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Abstract

Finite-dimensional perturbing operators are constructed using some incomplete information about eigen-solutions of an original and/or
adjoint generalized Fredholm operator equation (with zero index). Adding such a perturbing operator to the original one reduces the eigen-
space dimension and can, particularly, lead to an unconditionally and uniquely solvable perturbed equation. For the second kind Fredholm
operators, the perturbing operators are analyzed such that the spectrum points for an original and the perturbed operators coincide except ¢
spectrum point considered, which can be removed for the perturbed operator. A relation between resolvents of original and perturbed
operators is obtained. Effective procedures are described for calculation of the undetermined constants in the right-hand side of an operator
equation for the case when these constants must be chosen to satisfy the solvability conditions not written explicitly. Implementation of the
methods is illustrated on a boundary integral equation of elasti©i000 Elsevier Science Ltd. All rights reserved.
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1. Introduction approach to the following BIE (fok = —1)

Boundary integral equations (BIEs) for boundary value (&) — AW 16 = Bi(§), @
problems of mathematical physics are often not uncondi-
tionally and uniquely solvable. Consequently, the linear
algebraic equation system, which is a discrete analogue of[W;yjl(§) = 2JSTiJ (& my () dS Di(§)
the corresponding boundary integral equation, is ill-
conditioned. To avoid this difficulty, it is possible to add a
finite-dimensional operator to an original boundary integral
equation and to obtain an unconditionally and uniquely
solvable perturbed BIE. This equation provides a solution +2J U;; (& mf(n) dD(n).
of the original BIE if its right-hand side satisfies the original b
solvability condition. As heuristic, this approach was used Tha kernelU
by Sherman (see Ref. [1]) for some integral equations of |
two-dimensional elasticity.

Let us consider a direct BIE of three-dimensional iso-
tropic homogeneous elasticity for illustration. We suppose the resolvent ofW in the closed circldA| = 1 except the
summation in repeating indices from 1 to 3 unless another point A= —1 k;ing a simple pole of the resolvent,
range is explicitly given. Itis well known (see, e.g. Ref. [2]) iy, ker(l + W) =6, the eigen-solutions of homo-

th_at the bOL_mdary val_ue problem of elasticity in a donfain geneous BIE (1) ath = —1 are given by the six rigid
with prescribed traction§ at the boundarys and volume body motions

forcesf; in the domainD can be reduced by the direct

::zjsuﬂénm0ﬁd3ﬂ)

ij(&m) is the Kelvin fundamental solution,

ij (& m) is its traction vector, and-(1/2)Wuis the elastic
double layer potential. It is known (see, e.g. Refs. [3-5])
that, for a bounded domalb there are no singular points of

o o(3+ ..

0™ = 6m 6™ = gm§, Lim=1..3 (2
*Corresponding author. Tel+1703-293223; fax:1703-292853. where gy, is the L?Vi'CiVita permUtQtiQn te_nsor- mhom_o'
E-mail addressmik@wessex.ac.uk (S.E. Mikhailov) geneous BIE (1) is solvable only if its right hand side
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satisfies solvability conditions whereA" : B; — B, X € B3, y* € B]. Eq. (4) of the form
) | — AMAg)x = 6
[ o@xmoas—0  m-1..6 @ MY ©
S (second-kind operator equations) are also studied in this
where the function& ™ (¢) are generally not known. paper. HereA; : B— B; | is the identity operatorg.y €
For mechanically meaningful problems with zero total B: A is @ complex parameter. The equation
force and moments applied to the domairand its bound- (| — )p%)x* = y* 7

ary, conditions (3) are always fulfilled. However, these

conditions may be violated in numerical solving because iS an adjoint equation to Eq. (6), wherg,:B" —

of discretization and round-off errors. To avoid this diffi- B X,y € B".

culty, it is usual in the numerical practice to fix displace-  |f elementsx €E (i=1....n) are a basis of am
ments at several points, that is, to replace the given problemdimensional manifold, we write E = spanf}iL;.

with prescribed tractions by a mixed problem. This means

that the non-zero total force and moment, arising due to Hypothesis 1. Suppose hereafter, that A is defined in the
discretization errors, are transferred to these points andWhole space Band its rangeZ(A) belongs to B and is
may cause an increased error there. Moreover, such replaceclosed. Suppose also that: 8, — B is a Fredholm (with
ment changes the BIE (1) spectral properties and canZe€ro index) operator, that igjim kerA = dim kerA" =
prevent application of iterative methods for its solution. N <, where KkerA=spanf}ii; C By, kerA" =
Another possibility to eliminate the instability from discre- SPanf}iL; C B; are eigen-spaces (for the eigen-value
tization and round-off errors and improve the BIE spectral Z€r0).

properties, is to perturb Eqg. (1) by a finite-dimensional

operator and to solve the perturbed equation. The second It is well known (see, e.g. Refs. [7,8]) that under

possibility will be described at the end of the paper. Hypothesis 1, Eq. (4) is solvable for an elemgre B, iff
For operator equations of the first kind in Banach spaces, g (y) = 0 (i=1..n 8

the general principle of the choice of finite-dimensional .

perturbing operators can be based on the generalizedr the functionals : ker A" = spanf}iL;.

Schmidt lemma, which was proved for a particular case in

Ref. [6] (see also Ref. [7]). If a second-kind equation is 5 ginjte_dimensional perturbations for Fredholm
considered, there is a sense to choose a perturbing Operat%perator equations of the first kind

so that spectrum points after the perturbation are not

changed excepting one spectrum point at which the equation  consider Eq. (4) and the equation perturbed by a finite-
is to be solved. The perturbed operator spectrum is deter-gimensional operator

mined by the original operator spectrum and the Weinstein-
Aronszajn determinant (see Ref. [8]). This determinant
cannot be always calculated. In Ref. [9, section 3], such
perturbed operators were studied for operators in Banach ) i
spaces using the knowledge of all eigen-solutions of the Wherey; belong toB; and functionalsp belong toB;. The

k
A= ADX=y, Ax:=> (X, 9
i=1

original or of the adjoint equation. equation

A development of the study of finite-dimensional K
perturbed operators is presented here. Using these resultsA* — ADX" =y*, AIX = ZX*(l//i)qoi 10
one can remove a spectrum point of an operator equation i=1

and, if it is necessary, construct a choice procedure for js an adjoint equation to Eq. (9).

unknown constants in the right-hand side of the equation.  The following generalized Schmidt lemma holds.
By this procedure, it is possible to make the original
equation solvable. Lemma 2. Let Hypothesis 1 be satisfied,=n, and ¢;,

Let B, and B, be Banach spaceB; andB; be adjoined (i = 1,... n) be elements of Band B, respectively, such
(dual) spaces of bounded linear functionals definedBpn  hat

and B,, respectively. LetA be a linear bounded operator

acting fromB; to By, A : B, — B.. defo(%)] # 0, def(ypl =0  (,j=1,...,n. (1D
Consider an operator equation Then:
Ax=y, “ 1. the operatorA — A, is a Fredholm operator with zero

index and Eqg. (9) is uniquely and unconditionally
solvable in B for any y&€ B.;
2. if y € B, satisfies solvability conditions (8) of Eq. (4),
AX =y, (5) then a solution x of Eq. (9) is a solution of Eq. (4) such

wherex € B,y € B,. An adjoined equation to Eqg. (4) is an
equation
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that
o) =0 @i

Inversely, if x is a solution of Eq. (9) such that conditions
(12) are satisfied, then conditions (8) are satisfied for the
right-hand side y of Eq. (9) and x is a solution of Eq. (4)
with the same right-hand side .

1,...K). (12)

The proof of this lemma coincides, in fact, with the proof,
which is given in Ref. [6, section 21], (see also Ref. [7
section 21.4]) for the particular casei(%) = % () = §;
(here §; is the Kronecker symbol). A statement close to
Lemma 2 includes also Lemma 4.8.23 in Ref. [10]. The
lemma enables us to remove the spectrum point of Eq. (4)
when some information about solutions of homogeneous
Egs. (4) and (5) is available, sufficient only for checking
conditions (11).

Corollary 3. Under conditions of Lemma 2, equations
A-AD% =1, A" —ADX = ¢,

are unconditionally and uniquely solvable and their solu-
tions are such thatspanf}l, = kerA (%) = —§;;
spanf}ii, = kerA”, X (¢) = —§;.

i=1..n (13

Really, letk; be a solution of first Eq. (13). By Lemma 2
this equation is unconditionally and uniquely solvable. Let
us act on the equation by the functiona‘i:.‘s such that
ker A" = spanf}p—1 and obtain a linear algebraic system
with respect tag;(%) for each fixed:

=S @GR =%W)  (P=1..n.
=1

By second condition (11), this system is uniquely solvable
and we can obtain by direct substituting that its solution is
@ (X) = —g;. After substituting this relation back into Eq.
(13), we obtain thaf\%, = 0, that is,%; € ker A. Finally, the
linear independence of; (i =1,...,n) follows from the
linear independence of the right-hand sidgsn Eq. (13).
For the second equation (13), the proof is analogous.

This corollary allows us to find eigen-solutions of original
operators by solving a uniquely solvable perturbed equation.

Lemma 4. Let Hypothesis 1 be satisfied argl 5 (i =

1, ...,k = n) be elements of Band B, respectively such that

defbi,] # 0, defb,]#0  (mi=1,..K), (14)

bim = @i()c(m), brm = )o(*m(‘;bl)
Then:

15

1. The operatorA — A, is a Fredholm operator with zero
index,

dim kerA — A)) = dim kertA" — A)) =n—k;

807
kerA — A) = spanfk} iy 1 C kerA,
ke A" — A7) = spanf } L1 C kerA',
where
k k
% =% — Jzzlx, pglb,-;lsopoa), (16)

Kk k

K= % =353 by ()

=1 p=1

i=k+1,...n

2. If an element y& B, satisfies solvability conditions (8) of
Eq. (4), then Eqg. (9) is also solvable for this y and its
solution x is a solution of Eq. (4) satisfying Eq. (12).
Inversely, Eq. (9) is solvable for an elementyB,
and its solution x satisfies Eq. (12), then conditions (8)
are also satisfied for y, and x is a solution of Eq. (4) with

the same right-hand side y.

Proof. The operatoA — A is a Fredholm operator since
A, is a finite-dimensional operator arél is a Fredholm
operator. Letk be a solution of the equatigh — A;)X = 0.
Acting on this equation by the functionats (j = 1, ...,k),
we obtain a linear algebraic system with respecpi®;),

k

D XKWe® =0, j=1..k 17
i=1

By Eq. (14) it has only a trivial solution

=0 (18)

and, consequentlyA;Xx=0 and X is a solution of the
original homogeneous Eq. (4), that is

X = chszi. (19
=

Substituting Eq. (19) into Eq. (18) and taking into account
the definition ofb,;, we obtain,

k
> G

=1

n
+ D Gk =0
j=k+1

(i=1,..,k).

By Eq. (14) the matrix; (i,j = 1,...,k) is a regular matrix.
Moving the second sum into the right-hand side, we solve
the system with respect @, (j = 1,....K) :

Ci==>"bp

p=1

n

zz (}@d%)

i=k+1

i=1..k
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Substituting these expressions into Eq. (19), we have

n

X = Z Ci)?i,

i=k+1

wheregx; are given in Eq. (16).
We shall show thatA — A% = 0. Actually, A%, = 0, as
X consists of%; € kerA, and

k Kk
A% = D gl — D % > bip (%]
o1 = =

j=1
k k k k

= > Ygeq%) = D W > by > bptep(%) = 0.
=1 =1 j=1 p=1

Moreover, the elementg (i=k+ 1,...,n) are linearly
independent since each of them is the sumxoénd the
combination fron; (j = 1,...,k). Hence, there are exactly
n — kindependent solutions of the equati@n— A)x = 0.

By the same reasoning for the equati@i — A7)X" = 0,
we obtain the second formula (16). The first part of the
lemma is proved.

Now lety satisfy Eq. (8), then it follows from Eqg. (16)
that
£y =0 i=k+1,..n) (20)
and, hence, Eq. (9) is solvable with this right-hand side. As
above, let us act on Eq. (9) by the functionglsj = 1, ..., k.
Taking into account Eq. (8), we again obtain system (17)
with respect tog;(X). The system has only trivial solution
(12) and, hence;x = 0, that is, any solution of Eq. (9) is
also a solution of Eq. (4).

Conversely, if the solvability conditions of Eq. (9) are
satisfied and its solution satisfies Eq. (12), thex = 0,
and, hencex satisfies Eq. (4) with the same right-hand
sidey. Consequently, this right-hand siges #Z(A) and,

hence, it satisfies Eq. (8). The second part of Lemma 4 is

proved. O
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bm = —6m (i,m=1,....k), then

k
K =%+> X)) (=k+1..n (21)
=1
Similarly, if by, = —8,(i,m= 1, ...,K), then
k
K =%D>XKW) i=k+1l..n (22)
=1

An analogue of Corollary 3 is the following corollary.

Corollary 7. Let the conditions of Lemma 4 be satisfied.
Then solutions; of the equations

(A - Al)xi = d/i’ i= l’ LR k (23)

are such that ¢;(%) = —§&; and kerA = span{{&}i;,
{%} L1}, where {%}L,,., are solutions of the homo-
geneous Eg. (9).

Similarly, solutionsy| of the equations

(A" — ADKX = ¢, i=1..k

are such that&'(y;) = —&; and kerA" = span{{{},,
{X}ilis13} , where{ X'} L, are solutions of homogeneous
Eg. (10).

Proof. Actually, let us consider, for example, Eqgs. (23). It
follows from Eq. (16) that

k k
() = Xg(W) — D X (W) D by K1)
=1 p=1

k
= %) — D SpXg(dhp) = 0
p=1

i=1..k g=k+1,..,n

and hence Egs. (23) are solvable. It is taken into account
here that¥'(y4) = bj.

Letx be a solution of Eq. (23). Let us act on Eq. (23) by
the functionalst, (p = 1, ..., k) and obtain a linear algebraic
equation system with respect ;) for every fixedi,

Lemma 4 enables us to reduce the eigen-space dimension

of Eq. (4). Asin Lemma 2, we are based on the rather poor
information about eigen-solutions of homogeneous Egs. (4)

and (5). This information is to be sufficient only to check
conditions (14).
We have obvious corollaries from the proved Lemma.

Corollary 5. Let the conditions of Lemma 4 be satisfied
then ¢p(%) =0, K (Yp) =0 (p=1,...k i =k+1,...n).

If o,%)=0 (p=1,...k i=k+1,..n), then § =X
(i=k+1,..n).Similarly, if () =0 (p=1,...k i =
k+1,..,n),theng =% (i=k+1,...n).

Corollary 6. Let the conditions of Lemma 4 be satisfied. If

k
= > %GR =X  (p=1....K.
=1

Because of the second condition (14), this system is
uniquely solvable and the direct substitution shows that
@ (%) = —g;(i,j = 1,...K. Substituting this relation into
Eq. (23), we obtain thafAx, = 0O, that is, & € kerA. It
follows from the second condition (14) thdt are linearly
independent. Then, by Eq. (23), there is no linear combina-
tion of & belonging to kefA — A;). Hence, all elements of
the set {(i}ik:l U {%}iL.;, are linear independent and each
of this elements belongs to kér Corollary 7 is proved for
%. The proof forg" is similar. O
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3. Finite-dimensional perturbations for operator
equations of the second kind

Let an operatoA : B— B be written in the form of a
second-kind operatoA =1 — AAq. Eq. (4) is transformed
for this case into Eq. (6). We write its perturbed counterpart
in the form

k
[ = A+ ADIX =Y, AgXi=> (), (249
i=1
whereys;, ¢;, are elements dB andB* accordingly. Denote
byR(A), R (A) resolvents of the operato, and (Aq +
Agy), respectively, that is

RV = 2AAg) =1, (I = AAJRW) =1, (25

R — AR + Ag)] = |,
[I = AAo + AgIR: (M) = |

at the A-plane points, where these resolvents exist. To
expressR, throughR, let us act by the operatd®(A) on
first equation (26) from the right and on the second equation
from the left, and we get

(26)

k
R, —R=1> R )R @),
j=1
(2

k
R, —R= 21D RHR, ¢).
j=1

Acting now by the functionalg; on second equation (27)
we obtain a linear algebraic equation system to ﬁﬁdoj :

k
D 18 — Aq(RIR, ¢ = R'g. (28)
j=1
Let
W) = defd; — Aqi(Ry))] 29

be the number matrix determinant of this system
(Weinstein—Aronszajn determinant) adgbe its algebraic
complements. Solving Eq. (28) and substituting the
expression foR ¢; in Eq. (27), we obtain

k k
RV = RI: Z zdij l,l’j(PiR].

i=1j=1

Hence the singular points set of the resolvent operator to
Ay + Ag; belongs to the union of the singular points of the
resolvent operator t8, and of the determinat/(A) zeros.

Using Lemma 2 or directly analysing representation (30)
taking into account the resolvent operator expansion in the
neighbourhood of the pole [11], we get the following
lemma.

A
I+

W) (30)

Lemma8. The singular point set of the resolvent operator

809

R, belongs to the union of the resolvent operaRsingular
points and of determinant (29) zeros. Suppase Aj is a
finite order pole of the resolveR(A), k = n = dim ker(l —

AoAo), spanfiHl, = ker(l — AAg), spanfk }ii, = ker(l —

AoAp), and conditions (11) are satisfied. Thegis a regular
point of the resolvenR, (A).

The following statement has been also proved (see Ref.
[8, Theorem 1V.6.2]).

Lemma 9. The function WA) from Eq. (29) is mero-
morphic in any domain of thg-plane consisting of regular
points of the resolverR and of isolated eigen-values of the
operatorA,. For every), in such domain, the eigen-value
algebraic multiplicity (the dimension of the subspace of
eigen- and associated elements) of the operd@pr Ay

is equal to the sum of the operatdg eigen-value algebraic
multiplicity and of multiplicity of the determinant W zero at
the pointio. The multiplicity of WA) zero at a pole point of
W(A) is taken as equal to its pole multiplicity with the minus
sign.

Thus, if one can calculate or estimate zeros and poles
of the determinanW, then one can analyze the singular
points of the resolvent operatd®, (A). Consider some
cases when the determinariv can be calculated
explicitly.

Let us try to choose the elemenis, ¢ so that the
operatorR, is regular at the point = Ay, where the opera-
tor R has a pole and on the contraly, does not acquire
additional (in comparison witR) singular points in a finite
part of theA-plane.

Theorem 10. Let an operatorA : B— B, Ay be a simple
pole of the resolvent®) for Eq. (6); dim kel — ApAg) =

n, spanf}iL, = ker(l — ApAy), spanf’}ii, = ker(l —
AoAp) and
G=%X, XWp=—6/ (j=1..k (31)
or
=%, (@)X)=—g/r  (,j=1,..,K (32
and let k= n.

Then

1. Singular points of the resolveriR,(A) for Eq. (24)
coincide with singular points of the resolveRt\) for
Eq. (6) and have the same algebraic multiplicities if
these points are poles, excluding the point= A,
where the resolverR, (A) is regular.

If conditions (8) are satisfied, then a solution x of Eq. (24)
at A = )Ag is a solution of Eq. (6) and satisfies Eq. (12).
Inversely, if x is a solution of Eq. (24) at= A such that
conditions (12) are satisfied, then conditions (8) are true
for the right-hand side y of Eq. (24) and x is a solution of
Eq. (6) with the same right-hand side y.

2.
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3. Under condition (31)

R = Ry (VI — Moo — A) An],

(33
R (M) = R + AAg].
Under condition (32)
RO =1 = Moo = ) AgtIR; (M),

(34

Ri(A) = [I + AAo1IR(A).

Proof. Suppose, for exampleg, = X". Then W) =
defd; — A% (Ryp]. Let x =XR\) =R (WX%. By the
definition of the resolventl — AAQ)X =X and if A is a
resolvent regular point, then the solution of this equation is
unique. Let us seek it in the formd = C%' Taking into
account thatAsX” = %/A,, sinceX’ is an eigen-solution of
Eq. (7) atA = Ay, we obtain thalC = Ay/(Ag — A). Hence,

KR = Ao(Ao — V)% (35

and
W(A) = def§; — Ao(Ao — A ()]

If %'(y) = —8;/Ao according to Eq. (31), thetV(r) =
Aj(Ag — M)~ " and henceN(A) has no zeros in a finite part
of the A-plane. Since\q is a simple pole oR(A), then Eq.
(6) and, hence, Eqg. (24) are Fredholm equationk at\g
(see, for example, Ref. [8]). Let us prove that[dgx;)] =
de1[>°<i*(>°<i)] # 0. Actually, otherwise there exist constaiis
(i=1,...n) such that¢’(x) = 0 for x:= > L; C% for j =
1,...n, that is,x € Z(I — AoAg), and then there exists an
associated elemeRt (1 — AoAg)X = X. This contradicts the
fact thatA is a resolvent simple pole [8].

Using Lemma 2, we obtain parts 1 and 2 under conditions
(31).

Taking into account tha3*<pj = Ag(Ag — A)’lcpj owing
to Eq. (35), we get first relation (33) from first relation (27).
Let us find" = R %". According to the resolvent definition,
(I — AA5 — AMAGDR = X', Using Eq. (31) one can directly
verify thatg" = %" is the unique solution of this equation at
any regular poinA of the resolvenR, . That isBi(/\)goj =
¢;. Substituting this relation in second equation (27), we
obtain second relation (33). This completes the proof of
part (3) of the theorem under condition (31).

The theorem statements for the case (32) are proved

similarly. O

This theorem enables us to remove a spectrum point Proof.
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theorem, one can express a solution of the original equation
for this valueA in terms of the perturbed equation solution.

Note that statements similar to parts (1) and (2) of
Theorem 10 for Hilbert spaces were presented in Ref. [12]
and for Banach spaces in Ref. [9, section 3].

Consider now an analogue of Lemma 4 for a second-kind
equation, that is, a generalization of Theorem 10 for the case
when the perturbing operator dimension is less then the
eigen-subspace dimension for the operdipat A = A,.

Theorem 11. Let all hypotheses of Theorem 10 be fulfilled
excluding the condition k= n, which is replaced by the
condition k= n. Then

1. Singular points of the resolveR, (A) for Eq. (24) coin-
cide with singular points of the resolveR(A) for Eq.
(24). The singular points have there the same algebraic
multiplicities if these points are poles, excluding the
pointA = Ay, where the resolvenR, (A) has a simple
pole and

dim kel — Ag(Ag + Agp)] = dim ker(l — Ap(Ag + Agy)]
n—Kk,

kerfl — Ag(Ag + Agp)] = spanfi} L1 C ker(l — AoAg),

kerfl — Ag(Ao + Aop)] = spanf }L.1 C ker(l — ApAo).

For the case (31)% are given by Eq. (22) and there exist
k elementsx; € ker(l — ApAg) (i =1,...,Kk) such that
detb,y) # 0, by, = Ag% (%) (i, m=1,...,k), and % are
given by the first formula of Eq. (16). For the case (3)
are given by Eg. (21) and there exist k elemefite
ker(l — AoAp) (i = 1, ...,K) such thatdeiby,,) # 0, b, =
A% Xy (,m=1, ..., k) and % are given by the second
formula of Eq. (16).

2. If solvability conditions (8) of Eq. (6) are satisfied, then
Eqg. (24) is solvable ai = Ay and its solution x is a
solution of Eq. (6) and satisfies Eq. (12). Inversely, if
Eqg. (24) atA = Aq is solvable and its solution x satisfies
Eqg. (12), then conditions (8) are satisfied for the right-
hand side y of Eq. (24) and x is a solution of Eq. (6) with
this right-hand side y.

3. Relationships (33) hold under condition (31) and

relationships (34) hold under condition (32)

Repeating the same reasoning as by proving

possessing the information only about the eigen-solutions Theorem 10, we obtain that/(A) = A§(Ag — )%

of the original equation or its conjugate equation. (Note that
the classical Schmidt lemma requires us to know both of

Moreover, in case (31), there exislinearly independent
elements % € kerl — Aphg), i=1,..,k such that

these eigen-sets for such spectral properties improvement.)Jdef% (%,)] # 0 (i, m= 1, ...,k). Really, suppose this is not

Moreover, if a singular resolvent pointy is removed by

the case and consider the determinanfagl -1, &m =

using this theorem and it is necessary to solve the equation;’(X,,). Then for anyk columns of the matrix there exists

at a regular poini, then, according to the third part of the

one column with a numben, such thagy,, = Zlﬁ:z C{,aimp,
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i=1,..,k Subtracting the Ilinear combination
Zp—z Cpa|m ,i=1,...,n, from themy-th column, we arrive

at the same value of the determinant but for a matrix that has

zero elements at they-th column,aj, =0, i=1,...k
Repeating the process for anothecolumns not includ-
ing the m-th column, we arrive eventually at the deter-
minant detai,l'n-1 = *defay,lm=1 of a matrix aj,
such that aj, =0, i=1..k p=1..n—k+1
Then (see, e.g. [13, Section 1.6-5]), [@&{]m-1 = *
de'[‘:ai,mp]i:l ..... k; p=n—k+1, ...,ndet[agmp]i=k+1, cap=1,...n—k = 0
since the first column in the first determinant of the right-
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terms satisfying Eq. (31) as well as the terms satisfying
Eq. (32).

Theorem 14. Suppose the operatgk, : B— B, Ay is a
simple pole of the resolvem®()) for Eq. (6),dim kerl —
AMA) =N ¢ €EBY, ¢ €EB,i=1,..,nk=n0=t=n,

L.t =% (=t+1..n

(38

o =% (i=

hand side equals to zero. This means, there exists a nonzero

elementt:= Yy %, such tha'(x) = 0,j = 1, ....n, that

is, X € (1 — AAg), and then there exists an associated
elementx: (I — ApAg)X = X. This contradicts the fact that
Mg is a resolvent simple pole [8].

o) = =8/ (j=1...n), (39)

% and¥ are linear independent elementshai(l — AoAo)

One can prove similarly that in the case (32), there exist andker(l — AoA), respectively.

elements X, € ker(l — ApAg), m=1,...k such that
def%'(%)] # 0 (i,m=1,...k). Thus the conditions of

Lemma 4 are satisfied. Usmg Lemmas 2—4 and Corollary R = [1 — Mo(A —
6 we obtain parts 1 and 2 of the theorem. Part (3) is proved

in the same way as in Theorem 100

Using Corollary 5, we obtained from Theorem 11 the
following obvious corollary.

Corollary 12.
satisfied.

1. Suppose for the case (3X), € ker(l — ApAg) (M= Kk +
1,...n) are linearly independent elements such that
L&) =03G=1,..k m=k+1,..,n); thenkerl —
Ao(Ag + Agp)] = Spanf} mek-1-

2. Suppose for the case (3%}, € ker(l — ApAp) (M=K +
1,...,n) are linearly independent elements such that
L&) =03G=1..k m=k+ 1, ..,n); thenkerfl —
Ao(Ag + Agp)] = spanfin} meic 1-

Let the hypotheses of Theorem 11 be

Using Corollary 7 we obtain its analogue for second-kind
equations.

Corollary 13. Let the hypotheses of Theorem 11 be
satisfied. Then solution$ of the equations

[I — Ag(Ag + AgDIR = ¢, i=1,..Kk (36)

are such that ¢i(8) = —8j/Ag and ker(l — AoAg) =
span{{&} ., {%} kﬂ} where {%}{L.1 are solutions of
homogeneous Eq. (36). Similarly, solutio®é of the
equations

[ = A(A + AR = ¢, i=1,..k (37

are such thatx,(lp,)— —38j/Ao and ken(l — Ay =
span{{f <1, {%}Hois 1}, where{%}{y.;1 are solutions of
homogeneous Eq. (37).

Consider now the case when the oper#{grcontains the

Then statements 1 and 2 of Theorem 10 hold true and

N Ao IR I = Moo = 1)~ Agyl,
R (M) = [ + Ao IRV + AAgy] (40)
where

n
Aoy —ijxj, Aog=> %@ Ao = Aoy + Ag,.
j=t+1

Proof. Firstlet us note that, because of Eqgs. (38) and (39),
%%)=0fori=1,..,tj=t+1..n and the elements
% (i=1,...1) as well as the elements (j =t +1,...n)

are linearly independent. Consider the equatign-
Ao(Ag + Agy)]x =y for which Theorem 11 with condition
(31) and part 1 of Corollary 12 hold true. Hence, (ker
AoAo)) = spanf}iLy.1 for the operatorAg = Ag + Agy.
Applying Theorem 10 to the equatigh— ApAgIX =Y, we
conclude the proof. O

Using Corollary 3 we get its analogue for a second-kind
operator.

Corollary 15. Let the hypotheses of Theorem 10 or 14 be
satisfied, then the equations

[ = Ao(As + ApDIX = @i,
(41)

[ = Ap(Ag + AgDIX = i,

i=1..,n

are unconditionally and uniquely solvable and their
solutions are such that

spang}iy = kerll = Aoho). ¢i(%) = —8j/Ao.
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and

spanf}L, = kel — AA5), X' (%) = —8j/Ao.

4. On calculation of undetermined constants in the
equation right-hand side

Consider now Fredholm Eq. (4), wherk: B; — B,,
dimkeA=dimkerA"=n and y=y, + >L1 Cy,, ¥y €
B, (j =0,...,n). One should choose the consta@ssuch
that solvability conditions (8) of Eq. (4), will be satisfied,
that is,

n
X(Yo+ > Cy)=0, i=1..n spanf}L; = kerA,
=

(42

and also find one of the solutions of Eq. (4).
It is obvious that this problem is solvable in the general
case only if

detx’y,) # 0 G(,j=1,...n). (43

Suppose this holds true.
If the functionals are known, then one can firig from

Eg. (42) and then, using Lemma 2 (or Theorems 10 and 14 if j._
A: B— B is a second-kind operator), one can perturb the
equation and obtain the solution by solving corresponding Suppose firstly

unconditional and uniquely solvable Eg. (9).
If the functionalsX’ are unknown, then there are at least
two ways forward. Firstly, one can fin by Corollary 3

from the second group of perturbed equations (13) (or by
Corollary 15 from the second group of equations, Eq. (41) if

A is the second-kind operator) and then do as above.

Secondly, one can perturb Eq. (4) by Lemma 2 (or by

Theorems 10 and 14 K is a second-kind operator) and find
its solutionsx; with the right-hand sidey; (j =0,...,n),
respectively. Then one can demand that the solution

n
X=X+ » CX
=

satisfies condition (12) according to the second part of
Lemma 2 (Theorems 10 and 14). This leads to a linear

algebraic equation system with respecGo

n
> Cey) = —¢i)  (=1,..n.
j=1
Let us show that dép;(x)] # O under condition (43).
Really, otherwise non-zero constal can be found

such that

n
e Cx)=0  i=1..n
=1
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14), this means that

n

> CXy)=0  i=1..n
j=1

but it is in contradiction to Eq. (43).
Thus one can solve the problem also by this second way.

5. Applications to boundary integral equations

We shall illustrate now on a BIE of elasticity how one can
apply the above results. We consider BIE (1) from the
introduction. IfS € C, then (see Refs. [3—5]) the operator
1+ W satisfies Hypothesis 1 fon=6, kel + W) =
spanfi™}§._, (the eigen-solutions™ are given in Eq.
(2)), B, =B,=C%(S, 0< B < a For a nonsmooth
surfaceS, the Hypothesis will be satisfied in some weighted
Holder space®; = B, with the same k&l + W), see Ref.
[5].

Let us denote byg the area, byn° the center of inertia,
and byJ the central moment if inertia (the first invariant of
the inertia tensor) for the surfa& that is,

8= LdS = é LnidS

Js(ni — ) (i — f) dS().

the coordinate axgsare parallel to the
principal axes of the inertia tensor for the surf&¢hat is,

Js(ni —n)(n — ) dS) =0, i #].

We write the perturbed equation corresponding to Eq. (1) in
the form

u(é — MIW; + K u}é) = (9,
3
K010 = 167 1) | ™~ Py dsn
m=1

+ 07T (E = 1°) L &> ™ (n — 1)U () dS(m)].
(44
The functionsg™ in Eq. (44) are chosen in the form
1 O

™ (O = Eﬂ}“(@ -5 S5
1. Eipmé
= Euﬁ*"’)(a =5 m=1..3

Then it is easy to check, that the perturbing operktd?
satisfies Theorem 10 (with condition (32)) far=n =6,
)\0 = _l,

According to the second part of Lemma 2 (Theorems 10 and Xi(§) = Oim,» Xm+3,(&) = &jm(§ — njc),
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1 d constants in the BIE right-hand side by methods of Section 4
eml(W) = El & Um(m) AS(), - Pm5(W) was used in Refs. [15,16].
Several results of this paper were announced in Ref. [17].

1
= 23 JS Epm(Mp — nﬁ)uj(n) dS(n),
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