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In this paper, a numerical implementation of a direct united boundary-domain integral equation (BDIE)
related to the Neumann boundary value problem for a scalar elliptic partial differential equation with a
variable coefficient is discussed. The BDIE is reduced to a uniquely solvable one by adding an appropriate
perturbation operator. The mesh-based discretization of the BDIEs with quadrilateral domain elements
leads to a system of linear algebraic equations (discretized BDIE). Then, the system is solved by LU
decomposition and Neumann iterations. Convergence of the iterative method is discussed in relation to the
distribution of eigenvalues of the corresponding discrete operators calculated numerically.

Keywords: boundary-domain integral equations; numerical solution; iterative methods; spectrum;
eigenvalues

2010 AMS Subject Classifications: 65N38; 31A10; 45A05; 45C05; 65R20

1. Introduction

It is well known that one can reduce a boundary value problem (BVP) for a linear partial differential
equation (PDE) to a boundary integral equation (BIE) and then solve the latter numerically.
However, in order for the reduction to be enabled, a fundamental solution for the PDE is necessary.
Even though fundamental solutions are known for many equations with constant coefficients,
they are not generally available in an explicit form for partial differential operators with variable
coefficients.

In handling the variable-coefficient cases, one can use a parametrix (Levi function), which
is widely available, instead of the fundamental solution. This approach allows reduction of the
PDEs with variable coefficients not to BIE but to a boundary-domain integral equation (BDIE)
or a boundary-domain integro-differential equation (cf. [10,11,14]).
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Let us consider the Neumann problem for the following linear second-order elliptic PDE in a
bounded domain � ⊂ R

2 with a boundary ∂�:

Au(x) :=
2∑

i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f (x), x ∈ �, (1)

Tu(x) :=
2∑

j=1

a(x)nj(x)
∂u(x)

∂xj
= t̄(x), x ∈ ∂�, (2)

where u(x) is the unknown function, while f (x), t̄(x) and a(x) > const > 0 are prescribed func-
tions. It is well established that the Neumann problem (1) and (2) is solvable if and only if the
right-hand sides in Equations (1) and (2) satisfy the solvability (compatibility) condition∫

�

f (x) dx =
∫

∂�

t̄(x) d�(x). (3)

When the condition is satisfied, the solution u(x) does exist but is non-unique and the difference
between any two solutions is a constant.

A parametrix (Levi function) for PDE (1) with a variable coefficient, obtained from the
fundamental solution for the same equation but with ‘frozen’ coefficient a(x) = a(y), is

P(x, y) = ln |x − y|
2πa(y)

, x, y ∈ R
2. (4)

It satisfies equation

AxP(x, y) = δ(x − y) + R(x, y), (5)

where δ(x − y) is the Dirac delta function, while the remainder

R(x, y) = 1

2πa(y)

2∑
i=1

xi − yi

|y − x|2
∂a(x)

∂xi
, x, y ∈ R

2,

has only a weak singularity at x = y, see [10].
The derivation of some BDIEs for the Dirichlet, Neumann and mixed problems for PDE (1) with

a variable coefficient can be found in [10]. Particularly, the direct united BDIE for the Neumann
problem with respect to the unknown function u has the following form (cf. also analysis of the
united BDIEs for the mixed BVP in [12]):

c(y)u(y) −
∫

∂�

u(x)TxP(x, y) d�(x) +
∫

�

R(x, y)u(x) dx = F(y), y ∈ � ∪ ∂�, (6)

where

F(y) = −
∫

∂�

P(x, y)t̄(x) d�(x) +
∫

�

P(x, y)f (x) dx.

The first integral in Equation (6) is understood in the Cauchy principal value sense if y ∈ ∂�, and

c(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if y ∈ �,

0 if y ∈ R
2 \ �̄,

α(y)

2π
if y ∈ ∂�,

(7)

where �̄ = � ∪ ∂� and α(y) is an interior angle at a corner point y of the boundary ∂�, if the
corners are present. If y belongs to a smooth part of the boundary, then c(y) = 1

2 .
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1490 S.E. Mikhailov and N.A. Mohamed

BDIE (6) not only contains the usual line integrals over the boundary ∂� as in the case when
the parametrix is a fundamental solution but also integrals over the entire domain � with the
unknown function u in the integrand. BDIE (6) is called united since the unknown function u on
the boundary is just a trace of the function u in the domain, in contrast to the so-called segregated
BDIEs, where the unknown boundary functions are considered as formally independent of the
unknown variables in the domain (cf. [2,4,10,12]).

In [14], an equation similar to Equation (6) but with a localized parametrix instead
of Equation (4) was perturbed by a finite-dimensional operator and discretized using triangu-
lar linear domain elements and linear boundary elements. Then, the obtained linear algebraic
system was solved by the direct (LU decomposition) method.

This paper develops some preliminary results published in [13]. After perturbation
of Equation (6) by a finite-dimensional operator to obtain an unconditionally solvable BDIE,
we discretize it by quadrilateral bilinear domain elements and linear boundary elements, and
solve the resulting system of linear algebraic equations by a version of Neumann iterations and
compare the solution with the results obtained by LU decomposition. To investigate the depen-
dence of the convergence of the iterative method on the PDE coefficient, we also calculated the
eigenvalues of the resulting algebraic systems approximating the eigenvalues of the BDIEs.

2. Perturbation of the BDIE

Let us introduce the operator K̃,

[K̃u](y) := (1 − c(y))u(y) +
∫

∂�

u(x)TxP(y, x) d�(x) −
∫

�

u(x)R(y, x) dx, y ∈ �̄. (8)

Then, BDIE (6) can be rewritten in a more compact form as

u(y) − [K̃u](y) = F(y), y ∈ �̄. (9)

It was already mentioned that the Neumann problem (1) and (2) is not unconditionally solvable,
and when it is solvable, its solution can only be unique up to an additive constant. These properties
are inherited by BDIE (9) (cf. [4]). Particularly, any constant solves the homogeneous equation (9),
while the non-homogeneous equation (9) is solvable if and only if the right-hand side F(y) satisfies
a solvability condition. One can show that if the BVP solvability condition (3) is satisfied, then
the solvability condition for Equation (9) will be satisfied as well. However, even in this case, a
numerical solution of Equation (9) can be unstable. To avoid this, similar to [14], one can add to
Equation (9) the perturbation operator

[ ◦
K u](y) := 1

|∂�|
∫

∂�

u(x) d�(x), y ∈ �̄, (10)

where |∂�| := ∫
∂�

d�(x) is the boundary length, and arrive at the following perturbed equation:

u(y) − [K̂u](y) = F(y), y ∈ �̄, (11)

where

K̂ := K̃− ◦
K

is the perturbed boundary-domain integral operator. It is well known [5, §609] that there is one
eigenfunction and no associated functions corresponding to the eigenvalue λ̃ = 1 of the operator
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International Journal of Computer Mathematics 1491

K̃ for a = const, that is, both algebraic and geometric multiplicities are the same. We assume
that there are no associated functions corresponding to the eigenvalue λ̃ = 1 also for the case of
the variable coefficient a(x). Then following [9], one can prove that Equation (11) is uniquely
solvable for any right-hand side and moreover, when the solvability condition for Equation (9)
is satisfied, one of its solutions, such that

∫
∂�

u(x) d�(x) = 0, is delivered by the solution of its
perturbed counterpart (11).

3. Discretization of the BDIE

The domain � is discretized by a mesh of M isoparametric quadrilateral bilinear domain elements,
�̄ = ⋃M

m ēm, ek ∩ em = ∅ if k �= m, with nodes xi, i = 1, . . . J , at the vertices of quadrilater-
als. The Cartesian coordinates of a point on domain element em ⊂ � with the vertices XmN ,
N = 1, . . . , 4, in terms of the intrinsic coordinates (ξ1, ξ2) =: ξ on the reference square are given by
the relations

x(ξ) =
4∑

N=1


N (ξ)XmN , −1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1, (12)

where 
N (ξ) are the local shape functions,


1(ξ) = (1 − ξ1)(1 − ξ2)

4
, 
2(ξ) = (1 + ξ1)(1 − ξ2)

4
,


3(ξ) = (1 + ξ1)(1 + ξ2)

4
, 
4(ξ) = (1 − ξ1)(1 + ξ2)

4
.

Similar to the finite element approximation, the unknown function u(x) at any point x ∈ �̄ is
interpolated over its values u(xj) at the global nodes xj as

u(x) =
∑

j

φj(x)u(xj), x, xj ∈ � ∪ ∂�,

where φj(x) are the global shape functions satisfying the so-called δ-property, φj(xk) = δjk , and
related with the local shape functions as

φj(x) =
{


N (ξm(x)) if x ∈ ēm, xj = XmN ∈ {XmN ′ }4
N ′=1,

0 if x ∈ ēm, xj �∈ {XmN ′ }4
N ′=1,

where ξm(x) are the functions inverse to x(ξ) given by Equation (12).
The polygonal boundary ∂� becomes discretized with L continuous linear isoparametric ele-

ments, ∂� = ⋃L
l �l, where �1, �2, . . . , �L are the sides of the corresponding domain elements.

The Cartesian coordinates of a point on a boundary element �l ⊂ ∂� with the intrinsic coordinate
η, which coincides with an intrinsic coordinate ξ1 or ξ2 of the corresponding domain element, are
given by

x(η) =
2∑

n=1

n(η)Xln, −1 ≤ η ≤ 1, (13)

where n(η) are the local one-dimensional shape functions that are the traces of the two-
dimensional shape functions 
N (ξ):

1(η) = 1
2 (1 − η), 2(η) = 1

2 (1 + η), −1 ≤ η ≤ 1.
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1492 S.E. Mikhailov and N.A. Mohamed

Applying the interpolation to Equation (11) employed at the mesh nodes xi, i = 1, . . . , J , as the
collocation points, we get the system of J linear algebraic equations for J unknowns u(xj),

u(xi) −
∑
xj∈�̄

K̃iju(xj) +
∑

xj∈∂�

◦
Kij u(xj) = Fi, xi ∈ �̄, i = 1, . . . , J , (14)

where Fi = Qi + Di,

K̃ij := [K̃φj](xi)

= (1 − c(xi))δij +
∫

∂�

φj(x)TxP(x, xi) d�(x) −
∫

�

φj(x)R(x, xi) dx

= (1 − c(xi))δij +
L∑

l=1

∫
�l

φj(x)TxP(x, xi) d�(x) −
M∑

m=1

∫
em

φj(x)R(x, xi) dx

= (1 − c(xi))δij +
∑
�̄l�xj

∫
�l

φj(x)TxP(x, xi) d�(x) −
∑
ēm�xj

∫
em

φj(x)R(x, xi) dx, (15)

◦
Kij := ◦

K φj = 1

|∂�|
∫

∂�

φj(x) d�(x)

= 1

|∂�|
L∑

l=1

∫
�l

φj(x) d�(x) = 1

|∂�|
∑
�̄l�xj

∫
�l

φj(x) d�(x), (16)

Qi = −
∫

∂�

P(x, xi)t̄(x) = −
L∑

l=1

∫
�l

P(x, xi)t̄(x) d�(x), (17)

Di =
∫

�

P(x, xi)f (x) dx =
M∑

m=1

∫
em

P(x, xi)f (x) dx (18)

and δij is the Kronecker symbol. Note that from Equation (7), we have in the first term of
Equation (15), c(xi) − 1 = 0 for the interior points xi and c(xi) − 1 = − 1

2 for the smooth points

xi of the boundary ∂�. It follows from Equation (16) that the entries
◦
Kij do not in fact depend on

i, and
◦
Kij= 0 if xj �∈ ∂�.

Denoting K̂ij := K̃ij−
◦
Kij, algebraic system (14) can also be presented as

u(xi) −
∑
xj∈�̄

K̂iju(xj) = Fi, xi ∈ �̄, i = 1, . . . , J . (19)

After changing the integration variables to the intrinsic coordinates, we can write Equations
(15)–(18) as

K̃ij = (1 − c(xi))δij +
∑
�̄l�xj

Al
n(j,l),i −

∑
ēm�xj

Gm
N(j,m),i,

◦
Kij = 1

|∂�|
∑
�̄l�xj

Bl
n(j,l), Qi = −

L∑
l=1

Cl
i , Di =

M∑
m=1

Hm
i ,
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International Journal of Computer Mathematics 1493

where n(j, l) is the local number of the node xj on the boundary element �l, N(j, m) is the local
number of the node xj on the domain element em,

Al
ni =

∫ 1

−1
n(η)TxP(x(η), xi)Jl1(η) dη, (20)

Bl
n =

∫ 1

−1
n(η)Jl1(η) dη, (21)

Cl
i =

∫ 1

−1
P(x(η), xi)t̄(x(η))Jl1(η) dη, (22)

Gm
Ni =

∫ 1

−1

∫ 1

−1

N (ξ)R(x(ξ), xi)Jm2(ξ) dξ1 dξ2, (23)

Hm
i =

∫ 1

−1

∫ 1

−1
P(x(ξ), xi)f (x(ξ))Jm2(ξ) dξ1 dξ2, (24)

and Jm2 and Jl1 are the Jacobians of the transforms (12) and (13), respectively.
The regular integral (21) and the double layer potential (20) (since it is regular on the piece-wise

smooth curves) as well as the integrals in Equations (22)–(24), when the collocation point xi is not
a vertex of the integration element, are evaluated by the Gauss–Legendre quadrature formulas,

∫ 1

−1
f (η) dη =

ı∑
p=1

Wpf (ηp),
∫ 1

−1

∫ 1

−1
f (ξ) dξ1 dξ2 =

j∑
q=1

ı∑
p=1

WpWqf (ξ1p, ξ2q),

where ı and j are the numbers of quadrature points used to evaluate the integrals, ηp, ξ1p and ξ2q

are the quadrature point coordinates, while Wp and Wq are the quadrature weights associated with
points p and q, respectively.

However, the integrals (22)–(24) need a special treatment when a collocation point xi is a vertex
of the integration element since the kernels of these integrals are weakly singular at collocation
points. The integrals (22) with the kernel involving ln(1/r) are evaluated by the Gauss–Laguerre
quadrature, that is, ∫ 1

0
f (η̄) ln

(
1

η̄

)
dη ≈

ı∑
p=1

Wpf (η̄p)

(cf. [1]). For the domain integrals (23) and (24), we split the square reference element into
triangular sub-elements and apply the Duffy transformation (cf. [1]).

System (19) can now be solved by a numerical method for linear algebraic systems, particularly
the LU decomposition method or the Neumann series expansion

u =
∞∑

n=0

K̂
n
F, (25)

where K̂ = {K̂ij}J
i,j=1, u = {u(xj)}J

j=1 and F = {F(xi)}J
j=1.

Convergence of the Neumann series of the form (25) for the purely boundary integral operator
associated with the Dirichlet problem for the Laplace equation is well known [5,15,16]. For
the perturbed boundary integral operator associated with the Neumann problem for the Laplace
equation, the convergence is shown, for example, in [8]. To the best of the authors knowledge,
a proof of convergence of the Neumann series for BDIEs is not available. One of the objectives
of this paper is to conclude from numerical experiments whether series (25) does converge, for
discretized BDIE (19), in the considered examples.
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1494 S.E. Mikhailov and N.A. Mohamed

4. Numerical solution of BDIEs

A FORTRAN code was written for the numerical solution of the BDIEs where the system
of Equation (19) is solved by the LU decomposition method and by the Neumann series
expansion (25). Let us define the relative errors for the approximate solution and for its gradient as

ε(u) = max1≤j≤J |uapprox(xj) − uexact(xj)|
max1≤j≤J |uexact(xj)| ,

ε(∇u) = max1≤m≤M |∇uapprox(xm
c ) − ∇uexact(xm

c )|
max1≤m≤M |∇uexact(xm

c )| ,

where xm
c are centres of the quadrilateral domain elements em. In this section, we analyse conver-

gence for the square, circular and parallelogram domains (see Figures 1, 2 and 3, respectively)
and present graphs of these errors versus the number of the mesh nodes J for the algebraic system

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x1

x2

Figure 1. The square domain 1 < x1 < 2, 1 < x2 < 2.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x1

x2

Figure 2. The unit radius circular domain centred at (2, 2).
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3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

x1

x2

Figure 3. The parallelogram domain with vertices (3,1), (4,1), (6,2), (5,2).

solution by the LU decomposition and also versus the number of iterations for the solution by the
Neumann iteration method.

For each domain, we solve the following two test interior Neumann problems (1) and (2) with
a(x) = x2

2.
Test 1: f (x) = 0 in �, t̄(x) = x2

2n1(x) on ∂�, with uexact(x) = x1 in �̄.
Test 2: f (x) = 2x2

2 in �, t̄(x) = 2x1x2
2n1(x) on ∂�, with uexact(x) = x2

1 in �̄.
Figures 4a, 5a and 6a give the dependence of the solution error on the number of collocation

points J for the solution of the algebraic system by the LU decomposition and the Neumann
iterations converged to it. The dependence of the error ε(u) on the number of nodes J (and on the
average linear size of the elements, h) can be fitted with a power function (i.e. with a straight line
in the double logarithmic coordinates in the graphs), giving ε(u) ∼ J−q/2 ∼ hq, where q ≈ 1 in
Test 1 and q ≈ 2 in Test 2, that is, respectively, linear and quadratic convergence with respect to
the element size h. For the gradient error, we similarly have ε(∇u) ∼ J−q′/2 ∼ hq′

, where q′ ≈ 0.1
for the square and circular domains and q′ ≈ 0.2 for the parallelogram domain in Test 1, while
q′ ≈ 1 for the square and parallelogram domains and q′ ≈ 2 for the circular domain in Test 2.

The accuracy of Test 1 is much higher since the implemented piece-wise bilinear interpolation
is exact on the linear exact solution, and only the integral operator approximation error, related
to the accuracy of the numerical integration, is involved. In Test 2, on the contrary, the piece-
wise bilinear interpolation of the quadratic exact solution gives the major contribution to the
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Figure 4. Relative error of the approximate solutions (a) and their gradients (b) on the square versus number of nodes J .
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Figure 5. Relative error of the approximate solutions (a) and their gradients (b) on the circle versus number of nodes J .
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Figure 6. Relative error of the approximate solutions (a) and their gradients (b), on the parallelogram versus number of
nodes J .

total error. On the other hand, the higher convergence rate in Test 2 can be attributed to the
quadratic convergence rate of the piece-wise linear interpolation of smooth nonlinear functions,
while the lower convergence rate in Test 1 can be explained by the lower convergence rate of the
approximation of the integral operator.

From Figures 7, 8 and 9, it can be seen that the Neumann series converges to the LU decom-
position solutions, reaching the LU decomposition accuracy after 70 iterations for the square, 40
iterations for the circle and 140–160 iterations for the parallelogram in Test 1 and after 20–40
iterations for the square, 15–20 iterations for the circle and 60–100 iterations for the parallelogram
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Figure 7. Relative error of the solutions on the square versus number of Neumann iterations compared with the error
of the LU decomposition solution (horizontal lines) for different number of mesh nodes J .
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Figure 8. Relative error of the solutions on the circle domain versus number of Neumann iterations compared with the
error of the LU decomposition solution (horizontal lines) for different number of mesh nodes J .
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Figure 9. Relative error of the solutions on the parallelogram domain versus number of Neumann iterations compared
with the error of the LU decomposition solution (horizontal lines) for different number of mesh nodes J .

in Test 2. The number of the Neumann iterations necessary to reach the same accuracy as the LU
decomposition grows slightly with the number of collocation points since the accuracy of the LU
decomposition numerical solution, taken for comparison, grows as well. The dependence of the
iteration number on the test (i.e. on the exact solution behaviour) and on the domain shape is also
related with the different accuracy of the LU numerical solution taken for comparison.

5. Eigenvalues

To analyse the fast convergence of the iterative method in the examples considered in Section 4 and
investigate whether it holds for other variable coefficients of the PDE, we consider in this section
the eigenvalues of the obtained algebraic systems approximating the BDIEs. It is well known that
the Neumann series in the form (25) for a matrix operator K̂ converges for any right-hand side if
and only if all eigenvalues of the operator K̂ belong to the open unit disc. Moreover, the number
of terms in the Neumann series sufficient for the error to be lower than a prescribed value can be
estimated in terms of the maximum eigenvalue modulus.

Let λ̃k , k = 1, 2, . . . , J , denote the eigenvalues of the matrix K̃ = {K̃ij}J
i,j=1, that is, the numbers

λ̃k for which the homogeneous equation

(λ̃kI − K̃)u = 0
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has non-trivial solutions. Similarly, let λ̂k , k = 1, 2, . . . , J , denote the eigenvalues of the perturbed
matrix K̂.

When the coefficient a(x) is constant, the remainder R vanishes and BDIE (9) can be split into
the purely BIE for the boundary values (traces) of u on ∂� and the representation formula for u
in �. The same will hold also for the perturbed equation (11) and its discrete counterpart (19).
From [5,15], one can deduce that in this case the eigenvalues of the non-perturbed boundary
integral operator (and thus the whole operator K̃) in the appropriate function spaces are real and
belong to the segment [0, 1]. Application of [9] gives that the spectrum of the perturbed operator
K̂ belongs to the interval [0, 1), that is, its spectral norm is less than 1 implying convergence of
the corresponding Neumann series.

When the coefficient a(x) is not constant, the spectral properties and thus a proof of convergence
of the Neumann series for BDIEs is not available, but some conclusions about the convergence
can be drown from the following graphs presenting the numerically obtained largest modulus
eigenvalues of the discrete operators K̃ and K̂ and the influence of the coefficient a on them.

Figures 10–12 show the first five eigenvalues λ̃k of the matrix K̃ with the largest moduli
for the examples from Section 4. These five eigenvalues appear to be real for the square and
parallelogram and have an imaginary part less than 0.006 for the circle. Numerically obtained
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Figure 10. Eigenvalues of the matrix K̃ for the square versus the number of nodes.
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Figure 11. Eigenvalues of the matrix K̃ for the circular domain versus the number of nodes.
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largest eigenvalues λ̂k of the perturbed matrix K̂ coincide (up to the third digit) with those for
the unperturbed matrix K̃, except the eigenvalue λ1 = 1, that vanishes for K̂, as predicted by the
theory. Indeed, the eigenvalues of the discrete operators K̃ and K̂ approximate the spectra of the
corresponding integral operators K̃ and K̂. The operators K̃ and K̂ differ only by the perturbation
operator (10) and, according to [9], their eigenvalues coincide except the eigenvalue λ̃ = 1 that is
transferred to the spectrum point λ̂ = 0, for the operator K̂, under the assumption that there are
no associated functions corresponding to the eigenvalue λ̃ = 1.

The maximal eigenvalues of the matrix K̂, that is, λ2 in Figures 10–12, give the spectral radius
of the matrix K̂ influencing the convergence rate of the Neumann series. In our examples, the
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Figure 12. Eigenvalues of the matrix K̃ for the parallelogram versus the number of nodes.

radii are less than one, implying convergence of the Neumann series. For the circular domain,
it converges after 25 iterations, while for the parallelogram only after 100 iterations correlating
well with max |λ̂k| ∼ 0.5 for the circular domain and max |λ̂k| ∼ 0.9 for the parallelogram.

To investigate the influence of the coefficient a(x) on the maximum eigenvalues of the perturbed
matrix K̂, we calculated them for a(x) = xk

2 with different k ≥ 1. (Note that our previous examples
were calculated for k = 2.) The results are presented in Figures 13–21 for the fine meshes, J =
1089 for the square and parallelogram, and J = 2113 for the circular domain. For the overlapping
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Figure 13. Real parts of the largest eigenvalues of the matrix K̂ for the square versus k for a(x) = xk
2.
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Figure 14. Imaginary parts of the largest eigenvalues of the matrix K̂ for the square versus k for a(x) = xk
2.
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Figure 15. Moduli of the largest eigenvalues of the matrix K̂ for the square versus k for a(x) = xk
2.
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Figure 16. Real parts of the largest eigenvalues of the matrix K̂ for the circular domain versus k for a(x) = xk
2.
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Figure 17. Imaginary parts of the largest eigenvalues of the matrix K̂ for the circular domain versus k for a(x) = xk
2.
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Figure 18. Moduli of the largest eigenvalues of the matrix K̂ for the circular domain versus k for a(x) = xk
2.
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Figure 19. Real parts of the largest eigenvalues of the matrix K̂ for the parallelogram versus k for a(x) = xk
2.
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Figure 20. Imaginary parts of the largest eigenvalues of the matrix K̂ for the parallelogram versus k for a(x) = xk
2.
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Figure 21. Moduli of the largest eigenvalues of the matrix K̂ for the parallelogram versus k for a(x) = xk
2.

eigenvalues seen in the figures, our calculation has shown that their eigenfunctions are linearly
independent, that is, the eigenvalues are geometrically multiple.

The figures show that for sufficiently high k, that is, for sufficiently sharp variation of the
coefficient, the eigenvalues are generally complex and can lay outside the unit circle, unlike
the constant-coefficient case. This means that the standard Neumann series for the BDIE with
such variable coefficients can generally diverge. Note, however, that from these figures one can
conclude that 0 ≤ Reλ̂k < 1 for the considered examples, similar to the constant-coefficient case,
while |Imλk| < C with some constant C < 1.5. Following [6, Section 2.2.2, 7], one can map
the exterior of this λ-domain to the exterior of the unit circle, which will lead to a converging
modification of the Neumann series.

6. Concluding remarks

The finite-dimensional perturbation allows us to reduce the BDIE of the Neumann problem to an
unconditionally and uniquely solvable integral equation.
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The numerical results presented in the paper show that the mesh-based discretization of the
BDIE with a quadrilateral bilinear approximation leads to a system of linear algebraic equations
that can be solved, for example, by LU decomposition with linear convergence with respect to
the linear element size. For some variable coefficients and shapes of the domains, the discrete
BDIE can be also solved by fast converging Neumann iterations, which is related to the beneficial
spectral properties of the BDIE.

A more detailed analysis of the discrete BDIE eigenvalues demonstrated that when the PDE
coefficient moderately varies with coordinates, that is, when the coefficient gradient is small
or moderate (e.g. |∇a| < 5a/L in the considered examples, where L is a characteristic size of
the domain), the spectrum is contained in the unit circle, which implies the Neumann series
convergence. Then, the standard Neumann iteration method is a good alternative to the direct
methods, especially when the computer storage and CPU time needed for the latter become
prohibitive. However, this spectrum property does not hold generally, and when the coefficient
varies sharply enough, some eigenvalues appear also outside the unit circle, which can lead to
divergence of the standard Neumann series; in these cases, the modified Neumann series and other
iterative (e.g. GMRES) or direct methods will be more appropriate.

Further theoretical and numerical research is needed to analyse spectral properties of the
localized BDIEs considered in [3,11,14].

Acknowledgement

The work was supported by the grant EP/H020497/1 ‘Mathematical analysis of localized boundary-domain integral
equations for BVPs with variable coefficients’ of the EPSRC, UK.

References

[1] G. Beer, Programming the Boundary Element Method, John Wiley & Sons, Chichester, 2001.
[2] O. Chkadua, S.E. Mikhailov, and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed

BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl. 21 (2009), pp. 499–543.
[3] O. Chkadua, S.E. Mikhailov, and D. Natroshvili, Analysis of some localized boundary-domain integral equations,

J. Integral Equ. Appl. 21 (2009), pp. 405–445.
[4] O. Chkadua, S.E. Mikhailov, and D. Natroshvili, Analysis of segregated boundary-domain integral equations for

variable-coefficient problems with cracks, Numer. Methods Partial Differential Equ. 27 (2011), pp. 121–140.
[5] E. Goursat, A Course in Mathematical Analysis, Vol. 3, Part 2: Integral Equations, Calculus of Variations, Ginn,

Boston, MA, 1964.
[6] L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis, Wiley Interscience Publishers, New

York, 1964.
[7] V.N. Kublanovskaya, Application of analytic continuation by change of variables in numerical analysis, Proc. Math.

Inst. Acad. Sci. USSR 53 (1959), pp. 145–185.
[8] S.E. Mikhailov, On an integral equation of some boundary value problems for harmonic functions in plane mul-

tiply connected domains with nonregular boundary, Matematicheskii Sbornik 121 (1983), pp. 533–544 (English
Translation: Mathematics of the USSR Sbornik 49 (1984), pp. 525–536).

[9] S.E. Mikhailov, Finite-dimensional perturbations of linear operators and some applications to boundary integral
equations, Eng. Anal. Bound. Elem. 23 (1999), pp. 805–813.

[10] S.E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Eng.
Anal. Bound. Elem. 26 (2002), pp. 681–690.

[11] S.E. Mikhailov, Localized direct boundary-domain integro-differential formulations for scalar nonlinear boundary-
value problems with variable coefficients, J. Eng. Math. 51 (2005), pp. 283–302.

[12] S.E. Mikhailov, Analysis of united boundary-domain integro-differential and integral equations for a mixed BVP
with variable coefficient, Math. Methods Appl. Sci. 29 (2006), pp. 715–739.

[13] S.E. Mikhailov and N.A. Mohamed, Iterative solution of boundary-domain integral equation for BVP with variable
coefficient, in Proceedings of the 8th UK Conference on Boundary Integral Methods, D. Lesnic, ed., Leeds University
Press, Leeds, 2011, pp. 127–134.

[14] S.E. Mikhailov and I.S. Nakhova, Mesh-based numerical implementation of the localized boundary-domain integral
equation method to a variable-coefficient Neumann problem, J. Eng. Math. 51 (2005), pp. 251–259.

[15] S.G. Mikhlin, Integral Equations and Application to Certain Problems in Mechanics, Pergamon Press, New
York, 1957.

[16] O. Steinbach and W. Wendland, On C. Neumann’s method for second-order elliptic systems in domains with non-
smooth boundaries, J. Math. Anal. Appl. 262 (2001), pp. 733–748.

D
ow

nl
oa

de
d 

by
 [

B
ru

ne
l U

ni
ve

rs
ity

] 
at

 0
5:

25
 3

0 
A

ug
us

t 2
01

2 


