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Non-local Strength Conditions Based on Generalized δc Cohesive Models

Generalizations of the Leonov-Panasyuk-Dugdale δc cohesive model applicable not only for crack tips but also for any
internal or boundary point are described. These models are interpreted also as non-local strength conditions and can
be used for description of strength small scale effects, for stress fields with stress singularities other than the usual
crack tip square root singularity (e.g. for corner points), for bodies with smooth and singular stress concentrators.

1. Introduction and Motivation

There exist at least three problems of strength and fracture mechanics that can not be solved by use of traditional
(local) fracture criteria: (i) the strength small–scale effects; (ii) description of the fracture of bodies with singular
stress concentrators generating stress singularities other than 1/

√
ρ; (iii) the problem of unification of the fracture

criteria for bodies with smooth and singular concentrators. The problems can be solved by use of non-local strength
conditions, according to which the strength at a point y depends on the stress tensor components not only at this
point but on the stress field in a neighbourhood of y. The conditions analysis and examples are given in [1–3].
Another one such condition is presented here.

Let us consider the classical δc cohesive model (Leonov-Panasyuk [4], Dugdale [5]). The model (Fig. 1) includes
three main elements:
(A) Rectilinear crack in a two-dimensional elastic body symmetric to the crack line is considered.
(B) Plastic (cohesive) zones Γ arise on the crack prolongation with the zone boundary conditions σ

(Γ)
θθ |Γ = σc, an

additional condition σ
(Γ)
ρθ |Γ = 0 follows from the problem symmetry. The cohesive zones lengths are such that the

stress field have no any power-wise singularities at the zone tips (the stress intensity factors are zero).
(C) The strength condition (condition that the crack does not propagate): the crack opening displacements δ = [u(Γ)]
at the crack tips (which are the beginning points of the cohesive zones) are less than a critical opening δc (material
parameter), δ < δc.

δ
ΓΓ

y

Γ θ
yΓ

h-

h+

θ

Fig. 1 Fig. 2 Fig. 3

It is possible to note that the classical δc model can be successfully used for description of the small-scale effect
for small cracks: it predicts a finite strength as the crack length tends to zero, in contrast to the infinite strength
predicted by the linear fracture mechanics for a body with a crack. Thus, the point (i) of the above list of problems
is fulfilled. However, the δc model in its original form is applicable only to crack tips. A variant of the δc model
generalization for boundary points was considered in [6]. The goal of this paper is an extension of this model to
arbitrary boundary and internal body points to fulfil also points (ii) and (iii) and to show that it can be considered
as a non-local strength condition after such generalization.

2. Generalized δc model for boundary points

One of possible generalisations of the δc model for boundary points includes three main elements:
(A) Strength at any boundary point y in a two-dimensional elastic body with respect to eventual fracture in a
direction η(θ) is analysed (Fig. 2).



(B) A rectilinear cohesive zone Γ(y, θ;σ) (with the zone boundary conditions σ
(Γ)
θθ |Γ = σc, σ

(Γ)
ρθ |Γ = 0) originates at

the point y in the direction η(θ). The zone length h(y, θ; σ) = |Γ(y, θ; σ)| is such that the mode I stress intensity
factor K1+ is zero at the end point y+hη(θ) of the cohesive zone and is positive for any cohesive zone Γ∨ originating
from y in the same direction η(θ) and being smaller than Γ:

K
(Γ)
1+ (Γ) = 0; K

(Γ)
1+ (Γ∨) > 0 ∀ Γ̄∨(y, θ; σ) ⊂ Γ(y, θ;σ). (1)

(C) The strength condition: the cohesive zone opening at all points x of Γ(y, θ; σ) is less than a critical opening δc

(material parameter):

[u(Γ)
θ (x)] < δc ∀ x ∈ Γ(y, θ; σ). (2)

Let σij(x) be the stress field in the original elastic problem without cohesive zones. Let us denote by σθθ(y, θ)
a definite (finite or +∞ or −∞) limit of the stress σθθ(y + ρη(θ)) as ρ → 0 if the limit does exist. Note that
σθθ(y + ρη(0)) ∼ K1/(

√
2πρ) → σθθ(y, 0) = +∞ as ρ → 0 in the classical case, when y is a tip of an opened crack

(K1 > 0). One can remark that if σθθ(y, θ) > σc, then second condition of (1) is satisfied for all sufficiently small Γ∨;
otherwise, if σθθ(y, θ) < σc, then opposite condition K

(Γ)
1+ (Γ∨) < 0 is satisfied for all sufficiently small Γ∨. Hence,

the second condition (1) ensures that the cohesive zone can not arise from the point y in the direction θ where
σθθ(y, θ) < σc.

Let l(y, θ) be the distance from y to another nearest boundary point in the direction η(θ). It may happen that
there exists no any solution h(y, θ) of (1) such that h(y, θ) < l(y, θ) since K

(Γ)
1+ (Γ∨) > 0 for all |Γ∨| < l(y, θ). One

can mechanically interpret this as the cohesive zone Γ(y, θ;σ) extending up to the boundary point y + l(y, θ)η(θ),
that is, one should take h(y, θ; σ) = l(y, θ). For such case (when the cohesive zone come out to a boundary point
where tractions are prescribed) the cohesive zone tip y + l(y, θ)η(θ) is open and condition (1) is satisfied. Strength
condition (2) is applicable also for this situation.

The fracture criterion for a point y is

sup
θ
{ sup

x∈Γ(y,θ;σ)

[u(Γ)
θ (x)]} = δc. (3)

The angle θ, at which the supremum is realised gives the fracture direction. The fracture appearance can be
attributed either to the boundary point y or to the point x, at which the supremum in (3) is realised, or to the
whole of the zone Γ. Note that another option to choose the zone Γ and the eventual fracture direction η(θ) is the
demand that not only K1+ but also the mode II stress intensity factor K2+ is equal to zero at the cohesive zone end
point; then the supremum with respect to θ disappears in (3) and we arrive at another δc model generalization.

3. Generalized δc model for internal points

A possible generalization of the δc model for internal points is similar to that described above for boundary points
and includes three main elements:
(A) Strength at any internal point y in a two-dimensional elastic body with respect to eventual fracture in a direction
η(θ) is analysed (Fig. 3).
(B) A rectilinear cohesive zone Γ(y, θ; σ), (with the zone boundary conditions σ

(Γ)
θθ |Γ = σc, σ

(Γ)
ρθ |Γ = 0) goes trough

the point y in the direction η(θ). The zone length is |Γ| = h− + h+ > 0 where the lengths h∓ of the zone parts
before and after y are such that the mode I stress intensity factors are zero at the tips y ∓ h∓η(θ) of Γ, and Γ
is continuously deformable to zero such that the mode I stress intensity factors are positive at the tips of each
intermediate (deformed) zone Γ∨:

K
(Γ)
1∓ (Γ) = 0; K

(Γ)
1∓ (Γ∨) > 0, Γ̄∨ ⊂ Γ(y, θ; σ) (4)

(C) The strength condition is given by (2): the crack opening at all points x of Γ(y, θ; σ) is less than a critical
opening δc (material parameter).

Let l∓(y, θ) be the distances from y to the nearest boundary points in the directions ∓η(θ). It may happen that
there exists no any cohesive zone Γ satisfying point (B) above such that h∓(y, θ) < l∓(y, θ) since K

(Γ)
1∓ (Γ∨) > 0 for

all Γ∨ ⊂ (y − l−(y, θ), y + l+(y, θ)). One can mechanically interpret this as the cohesive zone Γ(y, θ;σ) extending
between the boundary points y− l−(y, θ)η(θ) and y+ l+(y, θ)η(θ), that is, one should take h∓(y, θ; σ) = l∓(y, θ). For
such case (when the cohesive zone spread between two boundary points where tractions are prescribed) the cohesive



zone tips y ∓ l∓(y, θ)η(θ) are open and conditions K
(Γ)
1∓ (Γ) = 0, are satisfied. Cases when only one zone tip come

out to a boundary point can be also analysed. Strength condition (2) is applicable also to all those situations.

The fracture criterion for the point y is given by the same condition (3) and the fracture direction η(θ) is given by
the angle θ that realises the supremum in (3). The fracture appearance can be attributed either to the point x,
at which the supremum in (3) is realised, or to the whole of the zone Γ. Similar to the previous section, second
condition of (4) ensures that no any cohesive zone can occur from a point y in a direction θ where σθθ(y, θ) < σc.

Note that strength condition (4), (2) (and (1), (2) for a boundary point y) is not generally applicable if K
(Γ)
1∓ (Γ∨)

is not continuous in Γ∨. A generalized δc strength condition applicable also to those situations can be presented
in the form supΓ⊂G(y,θ;σ){supx∈Γ[u(Γ)

θ (x)]} < δc, where G(y, θ; σ) is a set of all cohesive zones Γ(y, θ;σ) that are

continuously deformable to zero such that K
(Γ)
1∓ (Γ∨) ≥ 0 for each intermediate (deformed) zone Γ∨ ⊂ Γ(y, θ; σ).

This form of the δc strength condition can be also used for a three-dimensional body with a plane cohesive zone.

4. Generalized δc model in terms of the original stress field

The strength conditions may be represented in terms of the original stress field. We will give the representation for
the δc model for boundary points, the reasoning for internal points is similar.

We can write a decomposition u
(Γ)
i (x) = ui(x)+ ũ

(Γ)
i (x), σ

(Γ)
ij (x) = σij(x)+ σ̃ij(x). Here σij and ui are original stress

and displacement fields in the body D without cohesive zones. Then the auxiliary fields ũ
(Γ)
i (x), σ̃

(Γ)
ij (x) satisfy the

homogeneous elasticity equations in D, the corresponding homogeneous boundary conditions on the boundary ∂D,
and the boundary conditions

σ̃
(Γ)
θθ (x)

∣∣∣
Γ
= σc − σθθ(x)

∣∣∣
Γ
, σ̃

(Γ)
ρθ (x)

∣∣∣
Γ
= −σρθ(x)

∣∣∣
Γ

(5)

on Γ. Then K
(Γ)
1+ (Γ) = K1(y + hη(θ)) + K̃

(Γ)
1+ (Γ), [u(Γ)

θ (x)] = [uθ(x)] + [ũ(Γ)
θ (x)].

The stress intensity factor K1(y + hη(θ)) equals to zero since the original stress field σij(x) is bounded at the point
y + hη(θ). The jump [uθ(x)] equals to zero for x ∈ Γ since the original displacement field ui(x) is continuous on Γ.
Taking into account the linear dependence of K̃

(Γ)
1+ and ũ

(Γ)
i (x) on the right hand sides of the boundary conditions

(5), we can write strength condition (1), (2) in the form

K̃
(Γ)
1+ (Γ;−σijnj(θ)) = K̃

(Γ)
1+ (Γ;−σcni(θ)), K̃

(Γ)
1+ (Γ∨;−σijnj(θ)) > K̃

(Γ)
1+ (Γ∨;−σcni(θ)) ∀ Γ̄∨ ⊂ Γ; (6)

[ũ(Γ)
θ (x; Γ;−σijnj(θ))] < δc + [ũ(Γ)

θ (x; Γ;−σcni(θ))] ∀x ∈ Γ(y, θ; σ) (7)

where n±i (θ) are the external normals on the Γ(y, θ; σ) shores.

Only the original stress field σij is involved in (6), (7) (in addition to the functions depending on the material
parameter σc and the body geometry). Thus, inequality (7) may be considered as a non–local strength condition
where the dimension h = |Γ(y, θ; σ)| is determined by (6) if σθθ(y, θ) > σc, and [ũ(Γ)

θ (x)] = 0 is taken otherwise.

Let Ni1+(ξ; Γ) be the Green–type functions (Bueckner functions) for the body D with the crack Γ, which give the
values of the stress intensity factor K1 induced at the crack tip y+hη(θ) by two unit oppositely directed concentrated
forces, applied to the opposite crack shores at a point ξ ∈ Γ(y, θ). Let [Uiθ](ξ;x; Γ) be the Green–type functions,
which give the displacement jump [ui(x)] induced at the crack by the same unit forces. Then

K̃
(Γ)
1+ (Γ;−σijnj(θ)) =

∫

Γ

[Nρ1+(ξ; Γ)σρθ(ξ) + Nθ1+(ξ; Γ)σθθ(ξ)]dξ, (8)

K̃
(Γ)
1+ (Γ;−σcni(θ)) = σc

∫

Γ

Nθ1+(ξ; Γ)dξ, (9)

[ũ(Γ)
θ (x; Γ;−σijnj(θ))] =

∫

Γ

{[Uθρ](ξ; x; Γ)σρθ(ξ) + [Uθθ](ξ;x; Γ)σθθ(ξ)}dξ, (10)

[ũ(Γ)
θ (x; Γ;−σcni(θ))] = σc

∫

Γ

[Uθθ](ξ;x; Γ)dξ. (11)

Substitution of (8)–(11) represents strength condition (6)–(7) in a more explicit form.



5. Functional form of the δc non–local strength condition

For a given stress field σij(x), the functional safety factor λ(σ; y, θ)) (see [1]) is a solution λ∗ of the equation
supx∈Γ(y,θ;λ∗σ)[u

(Γ)
θ (x; λ∗σ)] = δc if its left hand side is a continuous function of λ∗ monotonously growing from zero

when λ∗ grows from zero. Similar to (7), this equation can be presented in the form

sup
x∈Γ∗(y,θ)

{
[ũ(Γ)

θ (x; Γ∗;−λ∗σijnj(θ))]/{δc + [ũ(Γ)
θ (x; Γ∗;−σcni(θ))]}

}
= 1 (12)

Let y be a boundary point. According to (6), the cohesive zone Γ∗(y, θ) := Γ(y, θ; λ∗σ) (i.e., its length h∗) is such
that

K̃
(Γ)
1+ (Γ∗;−λ∗σijnj(θ)) = K̃

(Γ)
1+ (Γ∗;−σcni(θ)), K̃

(Γ)
1+ (Γ∨;−λ∗σijnj(θ)) > K̃

(Γ)
1+ (Γ∨;−σcni(θ)) ∀ Γ̄∨ ⊂ Γ∗. (13)

Using (12) and linearity of [ũ(Γ)
θ ] and K̃

(Γ)
1+ in λ∗, conditions (13) can be rewritten in a form, independent of λ∗:

inf
x∈Γ∗(y,θ)

{
δc + [ũ(Γ)

θ (x; Γ∗;−σcni(θ))]

[ũ(Γ)
θ (x; Γ∗;−σijnj(θ))]

}
K̃

(Γ)
1+ (Γ∗;−σijnj(θ)) = K̃

(Γ)
1+ (Γ∗;−σcni(θ)), (14)

inf
x∈Γ∗(y,θ)

{
δc + [ũ(Γ)

θ (x; Γ∗;−σcni(θ))]

[ũ(Γ)
θ (x; Γ∗;−σijnj(θ))]

}
K̃

(Γ)
1+ (Γ∨;−σijnj(θ)) > K̃

(Γ)
1+ (Γ∨;−σcni(θ)) ∀ Γ̄∨ ⊂ Γ∗.

Then

λ(σ; y, θ) =
1

Λ(σ; y, θ)
= inf

x∈Γ∗(y,θ)

{
δc + [ũ(Γ)

θ (x; Γ∗;−σcni(θ))]

[ũ(Γ)
θ (x; Γ∗;−σijnj(θ))]

}
=

K̃
(Γ)
1+ (Γ∗;−σcni(θ))

K̃
(Γ)
1+ (Γ∗;−σijnj(θ))

and the strength condition has the form
Λ(σ; y, θ) < 1,

where Γ∗ is a solution of (14).
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