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Abstract

Finite-dimensional perturbing operators are constructed using some incomplete information about eigen-solutions of an original and/or
adjoint generalized Fredholm operator equation (with zero index). Adding such a perturbing operator to the original one reduces the eigen-
space dimension and can, particularly, lead to an unconditionally and uniquely solvable perturbed equation. For the second kind Fredholm
operators, the perturbing operators are analyzed such that the spectrum points for an original and the perturbed operators coincide except a
spectrum point considered, which can be removed for the perturbed operator. A relation between resolvents of original and perturbed
operators is obtained. Effective procedures are described for calculation of the undetermined constants in the right-hand side of an operator
equation for the case when these constants must be chosen to satisfy the solvability conditions not written explicitly. Implementation of the
methods is illustrated on a boundary integral equation of elasticity.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Boundary integral equations (BIEs) for boundary value
problems of mathematical physics are often not uncondi-
tionally and uniquely solvable. Consequently, the linear
algebraic equation system, which is a discrete analogue of
the corresponding boundary integral equation, is ill-
conditioned. To avoid this difficulty, it is possible to add a
finite-dimensional operator to an original boundary integral
equation and to obtain an unconditionally and uniquely
solvable perturbed BIE. This equation provides a solution
of the original BIE if its right-hand side satisfies the original
solvability condition. As heuristic, this approach was used
by Sherman (see Ref. [1]) for some integral equations of
two-dimensional elasticity.

Let us consider a direct BIE of three-dimensional iso-
tropic homogeneous elasticity for illustration. We suppose
summation in repeating indices from 1 to 3 unless another
range is explicitly given. It is well known (see, e.g. Ref. [2])
that the boundary value problem of elasticity in a domainD
with prescribed tractionstj at the boundaryS and volume
forces fj in the domainD can be reduced by the direct

approach to the following BIE (forl � 21)

ui�j�2 l�Wij uj��j� � Fi�j�; �1�

�Wij uj��j� U 2
Z

S
Tij �j;h�uj�h� dS�h�Fi�j�

U 2
Z

S
Uij �j;h�tj�h� dS�h�

12
Z

D
Uij �j;h�fj�h� dD�h�:

The kernelUij �j;h� is the Kelvin fundamental solution,
Tij �j;h� is its traction vector, and2�1=2�Wu is the elastic
double layer potential. It is known (see, e.g. Refs. [3–5])
that, for a bounded domainD there are no singular points of
the resolvent ofW in the closed circleulu # 1 except the
point l � 21 being a simple pole of the resolvent,
dim ker�I 1 W� � 6; the eigen-solutions of homo-
geneous BIE (1) atl � 21 are given by the six rigid
body motions

�u�m�i �j� � dim; �u�31m�
i �j� � 1ijmjj ; i; j;m� 1;…;3; �2�

where1ijm is the Levi-Civita permutation tensor. Inhomo-
geneous BIE (1) is solvable only if its right hand side
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satisfies solvability conditionsZ
S
Fi�j� �xp�m�

i �j� dS� 0; m� 1;…; 6; �3�

where the functions�xp�m�
i �j� are generally not known.

For mechanically meaningful problems with zero total
force and moments applied to the domainD and its bound-
ary, conditions (3) are always fulfilled. However, these
conditions may be violated in numerical solving because
of discretization and round-off errors. To avoid this diffi-
culty, it is usual in the numerical practice to fix displace-
ments at several points, that is, to replace the given problem
with prescribed tractions by a mixed problem. This means
that the non-zero total force and moment, arising due to
discretization errors, are transferred to these points and
may cause an increased error there. Moreover, such replace-
ment changes the BIE (1) spectral properties and can
prevent application of iterative methods for its solution.
Another possibility to eliminate the instability from discre-
tization and round-off errors and improve the BIE spectral
properties, is to perturb Eq. (1) by a finite-dimensional
operator and to solve the perturbed equation. The second
possibility will be described at the end of the paper.

For operator equations of the first kind in Banach spaces,
the general principle of the choice of finite-dimensional
perturbing operators can be based on the generalized
Schmidt lemma, which was proved for a particular case in
Ref. [6] (see also Ref. [7]). If a second-kind equation is
considered, there is a sense to choose a perturbing operator
so that spectrum points after the perturbation are not
changed excepting one spectrum point at which the equation
is to be solved. The perturbed operator spectrum is deter-
mined by the original operator spectrum and the Weinstein-
Aronszajn determinant (see Ref. [8]). This determinant
cannot be always calculated. In Ref. [9, section 3], such
perturbed operators were studied for operators in Banach
spaces using the knowledge of all eigen-solutions of the
original or of the adjoint equation.

A development of the study of finite-dimensional
perturbed operators is presented here. Using these results,
one can remove a spectrum point of an operator equation
and, if it is necessary, construct a choice procedure for
unknown constants in the right-hand side of the equation.
By this procedure, it is possible to make the original
equation solvable.

Let B1 andB2 be Banach spaces,Bp
1 andBp

2 be adjoined
(dual) spaces of bounded linear functionals defined onB1

and B2, respectively. LetA be a linear bounded operator
acting fromB1 to B2, A : B1 ! B2:

Consider an operator equation

Ax� y; �4�
wherex [ B1; y [ B2: An adjoined equation to Eq. (4) is an
equation

Apxp � yp
; �5�

whereAp : Bp
2 ! Bp

1; xp [ Bp
2; yp [ Bp

1: Eq. (4) of the form

�I 2 lA0�x� y �6�
(second-kind operator equations) are also studied in this
paper. HereA0 : B! B; I is the identity operator;x; y [
B; l is a complex parameter. The equation

�I 2 lAp
0�xp � yp �7�

is an adjoint equation to Eq. (6), whereAp
0 : Bp !

Bp; xp
; yp [ Bp

:

If elements xi [ E �i � 1;…;n� are a basis of ann
dimensional manifoldE, we writeE � span{xi}

n
i�1:

Hypothesis 1. Suppose hereafter, that A is defined in the
whole space B1 and its rangeR�A� belongs to B2 and is
closed. Suppose also that A: B1 ! B2 is a Fredholm (with
zero index) operator, that is,dim kerA� dim kerAp �
n , ∞; where ker A� span{�xi}

n
i�1 , B1; ker Ap �

span{�xp
i } n

i�1 , Bp
2 are eigen-spaces (for the eigen-value

zero).

It is well known (see, e.g. Refs. [7,8]) that under
Hypothesis 1, Eq. (4) is solvable for an elementy [ B2 iff

�xp
i �y� � 0 �i � 1;…; n� �8�

for the functionals�xp
i : ker Ap � span{�xp

i } n
i�1:

2. Finite-dimensional perturbations for Fredholm
operator equations of the first kind

Consider Eq. (4) and the equation perturbed by a finite-
dimensional operator

�A 2 A1�x� y; A1x U

Xk
i�1

ciwi�x�; �9�

whereci belong toB2 and functionalswi belong toBp
1: The

equation

�Ap 2 Ap
1�xp � yp

; Ap
1xp

U

Xk
i�1

xp�ci�wi �10�

is an adjoint equation to Eq. (9).
The following generalized Schmidt lemma holds.

Lemma 2. Let Hypothesis 1 be satisfied, k� n; and wi ;

ci �i � 1;…;n� be elements of Bp1 and B2, respectively, such
that

det�wi� �xj�� ± 0; det� �xp
i �cj�� ± 0 �i; j � 1;…;n�: �11�

Then:

1. the operatorA 2 A1 is a Fredholm operator with zero
index and Eq. (9) is uniquely and unconditionally
solvable in B1 for any y[ B2;

2. if y [ B2 satisfies solvability conditions (8) of Eq. (4),
then a solution x of Eq. (9) is a solution of Eq. (4) such
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that

wi�x� � 0 �i � 1;…; k�: �12�
Inversely, if x is a solution of Eq. (9) such that conditions
(12) are satisfied, then conditions (8) are satisfied for the
right-hand side y of Eq. (9) and x is a solution of Eq. (4)
with the same right-hand side y.

The proof of this lemma coincides, in fact, with the proof,
which is given in Ref. [6, section 21], (see also Ref. [7
section 21.4]) for the particular case:wi� �xj� � �xp

i �cj� � dij

(here dij is the Kronecker symbol). A statement close to
Lemma 2 includes also Lemma 4.8.23 in Ref. [10]. The
lemma enables us to remove the spectrum point of Eq. (4)
when some information about solutions of homogeneous
Eqs. (4) and (5) is available, sufficient only for checking
conditions (11).

Corollary 3. Under conditions of Lemma 2, equations

�A 2 A1�x̂i � ci ; �Ap 2 Ap
1�x̂p

i � wi ; i � 1;…;n �13�
are unconditionally and uniquely solvable and their solu-
tions are such thatspan{̂xi}

n
i�1 � ker A; wi�x̂j� � 2dij ;

span{̂xp
i } n

i�1 � kerAp
; x̂p

i �cj� � 2dij :

Really, letx̂i be a solution of first Eq. (13). By Lemma 2
this equation is unconditionally and uniquely solvable. Let
us act on the equation by the functionals�xp

p such that
ker Ap � span{�xp

p} n
p�1 and obtain a linear algebraic system

with respect towj�x̂i� for each fixedi:

2
Xn
j�1

�xp
p�cj�wj�x̂i� � �xp

p�ci� �p� 1;…n�:

By second condition (11), this system is uniquely solvable
and we can obtain by direct substituting that its solution is
wj�x̂i� � 2dij : After substituting this relation back into Eq.
(13), we obtain thatAx̂i � 0; that is,x̂i [ ker A: Finally, the
linear independence of̂xi �i � 1;…;n� follows from the
linear independence of the right-hand sidesci in Eq. (13).
For the second equation (13), the proof is analogous.A

This corollary allows us to find eigen-solutions of original
operators by solving a uniquely solvable perturbed equation.

Lemma 4. Let Hypothesis 1 be satisfied andwi ; ci �i �
1;…; k # n� be elements of Bp1 and B2 respectively such that

det�bim� ± 0; det�bp
im� ± 0 �m; i � 1;…; k�; �14�

bim U wi� �xm�; bp
im U �xp

m�ci�: �15�
Then:

1. The operatorA 2 A1 is a Fredholm operator with zero
index,

dim ker�A 2 A1� � dim ker�Ap 2 Ap
1� � n 2 k;

ker�A 2 A1� � span{~xi}
n
i�k11 , ker A;

ker�Ap 2 Ap
1� � span{~xp

i } n
i�k11 , ker Ap

;

where

~xi U �xi 2
Xk
j�1

�xj

Xk
p�1

b21
jp wp� �xi�; �16�

~xp
i U �xp

i 2
Xk
j�1

�xp
j

Xk
p�1

bp21
jp �xp

i �cp�;

i � k 1 1;…;n:

2. If an element y[ B2 satisfies solvability conditions (8) of
Eq. (4), then Eq. (9) is also solvable for this y and its
solution x is a solution of Eq. (4) satisfying Eq. (12).
Inversely, Eq. (9) is solvable for an element y[ B2

and its solution x satisfies Eq. (12), then conditions (8)
are also satisfied for y, and x is a solution of Eq. (4) with
the same right-hand side y.

Proof. The operatorA 2 A1 is a Fredholm operator since
A1 is a finite-dimensional operator andA is a Fredholm
operator. Let~x be a solution of the equation�A 2 A1� ~x� 0:
Acting on this equation by the functionals�xp

j �j � 1;…; k�;
we obtain a linear algebraic system with respect towi� ~xi�;

2
Xk
i�1

�xp
j �ci�wi� ~x� � 0; j � 1;…; k: �17�

By Eq. (14) it has only a trivial solution

wi� ~x� � 0 �18�
and, consequently,A1 ~x� 0 and ~x is a solution of the
original homogeneous Eq. (4), that is

~x�
Xn
j�1

Cj �xj : �19�

Substituting Eq. (19) into Eq. (18) and taking into account
the definition ofbmi; we obtain,

Xk
j�1

bij Cj 1
Xn

j�k 1 1

Cjwi� �xj� � 0; �i � 1;…; k�:

By Eq. (14) the matrixbij �i; j � 1;…; k� is a regular matrix.
Moving the second sum into the right-hand side, we solve
the system with respect toCj �j � 1;…; k� :

Cj � 2
Xk
p�1

b21
jp

Xn
i�k 1 1

Ciwp� �xi�; j � 1;…; k:

S.E. Mikhailov / Engineering Analysis with Boundary Elements 23 (1999) 805–813 807



Substituting these expressions into Eq. (19), we have

~x�
Xn

i�k 1 1

Ci ~xi ;

where ~xi are given in Eq. (16).
We shall show that�A 2 A1� ~xi � 0: Actually, A~xi � 0; as

~xi consists of�xj [ ker A; and

A1 ~xi �
Xk
q�1

cqwq� �xi 2
Xk
j�1

�xj

Xk
p�1

b21
jp wp� �xi��

�
Xk
q�1

cqwq� �xi�2
Xk
q�1

cq

Xk
j�1

bqj

Xk
p�1

b21
jp wp� �xi� � 0:

Moreover, the elements~xi �i � k 1 1;…;n� are linearly
independent since each of them is the sum of�xi and the
combination from�xj �j � 1;…; k�: Hence, there are exactly
n 2 k independent solutions of the equation�A 2 A1�x� 0:

By the same reasoning for the equation�Ap 2 Ap
1�xp � 0;

we obtain the second formula (16). The first part of the
lemma is proved.

Now let y satisfy Eq. (8), then it follows from Eq. (16)
that

~xp
i �y� � 0 �i � k 1 1;…; n� �20�

and, hence, Eq. (9) is solvable with this right-hand side. As
above, let us act on Eq. (9) by the functionals�xp

j ; j � 1;…; k:
Taking into account Eq. (8), we again obtain system (17)
with respect towi�x�: The system has only trivial solution
(12) and, hence,A1x� 0; that is, any solution of Eq. (9) is
also a solution of Eq. (4).

Conversely, if the solvability conditions of Eq. (9) are
satisfied and its solution satisfies Eq. (12), thenA1x� 0;
and, hence,x satisfies Eq. (4) with the same right-hand
side y. Consequently, this right-hand sidey [ R�A� and,
hence, it satisfies Eq. (8). The second part of Lemma 4 is
proved. A

Lemma 4 enables us to reduce the eigen-space dimension
of Eq. (4). As in Lemma 2, we are based on the rather poor
information about eigen-solutions of homogeneous Eqs. (4)
and (5). This information is to be sufficient only to check
conditions (14).

We have obvious corollaries from the proved Lemma.

Corollary 5. Let the conditions of Lemma 4 be satisfied,
then wp� ~xi� � 0; ~xp

i �cp� � 0 �p� 1;…; k; i � k 1 1;…;n�:
If wp� �xi� � 0 �p� 1;…; k; i � k 1 1;…; n�; then ~xi � �xi

�i � k 1 1;…; n�: Similarly, if �xp
i �cp� � 0 �p� 1;…; k; i �

k 1 1;…;n�; then ~xp
i � �xp

i �i � k 1 1;…;n�:

Corollary 6. Let the conditions of Lemma 4 be satisfied. If

bim � 2dim �i;m� 1;…; k�; then

~xi � �xi 1
Xk
j�1

�xjwj� �xi� �i � k 1 1;…;n� �21�

Similarly, if bp
im � 2dim�i;m� 1;…; k�; then

~xp
i � �xp

i

Xk
j�1

�xp
j �x

p
i �cj� i � k 1 1…; n: �22�

An analogue of Corollary 3 is the following corollary.

Corollary 7. Let the conditions of Lemma 4 be satisfied.
Then solutionŝxi of the equations

�A 2 A1�x̂i � ci ; i � 1;…; k �23�
are such that wi�x̂j� � 2dij and ker A� span{{x̂i}

k
i�1;

{ ~xi}
n
i�k11} ; where { ~xi}

n
i�k11 are solutions of the homo-

geneous Eq. (9).
Similarly, solutionsx̂p

i of the equations

�Ap 2 Ap
1�x̂p

i � wi ; i � 1;…; k

are such thatx̂p
i �cj� � 2dij and ker Ap � span{{x̂p

i } k
i�1;

{ ~xp
i } n

i�k11}} ; where{ ~xp
i } n

i�k11 are solutions of homogeneous
Eq. (10).

Proof. Actually, let us consider, for example, Eqs. (23). It
follows from Eq. (16) that

~xp
q�ci� � �xp

q�ci�2
Xk
j�1

�xp
j �ci�

Xk
p�1

bp21
jp �xp

q�cp�

� �xp
q�ci�2

Xk
p�1

dip �x
p
q�cp� � 0

�i � 1;…; k; q� k 1 1;…;n�
and hence Eqs. (23) are solvable. It is taken into account
here that�xp

j �ci� � bp
ij :

Let x̂i be a solution of Eq. (23). Let us act on Eq. (23) by
the functionals�xp

p �p� 1;…; k� and obtain a linear algebraic
equation system with respect towj�x̂i� for every fixedi,

2
Xk
j�1

�xp
p�cj�wj�x̂i� � �xp

p�ci� �p� 1;…k�:

Because of the second condition (14), this system is
uniquely solvable and the direct substitution shows that
wj�x̂i� � 2dij �i; j � 1;…k�: Substituting this relation into
Eq. (23), we obtain thatAx̂i � 0; that is, x̂i [ ker A: It
follows from the second condition (14) thatci are linearly
independent. Then, by Eq. (23), there is no linear combina-
tion of x̂i belonging to ker�A 2 A1�: Hence, all elements of
the set {̂xi}

k
i�1 < { ~xi}

n
i�k11 are linear independent and each

of this elements belongs to kerA: Corollary 7 is proved for
x̂i : The proof forx̂p

i is similar. A
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3. Finite-dimensional perturbations for operator
equations of the second kind

Let an operatorA : B! B be written in the form of a
second-kind operatorA� I 2 lA0: Eq. (4) is transformed
for this case into Eq. (6). We write its perturbed counterpart
in the form

�I 2 l�A0 1 A01��x� y; A01x U

Xk
i�1

ciwi�x�; �24�

whereci ; wi ; are elements ofB andBp accordingly. Denote
byR�l�; R1�l� resolvents of the operatorsA0 and �A0 1
A01�; respectively, that is

R�l��I 2 lA0� � I ; �I 2 lA0�R�l� � I ; �25�

R1�l��I 2 l�A0 1 A01�� � I ;

�I 2 l�A0 1 A01��R1�l� � I
�26�

at the l -plane points, where these resolvents exist. To
expressR1 throughR; let us act by the operatorR�l� on
first equation (26) from the right and on the second equation
from the left, and we get

R1 2 R� l
Xk
j�1

�R1cj��Rpwj�;

R1 2 R� l
Xk
j�1

�Rcj��Rp
1wj�:

�27�

Acting now by the functionalswi on second equation (27)
we obtain a linear algebraic equation system to findRp

1wj :Xk
j�1

�dij 2 lwi�Rcj��Rp
1wj � Rpwi : �28�

Let

W�l� � det�dij 2 lwi�Rcj�� �29�
be the number matrix determinant of this system
(Weinstein–Aronszajn determinant) anddij be its algebraic
complements. Solving Eq. (28) and substituting the
expression forRp

1wj in Eq. (27), we obtain

R1�l� � R I 1
l

W�l�
Xk
i�1

Xk
j�1

dijcjwiR

24 35: �30�

Hence the singular points set of the resolvent operator to
A0 1 A01 belongs to the union of the singular points of the
resolvent operator toA0 and of the determinantW�l� zeros.

Using Lemma 2 or directly analysing representation (30)
taking into account the resolvent operator expansion in the
neighbourhood of the pole [11], we get the following
lemma.

Lemma 8. The singular point set of the resolvent operator

R1 belongs to the union of the resolvent operatorR singular
points and of determinant (29) zeros. Supposel � l0 is a
finite order pole of the resolventR�l�; k � n� dim ker�I 2
l0A0�; span{�xi}

n
i�1 � ker�I 2 l0A0�; span{�xp

i } n
i�1 � ker�I 2

l0Ap
0�; and conditions (11) are satisfied. Thenl0 is a regular

point of the resolventR1�l�:

The following statement has been also proved (see Ref.
[8, Theorem IV.6.2]).

Lemma 9. The function W�l� from Eq. (29) is mero-
morphic in any domain of thel -plane consisting of regular
points of the resolventR and of isolated eigen-values of the
operatorA0: For everyl0 in such domain, the eigen-value
algebraic multiplicity (the dimension of the subspace of
eigen- and associated elements) of the operatorA0 1 A01

is equal to the sum of the operatorA0 eigen-value algebraic
multiplicity and of multiplicity of the determinant W zero at
the pointl0. The multiplicity of W�l� zero at a pole point of
W�l� is taken as equal to its pole multiplicity with the minus
sign.

Thus, if one can calculate or estimate zeros and poles
of the determinantW, then one can analyze the singular
points of the resolvent operatorR1�l�: Consider some
cases when the determinantW can be calculated
explicitly.

Let us try to choose the elementswi ; ci so that the
operatorR1 is regular at the pointl � l0; where the opera-
tor R has a pole and on the contrary,R1 does not acquire
additional (in comparison withR) singular points in a finite
part of thel-plane.

Theorem 10. Let an operatorA : B! B; l0 be a simple
pole of the resolvent R�l� for Eq. (6); dim ker�I 2 l0A0� �
n; span{�xi}

n
i�1 � ker�I 2 l0A0�; span{�xp

i } n
i�1 � ker�I 2

l0Ap
0� and

wi � �xp
i ; �xp

i �cj� � 2dij =l0 �i; j � 1;…; k� �31�
or

ci � �xi ; �wi�� �xj� � 2dij =l0 �i; j � 1;…; k� �32�
and let k� n:

Then

1. Singular points of the resolventR1�l� for Eq. (24)
coincide with singular points of the resolventR�l� for
Eq. (6) and have the same algebraic multiplicities if
these points are poles, excluding the pointl � l0;

where the resolventR1�l� is regular.
2. If conditions (8) are satisfied, then a solution x of Eq. (24)

at l � l0 is a solution of Eq. (6) and satisfies Eq. (12).
Inversely, if x is a solution of Eq. (24) atl � l0 such that
conditions (12) are satisfied, then conditions (8) are true
for the right-hand side y of Eq. (24) and x is a solution of
Eq. (6) with the same right-hand side y.
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3. Under condition (31),

R�l� � R1�l��I 2 ll0�l0 2 l�21A01�;
R1�l� � R�l��I 1 lA01�:

�33�

Under condition (32),

R�l� � �I 2 ll0�l0 2 l�21A01�R1�l�;
R1�l� � �I 1 lA01�R�l�:

�34�

Proof. Suppose, for example,wi � �xp
i : Then W�l� �

det�dij 2 l �xp
i �Rcj��: Let xp

i U �xp
i R�l� � Rp�l� �xp

i : By the
definition of the resolvent,�I 2 lAp

0�xp
i � �xp

i and if l is a
resolvent regular point, then the solution of this equation is
unique. Let us seek it in the formxp

i � C�xp
i Taking into

account thatAp
0 �x

p
i � �xp

i =l0; since �xp
i is an eigen-solution of

Eq. (7) atl � l0; we obtain thatC � l0=�l0 2 l�: Hence,

�xp
i R� l0�l0 2 l�21 �xp

i �35�
and

W�l� � det�dij 2 ll0�l0 2 l�21 �xp
i �cj��:

If �xp
i �cj� � 2dij =l0 according to Eq. (31), thenW�l� �

ln
0�l0 2 l�2n and henceW�l� has no zeros in a finite part

of thel-plane. Sincel0 is a simple pole ofR�l�; then Eq.
(6) and, hence, Eq. (24) are Fredholm equations atl � l0

(see, for example, Ref. [8]). Let us prove that det�wi� �xj�� �
det� �xp

i � �xj�� ± 0: Actually, otherwise there exist constantsCi

�i � 1;…;n� such that�xp
j � �x� � 0 for �x U

Pn
i�1 Ci �xi for j �

1;…;n; that is, �x [ R�I 2 l0A0�; and then there exists an
associated element~x : �1 2 l0A0� ~x� �x: This contradicts the
fact thatl0 is a resolvent simple pole [8].

Using Lemma 2, we obtain parts 1 and 2 under conditions
(31).

Taking into account thatRpwj � l0�l0 2 l�21wj owing
to Eq. (35), we get first relation (33) from first relation (27).
Let us findx̂p

i � Rp
1 �xp

i : According to the resolvent definition,
�I 2 lAp

0 2 lAp
01�x̂p

i � �xp
i : Using Eq. (31) one can directly

verify that x̂p
i � �xp

i is the unique solution of this equation at
any regular pointl of the resolventR1: That isRp

1�l�wj �
wj : Substituting this relation in second equation (27), we
obtain second relation (33). This completes the proof of
part (3) of the theorem under condition (31).

The theorem statements for the case (32) are proved
similarly. A

This theorem enables us to remove a spectrum point
possessing the information only about the eigen-solutions
of the original equation or its conjugate equation. (Note that
the classical Schmidt lemma requires us to know both of
these eigen-sets for such spectral properties improvement.)
Moreover, if a singular resolvent pointl0 is removed by
using this theorem and it is necessary to solve the equation
at a regular pointl , then, according to the third part of the

theorem, one can express a solution of the original equation
for this valuel in terms of the perturbed equation solution.

Note that statements similar to parts (1) and (2) of
Theorem 10 for Hilbert spaces were presented in Ref. [12]
and for Banach spaces in Ref. [9, section 3].

Consider now an analogue of Lemma 4 for a second-kind
equation, that is, a generalization of Theorem 10 for the case
when the perturbing operator dimension is less then the
eigen-subspace dimension for the operatorA0 at l � l0:

Theorem 11. Let all hypotheses of Theorem 10 be fulfilled
excluding the condition k� n; which is replaced by the
condition k# n: Then

1. Singular points of the resolventR1�l� for Eq. (24) coin-
cide with singular points of the resolventR�l� for Eq.
(24). The singular points have there the same algebraic
multiplicities if these points are poles, excluding the
pointl � l0; where the resolventR1�l� has a simple
pole and

dim ker�I 2 l0�A0 1 A01�� � dim ker�I 2 l0�Ap
0 1 Ap

01��
� n 2 k;

ker�I 2 l0�A0 1 A01�� � span{~xi}
n
i�k11 , ker�I 2 l0A0�;

ker�I 2 l0�Ap
0 1 Ap

01�� � span{~xp
i } n

i�k11 , ker�I 2 l0Ap
0�:

For the case (31), ~xp
i are given by Eq. (22) and there exist

k elements�xi [ ker�I 2 l0A0� �i � 1;…; k� such that
det�bim� ± 0; bim � l0 �x

p
i � �xm� �i;m� 1;…; k�; and ~xi are

given by the first formula of Eq. (16). For the case (32), ~xi

are given by Eq. (21) and there exist k elements�xp
i [

ker�I 2 l0Ap
0� �i � 1;…; k� such thatdet�bp

im� ± 0; bp
im �

l0 �x
p
i � �xm� �i;m� 1;…; k� and ~xp

i are given by the second
formula of Eq. (16).

2. If solvability conditions (8) of Eq. (6) are satisfied, then
Eq. (24) is solvable atl � l0 and its solution x is a
solution of Eq. (6) and satisfies Eq. (12). Inversely, if
Eq. (24) atl � l0 is solvable and its solution x satisfies
Eq. (12), then conditions (8) are satisfied for the right-
hand side y of Eq. (24) and x is a solution of Eq. (6) with
this right-hand side y.

3. Relationships (33) hold under condition (31) and
relationships (34) hold under condition (32).

Proof. Repeating the same reasoning as by proving
Theorem 10, we obtain thatW�l� � lk

0�l0 2 l�2k
:

Moreover, in case (31), there existk linearly independent
elements �xi [ ker�I 2 l0A0�; i � 1;…; k; such that
det� �xp

i � �xm�� ± 0 �i;m� 1;…; k�: Really, suppose this is not
the case and consider the determinant det�aim�ni;m�1; aim �
�xp
i � �xm�: Then for anyk columns of the matrix there exists

one column with a numberm1 such thataim1
� Pk

p�2 C 0paimp
;
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i � 1;…; k: Subtracting the linear combinationPk
p�2 C 0paimp

; i � 1;…;n; from them1-th column, we arrive
at the same value of the determinant but for a matrix that has
zero elements at them1-th column,a0im1

� 0; i � 1;…; k:
Repeating the process for anotherk columns not includ-
ing the m1-th column, we arrive eventually at the deter-
minant det�a0im�ni;m�1 � ^det�aim�ni;m�1 of a matrix a0im
such that a0imp

� 0; i � 1;…; k; p� 1;…;n 2 k 1 1:
Then (see, e.g. [13, Section 1.6-5]), det�aim�ni;m�1 � ^

det�a0imp
�i�1;…; k;p�n2k11;…;ndet�a0imp

�i�k11;…;n;p�1;…;n2k � 0
since the first column in the first determinant of the right-
hand side equals to zero. This means, there exists a nonzero
element�x U

Pn
i�1 Ci �xi ; such that�xp

j � �x� � 0; j � 1;…; n; that
is, �x [ R�I 2 l0A0�; and then there exists an associated
element ~x : �I 2 l0A0� ~x� �x: This contradicts the fact that
l0 is a resolvent simple pole [8].

One can prove similarly that in the case (32), there exist
elements �xp

m [ ker�I 2 l0A0�; m� 1;…; k such that
det� �xp

i � �xm�� ± 0 �i;m� 1;…; k�: Thus the conditions of
Lemma 4 are satisfied. Using Lemmas 2–4 and Corollary
6 we obtain parts 1 and 2 of the theorem. Part (3) is proved
in the same way as in Theorem 10.A

Using Corollary 5, we obtained from Theorem 11 the
following obvious corollary.

Corollary 12. Let the hypotheses of Theorem 11 be
satisfied.

1. Suppose for the case (31), �xm [ ker�I 2 l0A0� �m� k 1
1;…;n� are linearly independent elements such that
�xp
i � �xm� � 0 �i � 1;…; k; m� k 1 1;…;n�; then ker�I 2
l0�A0 1 A01�� � span{�xm} n

m�k11:

2. Suppose for the case (32), �xp
m [ ker�I 2 l0Ap

0� �m� k 1
1;…;n� are linearly independent elements such that
�xp
i � �xm� � 0 �i � 1;…; k; m� k 1 1;…;n�; then ker�I 2
l0�Ap

0 1 Ap
01�� � span{�xp

m} n
m�k11:

Using Corollary 7 we obtain its analogue for second-kind
equations.

Corollary 13. Let the hypotheses of Theorem 11 be
satisfied. Then solutionŝxj of the equations

�I 2 l0�A0 1 A01��x̂i � ci ; i � 1;…; k; �36�
are such that wi�x̂j� � 2dij =l0 and ker�I 2 l0A0� �
span{{x̂i}

k
i�1; { ~xi}

n
i�k11} ; where { ~xi}

n
i�k11 are solutions of

homogeneous Eq. (36). Similarly, solutionsx̂p
i of the

equations

�I 2 l0�Ap
0 1 Ap

01��x̂p
i � wi ; i � 1;…; k; �37�

are such that x̂p
j �cj� � 2dij =l0 and ker�I 2 l0Ap

0� �
span{{x̂p

i } k
i�1; { ~xp

i } n
i�k11} ; where{ ~xp

i } n
i�k11 are solutions of

homogeneous Eq. (37).

Consider now the case when the operatorA01 contains the

terms satisfying Eq. (31) as well as the terms satisfying
Eq. (32).

Theorem 14. Suppose the operatorA0 : B! B; l0 is a
simple pole of the resolventR�l� for Eq. (6), dim ker�I 2
l0A0� � n; wi [ Bp

; ci [ B; i � 1;…; n; k � n; 0 # t # n;

wi � �xp
i �i � 1;…; t�; cj � �xj �j � t 1 1;…;n�

�38�

wi�cj� � 2dij =l0 �i; j � 1;…;n�; �39�

�xp
i and �xj are linear independent elements ofker�I 2 l0Ap

0�
andker�I 2 l0A0�, respectively.

Then statements 1 and 2 of Theorem 10 hold true and

R�l� � �I 2 ll0�l0 2 l�21A0w�R1�l��I 2 ll0�l0 2 l�21A0c�;

R1�l� � �I 1 lA0w�R�l��I 1 lA0c� (40)

where

A0c U

Xt

j�1

cj �x
p
j ; A0w U

Xn
j�t 1 1

�xjwj ; A01 � A0c 1 A0w:

Proof. First let us note that, because of Eqs. (38) and (39),
�xp
i � �xj� � 0 for i � 1;…; t; j � t 1 1;…;n; and the elements
�xp
i �i � 1;…; t� as well as the elements�xj �j � t 1 1;…;n�

are linearly independent. Consider the equation�I 2
l0�A0 1 A0c��x� y for which Theorem 11 with condition
(31) and part 1 of Corollary 12 hold true. Hence, ker�I 2
l0

~A0�� � span{�xj}
n
j�k11 for the operator ~A0 U A0 1 A0c:

Applying Theorem 10 to the equation�I 2 l0
~A0�x� y; we

conclude the proof. A

Using Corollary 3 we get its analogue for a second-kind
operator.

Corollary 15. Let the hypotheses of Theorem 10 or 14 be
satisfied, then the equations

�I 2 l0�A0 1 A01��x̂i � ci ; �I 2 l0�Ap
0 1 Ap

01��x̂p
i � wi ;

i � 1;…;n (41)

are unconditionally and uniquely solvable and their
solutions are such that

span{̂xi}
n
i�1 � ker�I 2 l0A0�; wi�x̂j� � 2dij =l0;
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and

span{̂xp
i } n

i�1 � ker�I 2 l0Ap
0�; x̂p

i �cj� � 2dij =l0:

4. On calculation of undetermined constants in the
equation right-hand side

Consider now Fredholm Eq. (4), whereA : B1 ! B2;

dim kerA� dim kerAp � n and y� y0 1
Pn

j�1 Cjyj ; yj [
B2 �j � 0;…;n�: One should choose the constantsCj such
that solvability conditions (8) of Eq. (4), will be satisfied,
that is,

�xp
i �y0 1

Xn
j�1

Cjyj� � 0; i � 1;…;n; span{�xp
i } n

i�1 � kerA;

�42�
and also find one of the solutions of Eq. (4).

It is obvious that this problem is solvable in the general
case only if

det� �xp
i yj� ± 0 �i; j � 1;…;n�: �43�

Suppose this holds true.
If the functionals�xp

i are known, then one can findCj from
Eq. (42) and then, using Lemma 2 (or Theorems 10 and 14 if
A : B! B is a second-kind operator), one can perturb the
equation and obtain the solution by solving corresponding
unconditional and uniquely solvable Eq. (9).

If the functionals�xp
i are unknown, then there are at least

two ways forward. Firstly, one can find�xp
i by Corollary 3

from the second group of perturbed equations (13) (or by
Corollary 15 from the second group of equations, Eq. (41) if
A is the second-kind operator) and then do as above.

Secondly, one can perturb Eq. (4) by Lemma 2 (or by
Theorems 10 and 14 ifA is a second-kind operator) and find
its solutionsxj with the right-hand sidesyj �j � 0;…;n�;
respectively. Then one can demand that the solution

x� x0 1
Xn
j�1

Cjxj

satisfies condition (12) according to the second part of
Lemma 2 (Theorems 10 and 14). This leads to a linear
algebraic equation system with respect toCj :Xn
j�1

Cjwi�xj� � 2wi�x0� �i � 1;…;n�:

Let us show that det�wi�xj�� ± 0 under condition (43).
Really, otherwise non-zero constantsC0

j can be found
such that

wi�
Xn
j�1

C0
j xj� � 0; i � 1;…;n:

According to the second part of Lemma 2 (Theorems 10 and

14), this means thatXn
j�1

C0
j xp

i �yj� � 0; i � 1;…; n

but it is in contradiction to Eq. (43).
Thus one can solve the problem also by this second way.

5. Applications to boundary integral equations

We shall illustrate now on a BIE of elasticity how one can
apply the above results. We consider BIE (1) from the
introduction. IfS[ C1;a

; then (see Refs. [3–5]) the operator
1 1 W satisfies Hypothesis 1 forn� 6; ker�1 1 W� �
span{�u�m�} 6

m�1 (the eigen-solutions�u�m�i are given in Eq.
(2)), B1 � B2 � C0;b�S�; 0 , b , a: For a nonsmooth
surfaceS, the Hypothesis will be satisfied in some weighted
Hölder spacesB1 � B2 with the same ker�1 1 W�; see Ref.
[5].

Let us denote byuSu the area, byh c the center of inertia,
and byJ the central moment if inertia (the first invariant of
the inertia tensor) for the surfaceS, that is,

uSu U
Z

S
dS; hc

i U
1
uSu

Z
S
hidS;

J U

Z
S
�hi 2 hc

i ��hi 2 hc
i � dS�h�:

Suppose firstly, the coordinate axeshi are parallel to the
principal axes of the inertia tensor for the surfaceS, that is,Z

S
�hi 2 hc

i ��hj 2 hc
j � dS�h� � 0; i ± j:

We write the perturbed equation corresponding to Eq. (1) in
the form

ui�j�2 l{ �Wij 1 K�31�
ij �uj} �j� � Fi�j�;

�K�31�
ij uj��j� U

X3
m�1

� �u�m�i �j 2 hc�
Z

S
f�m�j �h 2 hc�uj�h� dS�h�

1 �u�31m�
i �j 2 hc�

Z
S
f�31m�

j �h 2 hc�uj�h� dS�h��:
�44�

The functionsf�m�j in Eq. (44) are chosen in the form

f�m�j �j� �
1
uSu

�u�m�j �j� �
dmj

uSu
; f�31m�

j �j�

� 1
2J

�u�31m�
j �j� � 1jpmjp

2J
; m� 1;…;3:

Then it is easy to check, that the perturbing operatorK�31�

satisfies Theorem 10 (with condition (32)) fork � n� 6;
l0 � 21;

�xm;i�j� � dim; �xm13;i�j� � 1ijm�jj 2 hc
j �;
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wm�u� � 1
uSu

Z
S

um�h� dS�h�; wm13�u�

� 1
2J

Z
S
1jpm�hp 2 hc

p�uj�h� dS�h�;

m� 1;…;3:

Consequently, BIE (44) is uniquely and unconditionally
solvable atl0 � 21: Its solutionui coincides with one of
the solutions of BIE (1) such thatZ

S
ui�h� dS� 0;

Z
S
1ijmui�h��hj 2 hc

j � dS� 0;

i; j;m� 1; 3

if the total force and the moment of the applied tractions
equal zero (what implies the solvability conditions (3) for
BIE (1) are satisfied). Moreover, the resolvent of the
perturbed operator has the same singular points as the resol-
vent of the original operator excluding the pointl � 21: It
means that the resolvent is now regular in the closed circle
ulu # 1: Hence, perturbed equation (44) can be solved at
l � 21; e.g. by the method of simple iterations, that is,
by expansion of the resolvent in the convergent Neumann
series.

After using the property1ijk1mlk � dimdjl 2 dildjm; we can
represent the perturbing operator in a simpler form

�K�31�
ij uj��j� �

Z
S

(
1
uSu

ui�h�1
1
2J
��jj 2 hc

j ��hj 2 hc
j �ui�h�

2 �jj 2 hc
j ��hi 2 hc

i �uj�h��
)

dS�h� �45�

One can remark that the presentation (45) is true also in
arbitrary cartesian coordinate system (not only associated
with the principal axes of the inertia tensor), since the right-
hand side of Eq. (45) is a linear combination of vectors,
whose coefficients are scalar products of vectors.

This perturbation technique can be used also for other
BIEs. For example, an application of perturbation operators
to BIE of harmonic functions is presented in Refs. [9,14],
and to BIE of plane elastic problems in Ref. [15]. An imple-
mentation to BIE, obtained by the indirect approach for
elastic plate reinforced by boundary curvilinear elastic
bars, was described in Ref. [16]. Determination of unknown

constants in the BIE right-hand side by methods of Section 4
was used in Refs. [15,16].

Several results of this paper were announced in Ref. [17].
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