
Chapter 16
Periodic Solutions in R

n for Stationary
Anisotropic Stokes and Navier-Stokes
Systems

S. E. Mikhailov

16.1 Introduction

Analysis of Stokes and Navier-Stokes equations is an established and active field
of research in the applied mathematical analysis, see, e.g., [CF88, Ga11, RRS16,
Se15, So01, Te95, Te01] and references therein. In [KMW20, KMW21a, KMW21b]
this field has been extended to the transmission and boundary-value problems for
stationary Stokes and Navier-Stokes equations of anisotropic fluids, particularly,
with relaxed ellipticity condition on the viscosity tensor. In this chapter, we present
some further results in this direction considering periodic solutions to the stationary
Stokes and Navier-Stokes equations of anisotropic fluids, with an emphasis on
solution regularity.

First, the solution uniqueness and existence of a stationary, anisotropic (linear)
Stokes system with constant viscosity coefficients in a compressible framework
are analysed on n-dimensional flat torus in a range of periodic Sobolev (Bessel-
potential) spaces. By employing the Leray-Schauder fixed point theorem, the linear
results are used to show existence of solution to the stationary anisotropic (non-
linear) Navier-Stokes incompressible system on torus in a periodic Sobolev space
for n ∈ {2, 3}. Then the solution regularity results for stationary anisotropic Navier-
Stokes system on torus are established for n ∈ {2, 3}.
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16.2 Anisotropic Stokes and Navier-Stokes Systems

Let L denote a second order differential operator in the component-wise divergence
form,

(Lu)k := ∂α
(
a
αβ
kj Ejβ(u)

)
, k = 1, . . . , n,

were u=(u1, . . . , un)
", Ejβ(u) := 1

2 (∂juβ + ∂βuj ) are the entries of the symmetric

part E(u) of ∇u (the gradient of u), and aαβkj are constant components of the tensor

viscosity coefficient A :=
(
a
αβ
kj

)
1≤i,j,α,β≤n, cf. [Duf78].

Here and further on, the Einstein summation convention in repeated indices from
1 to n is used unless stated otherwise.

The following symmetry conditions are assumed (see [OSY92, (3.1),(3.3)]),

a
αβ
kj = a

kβ
αj = a

αj
kβ . (16.1)

In addition, we require that tensor A satisfies the (relaxed) ellipticity condition
in terms of all symmetric matrices in R

n×n with zero matrix trace, see [KMW21a,
KMW21b]. Thus, we assume that there exists a constant CA > 0 such that,

a
αβ
kj ζkαζjβ ≥ C−1

A
|ζ |2 , ∀ ζ = (ζkα)k,α=1,...,n ∈ R

n×n

such that ζ = ζ" and
n∑
k=1

ζkk = 0, (16.2)

where |ζ |2 = ζkαζkα , and the superscript " denotes the transpose of a matrix.
The tensor A is endowed with the norm

‖A‖ := max
{
|aαβkj | : k, j, α, β = 1 . . . , n

}
.

Symmetry conditions (16.1) lead to the following equivalent form of the operator L

(Lu)k = ∂α
(
a
αβ
kj ∂βuj

)
, k = 1, . . . , n. (16.3)

Let us also define the Stokes operator LLL as

LLL (u, p) := Lu−∇p. (16.4)

Let u be an unknown vector field, p be an unknown scalar field, f be a given
vector field and g be a given scalar field defined in T. Then the equations

−LLL (u, p) = f, div u = g in T (16.5)



16 Periodic Solutions for Stationary Anisotropic Stokes and Navier-Stokes 229

determine the anisotropic stationary Stokes system with viscosity tensor coefficient
A = (

Aαβ
)

1≤α,β≤n in a compressible framework.
In addition, the following nonlinear system

−LLL (u, p)+ (u · ∇)u = f , div u = g in T (16.6)

is called the anisotropic stationary Navier-Stokes system with viscosity tensor
coefficient A = (

Aαβ
)

1≤α,β≤n in a compressible framework. If g = 0 in (16.5)
and (16.6), then these equations are reduced, respectively, to the incompressible
anisotropic stationary Stokes and Navier-Stokes systems.

In the isotropic case, the tensor A reduces to

a
αβ
kj = λδkαδjβ + μ

(
δαj δβk + δαβδkj

)
, 1 ≤ i, j, α, β ≤ n , (16.7)

where λ and μ are real constant parameters with μ > 0 (cf., e.g., Appendix III, Part
I, Section 1 in [Te01]), and (16.3) becomes

Lu = (λ+ μ)∇div u+ μΔu. (16.8)

Then it is immediate that condition (16.2) is fulfilled (cf. [KMW21b]) and thus our
results apply also to the Stokes and Navier-Stokes systems in the isotropic case.
Assuming λ = 0, μ = 1 we arrive at the classical mathematical formulations of
isotropic Stokes and Navier-Stokes systems.

16.3 Some Function Spaces on Torus

Let us introduce some function spaces on torus and periodic function spaces (see,
e.g., [Agm65, p.26], [Agr15], [McL91], [RT10, Chapter 3], [RRS16, Section 1.7.1],
and [Te95, Chapter 2], for more details).

Let n ≥ 1 be an integer and T be the n-dimensional flat torus that can be
parametrized as the semi-open cube T = [0, 1)n ⊂ R

n, cf. [Zy02, p. 312]. In what
follows, D(T) = C∞(T) denotes the space of infinitely smooth real or complex
functions on the torus. As usual, N denotes the set of natural numbers, N0 the set of
natural numbers complemented by 0, and Z the set of integers.

Let ξ ∈ Z
n denote the n-dimensional vector with integer components. We will

further need also the set

Ż
n := Z

n \ {0}.

Extending the torus parametrisation to R
n, it is often useful to identify T with the

quotient space R
n \ Z

n. Then the space of functions C∞(T) on the torus can be
identified with the space of T-periodic (1-periodic) functions C∞# = C∞# (Rn) that
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consists of functions φ ∈ C∞(Rn) such that

φ(x+ ξ) = φ(x) ∀ ξ ∈ Z
n.

Similarly, the Lebesgue space on the torus Lp(T), 1 ≤ p ≤ ∞, can be identified
with the periodic Lebesgue space Lp# = Lp#(R

n) that consists of functions φ ∈
Lp,loc(R

n), which satisfy the periodicity condition for a.e. x.
The space dual to D(T), i.e., the space of linear bounded functionals on D(T),

called the space of torus distributions is denoted by D′(T) and can be identified with
the space of periodic distributions D′

# acting on C∞# .
The toroidal/periodic Fourier transform mapping a function g ∈ C∞# to a set of

its Fourier coefficients ĝ is defined as (see, e.g., [RT10, Definition 3.1.8])

ĝ(ξ) = [FTg](ξ) :=
∫
T

e−2πix·ξg(x)dx, ξ ∈ Z
n.

and can be generalised to the Fourier transform acting on a distribution g ∈ D′
#.

For any ξ ∈ Z
n, let |ξ | := (

∑n
j=1 ξ

2
j )

1/2 be the Euclidean norm in Z
n and let us

denote

ρ(ξ) := (1 + |ξ |2)1/2.

Evidently,

1

2
ρ(ξ)2 ≤ |ξ |2 ≤ ρ(ξ)2 ∀ ξ ∈ Ż

n. (16.9)

Similar to [RT10, Definition 3.2.2], for s ∈ R we define the periodic/toroidal
Sobolev (Bessel-potential) spaces Hs

# := Hs
# (R

n) := Hs(T), which consist of the
torus distributions g ∈ D′(T), for which the norm

‖g‖Hs
#
:= ‖ρsĝ‖&2 :=

⎛
⎝∑
ξ∈Zn

ρ(ξ)2s |̂g(ξ)|2
⎞
⎠

1/2

(16.10)

is finite, i.e., the series in (16.10) converges. Here ‖ · ‖&2 is the standard norm
in the space of square summable sequences. By Ruzhansky and Turunen [RT10,
Proposition 3.2.6], Hs

# are Hilbert spaces.
For g ∈ Hs

# , s ∈ R, and m ∈ N0, let us consider the partial sums

gm(x) =
∑

ξ∈Zn,|ξ |≤m
ĝ(ξ)e2πix·ξ .
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Evidently, gm ∈ C∞# , ĝm(ξ) = ĝ(ξ) if |ξ | ≤ m and ĝm(ξ) = 0 if |ξ | > m. This
implies that ‖g − gm‖Hs

#
→ 0 as m→∞ and hence we can write

g(x) =
∑
ξ∈Zn

ĝ(ξ)e2πix·ξ , (16.11)

where the Fourier series converges in the sense of norm (16.10). Moreover, since g
is an arbitrary distribution from Hs

# , this also implies that the space C∞# is dense in
Hs

# for any s ∈ R (cf. [RT10, Exercise 3.2.9]).
There holds the compact embedding Ht

# ↪→ Hs
# if t > s, embeddings Hs

# ⊂ Cm#
if m ∈ N0, s > m + n/2, and moreover,

⋂
s∈RHs

# = C∞# (cf. [RT10, Exercises
3.2.10, 3.2.10 and Corollary 3.2.11]). Note also that the torus norms on Hs

# are
equivalent to the corresponding standard (non-periodic) Bessel potential norms on
T as a cubic domain, see, e.g., [Agr15, Section 13.8.1].

By (16.10), ‖g‖2
Hs

#
= |̂g(0)|2 + |g|2

Hs
#
, where

|g|Hs
#
:= ‖ρsĝ‖&̇2

:=
⎛
⎝∑

ξ∈Żn
ρ(ξ)2s |̂g(ξ)|2

⎞
⎠

1/2

is the seminorm in Hs
# .

For any s ∈ R, let us also introduce the space Ḣ s
# := {g ∈ Hs

# : 〈g, 1〉T = 0}.
The definition implies that if g ∈ Ḣ s

# , then ĝ(0) = 0 and

‖g‖Ḣ s
#
= ‖g‖Hs

#
= |g|Hs

#
= ‖ρsĝ‖&̇2

. (16.12)

Denoting Ċ∞# := {g ∈ C∞# : 〈g, 1〉T = 0}, then
⋂
s∈R Ḣ s

# = Ċ∞# .
The corresponding spaces of n-component vector functions/distributions are

denoted as Hs
# := (Hs

# )
n, etc.

Note that the norm ‖∇(·)‖H0
#

is an equivalent norm in Ḣ 1
# . Indeed, by (16.11)

∇g(x) = 2πi
∑
ξ∈Żn

ξe2πix·ξ ĝ(ξ), ∇̂g(ξ) = 2πiξ ĝ(ξ)

and then (16.9) and (16.12) imply

2π2‖g‖2
H 1

#
= 2π2‖g‖2

Ḣ 1
#
= 2π2|g|2

H 1
#
≤ ‖∇g‖2

H0
#

≤ 4π2|g|2
H 1

#
= 4π2‖g‖2

Ḣ 1
#
= 4π2‖g‖2

H 1
#

∀ g ∈ Ḣ 1
# . (16.13)

The vector counterpart of (16.13) takes form
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2π2‖v‖2
H1

#
= 2π2‖v‖2

Ḣ1
#
≤ ‖∇v‖2

(H 0
# )
n×n ≤ 4π2‖v‖2

Ḣ1
#
= 4π2‖v‖2

H1
#

∀ v ∈ Ḣ1
#.

(16.14)

We will further need also the first Korn inequality

‖∇v‖2
(L2#)

n×n ≤ 2‖E(v)‖2
(L2#)

n×n ∀ v ∈ H1
# (16.15)

that can be easily proved by adapting, e.g., the proof in [McL00, Theorem 10.1]) to
the periodic Sobolev space.

Let us define the Sobolev spaces of divergence-free functions/distributions,

Ḣs
#σ :=

{
w ∈ Ḣs

# : divw = 0
}
, s ∈ R,

endowed with the same norm (16.10).

16.4 Stationary Anisotropic Stokes System on Flat Torus

In this section, we generalise to the isotropic and anisotropic (linear) Stokes systems
in compressible framework and to a range of Sobolev spaces the analysis, available
in [Te95, Section 2.2]

For the unknowns (u, p) ∈ Ḣs
#×Ḣ s−1

# and the given data (f, g) ∈ Ḣs−2
# ×Ḣ s−1

# ,
s ∈ R, let us consider the Stokes system

−LLL (u, p) = f, (16.16)

div u = g, (16.17)

that should be understood in the sense of distributions, i.e.,

−〈LLL (u, p),φ〉T = 〈f,φ〉T ∀φ ∈ (C∞# )n, (16.18)

〈div u, φ〉T = 〈g, φ〉T ∀φ ∈ C∞# . (16.19)

For ξ ∈ Ż
n, let us employ ēξ (x) = e−2πix·ξ as φ in (16.19) and ēξ (x), multiplied

by the unit coordinate vector, as φ in (16.18). Then recalling (16.3) and (16.4), we
arrive for each ξ ∈ Ż

n at the following algebraic system for the Fourier coefficients,
ûj (ξ), k = 1, 2, . . . , n, and p̂(ξ).

4π2ξαa
αβ
kj ξβûj (ξ)+ 2πiξkp̂(ξ) = f̂k(ξ) ∀ ξ ∈ Ż

n, k = 1, 2, . . . , n (16.20)

2πiξj ûj (ξ) = ĝ(ξ) ∀ ξ ∈ Ż
n. (16.21)
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The (n + 1) × (n + 1) matrix, S(ξ), of system (16.20)–(16.21) is in fact the
principal symbol of the anisotropic Stokes system (16.16)–(16.17) that was analysed
in [KMW21b, Lemma 15] to prove that the Stokes system is elliptic in the sense
of Agmon–Douglis–Nirenberg. It was, particularly proved that the matrix S is
nonsingular if ξ �= 0 and hence the solution of system (16.20) and (16.21) can
be represented in terms of the inverse matrix S−1(ξ) as

(
û(ξ)
p̂(ξ)

)
= S−1(ξ)

(
f̂(ξ)
ĝ(ξ)

)
∀ ξ ∈ Ż

n. (16.22)

Moreover, using the estimates for the matrix, obtained in that lemma proof, and
implementing to the algebraic system the variant of Babuska–Brezzi theory given
in Theorem 2.34 and Remark 2.35(i) in [EG04], see also [KMW21b, Theorem 10],
we obtain the following estimates for the solution of the algebraic system (16.20)–
(16.21),

|̂u(ξ)| ≤ Cuf
|̂f(ξ)|
|2πξ |2 + Cug

|ĝ(ξ)|
2π |ξ | , (16.23)

|p̂(ξ)| ≤ Cpf
|̂f(ξ)|
2π |ξ | + Cpg|ĝ(ξ)| ∀ ξ ∈ Ż

n, (16.24)

where Cuf = 2CA, Cug = Cpf = 1 + 2CA‖A‖, Cpg = ‖A‖(1 + 2CA‖A‖).
Remark 16.1 For the isotropic case (16.7), due to (16.8), system (16.20)–(16.21)
reduces to

4π2
[
(λ+ μ)ξ(ξ · û(ξ))+ μ|ξ |2û(ξ)

]
+ 2πiξ p̂(ξ) = f̂(ξ), ∀ ξ ∈ Ż

n,

(16.25)

2πiξ · û(ξ) = ĝ(ξ) ∀ ξ ∈ Ż
n. (16.26)

Taking scalar product of Eq. (16.25) with ξ and employing (16.26), we obtain

p̂(ξ) = ξ · f̂(ξ)
2πi|ξ |2 + (λ+ 2μ)ĝ(ξ), ∀ ξ ∈ Ż

n, (16.27)

and substituting this back to (16.25), we get

û(ξ) = 1

4π2μ|ξ |2
[
f̂(ξ)− ξ

ξ · f̂(ξ)
|ξ |2

]
+ ξ

ĝ(ξ)

2πi|ξ |2 , ∀ ξ ∈ Ż
n (16.28)

(cf. [Te95, Section 2.2] for the case s = 1, g = 0, λ = 0, and μ = 1). Expressions
(16.27) and (16.28) evidently satisfy estimates (16.23) and (16.24). �

The anisotropic Stokes system (16.16) and (16.17) can be re-written as
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S

(
u
p

)
=

(
f
g

)
,

where

S

(
u
p

)
:=

(−L (u, p)L (u, p)L (u, p)
divu

)
,

and for any s ∈ R,

S : Ḣs
# × Ḣ s−1

# → Ḣs−2
# × Ḣ s−1

# (16.29)

is a linear continuous operator.
Now we are in the position to prove the following assertion.

Theorem 16.11 Let condition (16.2) hold.

(i) For any (f, g) ∈ Ḣs−2
# × Ḣ s−1

# , s ∈ R, the anisotropic Stokes system (16.16)–
(16.17) in torus T has a unique solution (u, p) ∈ Ḣs

# × Ḣ s−1
# , where

u(x) =
∑
ξ∈Żn

e2πix·ξ û(ξ), p(x) =
∑
ξ∈Żn

e2πix·ξ p̂(ξ) (16.30)

with û(ξ) and p̂(ξ) given by (16.22). In addition, there exists a constant C =
C(CA, n) > 0 such that

‖u‖Ḣs
#
+ ‖p‖

Ḣ s−1
#

≤ C
(
‖f‖Ḣs−2

#
+ ‖g‖

Ḣ s−1
#

)
(16.31)

and operator (16.29) is an isomorphism.
(ii) Moreover, if (f, g) ∈ (Ċ∞# )n × Ċ∞# then (u, p) ∈ (Ċ∞# )n × Ċ∞# .

Proof

(i) Expressions (16.22) supplemented by the relations û(0) = 0, p̂(0) = 0 imply
the uniqueness. From estimates (16.23) and (16.24) we obtain the estimate

‖u‖Ḣs
#
=

⎛
⎝∑

ξ∈Żn
ρ(ξ)2s |̂u(ξ)|2

⎞
⎠

1/2

≤ Cuf

4π2

⎛
⎝∑

ξ∈Żn
ρ(ξ)2s

|̂f(ξ)|2
|ξ |4

⎞
⎠

1/2

+ Cug

2π

⎛
⎝∑

ξ∈Żn
ρ(ξ)2s

|ĝ(ξ)|2
|ξ |2

⎞
⎠

1/2
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= Cuf

4π2

⎛
⎝∑

ξ∈Żn
ρ(ξ)2(s−2) |̂f(ξ)|2 ρ(ξ)

4

|ξ |4

⎞
⎠

1/2

+ Cug

2π

⎛
⎝∑

ξ∈Żn
ρ(ξ)2(s−1)|ĝ(ξ)|2 ρ(ξ)

2

|ξ |2

⎞
⎠

1/2

≤ Cuf

2π2 ‖f‖Ḣs−2
#

+ Cug

2π

√
2‖g‖

Ḣ s−1
#

and the similar estimate for ‖p‖
Ḣ s−1

#
, which imply (16.31) and hence inclusions

in the corresponding spaces.
(ii) The inclusion (f, g) ∈ (Ċ∞# )n × Ċ∞# implies that (f, g) ∈ Ḣs−2

# × Ḣ s−1
# for

any s ∈ R. Then by item (i), (u, p) ∈ Ḣs
# × Ḣ s−1

# for any s ∈ R and hence
(u, p) ∈ (Ċ∞# )n × Ċ∞# .

� 
If g = 0 in (16.17), we can re-formulate the Stokes system (16.16)–(16.17) as

one vector equation

−LLL (u, p) = f (16.32)

for the unknowns (u, p) ∈ Ḣs
#σ × Ḣ s−1

# and the given data f ∈ Ḣs−2
# , s ∈ R. Then

Theorem 16.11 implies the following assertion.

Corollary 16.1 Let condition (16.2) hold.

(i) For any f ∈ Ḣs−2
# , s ∈ R, the anisotropic Stokes equation (16.32) in torus T has

a unique incompressible solution (u, p) ∈ Ḣs
#σ × Ḣ s−1

# , with û(ξ) and p̂(ξ)
given by (16.22) and (16.30) (and particularly by (16.28), (16.27), and (16.30)
for the isotropic case (16.7)) with g = 0. In addition, there exists a constant
C = C(CA, n) > 0 such that

‖u‖Ḣs
#
+ ‖p‖

Ḣ s−1
#

≤ C‖f‖Ḣs−2
#

and the operator

LLL : Ḣs
#σ × Ḣ s−1

# → Ḣs−2
#

is an isomorphism.
(ii) Moreover, if f ∈ (Ċ∞# )n then (u, p) ∈ (Ċ∞# )n × Ċ∞# .
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16.5 Stationary Anisotropic Navier-Stokes System with
Constant Coefficients on Torus

16.5.1 Existence of a Weak Solution to Anisotropic
Incompressible Navier-Stokes System on Torus

In this section, we show the existence of a weak solution of the anisotropic Navier-
Stokes system in the incompressible case with general data in L2-based Sobolev
spaces on the torus T, for n ∈ {2, 3}. We use the well-posedness result established
in Theorem 16.11 for the Stokes system on a torus and the following variant of the
Leray-Schauder fixed point theorem (see, e.g., [GT01, Theorem 11.3]).

Theorem 16.2 Let B denote a Banach space and T : B → B be a continuous and
compact operator. If there exists a constantM0 > 0 such that ‖x‖B ≤ M0 for every
pair (x, θ) ∈ B × [0, 1] satisfying x = θT x, then the operator T has a fixed point
x0 (with ‖x0‖B ≤ M0).

Let us consider the Navier-Stokes system

−LLL (u, p) = f− (u · ∇)u, (16.33)

div u = 0, (16.34)

for the couple of unknowns (u, p) ∈ Ḣ1
# × Ḣ 0

# and the given data f ∈ Ḣ−1
# . As for

the Stokes system, the Navier-Stokes system (16.33) and (16.34) can be re-written
as one vector equation

−LLL (u, p) = f− (u · ∇)u (16.35)

for the unknowns (u, p) ∈ Ḣ1
#σ × Ḣ 0

# and the given data f ∈ Ḣ−1
# .

Let us denote the nonlinear operator as B, i.e.,

Bw : = (w · ∇)w, ∀w ∈ Hs
#, s ∈ R. (16.36)

Theorem 16.3 Let the operator B : w �→ Bw be defined by (16.36) and let n ≥ 2.

(i) If 0 < s < n/2 then

B : Ḣs
#σ → Ḣ2s−1−n/2

# (16.37)

is a well defined, continuous and bounded quadratic operator, i.e., there exists
Cn,s > 0 such that

‖Bw‖H2s−1−n/2
#

≤ Cn,s‖w‖2
Hs

#
∀ w ∈ Hs

#. (16.38)
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(ii) If s > n/2 then

B : Ḣs
#σ → Ḣs−1

# (16.39)

is well defined, continuous and bounded quadratic operator, i.e., there exists
Cn,s > 0 such that

‖Bw‖Hs−1
#

≤ Cn,s‖w‖2
Hs

#
∀ w ∈ Hs

#. (16.40)

Proof If a function w is periodic, then evidently the function Bw is periodic as well.

(i) Let 0 < s < n/2. Due to Theorem 1(iii) in Section 4.6.1 of [RS96] and
equivalence of the Bessel potential norms on square and norms (16.10) for the
Sobolev spaces on torus, we have,

‖(v1 · ∇)v2‖H2s−1−n/2
#

≤ Cn,s‖v1‖Hs
#
‖v2‖Hs

#
, ∀ v1, v2 ∈ Hs

#. (16.41)

for some constant Cn,s > 0. This particularly implies estimate (16.38).
Further, if u ∈ Ḣs

#σ then

〈Bu, 1〉T = 〈u · ∇)u, 1〉T = −〈(div u)u, 1〉T = 0

since div u = 0. Together with estimate (16.38) this implies that quadratic
operator (16.37) is well defined and bounded.

Let w,w′ ∈ Ḣ1
#σ . Then by (16.41) we obtain

∥∥Bw− Bw′∥∥
H2s−1−n/2

#
≤ ∥∥(w · ∇)w− (w′ · ∇)w′∥∥

H2s−1−n/2
#

≤ ∥∥((w− w′) · ∇)w+ (w′ · ∇)(w− w′)
∥∥
H2s−1−n/2

#

≤ Cn,s
∥∥w− w′∥∥

Hs
#

(
‖w‖Hs

#
+ ‖w′‖Hs

#

)
.

This estimate shows that operator (16.37) is continuous.
(ii) Let s > n/2. Due to Theorem 1(i) in Section 4.6.1 of [RS96] and equivalence of

the Bessel potential norms and norms (16.10) for the Sobolev spaces on torus,
we have,

‖(v1 · ∇)v2‖Hs−1
#

≤ Cn,s‖v1‖Hs
#
‖v2‖Hs

#
, ∀ v1, v2 ∈ Hs

#.

for some constant Cn,s > 0. This particularly implies estimate (16.40) and then
the boundedness of operator (16.39). By the same arguments as in item (i), one
can prove that this operator is also well defined and continuous.

� 
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Corollary 16.2 Let n ∈ {2, 3}. Then the quadratic operator

B : Ḣ1
#σ → H−1

# (16.42)

is well defined, continuous, bounded and compact.

Proof Let n = 3. Due to Theorem 16.3(i), the operator B : Ḣ1
#σ → Ḣ−1/2

# is well
defined, continuous and bounded. On the other hand, the compactness of embedding
H
−1/2
# ↪→ H−1

# implies the compactness of embedding Ḣ−1/2
# ↪→ Ḣ−1

# and hence
gives the compactness of operator (16.42) and thus the corollary claim for n = 3.

Let now n = 2. Then by Theorem 16.3(i), the operator B : Ḣs
#σ → Ḣ2s−2

# is well
defined, continuous and bounded for any s ∈ (1/2, 1). In addition, for s ∈ (1/2, 1)
we also have the compact embeddings Ḣ 1

#σ ↪→ Ḣ s
#σ and Ḣ 2s−2

# ↪→ Ḣ−1
# that lead

to the corollary claim for n = 2. � 
Next we show the existence of a weak solution of the Navier-Stokes equation.

Theorem 16.4 Let n ∈ {2, 3} and suppose that condition (16.2) holds. If f ∈ Ḣ−1
# ,

then the anisotropic Navier-Stokes equation (16.35) has a solution (u, p) ∈ Ḣ1
#σ ×

Ḣ 0
# .

Proof We will reduce the analysis of the nonlinear equation (16.35) to the analysis
of a nonlinear operator in the Hilbert space Ḣ1

#σ and show that this operator has a
fixed-point due to the Leray-Schauder Theorem.

Nonlinear equation (16.35) can be re-written as

−LLL (u, p) = f− Bu. (16.43)

By Corollary 16.1, the linear operator

−LLL : Ḣ1
#σ × Ḣ 0

# → Ḣ−1
# (16.44)

is an isomorphism. Its inverse operator, −LLL −1, can be split into two operator
components,

−LLL −1 =
(
UUU

P
)

where UUU : Ḣ−1
# → Ḣ1

#σ and P : Ḣ−1
# → Ḣ 0

# are linear continuous operators such
that

−LLL
(
UUU FFF

P FFF

)
=FFF
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for any FFF ∈ Ḣ−1
# . Applying the inverse operator, −LLL −1, to Eq. (16.43), we reduce

it to the equivalent nonlinear system

u = Uu, (16.45)

p = Pu, (16.46)

where U : Ḣ1
#σ → Ḣ1

#σ and P : Ḣ1
#σ → Ḣ 0

# are the nonlinear operators defined as

Uw :=UUU (f− Bw), (16.47)

Pw := P(f− Bw) (16.48)

for the fixed f.
Since p is not involved in (16.45), we will first prove the existence of a solution

u ∈ Ḣ1
#σ to this equation. Then we use (16.46) as a representation formula for

p, which gives the existence of the pressure field p ∈ Ḣ 0
# . In order to show the

existence of a fixed point of the operator U and, thus, the existence of a solution of
Eq. (16.45), we employ Theorem 16.2.

By Corollary 16.2, for n ∈ {2, 3} the operator B : Ḣ1
#σ → H−1

# is bounded,
continuous and compact. Since f ∈ H−1

# is fixed and the operator UUU : H−1
# → Ḣ1

#σ
is linear and continuos, definition (16.47) implies that the operator U : Ḣ1

#σ → Ḣ1
#σ

is also bounded, continuous, and compact.
Next, we show that there exists a constant M0 > 0 such that if w ∈ Ḣ1

#σ satisfies
the equation

w = θUw (16.49)

for some θ ∈ [0, 1], then ‖w‖Ḣ1
#σ
≤ M0. Let us denote

q := θPw. (16.50)

By applying the operator −LLL to Eqs. (16.49) and (16.50) and by using relations
(16.47) and (16.48), we deduce that whenever the pair (w, θ) ∈ Ḣ1

#σ × R satisfies
Eq. (16.49), then the equation

−LLL (w, q) = θ(f− Bw),

is also satisfied due to the isomorphism property of operator (16.44). This equation
should be understood in the sense of distribution, i.e.,

〈−LLL (w, q),φ〉T =
〈
a
αβ
ij Ejβ(w), Eiα(φ)

〉
T

− 〈q, div φ〉T
= θ〈f− Bw,φ〉T ∀φ ∈ (C∞# )n. (16.51)
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Taking into account that the space (C∞# )n is dense in H1
# and the continuity of the

dual products in (16.51) with respect to φ ∈ H1
#, Eq. (16.51) should hold also for

φ = w ∈ Ḣ1
#σ . Then we obtain

〈
a
αβ
ij Ejβ(w), Eiα(w)

〉
T

= θ〈f− Bw,w〉T. (16.52)

Since w ∈ Ḣ1
#σ , relation (16.55) implies that 〈Bw,w〉T = 〈(w · ∇)w,w〉T = 0.

Then by using the norm equivalence (16.14), the Korn first inequality (16.15), the
ellipticity condition (16.2), Eq. (16.52), and the Hölder inequality, we obtain for
θ ≥ 0 that

‖w‖2
Ḣ1

#
≤ 1

2π2 ‖∇w‖2
(L2#)

n×n ≤ 1

π2 ‖E(w)‖2
(L2#)

n×n

≤ 1

π2CA

〈
a
αβ
ij Ejβ(w), Eiα(w)

〉
T

≤ θ

π2CA‖f‖Ḣ−1
#
‖w‖Ḣ1

#
.

Hence, for θ ∈ [0, 1],

‖w‖Ḣ1
#
≤ M0 := 1

π2CA‖f‖Ḣ−1
#
.

Therefore, the operator U : Ḣ1
#σ → Ḣ1

#σ satisfies the hypothesis of Theorem 16.2
(with B = Ḣ1

#σ ), and hence it has a fixed point u∈ Ḣ1
#σ , that is, u = Uu. Then with

p ∈ Ḣ 0
# as in (16.46), we obtain that the couple (u, p) ∈ Ḣ1

#σ × Ḣ 0
# satisfies the

nonlinear equation (16.35). � 

16.5.2 Solution Regularity for the Stationary Anisotropic
Navier-Stokes System

In this section, using the bootstrap argument we show that the regularity of a
solution of the anisotropic incompressible Navier-Stokes system on T

n, n ∈ {2, 3},
is completely determined by the regularity of its right-hand side, as for the Stokes
system. To prove this we use the inclusions of the nonlinear term Bu given by
Theorem 16.3 and the unique solvability of corresponding (linear) Stokes system.

Theorem 16.5 Let condition (16.2) hold. Let n ≥ 2 and n/2 − 1 < s1 < s2.

(i) If (u, p) ∈ Ḣs1
#σ ×Ḣ s1−1

# is a solution of the anisotropic Navier-Stokes equation

(16.35) with a right hand side f ∈ Ḣs2−2
# , then (u, p) ∈ Ḣs2

#σ × Ḣ
s2−1
# .

(ii) Moreover, if f ∈ (Ċ∞# )n then (u, p) ∈ (Ċ∞# )n × Ċ∞# .
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Proof

(i) Let (u, p) ∈ Ḣs1
#σ × Ḣ

s1−1
# be a solution of (16.35) with f ∈ Ḣs2−2

# . Then by
Theorem 16.3, for the nonlinear term we have the inclusion Bu ∈ Ḣt1

# with
t1 = 2s1 − 1 − n/2 if s1 < n/2, with t1 = s1 − 1 if s1 > n/2, and with any
t1 ∈ (s1 − 2, s1 − 1) (and we can further use t1 = s1 − 3/2 for certainty) if
s1 = n/2. Hence the couple (u, p) satisfies the equation

−LLL (u, p) = f(1) (16.53)

with f(1) := f − Bu ∈ Ḣs(1)−2
# , where s(1) = min{s2, t1 + 2}. By Corol-

lary 16.1(i), the linear equation (16.53) has a unique solution in Ḣs
#σ × Ḣ s−1

#

for any s ≤ s(1) and thus (u, p) ∈ Ḣs(1)

#σ × Ḣ s(1)−1
# . If s(1) = s2, which we call

the case (a), this proves item (i) of the theorem.
Otherwise we have the case (b), when s(1) < s2, i.e., s(1) = t1 + 2, by the

definition of s(1) and the theorem condition s1 > n/2 − 1. Then we arrange an
iterative process by replacing s1 with s(1) = t1 + 2 on each iteration until we
arrive at the case (a), thus proving item (i) of the theorem. Note that in the case
(b),

s(1) − s1 ≥ δ := min{s1 + 1 − n/2, 1, 1/2} > 0

in the first iteration, and δ can only increase in the next iterations due to the
increase of s1. This implies that the iteration process will reach the case (a) and
stop after a finite number of iterations.

(ii) If f ∈ (Ċ∞# )n, then for any s2 ∈ R we have f ∈ Ḣs2−2
# and item (i) implies that

(u, p) ∈ Ḣs2
#σ × Ḣ

s2−1
# . Hence (u, p) ∈ (Ċ∞# )n × Ċ∞# .

� 
Combining Theorems 16.4 and 16.5, we obtain the following assertion on

existence and regularity of solution to the Navier-Stokes system on torus.

Theorem 16.6 Let n ∈ {2, 3} and condition (16.2) hold.

(i) If f ∈ Ḣs−2
# , s ≥ 1, then the anisotropic Navier-Stokes equation (16.35) has a

solution (u, p) ∈ Ḣs
#σ × Ḣ s−1

# .
(ii) Moreover, if f ∈ (Ċ∞# )n then (16.35) has a solution (u, p) ∈ (Ċ∞# )n × Ċ∞# .

Note that in the isotropic case (16.7) with λ = 0, similar results for the Navier-
Stokes system in torus as well as in domains of Rn are available, e.g., in [Ga11,
RRS16, Se15, So01, Te01].
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16.6 Some Auxiliary Results

The dense embedding of the space (C∞# )n into H1
# and the divergence theorem imply

the following identity for any v1, v2, v3 ∈ H1
#.

〈(v1 · ∇)v2, v3〉T =
∫
T

∇ · (v1(v2 · v3)) dx− 〈(∇ · v1)v3 + (v1 · ∇)v3, v2〉T
= −〈(v1 · ∇)v3, v2〉T − 〈(∇ · v1)v3, v2〉T . (16.54)

In view of (16.54) we obtain the identity

〈(v1 · ∇)v2, v3〉T=−〈(v1 · ∇)v3, v2〉T ∀ v1 ∈ H1
#σ , v2, v3 ∈ H1

# ,

and hence the well known formula

〈(v1 · ∇)v2, v2〉T = 0 ∀ v1∈H1
#σ , v2 ∈ H1

#. (16.55)
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