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Abstract A functional form of local strength conditions under fatigue loading is intro-
duced and employed to formulation and analysis of fatigue crack initiation and
propagation. For the strength conditions associated with the Palmgren-Miner
linear damage accumulation rule and the power-type S–N diagram, the problem
is reduced to a non-linear integral Volterra equation, which can be transformed
to a linear one for the case of a single crack. An analytical solution of some
simple problems are presented for the latter case and shortcomings of the local
approach are pointed out. A non-local approach free from the shortcomings is
presented along with an example of its implementation.

1. INTRODUCTION
Let us consider a cyclic process in a body Ω represented as a temporal se-

quence {σc
ij(m,x)}m=1,2,... of connected closed but generally non-coinciding

loops (cycles) σc
ij(m, x) = [σij(τ, x); τm−1 ≤ τ ≤ τm] in the stress space,

σij(x, τm) = σij(x, τm−1), where m = 1, 2, ... is the cycle number and x ∈ Ω.
The pure fatigue is a dependence of material mechanical properties, and par-
ticularly material strength, on the loading process history, considered as a
sequence of events, but no explicit dependence on time or the process rate
is supposed. Then the cyclic fatigue can be described in terms of the cycle
number n (instant n) as a discrete or continuous time-like parameter.

A common practice of a body fatigue life local analysis includes usually
two steps. First, a crack initiation cycle number n∗{σ} is determined from a
fatigue strength condition expressed in terms of a damage measure based on
a cycle stress range ∆σij(n, y). A crack of a length a0 is supposed to appear
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at a point y∗ in a body Ω where and when the fatigue strength condition is
violated. Then the Paris type equation for the crack propagation rate, based
on the stress intensity factors range, with the initial condition a(n∗{σ}) = a0

is used for evaluation of the cycle number n∗({σ}; Ω) to separation of the body
Ω into pieces or to unstable crack growth. However the value a0 being a key
issue for the fatigue crack propagation prediction is often not clearly fixed or
is connected with the measuring ability of available equipment. On the other
hand, the Paris type equation using the stress intensity factor ranges, which
are characteristics of the stress field only at the crack tip y, can describe neither
the scale effect for short cracks nor the influence of the fatigue damage during
the previous cycles on the crack propagation rate. Moreover, the material
parameters of the strength condition of the first step seem to be completely
unrelated to the Paris law parameters.

Trying to avoid the shortcomings, we first describe in this paper a local
united approach based on an extension of the classical fatigue strength condi-
tions to the crack propagation stage, and show its limitations. To overcome
the limitations, we then give a non-local modification of that approach merg-
ing a special form of the general static non-local strength analysis [1] with
the functional description of cyclic strength [3] (see also [2]). This allows to
analyse strength and durability under oscillating in time homogeneous as well
as highly inhomogeneous stress fields and predict both the crack initiation in a
virgin material without cracks and its propagation through the damaged mate-
rial as a united process. Note that some other particular non-local approaches
were used for predicting fatigue life in [6]-[9].

Considered examples of the local and non-local approaches applications lead
to linear or non-linear Volterra equations of the first or the second kind and
some results of their solutions are presented.

2. LOCAL CYCLIC BRITTLE STRENGTH AND
DURABILITY CONDITIONS

To describe cyclic fracture, i.e. crack initiation and propagation under cy-
cling loading, we will analyse the brittle strength, that is strength at a partic-
ular point y along a particular infinitesimal plane (with a normal vector) ~ζ at
that point.

The local brittle cyclic strength condition for a plane ~ζ at a point y ∈ Ω
can be taken in the form

Λ({σc(·, y)}; n, y, ~ζ) < 1, (1)

where Λ({σc(·, y)}; n, y, ~ζ) is a local brittle cyclic normalised equivalent stress
functional (CNESF) defined similar to [3] on the sequence {σc

ij(m, y)}m=1,2,..

286
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and being positively homogeneous in {σc
ij} non-decreasing in n material char-

acteristics.
An example of the CNESF associated with the power S–N durability dia-

gram and the Palmgren–Miner linear accumulation rule can be taken in the
following form similar to [3],

Λ({σc(·, y)}; n, y, ~ζ) =

{∫ n

0

|||~σc(m, y, ~ζ)|||b
[σc∗

1 (σ̃c(m, y, ~ζ); y, ~ζ)]b
dm

} 1
b

, (2)

where ~σc(m, y, ~ζ) is the loop of the traction vector σijζj on the plane ~ζ at the
point y during the cycle m; |||~σc(m, y, ~ζ)||| is a norm of the m−th loop of the
vector function ~σc(m, y, ~ζ), e.g., |||~σc(m, y, ~ζ)||| = sup

~σ∈~σc(m,y,~ζ)
|~σ|; b is a non-

negative material constant, and σc∗
1 (σ̃c(m, y, ~ζ); y, ~ζ) is a non-negative material

function of the normalised loop shape σ̃c(m, y, ~ζ) = ~σc(m, y, ~ζ)/|||~σc(m, y, ~ζ)|||
depending also on y and ~ζ for inhomogeneous and anisotropic materials.

One can further assume in the example that the fatigue strength of the plane
~ζ is determined only by the loops of the normal stress σc

ζζ , and the normalised
loop shape σ̃c

ζζ does not vary with m (self-similar process). If σζζ(τ, y) has
not more than one internal local maximum and local minimum on each cycle,
then σc∗

1 (σ̃c
ζζ(y); y, ~ζ) = σ∗R1(y, ~ζ) is a material parameter depending only on

the asymmetry ratio R(y, ~ζ) = σζζmin(y, ~ζ)/ σζζmax(y, ~ζ) for a material point
y and plane ~ζ. Then CNESF (2) can be rewritten in terms of the stress range
∆σζζ(m, y) = σζζmax(m, y)− σζζmin(m, y),

Λ({σc(·, y)}; n, y, ~ζ) =
1

σ∗∆R1 (y, ~ζ)

{∫ n

0
[∆σζζ(m, y)]bdm

} 1
b

, (3)

where σ∗∆R1 = (1−R)σ∗R1 if |R| ≤ 1 and σ∗∆R1 = (1− 1/R)σ∗R1 if |R| > 1.
Let us return to the general case. Let a body occupy at an instant n an open

domain Ω(n). Its boundary Γ(n) = Γ(0) ∪ Y ∗(n) consists of an initial body
boundary Γ(0) and a new crack surface Y ∗(n) occurring and growing during
the loading process. Let q(τ, x) denote applied multi-axial in-phase cyclic reg-
ular volume and boundary loading. Under the assumption that the material is
elastic, the stress tensor field is σij(τ, y) = σij(τ ; Γ(τ), y) = σij(q(τ, ·), Γ(τ), y).
Consequently, the m−th stress tensor loop σc

ij(m, y) = σc
ij(m,Γc(m), y) =

σc
ij(q

c(m, ·),Γc(m), y) at a body point y depends on the changing body shape
Γc(m), as well as on the applied cyclic load loop qc(m,x) on the same cycle m
only.

We will consider further the cycle number m as a continuous variable at-
tributing some loops σc(m; Γ(m), y) also to the non-integer values of m. Gen-
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erally, using a brittle non-local CNESF Λ({σc(·, y)}; n, y, ~ζ), the cyclic fracture
process (the cyclic crack initiation and its propagation through the damaged
material) can be described as follows. First, there is no fracture in a body
Ω(0) if inequality (1) is satisfied on all infinitesimal planes ~ζ at all points
y ∈ Ω. Then a crack or cracks appear on a cycle n∗0 at the points y∗ on
the planes ~ζ∗(y∗), where inequality (1) is violated and becomes equality, that
is, the points y∗ constitute a crack set Y ∗(n∗0), which becomes a part of the
body boundary Γ(n∗0) = Γ(0) ∪ Y ∗(n∗0), with the normal vector ~ζ∗(y∗) and
with zero boundary tractions. Taking into account that Λ is non-decreasing
in n, we have that the crack initiation instant (cycle number) n∗0, the crack
initiation set Y ∗(n∗0) 3 y∗(n∗0) and the crack initiation planes Z∗(n∗0) 3 ~ζ∗(y∗0)
are determined from the following equation and inequality,

n∗0 = sup{n : sup
y

sup
~ζ

Λ({σc(·; Γ(0), y)};n, y, ~ζ) < 1}, (4)

Λ({σc(·; Γ(0), y)}; n∗0, y∗0, ~ζ∗0 (y∗0)) ≥ 1,

Λ({σc(·; Γ(·), y}; n, y, ~ζ(y)) = 1, ∀n > n∗0, y ∈ Γ(n). (5)

If the sets Y ∗(n∗0) and Z∗(n∗0) are empty, then n∗0 is an instability instant and
Y ∗(n) and Z∗(n) will be not empty for any n > n∗0. If there is an analytical
or numerical method of the stress field calculation for any crack set Y ∗(n),
relations (4)-(5) allow to describe the crack propagation for any cycle n.

Assuming a smooth dependence of Λ({σc(·; Γ(·), y)}; n, y, ~ζ) on ~ζ and using
(5), the fracture plane with a unit normal ~ζ∗(y) can be determined also from
the equations

∂Λ({σc(·; Γ(·), y)}; n, y, ~ζ)
∂ζj

∣∣∣∣∣
~ζ=~ζ∗(y)

= 0, |~ζ∗(y)| = 1 ∀n ∀y ∈ Y ∗(n).

If the direction of crack growth is a priori known then there is no need to
determine ~ζ∗.

3. EXAMPLE OF LOCAL DURABILITY
ANALYSIS

3.1 Symmetric plane problem for fatigue crack initiation and prop-
agation

Let us consider a plane problem for an elastic homogeneous body symmetric
with respect to axis x1 and symmetrically loaded. Let the body have one edge
crack of a length a(m) or one central crack of a length 2a(m) or two sym-
metric edge cracks of a length a(m) each along the x1 axis (in the last two
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cases the symmetry with respect the axis orthogonal to x1 is also supposed),
already existing or appearing during the process. Thus the geometry change is
described by only one parameter a(m), i.e. Γ(m) = Γ(a(m)), and the fatigue
crack propagation path is straight with a normal vector ~ζ∗ = {0, 1}.

Let an external multi-axial self-similar cyclic loading be represented in the
form q(τ, x) = q0(τ)q̂(x), where q0(τ) is a scalar cyclic function with a con-
stant asymmetry ratio R, and consequently ∆q(m,x) = ∆q0(m)|q̂(x)|. As-
suming the crack growth during a cycle is small, we can neglect its influence
on the stress cycle shape distortion during one cycle and write ∆σij(m, y) =
∆q0(m)|σ̂ij(a(m), y)| for this case.

Let us take CNESF (3). Then the equation for finding the crack initiation
instant n∗0 according to (4) is

|σ̂22(a0, y
∗)|b

∫ n∗0

0
[∆q0(m)]bdm = (σ∗∆R1 )b, (6)

where a0 = 0 if there is no crack initially in the body, y∗ is the tip of an
already existing crack or the stress concentration point where the crack will
initiate. If there exists an initial crack, a0 6= 0, then (6) implies n∗0 = 0 due to
the stress singularity at the crack tip, |σ̂22(a0, a0)| = ∞.

Let the origin of the coordinate system be in the middle of the central crack
or at the open end of the edge crack or at the point where the crack will appear.
Then (5) leads to a non-linear Volterra equation for a(n). However, we can
change variables similar to Zobnin and Rabotnov (see [4] where a solution of
the creep durability problem analogous to problem 3.2 below is presented for
b = 1). Then the dependence a(m) for the developing crack length is to be
obtained from the following non-convolution linear Volterra integral equation
of the first kind given by (5) for g(a) =

[
∆q0(m(a))/σ∗∆R1

]b
dm(a)/da,

∫ a(n)

a0

|σ̂22(a, a(n))|bg(a)da = 1− |σ̂22(a0, a(n))|b
|σ̂22(a0, a0)|b . (7)

3.2 Crack in an infinite plane under uniform loading

Consider now a more particular example of a straight crack with a length
2a(m) in an infinite plate. The origin of the Cartesian coordinate system
{x1, x2} coincides with the centre of the crack. Let a uniform cyclic traction
with a range ∆q(m,x) = ∆q0(m) and with a constant asymmetry ratio R is
applied parallel to the x2-axis at infinity.
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An exact expression for ∆σ22(m; x1) ahead of the crack in an infinite isotropic
or anisotropic plate has the form (e.g. [5])

∆σ22(m; y1) =
∆K1(m, a(m))y1√
πa(m)(y2

1 − a2(m))
, (8)

∆K1(m, a(m)) = ∆q(m)
√

πa(m), (9)

where ∆K1(m) is the mode 1 stress intensity factor range.
For periodic tensile cyclic traction ∆q(m) = ∆q0 = const, the problem can

be solved analytically. Equation (6) implies the fracture cycle number for an
infinite plane without crack is n∗∞ =

(
σ∗∆R1/∆q0

)b under such loading. As was
mentioned above, n∗0 = 0 if there exists an initial crack.

Let ñ = n/n∗∞ be the normalised cycle number. After substituting stress
(8) into (7), the equation can be solved using the Laplace transform under the
assumption b < 2, giving

da(ñ)
dñ

=
∆K2

1 (a(ñ))
∆q2

02 sin(bπ/2)

[
∆K4

1 (a(ñ))
∆K4

1 (a0)
− 1

]1−b/2

. (10)

The results are presented on Fig. 1 and 2 for different b by solid lines.
On the other hand, the normal stress range ∆σ22(m; y1) (8)-(9) near the

crack tip can be approximated asymptotically (e.g. [5]) by the expression
∆σ22(m; a(m), y1) = ∆K1(m,a(m))√

2π(y1−a(m))
. If we use asymptotic stress distribution,

after solving the corresponding Volterra equation we arrive at the results pre-
sented on Fig. 1 and 2 by dashed lines.
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Figure 1 Fatigue crack length vs. cycle
number for different b (local approach).

Figure 2 Fatigue crack growth rate vs.
stress intensity factor range for different
b (local approach).
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One can see from Fig. 1 that the durability of the infinite plane with any
crack is the same as its durability n∗∞ without crack. On the contrary, ex-
pression based on approximate (asymptotic) stress representation predicts
unrealistic infinite durability for the infinite plane with a crack. The crack
growth rate equations for both stress distributions look like the Paris type law
given however not by a material functions of ∆K1 but highly dependent on
the initial crack size a0 and applied loading q0. They tend to the Paris law
da/dn = C∆Kk

1 as a(n) grows, see also Fig. 2, where the exponent k = 2 for
employing the asymptotic stress distribution) and k = 6 − 2b for the exact
one (8), however C is again not a material constant but depends on the initial
crack and applied loading.

The both solutions are valid only for b < 2 and blow up when b → 2, that
is, they are not able to describe the fatigue crack propagation for common
structural materials with experimentally determined values for S–N diagram
constants (usually b ≥ 4). The local approach does not also predict the fa-
tigue crack start delay observed experimentally. A way to overcome those
shortcomings is an application of a non-local approach.

4. NON-LOCAL CYCLIC BRITTLE STRENGTH
AND DURABILITY CONDITIONS

We will suppose that cyclic strength at a point y ∈ Ω on a plane ~ζ depends
not only on the cyclic stress history at that point, {σc

ij(m, y)}m=1,2,... but also
on the stress history in its neighbourhood and generally, in the whole of the
body, {σc(m,x)}m=1,2,..., x ∈ Ω.

A non-local brittle cyclic normalised equivalent stress functional
Λ¯({σ}; n,Γ, y, ~ζ), which is positively homogeneous in σ and non-decreasing
in n, can be introduced. It is considered as a material characteristics im-
plicitly reflecting influence of material microstructure. Then the non-local
cyclic strength condition for a plane ~ζ at a point y ∈ Ω takes the form
Λ¯({σ}; n,Γ, y, ~ζ) < 1.

The simplest examples of the non-local brittle CNESFs and strength con-
ditions are obtained by replacing the local stress σij(τ, x) by its non-local
counterpart σ¯ij(τ ; Γ, y, ~ζ) in the corresponding local brittle CNESFs described
in Section 2,

Λ¯({σc};n, Γ, y, ~ζ) = Λ({σc¯(·, Γ(·), y, ~ζ)}; n, y, ~ζ), (11)

Similar to the non-local analysis of non-cyclic ([1] and references therein)
and cyclic [6]–[9] strength, the non-local stress can be taken particularly as a
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weighted average of σij(τ, x)

σ¯ij(τ ; Γ(τ), y, ~ζ) =
∫

Ω¯(y,~ζ;Γ)
w(y, x)σij(τ ; Γ(τ), x, ~ζ)dx, (12)

where the weight function w(y, x) and the non-locality zone Ω¯ (some neigh-
bourhood of y) are characteristics of material point and plane and generally
of the body shape Γ.

Using the introduced brittle non-local CNESF, the cyclic fracture process
can be described as in Section 2 after replacement there the stress tensor σ by
its non-local counterpart σ¯.

5. EXAMPLE OF NON-LOCAL DURABILITY
ANALYSIS

5.1 Let us consider the 2D problem from Section 3.1 using the non-local dura-
bility analysis with the particular non-local CNESF (11)-(12), where the crack
propagation plane ~ζ∗ is prescribed by the problem symmetry, Ω¯(Γ, y, ~ζ∗) is
the interval (y1− δ−(y1), y1 + δ) for y ahead of the crack a(n) and not close to
an opposite body boundary, δ−(y1) = min(δ, |y1 − a(n)|) and δ is a material
constant. As possible approximations, one can choose w(y, x) as a constant
w.r.t x ∈ Ω¯(y) and arrive at the Neuber stress averaging, cf [1], or as a
piece-wise linear or as a more smooth hat-shaped function of x.

Repeating the same reasoning as in Section 3.1 but now for the non-local
stress range ∆σ¯22(m; a, y1), we arrive at the same equations (6)-(7) where
σ̂22(a, y1) must be replaced by
σ̂¯22(a, y1) =

∫ y1+δ
y1−δ−(y1) w(y1, x1)σ̂22(a, x1)dx1. For a problem with initially ex-

isting crack, the crack propagation start instant n∗0 obtained from the non-
local counterpart of (6) is non-zero since |σ̂¯22(a0, a0)| < ∞ at the crack tip
in spite |σ̂22(a0, a0)| = ∞. For example, the start delay for a constant ∆q0 is
n∗0 = n∗∞|σ̂¯22(a0, a0)|−b.

Since |σ̂¯22(a(n), a(n))| < ∞, we can differentiate the non-local counterpart
of (7) w.r.t. a(n) and arrive at the following linear non-convolution Volterra
equation of the second kind for the unknown function g(a)

g(a(n)) +
∫ a(n)

a0

K(a(n), a)g(a)da = −|σ̂¯22(a0, a0)|−bK(a(n), a0), (13)

where K(a(n), a) = |σ̂¯22(a(n), a(n))|−b ∂
∂a(n) |σ̂¯22(a, a(n))|b.

5.2 Let us consider the non-local version of the particular problem from Sec-
tion 3.2, and choose the piece-wise linear weight w(y1, x1) = 2(δ−|y1−x1|)

δ2+2δδ−(y1)−δ2
−(y1)

,
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x1 ∈ (y1 − δ−(y1), y1 + δ). Using (8) for y1 = a0 and δ−(y1) = 0, we obtain
the corresponding non-local stress at the crack tip. It can be used to esti-

mate the material parameter δ = 32
9π

(
K1c
σr

)2
from the experimental data on

the monotonous tensile strength σr for a smooth sample and the critical stress
intensity factor K1c for a sample with a long crack. The non-local stress can
be also used in the above formula for n∗0 to calculate the crack start delay

n∗0 = n∗∞

[
(a0+δ)

√
2a0+δ

δ3/2 + a2
0

δ2 ln a0

a0+δ+
√

δ(2a0+δ)

]−b

under a uniform tensile periodic traction ∆q(m,x) = ∆q0.
Results of the numerical solution of Volterra equation (13) with δ = 0.5a0

are presented on Fig. 3 and Fig. 4 for different b. The specific non-monotonous

ln (a/a0)

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

3.

6. 1.9

0.5

1.5

ñ
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Figure 3 Fatigue crack length vs. cy-
cle number for different b (non-local ap-
proach).

Figure 4 Fatigue crack growth rate vs.
stress intensity factor range for different
b (non-local approach).

and non-smooth dependence of the crack growth rate d(a/a0)
dñ on the stress

intensity factor range ∆K1(a)
∆K1(a0) at the beginning, Fig. 4, can be perceived as

a signature of the particular weight w(y, x) and employed for simulation of
the short crack retardation near inter-grain boundaries. Such curves may be
useful for experimental identification of w(y, x).

6. CONCLUSIONS
A united description of fatigue crack initiation and propagation is princi-

pally possible using the local as well as the non-local approach, however the
local approach in the considered examples can be applied only for a limited
range of material fatigue parameters and cannot describe the crack start de-
lay. The non-local approach seems to be free of the drawbacks. When the
stress fields are available analytically or numerically and the strength con-
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ditions are associated with the linear accumulation rule, the 2D problem in
both approaches can be reduced to non-linear Volterra equation(s) for the un-
known crack geometry. It can be transformed for a single crack to a linear
non-convolution Volterra equation in the case of a material with a power-type
S–N diagram.
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