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The article considers the edge effect resulting from the presence of a line of
intersection of the free surface of the body and the surface of junction of its
inhomiogeneous anisotropic elastic parts. It is shown that the problem of the
degree of stress singularity in the neighborhood of this line can be reduced to
a two-dimensional problem for an infinite composite wedge. A number of examples
are calculated for composites made up of layers with various arrangements of
fivers, and also for layers reinforced by isotropic material. The degree of
stress singularity is plotted as a function of the parameters of the materials
and the geometry of the junction.

There have been a number of studies in recent years of stress singularities at a si
gular point of a boundary (roint on a rib or on a line of intersection of a free surface
and the surface of junction of several bodies, which will also be called a rib). The
studies have basically emploved two methods: either they have sought solutions of a cer- %
tain form satisfying homogeneous eguations and boundary conditions near the singular point”
[1-5], or, by means of the Kellin transformation and residue theory, the problem has been
solved for an infinite wedge [6-12]. In the former case, there is a question about the
completeness of the resultant system of functions and the effect of certain right sides of
the equations and boundary cenditions on the asymptotic form of the solution near the
singular point; while in the latter case it is difficult to obtain a solution for a finite
region with nonrectilinear boundaries.

For elliptic boundary-value problems with continuous coefficients in noncompound fi-
nite two-dimensional regions with corner points, or multidimensional regions:with conical
points, the asymptotic form of the solution was given in [13]. This asymptotic form was
obtained by reduction (using the truncating function of the initial problem in a finite
region) to a problem in an infinite wedge (or cone), which was solved by means of integral
transforms. The shortcomings of the approaches described above were thus eliminated.
Paper [1U4] considered the problem for a compound two-dimensional region with a junction
that emerged onto a free surface. In this paper the initial problem was reduced to a
system of singular integral eguations, which was then solved by means of the Mellin
transformation. Results for the asymptotic form in a multidimensional region with smooth
ribs were obtained in [15].

In what follows, we will use these results to consider a continuocusly inhomogeneous

composite anisotropic elastic solid body that is subjected to mass forces and a temperat
field with arbitrary boundary conditions.

ure

1. Assume that D' and D" are parts of a composite body, each of which obeys a gener-
alized Hooke's law with allcwance for thermal stresses, and the equilibrium equations

Gu=Amr€u—’ﬂuT ( 1 )
ou.=Fs . (2)

The index after the corma denotes the derivative with respect to the corresponding
coordinate; summation is assumed over repeating indexes. Substituting (1) into (2), ex-
pressing the deformatlions ir terms of the displacements, and using the faect that tensor
A’ is symmetrical, we obtain che basic system of equations in the displacements for eac
part:
© 1979 by Allerton Press, Inc.
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ve introduce the Cartesian coordinate system X5, X5, x3, with its origin coinciding
the singular point in question, its x3 axis directed along the tangent to the rib,

a ,
directed along the tangent to the surface of junction. We also introduce

and the X3 axis
cylindrical system ¢ s where the angle @ is reckoned from Xq in the X1%5 plane.

gme that the boundary conditlons on the free surface from each side of the rib in the
hporhood of the coordinate origin are supplied by three suitable conditfions of the

given below:
At m=pHBaTnms=t®, W= g,y ()

Thus, We camn encompass problemé with displacements specified on a free boundary,

}',Rh specified stresses, the problem of contact with a rigid contour, and also the mixed
.~oblem with 1ine of change of the boundary conditions coinciding with the rib in the

ggghborhood of the point in question. On the surface of junction near the point in

: jzestion, the boundary conditions will be provided by six suitable conditions out of the

+en that follow:
. '
(4 l,imu:.r"A'('NuZt) ny== (ﬁﬂlT""Bf,! ™) ng=t.’, u(""u«”;"ll(" (im=1,2.3) (5)

v ¢ won ’
Amxun.t=ﬂulT""=‘ti'. Aizuuh,t=§u”T"Et(' (im1,3)

Thus, We Can encompass rigid connection with "tightness," and contact without fric-
tton. Thus, we have elliptical conjugacy problem (3)-(5). .

in [15], expressions for the asymptotic behavior of the solution of an elliptic
roundary-value problem in a noncompound region with ribs were given under the assumption
rat the solution is infinitely differentiable along a rib with derivatives that belong
-0 some functional space with weight. This guarantees that the initilal problem can be
reduced to a two-dimensional one. Only solutions for which all derivatives encountered
‘n the equation were defined were considered.

For the equations of elasticity, however, 1t is of interest to conslder the solution
xith displacements belonging to Sobolev space meW!{(D'UD"), W! is a space with integrable
squares of the function and its first derivatives (energy space). Making integral esti-
zztes for uy 3 as done in [16,17] for equations in multidimensional noncompound regions

3 «
xith ribs, we can show that when certain conditions are imposed on the right side of the
tzsic system and the boundary conditions, we have ug, =W This guarantees that the initial
:roblem can be reduced to a two-dimensional one for almost all X3 Furthermore, if we make

Integral estimates for Uy 33> we obtain that u,aeW' (D'UD"}, and for all X3 the solution

3
fEWWﬂ)of initial problem (3)-(5) satisfies a two-dimensional boundary-value problem ob-
“zined from (3)-(5) by discarding terms with derivatives with respect to Xg and with small

rivatives, whose right side belongs to L(n). Here 7 is a section of a sufficiently small
ighborhood  of the singular point in question by a plane perpendicular to the rib.

Furthermore, if we apply the methods of [13] or [14] to the resultant two-dimensional
Toblem, i.e., if we use the truncating function to reduce this problem to one with con-
stant coefficients equal to thelr values at the singular point under consideration in an

fffinite composite two-dimensional wedge, and solving it by means of the Mellin transforma-
tlon, we can show that the solution near the singular point has the form

A st

Ny=1

U= Z ri=tx Z Do (p) (In ryrtu

a<<Re 51 new0
(6)
Nyt .
o= YL T Y b (@) (mP)Fou”
a<Re <t LT

Here Sy are the zeros of the analytic function A(s), while Nk is their multiplicity;

3“)15 independent of the right sides of the fundamental system of equations and the
SOundary conditlons, and its zeros are involved in a similar representation of the solu-~
tlon of some model problem 1n an infinite composite two-dimensional wedge with the same
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aperture angle as 1n the initial problem at the singular point in the loecal coordin
system. The equations of the model problem are the principal part of the equations;ﬁﬁ
tained from the initial ones by discarding terms with derivatives with respect to x'Ob

the principal system and the boundary conditions. The coefficlents of these equation
are constant and equal to theilr values in the initial equations near the singular po 8
while the right sides are arbitrary and nonzero in finlte regions not containing a ¢
point,  and integrable. The quantities a, w’ 04 in (6) are determined by the smoothneg
the right sides of initial problem (3)-(5) near the singular point; in particular,
1e=o(r "), u, °~+0, t,+0-as r—0, then a<0, uV¥<e, g,V—+0; Oyn, Yun are certain functions of the pol
angle @,

In the case under consideration, the equations of the model problem will be Eqs
(5) with certain right sides, if we set Auw= const ([, j=1, 2; 4, k=1, 2, 8). Let us recall that in
local coordinate system the X3 axils is directed along the rib, and hence n3 = 0 at the
singular point. :

It is. not hard to see that these equations coincide with those obtained for a hbﬁ :ﬁ&?
2 té_

geneous composite two-face wedge of infinite cross section in which the stress field 1@%@ .

independent of the coordinate x3. The difference is that additional conditions are imﬂ?

Ottty

on the right sides for the realization of this state in the wedge: they should note gi e\
the total stress and moment. But, as already noted, the right sides do not affect A(s). 72
Thus, A(s) in expansion (6) for an arbitrary composite body will be the same as in the
corresponding problem for a wedge in which the stresses do not vary along the rib.

If at the singular point, tensor Aww has a plane of symmetry perpendicular to thé il
for both sides of the body, then system (3)-(5) for the model problem breaks down into .
two unconnected systems: for uy and u, for i = 1 and 2, and for ug for 1 = 3. In the g

eral case of loading, expansion (6) will contain terms generated by the zeros of A fof:
both systems (let us call them Al and by, respectively), and the resulting function A=A

But if the initial problem is posed for a prismatic composite body‘and the stress field 3
in it. is independent of X35 then in the absence of torsion and antiplane deformation, l.e.y

when there is tension, bending, plane deformation, and a two-dimensional temperature fieﬁf
that does not cause torsion, the equation for u, will be identically satisfied by the
function 3

uy=Az,+Bz,+C

Then expansion (6) will contain only terms generated by Al. For pure torsion or
antiplane deformation, only terms generated by A, will remain in (6).

Let us consider the problem of stress singularity. It can be generated either by tht
first term in (6), i.e., by the presence of zeros of A(s) in the strip O<Res<'{ and hence
by the form of the differential operators of the principal system and the boundary condi-
tions and the geometry of the body near the singular point; and by the second term in (€),
gy, i.e., by insufficient smoothness of the right sides near the singular point.

Let
u‘=0(r‘+‘)1 1’i0=0 (r‘)i ﬁi}T=-'0(r=), (‘-—‘0 (r;”“) as  r—+( ’ (7 )
\=0(f:)as r~0 means that lim|f/f.]<e as r0.

For an energy solution to exist, it is sufficient that &>—-1. TFor the behavior of th?
right sides near the rib not to generate singular terms, i.e., for g; to be a bounded
function, 1t is sufficient that e>0;. if e=0 and s=0 is a root of A(s), then the appearanct
of a stress singularity of logarithmic form is possible; a;=0(*) and the stresses will
contain terms of the form oy=0(*) for —i<e<q(.

Let us consider, furthermore, the boundary effect in composites. This issue has D&&
taken up in a number of studies, in which the equations of anisotropic elasticity for
layers at different angles have been solved by the method of finite differences [18,19]_ﬁ
or the method of finite elements [20]. It has been noted that infinite stresses may aris
in the neighborhood in which the free surface intersects the surface of connection of ?he
layers. Their asymptotic form has not been investigated. Let us investigate the way P
which the degree of stress singularity derends on the reinforcement factor and the loca
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of connection in orthogonally reinforced glass and carbon plastics,ﬁénd also in
joined to a layer of aluminum. '

< amesTY
zach layer will be regarded as homogeneous and isotropic, with its characterlstics
,-“determined by the parameters of the binder and reinforcement and the reinforcement
:br_ Rigid adhesion is assumed between the layers; stresses are specified in the neigh-
-s0d of the rib on the free surfaces. Otherwise the composite 1s arbitrarily loaded

any €%

% subjected to a temperature field. Conditions (7) are assumed to be satisfied for e=0.

[™
6y~
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i=¥nﬂndicated above, the stresses will have the form (6), and if in O<Res<i there are roots
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of the corresponding function A(s), then singular terms of the form o~r~* will appear in

We will consider: only those packings of layers which yield fensors A near the rib
+ possess a plane of symmetry perpendicular to the rib. Then A(s) breaks down into A.(s),.
rgéponding to plane deformation, and A:(s), corresponding to torsion (or antiplane defor-
1on). Function A,(s)was obtained in [12], where a solution was constructed for an in-
ite composite anisotroplc wedge under plane deformation.
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The characteristic equation for the-plane problem of anisotropic elasticity has the

- form

b“p.‘—-2b,;p.’+ (2b4aFboe) u—2b2 510+ byp=0 ’ ( 8 ) '

yhere bij are material constants [12,21]. A material for which all roots of (8) are dif-

rerent will be assigned to type A. A material having pairwise different roots (8) will be
issigned to type B. Type B includes isotroplc materials and transversely isotropic materi-
:1s, with axis of isotropy perpendicular to the plane under consideration. The plane
sroblem for a composite wedge, both parts of which belong to type A will be called problem
A-A; when one part belongs to type A and the other to type B we will speak of problem A-B;
z=d when both parts belong to type B we will speak of problem B-B.

Now we require Ai(s) for problem A-B; in this case A(s)=det(Biy). and matrix Blij has the
form .

a=  at ag a;? 0 0 (] 0
“}-sbl al~%, al~%p, al™, 0 0 0 0

0 0 0 0 at ol alag (2—s) ¥ %ay (2 — 5)

0 0 0 0 al™b ol ap %0y, ag" g

i i i 1 4 —1 s 2 §—2

91 B2 Hs Boe =By —Pg  (s—1)py—p, (s~ 1) pg—py
P Pa Ps P —hy  —hg (s 1) by — kg (s— 1) by — kg
14 g2 73 9o —Rshn ek (s — 1) ey — aby (s — 1) ghy —she

Here p. are the roots of (8) for the two parts of the wedge. For simplicity we as-
fme that j = 1,...,4 for type A material and j = 5, 6 for type B material in matrix By;,;
a=co8 QT ysing, b= cosp—sing
pi=byupf+bo—bus,  G=bupyTbay" — b
hy=by " —paptaby”y  Re==hs—byy" (fta—ps)*
0u(s) =(1—s) a;b+aby

f}s the angle of inclination of the free boundary to the line of junction; in the first
~2terial o=g,>0,. while in the second ¢=¢<0 For case A-A, the right side of Blij is al-

' **red and will have a form analogous to the left side with its own s @y by ps g5 @ oOf

‘turse (matrix Blij is written out in [12] for this case). For problem B-B, the left halfl

:* the matrix is altered; it becomes analogous to the right. Function A:(s) was obtained in

;EJ’ where self_§1milar solutions for the torsion problem were sought. In the notation
-..;ployed here, A.(s)=det(Bu).

Matrix B2ij has the form




the matrix are isotropic and have the following characteristics [22]: E=&44O’kg.mm‘2

v=032, for glass flber; E=42-10° kg-mm—z, v=0.16 for carbon fiber; and E = 0.35-103 kg.
v=0.35, for epoxy binder. To obtain the anisotropy constants of the layer in terms of he
reinforcement factor and the elasticlity constants of the components, the relationshipgiys
given in [23] were employed. 1In calculations using these formulas, the layer turns out
be transversely isotropic with isotropy axis parallel to the direction of reinforcemé;
‘To investigate the stress singularity of an orthogonally reinforced composite made up'g
such layers, with a rib perpendicular to one of the directions of reinforcement and par
lel to the other, we obtain case A-B and the corresponding matrix Bli

forced glass and carbon plastics as a function of the volume fiber content V.
parallel to one of the directions of reinforcement at the point under consideration, whi]
the free surface is perpendicular to the surface of junction of the layers (pr=—0,=00°. ~

Curve 1 refers to carbon plastic, curve 2 to glass plastic. The maximum value of the dés
gree of singularity s occurs in the neighborhood of V = 0.5.

the degree of singularity s = 0, since both layers become identical and isotropic. If the
reinforcing fibers are anisotropic, then this symmetry will not occur, and for V =1 the
degree of singularity may be nonzero. Figure 1 shows the roots Ai(s). There are no roots’
Ax(s) in the interval under consideration for this composite, i.e., torsion of such compos-
ites about an axis parallel to the rib does not yield a stress singularity.

teristics: Young's modulus in the direction of reinforcement E.=14.6-10° kg .mm—2; transverse
Young's modulus E,=E,=1.48.10° kg-mm—g; shear modull G;n ='Gu=4h¢=059840°kg-mm“2; Poisson

coefficients vir=vrz=viz=02l. The Z axis was perpendicular to the plane of the layer. Cal-
culations showed that the degree of stress singularity in composites orthogonally reinf
by such layers was 0.033.

have come into use of late. Let us consider the stress singularity that may arise in
such materials. In our calculations we employed a high-modulus carbon plastic with the
following characteristics [22]: E,=20-10° kg-mm-2, Er=E,=2410° kg . mm~2, (,,=G,;=Gr,=0.85-10°

kg-mm_g, vir=viz=vsz=0.21. The characteristics of the aluminum were: E=7.2.10° kg-mm_z,

free surface of the carbon plastic to the surface of junction for fixed angles of inc
tion of the free aluminum surface (Fig. 2 refers to the case in which the rib is perpef’
dicular to the direction of reinforcement of the plastic, while Fig. 3 is for the cas€ =
which 1t is parallel). The numbers next to the curves give the angle (in degrees) Dbetwe™
the free surface of aluminum and the surface of junction. it can be seen that, beginniré
with some angle, a second singular root arises in the strip O<Res<i.

respectively, to the direction of reinforcement. The curves represent two families: Ty
s as a function of @ (angle of inclination of carbon plastic), when the materials localil,
comprise a half-plane (g~¢.= 180°); 2) plane with a cut ¢—9.=360°). The dashed line give
Re s, when two real roots go over into a pair of complex-conjugate ones. It turned ouv
in calculations that |Ims|< 0.1 in these cases.

el 7 al™ al>* 0 o0

/-\ 0 (¢} a};" ol !
ar 1 1 24 !
. T Ty —ry —rg| .
//’T?SX where the ay are represented in the g

mﬂ// 4\ as above; the index j = 9, 10 refers
v

first material, J = 11, 12 to the secon

‘are roots of the equation Db,u*—2b,

- by
a 0.5 10 ry=ba—bups . o 0‘

R 5

Fig. 1 In calculating the degree of singu
as a function of the reinforcement fact
was assumed that the reinforcing fibers:

j written out aboy

As is to be expected, for isotropic components with reinforcement V = 0 and V = 1;'

In [18-20], calculations were made for a composite with the following layer charac-

orsed

Combinations of reinforced plastics and metals (e.g., carbon plastics and aluminum)

v=03

Figures 2 and 3 show the root Ay(s) as a function of the angle of inclination of t?fﬂ_

Figures 4 and 5 also pertain to cases in which the rib 1s perpendicular and parall&'
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Since Gir=Grz=Grz, in the layer of composite under consideration, A.(s)will be the same
cor cases in which the rib is parallel and perpendicular to the direction of reinforcement.

Figure 6 shows the roots A.(s) in the strip 0<Res<i as functions of @ for four fixed
vzlues of ¢» and also for composite half-plane (1) and plane (2) with a cut.

Let us define the regions of oun P values for which there is no stress singularity, .
znd the eritical values of these angles such that the maximum root A(s) in the strip 0sRes<i
zero. Assume that &= ¢~¢.—180°1s the local deviation from the half-plane of the section
the body perpendicular to the rib. Figure 7 shows the eritical value 6*as a function
f ¢. The solid line gives &*for As(s); the dashed line gives 6y* for Ai(s), if the rib is
czrallel to the direction of reinforcement; and the dot-dash line gives bu* for A(s),1f the
»ib is perpendicular to the direction of reinforcement. Under arbitrary loading, there
#ill be no stress singularity when the rib 1s parallel to the direction of reinforcement
for 8<min (8,*, 8:*), and when the rib is perpendicular to the direction of reinforced for
§<min(6.*, 6;*). If e=0 in estimates (7), then a stress singularity of logarithmic form may
irise for §=6%

ey 0

3O s

Fa A 4

. We should note that As(s)=det(B:;y) has the root s = 0 for all angles ¢ ¢: for case A-B,
tut, as we can see from (13) and (14), from [12], and from the form of By, this root

does not generate the corresponding term of representation (6). In other words, in this
zse A,(s) should be taken to be the function (Bu)s™.

Analyzing the graphs in Figs. 2-7, we can conclude that a stress singularity can
rise in aluminum in combination with carbon plastic, even if the composite body is
unded by a smooth surface (pi—9.=180°) . In this case, for arbitrary loading, there will

no singularity in the range 54°<p,<90°, when the rib is perpendicular to the direction
reinforcement, and in the range 0°<g,<70°, when the rib 1s parallel to the directlon of
inforcement. For large angles ¢n!¢3; several singular terms of expansion (9) appear.

AN

Q

130 Y
=4 b

i The same method can be used to consider problems with other boundary conditions.

i att The author is grateful to Yu. N. Rabotnov for discussions of the results and for his
=ttention.
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