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§1. Introduction

Let D be a finite or infinite domain with boundary Γ which is a collection of simple

closed contours of bounded rotation without cusps: Γ = U™ Γ;, where the contour Γο

encloses all the remaining contours Γ,-; it may be absent, in which case the domain D is

infinite. The two-dimensional Dirichlet and Neumann problems for the Laplace equation

in domains with nonregular boundary have been studied rather well [l]-[3]. The Dirichlet

problem is unconditionally and uniquely solvable in the class of functions harmonic in D

and continuous in D if the prescribed boundary values of the function sought are

continuous. Up to an arbitrary additive constant the Neumann problem is uniquely

solvable in the class of functions harmonic in D which have a prescribed boundary flux on

the boundary which is a regular, countable additive set function on Γ, if this flux over the

entire contour Γ is equal to zero [2], [3].

On the other hand [4], solutions of elliptic boundary value problems, in particular for

the Laplace equation, in domains with corners may have derivatives possessing power

singularities at a corner even if the prescribed boundary conditions are sufficiently

smooth. These derivatives, or, more correctly, the coefficients of the power singularity, are

frequently of fundamental interest for applications, in particular, for elasticity theory (see,

for example, [5] and [6]).

An effective method of solving boundary value problems is to reduce them to integral

equations on the boundary and then solve the latter numerically . Here, depending on the

integral representation of the solution of the original problem, the density of the equation

may have the order of the solution itself (i.e., be bounded) or the order of derivatives of
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the solution (i.e., have a power singularity) in a neighborhood of a corner. In the first case
it is rather difficult to obtain the coefficient for increasing derivatives with sufficient
accuracy. In the second case, to effectively solve the integral equation and obtain the
coefficient of the singularity it is necessary to explicitly distinguish the singular character
of the desired density at corners of the contour; this is impeded by insufficient study of
the equation itself and hence of the smoothness of its solution. Therefore, as far as is
known to the author, the second method has not been adequately applied to problems in
domains with a nonregular boundary.

In this paper the solution of the Dirichlet problem is sought in the form of a
nontraditional integral representation in terms of an angular potential, while a solution of
the problem with a skew derivative is sought in the form of a generalized logarithmic
potential. This makes it possible to reduce both problems to a single integral equation on
the contour Γ with a density of the order of the derivatives of the solution of the original
problem; here the kernel of the equation has strong stationary singularities at the corners.
This type of equation was considered in [7] and [8]. A formula is then obtained for the
Fredholm radius of the equation obtained, and its solvability and uniqueness in the case
of a finite or infinite multiply connected domain D are investigated. For the case where
the equation lies on the spectrum a perturbing operator is introduced which removes the
equation from the spectrum and leads to an equation whose solution coincides with one of
the solutions of the original equation. The spectral properties of the perturbed equation
are studied, and a perturbing operator of a certain special form is proposed which leads to
an equation whose solution can be expanded in a convergent Neumann series for any
right-hand side.

§2. Reduction to an integral equation

Let s be the arc length of the contour Γ oriented so that in passing around it in a
positive direction the domain D lies to the left. We consider the Dirichlet problem
Mlr = / ι ( Ό e Wr\T) and the problem with a skew derivative du/d7\T = f2(s) e Lr(T),
1 < r < oo, where at smooth points of Γ the unit vector /makes a constant angle, distinct
from zero and 2 π, with the tangent to the contour. Let ζ = χ + iy be the complex
coordinate of a point of the plane, let ί = t(s) be the complex coordinate of a point of the
contour Γ, let k(s) = dt/ds = β'φ(ί), where φ is the angle between the tangent to the
contour and the axis Ox, and let kj(s) = dz/dl(s)\T = k(s)fi, where β is a complex
constant with \β\ = 1 and Im/? < 0. We henceforth do not distinguish functions of the
arguments t and s, i.e.,/(i) = f(t(s)) = f(s).

We seek a solution of the Dirichlet problem in the form

u(x, y) = Rej JTUZJ + £ ^ T ^ K

and a solution of the problem with a skew derivative in the form

- C. (2.2)

Here ζ0 is an arbitrary fixed point in D, the at, i = l,...,m, are arbitrary fixed points
within the contours Γ(·, the At, i = 0,... ,m, are real constants which will be determined in
§4, and C is an arbitrary constant.
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We seek the analytic function Φ(ζ) in the Smirnov classes Ep, ρ > 1 [3], and we require
that Φ(οο) = 0 if the domain D contains the point ζ = οο. After substitution into the
boundary conditions (and differentiating them with respect to s in the Dirichlet problem)
for Φ(ζ) we obtain the Riemann-Hilbert problem

Re[*(0<& + (0] =/('), r e r . / i O e ^ . K r , (2.3)
where

for the Dirichlet problem and/(?) = /2(i) for the problem with a skew derivative. Any
solution of (2.3) in Ep for ρ > 1 on the basis of (2.1) and (2.2) generates a solution of the
original problems in the class u e C2(D) (Ί C(D) (with an appropriate choice of the
constants Ai in the Dirichlet problem) if the function u thus obtained is single-valued and
also bounded at infinity for an infinite domain D. Since solutions of the original Dirichlet
problem and the Neumann problem (as a special case of the problem with a skew
derivative) are known to exist for the boundary conditions described (see [2] and [3]),
while the choice of them in the form (2.1), (2.2) can only restrict the class of functions
admissible as a solution, in order to not miss a solution, we consider Φ(ζ) e Ep with the
smallest possible/? > 1.

A solution of (2.3), in turn, is sought in the form

(2.4)
(s) - ζ

Here the real function μ e Lp(T), 1 < ρ < oo; then Φ(ζ) e Ep(D).
If we substitute (2.4) into (2.2), then we obtain a representation of the solution of the

problem with a skew derivative which practically coincides with the generalized logarith-
mic potential introduced by Gabov [9] and with the ordinary simple-layer potential if
β = —i, and the problem with a skew derivative goes over into the Neumann problem.
Substitution of (2.4) into (2.1) shows that (2.1) and (2.4) essentially constitute an integral
representation of the solution of the Dirichlet problem with density μ and a kernel which
is an integral along the contour of a double-layer potential, i.e., simply the angle
subtended by the segment of the path of integration from the point (x, y), with the
addition of some logarithmic terms (in the case of a multiply connected domain) and an
additive constant. This representation can also be exressed in terms of the angular
potential used in [9] for simply connected domains with a smooth boundary. In [10] the
smoothness of the angular potential in a domain bounded by a curve of bounded variation
is investigated.

Substituting (2.4) into (2.3), we arrive at an integral equation for /j(s') (λ = 1):

(ΐ-ΧΚ)μ=/,

(Κμ)(*0)= - i
•τ

The adjoint to (2.5) is the equation

(I-XK*)v=f*,

ds, μ(5) <ELp,t = t(s), t0 = t(s0). (2.5)
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For λ = 1, (2.5) coincides with the equation corresponding to the Neumann problem
for the domain D, while for λ = -1 it coincides with the equation corresponding to the
Neumann problem for a domain exterior relative to D if its solution is sought in the form
of a simple-layer potential with density ju(.$). Equation (2.6) for λ = -1 coincides with the
equation corresponding to the Dirichlet problem for the domain D, and for λ = 1 it
coincides with the equation corresponding to the problem for a domain exterior relative to
D if its solution is sought in the form of a double-layer potential with density v(s). We
note that in our formulation λ = 1 both for finite and infinite domains, but the function
k(s) in the case of a simply connected domain changes sign on passing to the exterior
problem, since the positive direction changes.

The kernels of equations (2.5) and (2.6) are bounded if s Φ s0, while on the diagonal at
points of Lyapunov smoothness they have no more than an integrable singularity. When s
and s0 tend to a corner point from different sides the kernel has a strong singularity.
Equations of this type were considered by Lopatinskii [7] in the space -^(Γ) with a power
weight on a simple, closed, piecewise smooth contour, and by Shelepov [8] in the spaces
Lp, 1 < ρ < oo, on a simple contour of bounded rotation without cusps. In those notes
formulas are obtained for the index of the equation which, as is easily seen from the
arguments of [7], remain valid for a finite collection of simple, closed, nonintersecting
contours of bounded rotation. In [8] the Fredholm radius of the operator K* in the space
Lq(T), 1 < q < oo, is also presented, and it is equal to

rw \ · s m ( "Q*(q) = m m —
k sm(|w

The minimum is taken over all corner points; uk is the magnitude of the interior angle. In
[2] equation (2.5) with μ ds replaced by dM is investigated in a space of functions Μ which
are absolutely additive set functions on Γ, and (2.6) is investigated in a space of
continuous functions on a simple contour of bounded rotation without cusps. The
Fredholm radius of the operators Κ and K*, respectively, in these spaces is equal to
Ω(οο) = ηιίηΑ(π/|77 - uk\) > Q,*(q). Since in these spaces for |λ| < Ω*(#), 1 < q < oo,
the equations in question are Fredholm, while the spaces Lp(T) are contained in the first
set and contain the second, the spectrum and eigenfunctions of the operator (2.5) in the
space Lp, 1 < ρ < oo, and of the operator (2.6) in Lq, 1 < q < oo, in the regions
|λ| < Ώ(ρ) = Ώ*(ρ/(ρ - 1)) and |λ| < Q*(q), respectively, coincide with those obtained
in [2]. Further, as for equations on a smooth contour [11], [6], all remaining properties of
equations (2.5) and (2.6) are proved in the usual way, and this carries over directly to
multiply connected domains. The results can be formulated in the following manner.

THEOREM 1. //

sin[?r(l - \/p)\
Ι λ I < min

[|77 - io fc |(l - 1/p)]* sin

then equation (2.5) in the space L , 1 < ρ < oo, is Fredholm, the poles of the resolvent of this

equation are real and simple, and there are no poles in the interval -1 < λ < 1. If there is a

contour Γο (oo £ D), then λ = 1 is a pole of the resolvent in any case, while λ = -1 is a pole

in the case where the domain is not simply connected (m > 0). // there is no such contour

(oo e D), then λ = 1 is not a pole of the resolvent, while λ = -1 is a pole.
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From Theorem 1 it is possible, in particular, to extract a result obtained in [8]: equation

(2.5) for λ = 1 is Fredholm in the spaces ^ ( Γ ) , l<p<po=l + l/max f c | l - ωΛ/ττ|,

where the maximum is taken over all corners. Since for contours without cusps 0 < ωΙί <

2π, equation (2.5) for λ = 1 is Fredholm in L2(T).

It is easy to see by direct verification that vo(s) = 1 is a solution of the homogeneous

equation (2.6) in the case where Γο is present and λ = 1. We shall also write out a solution

of the homogeneous equation (2.5) for this case.

Let ζ = ω(ξ) be a conformal mapping of the disk | | | < 1 onto the exterior of Γο such

that ω(0) = oo. The contour Γο thus goes over into a contour L. A solution of the

homogeneous equation (2.5) is then given by

Ψ('ο) = —

Here we assume that at the corners the modulus of the jump |arg k* - arg k~\ < π, and

for 1η[ιτΑ:(ί)] any branch is taken which under this condition is single-valued on the

contour L. This expression is obtained by formal use of the methods of [1] for smooth

contours in solving the homogeneous Riemann-Hilbert problem in the exterior of Γο. The

expression (2.7) is the limit value of the function holomorphic outside Γο

Ψ(ζ) = i^{z)e^\ ψ(ζ) = -^ln[,Tfc(Ol( T _J_ 1 ( z ) - ^ } dr, (2.8)

multiplied by k(t0). This implies that the piecewise holomorphic function Φ(ζ) generated

by (2.4) with density juo(s) is equal to zero inside Γο and is hence a solution of the

homogeneous problem (2.3), while μ ο ( ί ) is a solution of the homogeneous equation (2.5)

for λ = 1. Direct verification shows that μο(δ) *S a r e a l function. It is further necessary

that /io(s) <= Lp(T0). This result follows from §§19.2-19.8 of [3]. Thus, (2.7) actually

represents a solution of the homogeneous equation (2.5) for λ = 1 in the spaces Lp,

1 < ρ < p0. Application of the results of [2] and [3] enables us to generalize the methods

of [11] and show that the homogeneous equations (2.5) and (2.6) for λ = 1 have no other

solutions in the spaces -ί^(Γ), 1 < ρ < p0, and Lq(T), po/(po — 1) < q < 00, respectively

(in [3], for example, this assertion is proved for the case of a simply connected domain D).

We have the following result.

THEOREM 2. // the contour Γο is present, then in the spaces Lp, 1 < ρ < p0, the

homogeneous equation (2.5) for λ = 1 has a unique nontrivial solution (2.7) which by (2.4)

generates only the zero function Φ(ζ) inside Γο, and the corresponding inhomogeneous

equation is solvable if the following condition is satisfied:

ff(s) ds = 0. (2.9)

§3. Perturbation of the equation lying on the spectrum

Theorem 1 enables us to solve (2.5) for λ = 1 by expanding the resolvent in a Neumann

series; this is preferable to methods requiring the reduction of the original integral

equation to a system of linear algebraic equations and subsequent solution of this system
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by some general method which does not take account of its connection with the integral

equation and the spectral properties of the latter. Suppose that there is no contour Γο, i.e.,

the domain D is infinite; in this case λ = 1 is not a pole, while λ = -1 is a simple pole of

the resolvent of (2.5). Then for λ = 1 the Neumann series, generally speaking, will not

converge, but the series obtained by expanding the resolvent multiplied by the function

(λ + 1) in powers of λ will converge [11] (see also [6]); hence

μ = ί+Σμ,, μο=(ΐ + Κ)ί, μ, = Κμ,-ι, ΐ = 1,2,.... (3.1)
<=o

Suppose now that the contour Γο is present, i.e.,the domain D is bounded. The resolvent

of (2.5) has a pole for λ = 1, and if D is not simply connected it also has a pole for

λ = —1. If the solvability condition (2.9) for equation (2.5) with λ = 1 is satisfied, then, as

described in [11], a solution of it could be represented in the form of an ordinary

Neumann series for a simply connected domain or its modification (3.1) for a domain not

simply connected. However, in this case the solution of (2.5) is not stable relative to small

changes of the right side which violate condition (2.9); these are always possible in

numerical computation.

We consider the linear operator equation

Ax=y, (3.2)

where χ and y are elements of Banach spaces Bx and B2 respectively, and A is a bounded

linear operator from Bx to B2. The adjoint to (3.2) is the equation

A*x=y*, (3.3)

where x* and y* are elements of the dual spaces 5 * a n d B* respectively, and A* is the

adjoint of A. A generalized Schmidt lemma holds.

LEMMA 1. Suppose that (3.2) is a generalized Fredholm equation and xt and xf,

i = Ι,.,.,η, are all linearly independent solutions of the homogeneous equations (3.2) and

(3.3) respectively. Then the equation
η

(A-A1)x=y, Α * = Σ Ψ , < Ρ , ( * ) , (3.4)
; = 1

is uniquely and unconditionally solvable. Here ψί and ψ, are, respectively, arbitrary elements

ofBf and B2 such that

act[x*{^)] Φ 0, det[<p,(*y)] Φ 0, i,j=l,...,n. (3.5)

If the solvability conditions xf(y) = 0 for (3.2) are satisfied, then the solution χ of (3.4) is the

one of the solutions of (3.2) such that <p,(x) = 0, / = 1,... ,n.

In somewhat different terms this lemma is proved in [12] (see also [13]). It makes it
possible to take equation (3.2) off the spectrum in the presence of rather little available
information regarding solutions of the homogeneous equations (3.2) and (3.3) sufficient
only to verify conditions (3.5). However, it is not clear how the spectral properties of the
equation change here if A is an operator from Β to Β written in the form A = I — XA0; it
is therefore difficult to draw conclusions regarding the solution of the equation obtained
by the method of successive approximations. For this case we rewrite (3.2) in the form

(l-\A0)x=y, (3.6)
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and (3.4) in the form

[l-X(A0 + A01)]x=y; (3.7)

suppose that again Amx = Σΐψ,φ,(.χ). We introduce the notation Rx and RX1 for the

respective resolvents of (3.6) and (3.7), i.e., RX(I - XA0) = I and Λ λ 1[/ - X(A0 + Am)]

= I. We shall express RX1 in terms of Rx. For this we act with the operator Rx on (3.7)

and obtain as a result

x-*i(Rx*jhj(x) = Rxy- (3-8)
y = i

We now act on (3.8) with the functionals <p,; as a result, we have a system of linear

algebraic equations for determining the constants φ,(χ):

7 - λ φ , ( * λ ψ 7 ) ] φ , ( * ) = φ , ( « λ ^ ) , i = l,...,n, (3.9)

where 8U is the Kronecker symbol. Let Δ = det[5,7 - Xcpi(Rx\pJ)] be the determinant and

dtj the algebraic complements of the matrix of this system. Solving (3.9) and substituting

the expressions for φ,(χ) into (3.8), we find that

χ = RMy = Rxy + -£- £ (*λψ,.) £ </,7(λ)φ,(Λλ;>>)· (3-10)

From this it is evident that the set of poles of the resolvent of the operator Ao + A01

belongs to the union of the poles of the resolvent of Ao and the zeros of the determinant

Δ(λ). Using Lemma 1 or directly investigating the representation (3.10) with consider-

ation of the expansion of the resolvent in a neighborhood of a pole [14], we obtain the

following result.

LEMMA 2. The set of poles of the resolvent of the operator A 0 + A01 consists of the poles of

the resolvent of Ao and the zeros of the function Δ(λ) = det[5iy - λφ ; (# λ ψ 7 )] . Here if

X = Xois a pole of the resolvent Rx and

det[xf{tj)] Φ 0, άβί[φ<(ψ,)] Φ 0, ι, j = ί,.-.,η,

wh6re the xi and xf, i = 1,...,«, are all solutions of the homogeneous equation (3.6) and its

adjoint, respectively, forX = X0,thenX = λ 0 is a regular point of the resolvent RXI of (3.7).

We now attempt to choose the elements <p, and ψ; so that the resolvent RXI is regular at

the poiont λ = λ 0 where Rx has a pole and, moreover, so that it does not acquire

additional singular points as compared with Rx in the finite part of the λ plane.

LEMMA 3. Suppose that Xo is a simple pole of the resolvent Rx of (3.6). // φ ; = χ*,
Χ*(Ψ>) = (- !/ Λ ο) δ ,7 or Ψ; = χρ <PAxj) = (-νΛο) δ,7> ' ' j = l,...,n, where the xi and χ*,

i, j — 1,... ,n, are all solutions of the homogeneous equation (3.6) and its adjoint, respec-

tively, for λ = λ 0 , then the singular points of the resolvent RX1 of (3.7) coincide with the

singular points of the resolvent Rx of (3.6) with the exception of the point X = λ 0 where the

resolvent RX1 is regular.
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PROOF. Suppose, for example, φ ; = χ*; then Δ(λ) = det[6,7 - Xxf(Rxipj)]. For suffi-

ciently small |λ| we have

( 30 \ OC

Σ λ*̂ ψ,- = Σ \kxf(Afoj)
k = 0 I k = 0

k = 0

Continuing this function analytically to the entire complex λ plane, we find that

Ιίχ*(ψ,)=(-1/λο)δ,7,ΐη6η

λ ο - λ

and hence Δ(λ) has no zeros in the finite part of the λ-plane.

We claim that άβΐ[φ,-(^)] = det[x*(jcy)] Φ 0. Indeed,

Δ(λ) = det
'k = l

where /(λ) is a regular function at the point λ0. Then

Δ(λ) = (-λ)"(λ - \0)-Bdetf Σ akjxt(xk)\ + θ[(λ - λογ-
Lk = l J

= (-λ)"(λ - A0)""det[a,7]det[xf(^)] + θ[(λ - λ 0 )^"],

and if det[x*(xk)] = 0, then Δ(λ) = Ο[(λ - λογ~η], which is impossible, since Δ(λ) =

λ"0(λ0 — λ ) " . Invoking Lemma 2, we obtain the desired result. When ψ7 = xy and

<pi-(x ·) = -\~Q8JJ, the lemma is proved similarly.

REMARK 2. To prove the applicability of the method of successive approximations it is

frequently sufficient that all the zeros of Δ(λ) be greater than some number in modulus,

say, |λ,| > |λο |. Naturally, to satisfy this inequality the conditions of Lemma 3 can be

considerably relaxed.

We return to the integral equation (2.5) for λ = 1 corresponding to a bounded domain

D, i.e., in the presence of the contour Γο, and we replace this equation by

[ΐ-λίΚ+Κ^μ-/, (3.11)

^) ds, ψχ e Lp(T), Ψι e Lg(T).

If / Γ ψ 1 ( ί ) Α ^ 0 and /Γφχ(ί)μ0(5·) ds Φ 0, where μο(«) is given by (2.7), then the

conditions of Lemma 1 are satisfied, and (3.11) is unconditionally and uniquely solvable

for λ = 1; its solution coincides with one of the solutions of (2.5). For example, it is

possible to take \p1(s) = Ε and φ ^ ί ) = 1, s e Γ, i.e., to represent Κλ in the form

*„) = Ε / μ ( ί ) A, (3.12)
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where Ε is a nonzero constant. Integrating (2.7) with consideration of (2.8), we find that

the condition / Γ φ 1 ( ί ) μ 0 ( ί ) ds Φ 0 is satisfied with the function φ 1 ( ί) so chosen. If,

moreover, in (3.12) we take Ε = ~(jTds)~l, then the conditions of Lemma 3 are satisfied,

and the characteristic numbers of equation (3.11) are the same as those of (2.5) with the

exception of the point λ = 1. We have thus proved the following result.

THEOREM 3. Suppose that the contour Γο is present. Then equation (3.11), where the

operator Κ is represented in (2.5) and

•τ
is unconditionally and uniquely solvable in Lp, 1 < ρ < p0, for λ = 1, and its solution

coincides with the solution of (2.5) for λ = 1 such that / Γ μ ( ί ) ds = 0. // the domain D is

simply connected, then all the singular points of the resolvent of (3.11) lie in the region

\\\ > 1; if D is not simply connected, then the point λ = -1 is a simple pole of the resolvent

o/(3.11), and the remaining singular points lie in the region |λ| > 1.

From this we immediately find that the solution of (3.11) with the operator Kl for λ = 1

indicated in Theorem 3 can be represented as an ordinary Neumann series for a simply

connected domain and as the modified series (3.1) with Κ replaced by Κ + Kx for a

domain that is not simply connected, and these series converge stably for any right side of

(2.5). We further note that for the solution of the boundary value problems in question it

is immaterial which of the solutions of (2.5) (λ = 1) is obtained, since by Theorem 2 they

all yield the same function Φ(ζ).

§4. Solutions of the original problems

LEMMA 4. Suppose μ(«) is a solution of (2.5) for λ = 1 on the contour Γ = U™ Γ, (Γο may

be absent). Then

jfi(j) ds = - J f(s) ds,

This lemma can be proved by integrating (2.5).

LEMMA 5. Let Φ(ζ) be the function represented by (2.4) where μ(ί) is a solution of (2.5) for

λ = 1, and let Τ be a simple closed contour in D oriented in a counterclockwise direction.

Then

{s)ds,

where the summation is over all contours enclosed by Γ.

Indeed, direct integration gives

and use of Lemma 4 leads to the required result.

THEOREM 4. Let D be a connected domain with boundary Γ = U™ Γ, which is a collection

of closed curves of bounded rotation. Then the problem with a skew derivative for the Laplace

equation du/dl = f2(s) e Lr(T), 1 < r, where (I, n) = const Φ 0, is solvable in the class of

functions belonging to C2(D) ΓΊ C(D) if / r / 2 ( j ) ds = 0 on all the Γ;, and its solution is

given by (2.2) and (2.4), where μ(ί) is a solution of (2.5) for λ = 1.
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Indeed, any solution of (2.5) generates by (2.2) and (2.4) a solution of the problem with

a skew derivative if the function u obtained on the basis of it is single-valued and bounded

at infinity for an infinite domain D. To satisfy these conditions it is necessary and

sufficient that

Re (4.1)

for any contour f within D. Considering Lemma 5, we find that to satisfy this condition it

is necessary and sufficient that jTJ2{s)ds = 0, i — \,...,m. If Γο is absent, then by

Theorem 1 equation (2.5) is solvable, and the theorem is proved. If Γο is present, then for

the solvability of (2.5) by Theorem 2 it is further necessary that condition (2.9) be

satisfied, and for this it is required that fT f2(s) ds = 0. The theorem is proved.

REMARK 3. If / = n, i.e., β = -i, then condition (4.1) is satisfied for any function f2(s),

since

Re\if Φ(ζ) dz
•τ,

= -Imf f2(s)ds =

and for the solvability of (2.5) in the case of a bounded domain it is only necessary that

condition (2.9) be satisfied. Therefore, condition (2.9) is sufficient for the solvability of the

Neumann problem and for its representation in the form (2.2), (2.4) in a bounded domain,

while in an unbounded domain it is unconditionally solvable.

We proceed to the Dirichlet problem. For fixed constants At the representation (2.1) is

single-valued if fi(s) e W^-{T) for any At and at, since in this case

However, if the constants Ai are fixed in some arbitrary manner, then the representation

(2.1), (2.4) gives a solution only of the altered Dirichlet problem [1], i.e., of the Dirichlet

problem with boundary conditions coinciding with the given conditions up to constants

which may be different for each contour. To determine the At providing the solution of the

original Dirichlet problem we carry out a procedure close to that used in [1] in solving the

Dirichlet problem by means of a double-layer potential. We impose the following

conditions on the function u(x, y) given by (2.1) and (2.4) where μ( ί ) is a solution of (2.5)

for λ = 1:

u(x(s,),y(si))=f1(sl), i = 0,...,m. (4.2)

Here the j , . are arbitrary points of the respective contours Γ,. If there is no contour Γο, then

in place of condition (4.2) for i = 0 we add the condition

A, = 0, (4.3)Σ A =

which ensures that u will be bounded at infinity. If it is possible to satisfy (4.2) and (4.3)

for some collection of At, then this collection gives the solution of the original Dirichlet

problem.
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Conditions (4.2) form a system of linear algebraic equations for determining A{.

t, - a,
Σ

7 = 1

In
z0 -

-Ref\(z)dz \+A0

(4.4)

= f1(ti)-Re[\(z)dz, i = O,...,m.
* 7.

If there is no contour Γο, then in place of (4.4) for ι' = 0 we add the condition (4.3). Here
the <t>j(z), j = l,...,m, are the functions obtained by means of (2.4) if for μ we there
insert the solution of (2.5) with the right side Rek(s)/(t(s) - ay), while Φ0(ζ) is
generated by the solution of (2.5) with right side df1(s)/ds. The determinant of the system
of equations thus obtained is nonzero, since otherwise there would exist nonzero constants
Ai satisfying (4.2) and (4.3) with a zero right side of the system (4.4), (4.3), in particular,
when the Dirichlet problem with zero boundary conditions can be solved. Indeed, then
/i(O = 0> df^/ds = 0, and if there is no contour Γο, then (2.5) for λ = 1 with a zero right
side has only the trivial solution μ0 = 0, and hence Φο(ζ) = 0; if Γο is present, then (2.5)
has the nontrivial solution μ0 given by (2.7), which by Theorem 2 generates only the zero
function Φ0(·ζ). Thus, if the determinant of the system (4.4), (4.3) is equal to zero, then it
is possible to construct by means of (2.1) a nonzero solution of the Dirichlet problem,
since by what has been proved above the integral of Φ(ζ) in (2.1) for the Dirichlet
problem with continuous boundary conditions is single-valued and not equal to a nonzero
constant, while Σ5"Λ,1η(ζ - ai)/(zQ - at) is not a single-valued function. However, the
Dirichlet problem with zero boundary conditions cannot have nonzero solutions in the
domains we are considering. Thus, the constants Αί are uniquely determined.

In actual numerical solution of the Dirichlet problem in a multiply connected domain
by our method it is first necessary to solve (2.5) (or (3.11) for a bounded domain) with the
m + 1 right sides dfl(s)/ds and Re k(s)/(t(s) - cij),j = 1,...,m, to obtain the functions
<&j(z), j = 0,...,m by (2.4), to find the constants Aj from the system (4.4), (4.3), to
construct the function Φ(ζ) = Φ0(ζ) — Σ™Aj<bj(z), and to find the final solution by
substituting this expression into (2.1).

REMARK 4. If the domain D is simply connected, i.e., there is only the single contour Γο

or Fj, then it is not necessary to determine the constants Aj. Indeed, if D is bounded, then
the single constant Ao present can be taken in the form Ao = /^ig) by letting the point z0

in (2.1) tend simultaneously to t0 along a path lying in D. If D is unbounded, then for the
boundedness of the solution at infinity it is necessary that Ax = 0, while it is possible to
proceed with the constant A 0 as in the case of a bounded domain. Thus, it is necessary to
solve (2.5) or (3.11) only for a single right side.

Thus, it has been possible to reduce the original boundary value problems to integral
equations solvable by the method of successive approximations.

On the basis of our results it is further possible to investigate the smoothness of the
solution of the integral equations obtained and to show that it can be represented as the
product of a known weight function having singularity at the corners and an unknown
smooth function whose values at the corners give the desired values of the coefficients of
the power singularity in the derivatives of the solution of the original problems. A detailed
exposition of these propositions goes beyond the framework of the present paper and will
form the subject of a separate work.
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