ω−. Let

(
f̃+, f̃−,ψ

)
∈ YND

Ω0
+,Ω

0
−

and let (u, π) ∈ H̊1(Ω−)3×L2(Ω−)

be the solution of the distributional system (6.32) provided by Theorem 6.3 for F =

−(f̃+ + f̃−) + γ∗ψ, where γ∗ : H−
1
2 (∂Ω0)3→H−1(Ω−)3 is the adjoint of the trace

operator γ : H1(Ω−)3 → H
1
2 (∂Ω0)3. Then there exists a solution (u+, π+,u−, π−) ∈

XN
Ω0

+,Ω
0
−

of the nonlinear exterior Dirichlet-transmission problem (6.37) given by the

relations u+ =u|Ω0
+
, u−=u|Ω0

−
, π+ =π|Ω0

+
, π−=π|Ω0

−
, and estimate (6.33) holds.

Remark 2. (i) In the case of small data, the existence results in Theorems 6.2, 6.3
and can be supplemented with uniqueness results, as in Theorem 5.4, see also [31,
Theorem 4.2].

(ii) The well-posedness results obtained in this paper can be extended, similar to
[31] and [34], to the setting of Lp-based Sobolev spaces with p in an open interval
containing 2.

Appendix A. Extension result in weighted Sobolev spaces.

Lemma A.1. Let Ω be Rn or a (bounded or unbounded) Lipschitz domain in Rn.

Let Ω0 be a bounded Lipschitz set such that Ω0 ⊂ Ω. Let Ω0
+ := Ω0, Ω0

− := Ω \ Ω0

and ∂Ω0 denote the interface between Ω0
+ and Ω0

−.

(i) Let q+ ∈ L2(Ω0
+) and q− ∈ L2(Ω0

−). Then there exists a unique function q ∈
L2(Ω) such that q|Ω0

±
= q±. Moreover, ‖q‖2L2(Ω) = ‖q+‖2L2(Ω0

+)
+ ‖q−‖2L2(Ω0

−)
.

(ii) Let u+ ∈ H1(Ω0
+) and u− ∈ H1(Ω0

−) be such that γ+u+ = γ−u− on ∂Ω0.
Then there exists a unique function u ∈ H1(Ω) such that u|Ω0

±
= u±. More-

over, there exists a constant C ′ = C ′(n,Ω0
+,Ω

0
−), such that ‖u‖H1(Ω) ≤

C ′
(
‖u+‖H1(Ω0

+) + ‖u−‖H1(Ω0
−)

)
.

(iii) Let Ω be Rn or an exterior Lipschitz domain in Rn. Let u+ ∈ H1(Ω0
+) and

u− ∈ H1(Ω0
−) be such that γ+u+ = γ−u− on ∂Ω0. Then there exists a unique

u ∈ H1(Ω) such that u|Ω0
±

= u±. Moreover, there exists C = C(n,Ω0
+,Ω

0
−) >

0, such that ‖u‖H1(Ω) ≤ C
(
‖u+‖H1(Ω0

+) + ‖u−‖H1(Ω0
−)

)
.

(iv) If u ∈ H1(Ω) or u ∈ H1(Ω) then [γu] = 0 on ∂Ω0, where [γu] = γ+(u|Ω0
+

) −
γ−(u|Ω0

−
).

Proof. (i) We can take q= E̊Ω0
+
q+ +E̊Ω0

−
q− ∈L2(Ω), where E̊Ω0

±
are the operators

of extension by zero to Rn \Ω0
±. Then q|Ω0

±
=q±. To show uniqueness, assume that
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q1 and q2 are two such functions. Then q0 := q1− q2 ∈ L2(Ω) and q0|Ω0
±

=0. Hence

q0 =0 a.e. in Ω.
The proof of item (ii) follows the same arguments as those in the proof for

item (iii), with the obvious replacement of the weighted Sobolev space H1 by the
standard Sobolev space H1.

(iii) We follow arguments similar to those for Theorem 5.13 in [10]. First, we
show that there exists a bounded linear extension operator EΩ0

+
from H1(Ω0

+) to

H1(Ω).

To this end, we consider the bounded Lipschitz set Ω0
+ (with Ω0

+ ⊂ Ω) as Ω0
+ =⋃m

i=1 Ωi, m ≥ 1, where Ωi ⊂ Rn are bounded Lipschitz domains with disjoint
closures. Then there exist bounded linear extension operators EΩi from H1(Ωi) to
H1(Rn) (see, e.g., [1, Theorem 5.24]). Now let v0 ∈ H1(Ω0

+), v0
i := rΩiv

0 ∈ H1(Ωi),
and thus EΩiv0

i ∈ H1(Rn), i = 1, . . . ,m. Let χi ∈ D(Rn) be a cut-off function such

that χi = 1 in Ωi and suppχ ∩Ωj = ∅ if i 6= j. Then the function v :=

m∑
i=1

χiEΩiv0
i

is an extension of v0 ∈ H1(Ω0
+) to H1(Rn). Therefore, EΩ0

+
:=

m∑
i=1

χiEΩirΩi is a

bounded linear extension operator from H1(Ω0
+) to H1(Rn) and hence from H1(Ω0

+)
to H1(Ω), as asserted.

Assume now that u+∈H1(Ω0
+) and u−∈H1(Ω0

−) satisfy γ+u+ =γ−u− on ∂Ω0.
Let

u∗− := (EΩ0
+
u+)|Ω0

−
in Ω0

−. (A.1)

Then u∗− ∈ H1(Ω0
−), and there exists c = c(n,Ω0

+,Ω
0
−), such that

‖u∗−‖H1(Ω0
−) ≤ c‖u+‖H1(Ω0

+).

In addition, in view of (A.1) we have γ−u
∗
− = γ−(EΩ0

+
u+) = γ+u+ = γ−u− on ∂Ω0

−

and hence γ−(u− − u∗−) = 0 on ∂Ω0
−. Thus, E̊Ω0

−
(u− − u∗−) belongs to H1(Ω) and

there exists c1 = c1(n,Ω0
±) > 0, such that

‖E̊Ω0
−

(u− − u∗−)‖H1(Ω) ≤ c1
(
‖u+‖H1(Ω0

+) + ‖u−‖H1(Ω0
−)

)
, (A.2)

where E̊Ω0
−

is the operator of extension by zero outside Ω0
−. Let us now define the

function

u := E̊Ω0
−

(u− − u∗−) + EΩ0
+
u+. (A.3)

It belongs to H1(Ω). According to (A.1) and (A.3) we have also the following
relations

u|Ω0
+

= 0 + (EΩ0
+
u+)|Ω0

+
= u+ a.e. in Ω0

+,

u|Ω0
−

= u− − u∗− + (EΩ0
+
u+)|Ω0

−
= u− − u∗− + u∗− = u− a.e. in Ω0

−,

and thus the existence of a gluing function u is proved.
To show that the function u is unique, assume that there are two such functions,

u1 and u2. Then u0 := u1 − u2 belongs to H1(Ω) and u0|Ω0
±

= 0. Thus, u0 ∈
H1(Ω)⊂L2(Ω) and its support is a subset of ∂Ω0 = ∂Ω0

±. Hence u0 = 0 a.e in Ω
(cf. also [38, Theorem 2.10(i)]).
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(iv). For u ∈ H1(Ω) the result is well known. Let u ∈ H1(Ω). Consequently,
u ∈ H1

loc(Ω), and then γ+u = γ−u, i.e., [γu] = 0.

Appendix B. Several norm estimates. In this appendix we provide some esti-
mates used in the analysis of the Navier-Stokes problems. Let n = 3 or n = 4 and
Ω be a bounded domain in Rn.
• By the Sobolev embedding theorem (see, e.g., [44, Section 2.2.4, Corollary 2]),

the space H1(Ω)n is continuously embedded in L 2n
n−2

(Ω)n and hence in Ln(Ω)n.

Thus by the Hölder inequality there exists a constant c1 > 0 such that

‖(v1 · ∇)v2‖L n
n−1

(Ω)n ≤ ‖v1‖L 2n
n−2

(Ω)n‖∇v2‖L2(Ω)n×n

≤ c1‖v1‖H1(Ω)n‖v2‖H1(Ω)n ∀v1,v2 ∈ H1(Ω)n.

Consequently, (v1 · ∇)v2∈L n
n−1

(Ω)n for all v1,v2∈H1(Ω)n, and, thus, (v · ∇)v∈
L n
n−1

(Ω)n for any v ∈H1(Ω)n. Then by the Hölder inequality, we obtain for all

v1,v2,v3∈H1(Ω)n,

|〈(v1 · ∇)v2,v3〉Ω| ≤ ‖(v1 · ∇)v2‖L n
n−1

(Ω)n‖v3‖Ln(Ω)n

≤c2‖v1‖L 2n
n−2

(Ω)n‖∇v2‖L2(Ω)n×n‖v3‖H1(Ω)n , (B.1)

with some constant c2 > 0. Taking v3 ∈ H̊1(Ω)n in (B.1), we deduce that the term

(v1 · ∇)v2 belongs to the dual of the space H̊1(Ω)n, i.e., to the space H−1(Ω)n.
Moreover, there exists a constant c3 > 0 such that, for all v1,v2 ∈ H1(Ω)n,

‖(v1 · ∇)v2‖H−1(Ω)n ≤ c2‖v1‖L 2n
n−2

(Ω)n‖∇v2‖L2(Ω)n×n

≤ c3‖v1‖H1(Ω)n‖v2‖H1(Ω)n . (B.2)

Similar to (B.1), we have for all v1,v2,v3 ∈ H1(Ω)n,

|〈(v1 · ∇)v2,v3〉Ω| ≤ ‖v3‖L 2n
n−2

(Ω)n‖∇v2‖L2(Ω)n×n‖v1‖Ln(Ω)n

≤ c4‖v1‖Ln(Ω)n‖∇v2‖L2(Ω)n×n‖v3‖H1(Ω)n , (B.3)

with some constant c4 > 0. Taking v3 ∈ H̊1(Ω)n and v1,v2 ∈ H1(Ω)n in (B.3) we
obtain

‖(v1 · ∇)v2‖H−1(Ω)3 ≤ c4‖v1‖Ln(Ω)n‖∇v2‖L2(Ω)n×n

≤ c5‖v1‖Ln(Ω)n‖v2‖H1(Ω)n . (B.4)

with some constant c5 > 0.
• Let now v1,v2 ∈ H1(Ω)n, v3 ∈ H̊1(Ω)n. The density of the space D(Ω)n in

H̊1(Ω)n along with the divergence theorem and estimate (B.2) lead to the following
identity

〈(v1 · ∇)v2,v3〉Ω =

∫
Ω

∇ · (v1(v2 · v3)) dx− 〈(∇ · v1)v3 + (v1 · ∇)v3,v2〉Ω

= −〈(∇ · v1)v3 + (v1 · ∇)v3,v2〉Ω (B.5)

∀v1,v2 ∈ H1(Ω)n, v3 ∈ H̊1(Ω)n.
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Then in view of identity (B.5) and estimate (B.1), there exists a constant c6 > 0
such that

|〈(v1 · ∇)v2,v3〉Ω| ≤ ‖(∇ · v1)v3 + (v1 · ∇)v3‖L n
n−1

(Ω)n‖v2‖Ln(Ω)n

≤ c6‖v1‖H1(Ω)n‖v2‖Ln(Ω)n‖v3‖H1(Ω)n , (B.6)

and accordingly that

‖(v1 · ∇)v2‖H−1(Ω)3 ≤ c6‖v1‖H1(Ω)n‖v2‖Ln(Ω)n ∀ v1,v2 ∈ H1(Ω)n. (B.7)

• From (B.5) we also have

〈(v1 · ∇)v2,v3〉Ω =− 〈(v1 · ∇)v3,v2〉Ω (B.8)

∀ v1 ∈ H1
div(Ω)n, v2 ∈ H1(Ω)n, v3 ∈ H̊1(Ω)n ,

implying the well known formula

〈(v1 · ∇)v2,v2〉Ω = 0 ∀ v1 ∈ H1
div(Ω)n, v2 ∈ H̊1(Ω)n. (B.9)

Identity (B.8) also implies for v1 ∈ H1
div(Ω)n and v2 ∈ H1(Ω)n,

|||(v1 · ∇)v2|||H−1(Ω)n = sup
v3∈H̊1(Ω)n, ‖∇v3‖L2(Ω)n×n=1

∣∣∣ 〈(v1 · ∇)v2,v3〉Ω
∣∣∣

= sup
v3∈H̊1(Ω)n, ‖∇v3‖L2(Ω)n×n=1

∣∣∣ 〈(v1 · ∇)v3,v2〉Ω
∣∣∣

≤ sup
v3∈H̊1(Ω)n, ‖∇v3‖L2(Ω)n×n=1

‖v1 ⊗ v2‖L2(Ω)n×n‖∇v3‖L2(Ω)n×n

and hence

|||(v1 · ∇)v2|||H−1(Ω)n ≤ ‖v1 ⊗ v2‖L2(Ω)n×n ∀ v1 ∈ H1
div(Ω)n, v2 ∈ H1(Ω)n. (B.10)

• By the Hölder inequality,

‖v‖4L4(Ω) ≤ ‖v‖
4
L6(Ω)|Ω|

1/3, |Ω| :=
∫

Ω

dx ∀ v ∈ L6(Ω), (B.11)

and the Sobolev inequality (see, e.g., Eq. (II.3.7) in [22]) gives

‖v‖L6(Rn) ≤
(n− 1)√
n(n− 2)

‖∇v‖L2(Rn) ∀ v ∈ D(Rn). (B.12)

Since Ddiv(Ω) ⊂ D(Rn) is dense in H̊1
div(Ω)3 (see, e.g., [47, p. 32, Lemma 10]),

(B.10) and (B.12) imply

|(v1 · ∇)v1|||H−1(Ω)3 ≤ ‖v1 ⊗ v1‖L2(Ω)3×3

≤ ‖v1‖2L4(Ω)3

≤ |Ω|1/6‖v1‖2L6(Ω)3

≤ 4

3
|Ω|1/6‖∇v1‖2L2(Ω+)3×3 ∀ v1 ∈ H̊1

div(Ω)3, (B.13)

cf. Lemma IX.1.1 in [22], where a similar estimate was obtained with 2
√

2
3 instead

of 4
3 .
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Similarly, since the space Ddiv(Rn) ⊂ D(Rn) is dense in H1
div(Ω)3 (see, e.g., [4,

Proposition 2.2]), inequalities (B.10) and (B.12) imply for all v1 ∈ H1
div(R3)3 that

|(v1 · ∇)v1|||H−1(Ω)3 ≤ |Ω|1/6‖v1‖2L6(Ω)3

≤ |Ω|1/6‖v1‖2L6(R3)3

≤ 4

3
|Ω|1/6‖∇v1‖2L2(R3)3×3 . (B.14)
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