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The main purpose of this paper is the analysis of mixed-transmission problems for 
the anisotropic Stokes system in a compressible framework and in bounded Lipschitz 
domains with transversal Lipschitz interfaces in Rn, n ≥ 2. Mixed problems and 
mixed-transmission problems for the anisotropic Navier-Stokes system in dimension 
n ∈ {2, 3} are also considered. The anisotropy is introduced by an L∞-viscosity 
tensor coefficient, which satisfies an ellipticity condition in terms of symmetric 
matrices in Rn×n with null matrix traces. In the first part we use a variational 
approach to show the well-posedness of the analyzed linear problems for the Stokes 
system in L2-based Sobolev spaces. In the second part we show the existence and 
uniqueness of a weak solution of the mixed problem for the anisotropic compressible 
Navier-Stokes system with small data in L2-based Sobolev spaces in a bounded 
Lipschitz domain in Rn, n ∈ {2, 3}. A mixed-transmission problem for the Navier-
Stokes system in a Lipschitz domain with a transversal Lipschitz interface is also 
considered.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction: Anisotropic Stokes system with elliptic L∞ viscosity tensor coefficient

Let n ≥ 2 and Ω be an open set in Rn. Throughout our paper we use the notation ∂α for the first order 
partial derivative 

∂

∂xα
, α = 1, . . . , n, as well as the Einstein summation rule on repeated indices.
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Let L be a second order divergence form differential operator

Lu := ∂α
(
Aαβ∂βu

)
, (1.1)

such that the tensor coefficient A consists of n ×n matrix valued functions Aαβ with bounded, measurable, 
real-valued entries aαβij , that is,

A=
(
Aαβ

)
1≤α,β≤n

, Aαβ =
(
aαβij

)
1≤i,j≤n

, aαβij ∈ L∞(Ω), 1 ≤ i, j, α, β ≤ n . (1.2)

Assume that the following symmetry conditions hold

aαβij (x) = aiβαj(x) = aαjiβ (x), x ∈ Ω (1.3)

(see also [43, (3.1), (3.3)]). In addition, assume that the tensor coefficient A satisfies the ellipticity condition 
only in terms of all symmetric matrices in Rn×n, with zero matrix trace. Thus, there is a constant CA > 0
such that, for almost all x ∈ Ω,

aαβij (x)ξiαξjβ ≥ C−1
A |ξ|2 , ∀ ξ = (ξiα)i,α=1,...,n ∈ Rn×n such that ξ = ξ� and

n∑
i=1

ξii = 0, (1.4)

where |ξ|2 = ξiαξiα, and the superscript � refers to the transpose of a matrix (see also [26]). The tensor 
coefficient A is endowed with the norm

‖A‖ := max
{
‖aαβij ‖L∞(Ω) : i, j, α, β = 1 . . . , n

}
. (1.5)

Let u and π be unknown vector and scalar fields. Let us assume that f is a given vector field and g is a 
given scalar field defined in Ω. Then the equations

L(u, π) := Lu −∇π = f , div u = g in Ω (1.6)

determine the anisotropic Stokes system with variable viscosity tensor coefficient A =
(
Aαβ

)
1≤α,β≤n

in a 
compressible framework.

Relation (1.1) and conditions (1.3) show that the Stokes operator L can be written in any of the alter-
native forms

L(u, π) = ∂α
(
Aαβ∂βu

)
−∇π, (L(u, π))i = ∂α

(
aαβij Ejβ(u)

)
− ∂iπ, i = 1, . . . , n , (1.7)

where u = (u1, . . . , un)� and Ejβ(u) := 1
2 (∂juβ + ∂βuj) are the entries of the symmetric part E(u) of ∇u

that is the gradient of u.
The anisotropic Navier-Stokes system in a compressible framework with variable viscosity tensor coeffi-

cient A =
(
Aαβ

)
1≤α,β≤n

is given by the following equations

L(u, π) − (u · ∇)u = f , divu = g in Ω . (1.8)

The anisotropic Stokes and Navier-Stokes systems in the incompressible case are given by the equations 
of (1.6) and (1.8), respectively, with divu = 0.

In the isotropic case, the tensor A in (1.2) has the entries

aαβij (x) = λ(x)δiαδjβ + μ(x) (δαjδβi + δαβδij) , 1 ≤ i, j, α, β ≤ n , (1.9)
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where λ, μ ∈ L∞(Ω), and c−1
μ ≤ μ(x) ≤ cμ for a.e. x ∈ Ω, with some constant cμ > 0. This implies that 

condition (1.4) is satisfied (cf., e.g., Appendix III, Part I, Section 1 in [46]; see also [26]).
The anisotropic Stokes and Navier-Stokes systems play a main role in various applications related to 

the flow of immiscible fluids, liquid crystals, and flows of non-homogeneous fluids with variable anisotropic 
viscosity tensors depending on physical properties of the fluids (cf., e.g., [12], [15], [16], [34, Chapter 3]).

The boundary value problems for the (isotropic) Stokes and Navier-Stokes systems involving mixed 
conditions have been intensively analyzed by using various mathematical tools, such as variational methods 
and layer potential theoretic methods (see, e.g., [8,13,20,17,44–46] and the references therein) due to their 
applications in mathematical physics and engineering. Brown, Mitrea, Mitrea, and Wright [8] obtained the 
well-posedness of the mixed problem for the Stokes system with constant coefficients in a class of Lipschitz 
domains in Rn, n ≥ 3, by using a layer potential approach that reduces the mixed problem to a boundary 
integral equation. Cocquet, Rakotobe, Ramalingom, and Bastide [13] developed a variational analysis and 
a finite element approximation of the Darcy-Brinkman-Forchheimer model for porous media with mixed 
boundary conditions. (The Darcy-Brinkman-Forchheimer equation is a perturbation of the Navier-Stokes 
equation with a compact operator.) Ebmeyer and Frehse [17] used a variational approach in the analysis 
of constant coefficient steady Navier-Stokes equations with mixed boundary conditions (involving Dirichlet 
and Navier-type conditions) in three-dimensional polyhedral domains and a class of Lipschitzian domains. 
Ott, Kim, and Brown [44] constructed the Green function for the mixed Dirichlet-Neumann boundary value 
problem for the Stokes system in a two-dimensional Lipschitz domain. Recently, Amrouche and Boussetouan 
[2] have proved existence, uniqueness and regularity of some vector potentials, associated with a divergence-
free vector field satisfying mixed boundary conditions. These results have been used to obtain weak and 
strong solutions for a mixed boundary problem for the Stokes system with a pressure condition on some 
part of the boundary and Navier-type boundary condition on the remaining part.

Variational approaches have been also used in the analysis of many other elliptic boundary valued 
problems. By using such an approach, Angot [4,5] obtained the well-posedness of some Stokes/Brinkman 
problems with constant isotropic viscosity and a family of embedded jump conditions on an immersed 
(transversal) interface with weak regularity assumptions. The authors in [23] used a layer potential analysis 
and the Leray-Schauder fixed point theorem in order to show existence results for a nonlinear Neumann-
transmission problem for the constant coefficient Stokes and Brinkman systems in Lp, Sobolev, and Besov 
spaces. Regularity results for the Stokes system with measurable coefficients in one direction have been 
obtained by Dong and Kim [15] by using a variational technique (see also [12]). Brewster et al. [7] de-
veloped a variational approach to prove the well-posedness of mixed boundary problems for higher order 
divergence-form elliptic equations with L∞ coefficients in locally (ε, δ)-domains and in Besov and Bessel 
potential spaces. Mazzucato and Nistor [36] obtained the well-posedness and regularity in weighted Sobolev 
spaces for the anisotropic linear elasticity equations with mixed conditions on polyhedral domains.

An alternative integral approach using explicit parametrix-based integral potentials, which reduces 
boundary value problems for the Stokes system with variable coefficients, as well as other variable-
coefficient elliptic partial differential equations, to boundary-domain integral equations has been developed 
in [9–11,19,40] (see also the references therein).

The authors in [25] developed a variational analysis in a pseudostress setting for transmission problems 
with internal interfaces in weighted Sobolev spaces for the anisotropic Stokes and Navier-Stokes systems 
with an L∞ strongly elliptic coefficient tensor (see also [15]), by using the strong ellipticity condition in 
terms of all matrices in Rn×n (see also [29,30] for boundary value problems for the Stokes and Navier-Stokes 
systems with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds, and [24] in the case of 
smooth coefficients in the same setting). The authors in [27] and [26] extended their variational analysis to 
other transmission and exterior boundary problems with internal interfaces for the anisotropic Stokes and 
Navier-Stokes systems by assuming that the corresponding L∞ viscosity tensor coefficient satisfies a weaker 
ellipticity condition in terms of only symmetric matrices in Rn×n with zero traces, that is, the ellipticity 
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condition (1.4), which is indeed weaker than that employed in [25] and [15]. Non-homogeneous Dirichlet-
transmission problems for the anisotropic Stokes and Navier-Stokes systems in a bounded Lipschitz domain 
in Rn (in the case of the nonlinear problems it is assumed that n = 2, 3) with a transversal Lipschitz 
interface have been investigated in [28] by imposing the ellipticity condition (1.4). The authors have used a 
variational approach and the Leray-Schauder theorem in order to show the existence of a weak solution for 
the nonlinear Dirichlet-transmission problem.

In this paper we obtain well-posedness results in L2-based Sobolev spaces for mixed and mixed-
transmission problems for a compressible anisotropic Stokes system in a bounded Lipschitz domain of 
Rn, n ≥ 2, with an internal Lipschitz interface that intersects transversally the boundary of the domain. 
We show also the existence and uniqueness of a weak solution for nonlinear mixed and mixed-transmission 
problems for the anisotropic compressible Navier-Stokes system with small data in L2-based Sobolev spaces 
in a bounded Lipschitz domain with the same geometry as in the linear case, but with n = 2, 3. The proof 
of the well-posedness in the nonlinear case is based on the well-posedness of the linear mixed or mixed-
transmission problems for the anisotropic Stokes system and on the Banach fixed point theorem. We assume 
that the L∞ viscosity tensor coefficient satisfies the ellipticity condition (1.4).

The anisotropic Stokes and Navier-Stokes problems of mixed-transmission type considered below and 
involving mixed and transmission conditions may describe various physical phenomena, like lubrication and 
blood flows (cf. [2] and the references therein), multiphase flows of immiscible fluids with variable anisotropic 
viscosity tensors and variable compressibility (see, e.g., [16], [34, Chapter 3]).

2. Preliminary results

Given a Banach space X, its topological dual is denoted by X′, and the notation 〈·, ·〉X means the duality 
pairing of two dual spaces defined on a set X ⊆ Rn.

2.1. Sobolev spaces on Lipschitz domains in Rn

Let n ≥ 2 and let Ω be a bounded Lipschitz domain in Rn with connected boundary ∂Ω. Let D(Ω) :=
C∞

0 (Ω) denote the space of infinitely differentiable functions with compact support in Ω, equipped with the 
inductive limit topology. Let D′(Ω) denote the corresponding space of distributions on Ω, i.e., the dual of 
the space D(Ω). Let L2(Ω) be the Lebesgue space of square-integrable functions on Ω, and L∞(Ω) be the 
space of (equivalence classes of) essentially bounded measurable functions on Ω. Let also

L2
0(Ω) := {f ∈ L2(Ω) : 〈f, 1〉Ω = 0} . (2.1)

The dual of L2
0(Ω) is the space L2(Ω)/R. The Sobolev space H1(Ω) is defined as

H1(Ω) :=
{
f ∈ L2(Ω) : ∇f ∈ L2(Ω)n

}
, (2.2)

and is endowed with the norm

‖f‖2
H1(Ω) = ‖f‖2

L2(Ω) + ‖∇f‖2
L2(Ω)n . (2.3)

The space H̃1(Ω) is the closure of D(Ω) in H1(Rn), and can be also described as

H̃1(Ω) :=
{
f̃ ∈ H1(Rn) : supp f̃ ⊆ Ω

}
, (2.4)

where suppf := {x ∈ Rn : f(x) �= 0}. The dual of H̃1(Ω) is the space H−1(Ω). Then the following equivalent 
characterization of the spaces H±1(Ω) holds
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H±1(Ω) = {f ∈ D′(Ω) : ∃F ∈ H±1(Rn) such that F |Ω = f} , (2.5)

where |X = rX is the restriction operator of functions or distributions to a set X of Rn.
The closure of D(Ω) in H1(Ω) is denoted by H̊1(Ω) and can be equivalently described as the space of all 

functions in H1(Ω) with null traces on ∂Ω, that is,

H̊1(Ω) := {f ∈ H1(Ω) : γΩf = 0 on ∂Ω}, (2.6)

where γΩ : H1(Ω) → H
1
2 (∂Ω) is the trace operator. Recall that this is a linear, bounded and surjective 

operator (cf. [14], [38, Lemma 2.6], [42, Theorem 2.5.2]). We will use the same notation γΩ for the trace 
operator acting on vector-valued functions.

Note that the spaces H̃1(Ω) and H̊1(Ω) can be identified isomorphically (see, e.g., [37, Theorem 3.33]). 
The dual of H1(Ω) is denoted by H̃−1(Ω), and is a space of distributions. (Note that H̃−1(Rn) = H−1(Rn).) 
Moreover, the following spaces can be isomorphically identified (cf., e.g., [37, Theorem 3.14])(

H1(Ω)
)′ = H̃−1(Ω), H−1(Ω) =

(
H̃1(Ω)

)′
. (2.7)

Let s ∈ (0, 1). Then the boundary Sobolev space Hs(∂Ω) is defined by

Hs(∂Ω) :=

⎧⎨⎩f ∈ L2(∂Ω) :
∫
∂Ω

∫
∂Ω

|f(x) − f(y)|2
|x − y|n−1+2s dσxdσy < ∞

⎫⎬⎭ , (2.8)

where σy is the surface measure on ∂Ω (see, e.g., [42, Proposition 2.5.1]). The dual of Hs(∂Ω) is the space 
H−s(∂Ω), and H0(∂Ω) =L2(∂Ω).

By H1(Ω)n, H̃1(Ω)n, Hs(∂Ω)n we denote the spaces of vector-valued functions whose components belong 
to the spaces H1(Ω), H̃1(Ω), and Hs(∂Ω), respectively. For further properties of Sobolev spaces we refer 
the reader to [22,37,42].

We will need the following well known result (see, e.g., [32, Lemma 2.5], [6], [3, Theorem 3.1]), for which 
we will provide several generalizations further on.

Proposition 2.1. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, with connected boundary. Then the 
divergence operator div : H̊1(Ω)n → L2

0(Ω) is bounded, linear and surjective. It has a bounded, linear right 
inverse RΩ : L2

0(Ω) → H̊1(Ω)n. Thus, there exists a constant C = C(Ω, n) > 0 such that

div(RΩf) = f, ‖RΩf‖H1(Ω)n ≤ C‖f‖L2(Ω), ∀ f ∈ L2
0(Ω). (2.9)

2.2. Sobolev spaces on bounded domains with partially vanishing traces

Let Ω0 ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ0. Let D and N be 
relatively open subsets of Γ0, such that D has positive (n − 1)-Hausdorff measure, D∩N = ∅, D ∪N = Γ0, 
and D ∩N = Σ1, where Σ1 is an (n − 2)-dimensional closed Lipschitz submanifold of Γ0.

We need the following space defined on the Lipschitz domains Ω0

C∞
D (Ω0)n :=

{
ϕ|Ω0

: ϕ ∈ C∞(Rn)n, supp (ϕ) ∩D = ∅
}
, (2.10)

and let H1
D(Ω0)n be the closure of C∞

D (Ω0)n in H1(Ω0)n. The space H1
D(Ω0)n can be equivalently charac-

terized as

H1
D(Ω0)n =

{
v ∈ H1(Ω0)n :

(
γΩ0

v
)
|
D

=0
}

(2.11)
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(cf. [7, Corollary 3.11], [21, Definition 2.4]). Let also

H1
D;div(Ω0)n :=

{
w ∈ H1

D(Ω0)n : divw = 0
}
. (2.12)

Let Ξ be a relatively open (n − 1)-dimensional subset of Γ0, e.g., D or N . Let rΞ denote the operator of 
restriction of distributions from Γ0 to Ξ. Then the boundary Sobolev spaces on Ξ are defined by

H
1
2 (Ξ)n :=

{
ϕ|Ξ : ϕ ∈ H

1
2 (Γ0)n

}
, (2.13)

H̃
1
2 (Ξ)n :=

{
ϕ ∈ H

1
2 (Γ0)n : ϕ=0 on Γ0 \ Ξ

}
, (2.14)

H− 1
2 (Ξ)n :=

(
H̃

1
2 (Ξ)n

)′
, H̃− 1

2 (Ξ)n :=
(
H

1
2 (Ξ)n

)′ (2.15)

(cf., e.g., [37], [7, Definition 4.8, Theorem 5.1]).

Lemma 2.2. The trace operator γΩ0
:H1

D(Ω0)n→ H̃
1
2 (N)n is bounded, linear and surjective, having a (non-

unique) bounded, linear right inverse γ−1
Ω0

:H̃ 1
2 (N)n→H1

D(Ω0)n.

Proof. Recall that the trace operator γΩ0
: H1(Ω0)n → H

1
2 (∂Ω0)n is linear, bounded and surjective (cf. [14], 

[38, Lemma 2.6], [42, Theorem 2.5.2]). Then the desired result is a direct consequence of this property. �
The following lemma provides a variant of Bogovskii’s result [6] in the case of vector fields with vanishing 

traces on a submanifold of a Lipschitz boundary (see also [30, Lemma 7.4] in the setting of compact 
Riemannian manifolds, [3, Theorem 3.1], and [35, Lemma 5.1], [44, Proposition 2.1], [8, (6.10)] for the 
mixed problem for the Stokes system in polyhedral domains, bounded Lipschitz domains in R2, or in 
creased Lipschitz domains in Rn, n ≥ 3).

Lemma 2.3. (i) The divergence operator

div : H1
D(Ω0)n → L2(Ω0) (2.16)

is bounded, linear and surjective, having a bounded, linear right inverse RΩ0 : L2(Ω0) → H1
D(Ω0)n. Thus, 

there exists a constant CD = CD(Ω0,D, n) > 0 such that

div(RΩ0f) = f, ‖RΩ0f‖H1
D(Ω0)n ≤ CD‖f‖L2(Ω0), ∀ f ∈ L2(Ω0). (2.17)

(ii) The operator div : H1
D(Ω0)n/H1

D;div(Ω0)n → L2(Ω0) is an isomorphism.

Proof. (i) The linearity and continuity of the operator in (2.16) are immediate. Let us now show that 
operator (2.16) is surjective, by using an argument similar to that for [30, Lemma 7.4] (see also [35, Lemma 
5.1]). Let h ∈ L2(Ω0). Our purpose is to show that there exists u ∈ H1

D(Ω0)n such that

divu = h in Ω0. (2.18)

To this end, we analyze the following cases related to the constant

〈h, 1〉Ω0 :=
∫
Ω0

h dx. (2.19)
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If 〈h, 1〉Ω0 = 0, and, thus, h ∈ L2
0(Ω0), then the desired existence result follows from the surjectivity of 

the map div : H̊1(Ω0)n→L2
0(Ω0) (see Proposition 2.1) and the inclusion H̊1(Ω0)n ⊆ H1

D(Ω0)n.
Assume now that 〈h, 1〉Ω0 �= 0. Let νΓ0

be the outward unit normal to Ω0, which exists a.e. on Γ0. In 

view of the membership of νΓ0
in H− 1

2 (Γ0)n, we define ν
N

:= r
N
νΓ0

∈ H− 1
2 (N)n =

(
H̃

1
2 (N)n

)′ and then

〈ν
N
,ϕ〉N = 〈νΓ0

,ϕ〉Γ0 , ∀ϕ ∈ H̃
1
2 (N)n . (2.20)

With respect to the inner product (·, ·)
H− 1

2 (N)n
in the Hilbert space H− 1

2 (N)n, whose induced norm is 

‖ · ‖
H− 1

2 (N)n
, we have 

(
ν

N
, 1
‖ν

N
‖2

H
− 1

2 (N)n

ν
N

)
H− 1

2 (N)n
= 1. The element 1

‖ν
N
‖2

H
− 1

2 (N)n

ν
N

produces, through 

the inner product, a linear bounded functional in H− 1
2 (N)n and, thus, is isomorphic with an element μ̃

N

in the dual space H̃
1
2 (N)n. Therefore, there exists μ̃

N
∈ H̃

1
2 (N)n such that〈

ν
N
, μ̃

N

〉
N

= 1. (2.21)

According to the membership of μ̃
N

in H̃
1
2 (N)n and Lemma 2.2, there exists v ∈ H1

D(Ω0)n such that 
γΩ0

v = μ̃
N

a.e. on Γ0, and

v = γ−1
Ω0

(μ̃
N

) ∈ H1
D(Ω0)n , (2.22)

where γ−1
Ω0

: H̃ 1
2 (N)n → H1

D(Ω0)n is a bounded right inverse of the trace operator γΩ0
: H1

D(Ω0)n → H̃
1
2 (N)n

(see also [41, Proposition 5.4]). Now let h0 ∈ L2(Ω0),

h0 := h− 〈h, 1〉Ω0divv. (2.23)

Relations (2.19), (2.20), (2.21), (2.23) and the Divergence Theorem imply that h0 ∈ L2
0(Ω). Then there 

exists u0 ∈ H̊1(Ω0)n ⊂ H1
D(Ω0)n such that

divu0 = h0 in Ω0 and u0 = RΩ0h0 , (2.24)

where RΩ0 : L2
0(Ω0) → H̊1(Ω0)n is a bounded right inverse of the operator div : H̊1(Ω0)n → L2

0(Ω0) (see 
also [6], [3, Theorem 3.1]).

We are now able to consider the field u ∈ H1(Ω0)n,

u := u0 + 〈h, 1〉Ω0v, (2.25)

where v is given by (2.22), and show that it satisfies equation (2.18). Indeed, the membership relation 
u0, v ∈ H1

D(Ω0)n shows that u ∈ H1
D(Ω0)n, and relations (2.23), (2.24) and (2.25) imply that divu = h. 

Hence, u given by (2.25) belongs to H1
D(Ω0)n and satisfies equation (2.18). Moreover, relations (2.19), (2.22), 

(2.23) and (2.24) show that u = RΩ0h, where the operator RΩ0 : L2(Ω0) → H1
D(Ω0)n,

RΩ0 := RΩ0 ◦
{
I −

(
div γ−1

Ω0
μ̃

N

)
〈·, 1〉Ω0

}
+
(
γ−1

Ω0
μ̃

N

)
〈·, 1〉Ω0 , (2.26)

is a right inverse of the operator div : H1
D(Ω0)n → L2(Ω). Since the operators γ−1

Ω0
: H̃ 1

2 (N)n → H1
D(Ω0)n, 

RΩ0 : L2
0(Ω0) → H̊1(Ω0)n and div : H1

D(Ω0)n → L2(Ω0) are bounded, we conclude that the operator 
RΩ0 : L2(Ω0) → H1

D(Ω0)n is bounded as well, which completes the proof of item (i).
(ii) By item (i), operator (2.16) is bounded and surjective, and its kernel is the space H1

D;div(Ω0)n. Thus, 
the operator div : H1

D(Ω0)n/H1
D;div(Ω0)n → L2(Ω0) is an isomorphism. �
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3. Sobolev spaces, conormal derivatives and Green’s identity for the Stokes system in a Lipschitz domain 
with a transversal Lipschitz interface

In the first part of this section we will mention useful results related to the generalized conormal derivative 
for the Stokes system with partially vanishing traces in a bounded Lipschitz domain, and in the second part 
we will describe useful Sobolev spaces and main results related to the conormal derivatives for the Stokes 
system in a bounded Lipschitz domain with a transversal Lipschitz interface.

3.1. Conormal derivative for the Stokes system with partially vanishing traces in a bounded Lipschitz 
domain

Assumption 3.1. Let n ≥2 and Ω ⊂ Rn be a bounded Lipschitz domain with connected boundary ∂Ω. Let 
∂Ω be divided into two non-empty relatively open subsets Γ+ and Γ−, such that Γ+ has positive (n − 1)-
Hausdorff measure, Γ+ ∩ Γ− = ∅, Γ+ ∪ Γ− = ∂Ω, and Γ+ ∩ Γ− is an (n − 2)-dimensional closed Lipschitz 
submanifold of ∂Ω if n > 2, and two distinct points if n = 2.

Recall that the space H1
Γ+(Ω)n is defined as in (2.11), while the boundary Sobolev spaces on Γ± are 

defined as in (2.13)-(2.15). Let us also define the space

HHH1
Γ+(Ω,L) :=

{(
u, π, f̃

)
∈ H1(Ω)n × L2(Ω) ×

(
H1

Γ+(Ω)n
)′ : L(u, π) = f̃ |Ω in Ω

}
, (3.1)

where L : H1(Ω)n × L2(Ω) → H−1(Ω)n is the operator defined in (1.6). Note that if f̃ ∈
(
H1

Γ+(Ω)n
)′, then 

f̃ |Ω ∈ H−1(Ω)n.
The conormal derivative operator tΩ : HHH1(Ω, L) → H− 1

2 (∂Ω)n is given by Definition A.2, which assumes 
that the right hand side f̃ is an element of H̃−1(Ω)n. For the case when f̃ belongs to 

(
H1

Γ+(Ω)n
)′ but is 

not fixed as an element of H̃−1(Ω)n, the conormal derivative tΩ(u, π, ̃f) can not be uniquely defined on the 
entire boundary ∂Ω, however we can uniquely define its restriction to Γ− as follows (cf., e.g., [41, Proposition 
8.1], [28, Definition 5.4]).

Definition 3.2. Let Assumption 3.1 and condition (1.2) hold. If (u, π, ̃f) ∈ HHH1
Γ+(Ω, L), then the restriction 

on Γ− of generalized conormal derivative, (tΩ(u, π; f̃))
∣∣
Γ− ∈ H− 1

2 (Γ−)n, is defined in the weak form by the 
formula〈(

tΩ(u, π, f̃)
)∣∣

Γ− ,Φ
〉
Γ− =

〈
aαβij Ejβ(u), Eiα(γ−1

Ω
Φ)

〉
Ω −

〈
π,div(γ−1

Ω
Φ)

〉
Ω +

〈
f̃ , γ−1

Ω
Φ
〉
Ω , ∀Φ ∈ H̃

1
2 (Γ−)n,

(3.2)

where γ−1
Ω

: H̃
1
2 (Γ−)n → H1

Γ+(Ω)n is a bounded right inverse of the trace operator γΩ : H1
Γ+(Ω)n →

H̃
1
2 (Γ−)n.

In addition, similar arguments to those for Lemma 2.5 in [25] imply the following Green formula whose 
proof will be omitted for the sake of brevity (see also [14], [38, Theorem 3.2], [39, Theorem 5.3], [41, 
Proposition 8.1], [42, Theorem 10.4.1]).

Lemma 3.3. Let Assumption 3.1 and condition (1.2) hold. Then the generalized conormal derivative operator 
tΩ : HHH1

Γ+(Ω, L) → H− 1
2 (Γ−)n is linear and bounded, and definition (3.2) does not depend on the particular 

choice of a right inverse γ−1
Ω

: H̃ 1
2 (Γ−)n → H1

Γ+(Ω)n of the trace operator γΩ : H1
Γ+(Ω)n → H̃

1
2 (Γ−)n. 

Moreover, for w ∈ H1
Γ+(Ω)n and (u, π, ̃f) ∈HHH1

Γ+(Ω, L), the first Green identity holds,

〈
(tΩ(u, π; f̃))

∣∣
− , γΩw

〉
=
〈
aαβij Ejβ(u), Eiα(w)

〉
− 〈π,divw〉Ω0 + 〈f̃ ,w〉Ω . (3.3)
Γ Γ− Ω
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Note that the term 
〈
f̃ , w

〉
Ω is well defined in (3.3) for f̃ ∈

(
H1

Γ+(Ω)n
)′ = H̃−1(Ω)n/H−1

Γ+
(Rn)n. Indeed, 

elements of the same class in the quotient space H̃−1(Ω)n/H−1
Γ+

(Rn)n differ only on Γ+ and since w ∈
H1

Γ+(Ω)n, different elements of the same class f̃ ∈
(
H1

Γ+(Ω)n
)′ will give the same value of the functional 〈

f̃ , w
〉
Ω.

Moreover, we have the following useful result for the mixed problem (cf. [7, Definition 7.1] for strongly 
elliptic higher-order systems in divergence form).

Lemma 3.4. Let Assumption 3.1 and conditions (1.2) and (1.3) hold.

(i) Let (u, π) ∈ H1(Ω)n × L2(Ω). Let f̃1, ̃f2 be such that 
(
u, π, ̃f1

)
, 
(
u, π, ̃f2

)
∈ HHH1(Ω, L) and let 

tΩ(u, π, ̃f1)
∣∣
Γ− , tΩ(u, π, ̃f2)

∣∣
Γ− ∈ H− 1

2 (∂Ω)n be the corresponding conormal derivative restrictions in-
troduced in Definition 3.2. If supp (f̃1 − f̃2) ⊆ Γ+, then 

(
tΩ(u, π, ̃f1)

)∣∣
Γ− =

(
tΩ(u, π, ̃f2)

)∣∣
Γ− .

(ii) If 
(
u, π, ̃f

)
∈HHH1

Γ+(Ω, L), then the conormal derivative restriction 
(
tΩ(u, π, ̃f)

)∣∣
Γ− is well defined, that 

is, it is the same when f̃ is replaced by f̃ + f̃0 with any f̃0 ∈ H−1
Γ+

(Rn)n.

Proof. (i) From definition (3.2) we obtain that〈(
tΩ(u, π, f̃1)

)∣∣
Γ− −

(
tΩ(u, π, f̃2)

)∣∣
Γ− ,Φ

〉
Γ− =

〈(
tΩ(0, 0, f̃1 − f̃2

)∣∣
Γ− ,Φ

〉
Γ−

=
〈
tΩ(0, 0, f̃1 − f̃2),Φ

〉
∂Ω =

〈
f̃1 − f̃2, γ−1

Ω
Φ
〉
Ω = 0 , ∀Φ ∈ H̃

1
2 (Γ−)n , (3.4)

since supp (f̃1 − f̃2) ⊆ Γ+ and γΩγ
−1
Ω

Φ = Φ = 0 on Γ+, where the last equality follows from the as-
sumption that Φ ∈ H̃

1
2 (Γ−)n. Here γ−1

Ω
: H̃ 1

2 (Γ−)n → H1
Γ+(Ω)n is a right inverse of the trace operator 

γΩ : H1
Γ+(Ω)n → H̃

1
2 (Γ−)n.

Relation (3.4) shows that 
(
tΩ(u, π, ̃f1)

)∣∣
Γ− =

(
tΩ(u, π, ̃f2)

)∣∣
Γ− , as asserted.

(ii) If 
(
u, π, ̃f

)
∈ HHH1

Γ+(Ω, L), then by (3.1) f̃ belongs to the space 
(
H1

Γ+(Ω)n
)′, which can be identified 

with H̃−1(Ω)n/H−1
Γ+

(Rn)n due to Lemma B.3. Hence f̃ can be considered as a class in this quotient space, 
and elements of this class can differ only on Γ+. But by item (i), the conormal derivative restriction (
tΩ(u, π, ̃f)

)∣∣
Γ− does not depend on this difference and hence is well defined. �

3.2. Sobolev spaces on a transversal interface in a Lipschitz domain

In the sequel, we adopt the following assumption on the geometric setting.

Assumption 3.5. Let n ≥ 2 and Ω ⊂ Rn be a bounded Lipschitz domain with connected boundary ∂Ω. 
The domain Ω is divided into two disjoint Lipschitz sub-domains Ω+ and Ω− by an (n − 1)-dimensional 
Lipschitz open interface Σ, such that ∂Σ = Σ∩∂Ω is a non-empty (n −2)-dimensional Lipschitz manifold if 
n > 2, and two distinct points if n = 2. In this case Σ intersects ∂Ω transversally and Ω = Ω+ ∪Σ ∪Ω−. Let 
Γ+ := ∂Ω+ \Σ and Γ− := ∂Ω− \Σ denote the remaining parts of the boundaries ∂Ω+ and ∂Ω−, respectively 
(see Fig. 1).

Therefore, Γ+ and Γ− are non-empty relatively open subsets of ∂Ω.
We need the following spaces defined on the domains Ω, Ω+ and Ω−,

H1
Γ±(Ω)n :=

{
v ∈ H1(Ω)n : (γΩv)|Γ± = 0 on Γ±} , (3.5)

H1
Γ±(Ω±)n :=

{
v± ∈ H1(Ω±)n : (γ

Ω±v±)|Γ± = 0 on Γ±} , (3.6)

where γ ± : H1(Ω±) → H
1
2 (∂Ω±) are the trace operators corresponding to the domains Ω±.
Ω
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Fig. 1. Bounded domain Ω = Ω+ ∪ Σ ∪ Ω− with a transversal interface Σ.

We need also some Sobolev spaces defined on the interface Σ (cf., e.g., [7,37]). The space

H
1
2 (Σ)n :=

{
φ ∈ L2(Σ)n : ∃φ+ ∈ H

1
2 (∂Ω+)n such that φ = φ+∣∣

Σ

}
(3.7)

can be identified with the space{
φ ∈ L2(Σ)n : ∃φ− ∈ H

1
2 (∂Ω−)n such that φ = φ−∣∣

Σ

}
, (3.8)

in view of the equivalence of each of them to the space defined as in (2.8), with Σ instead of ∂Ω (see also 
Lemma B.2). Let us also consider the space

H̃
1
2 (Σ; ∂Ω+)n :=

{
φ̃

+
∈ H

1
2 (∂Ω+)n : supp φ̃

+
⊆ Σ

}
, (3.9)

which can be identified with the space

H̃
1
2 (Σ; ∂Ω−)n :=

{
φ̃

−
∈ H

1
2 (∂Ω−)n : supp φ̃

−
⊆ Σ

}
, (3.10)

as Lemma B.2(ii) shows. Moreover, the norm of the space H̃
1
2 (Σ; ∂Ω±)n is that of the space H

1
2 (∂Ω±)n. 

Let H
1
2• (Σ)n be the space of all functions φ ∈ H

1
2 (Σ)n whose extensions by zero on ∂Ω+, E̊

Σ→∂Ω+φ, belong 

to the space H̃
1
2 (Σ; ∂Ω+)n. Thus,

H
1
2• (Σ)n := {φ ∈ H

1
2 (Σ)n : E̊

Σ→∂Ω+φ ∈ H̃
1
2 (Σ; ∂Ω+)n}.

According to Lemma B.2(ii) the space H
1
2• (Σ)n can be also described as

H
1
2• (Σ)n := {φ ∈ H

1
2 (Σ)n : E̊

Σ→∂Ω−φ ∈ H̃
1
2 (Σ; ∂Ω−)n} ,

and can be endowed with the norm

‖φ‖
H

1
2• (Σ)n

= max
{
‖E̊

Σ→∂Ω+φ‖H 1
2 (∂Ω+)n

, ‖E̊
Σ→∂Ω−φ‖

H
1
2 (∂Ω−)n

}
.

The operators of extension by zero E̊
Σ→∂Ω± : H

1
2• (Σ)n → H̃

1
2 (Σ; ∂Ω±)n are continuous and surjective (cf. [38, 

Theorem 2.10(i)]). Therefore, the space H
1
2• (Σ)n can be identified with the spaces H̃ 1

2 (Σ; ∂Ω±)n, and in view 



M. Kohr et al. / J. Math. Anal. Appl. 516 (2022) 126464 11
of [28, Theorem B.3], it can be also described as the weighted space H
1
2
00(Σ) of all functions φ ∈ H

1
2 (Σ)n, 

such that δ− 1
2φ ∈ L2(Σ)n, where δ(x) is the distance from x ∈ Σ to ∂Σ. This is a Hilbert space endowed 

with the norm

‖φ‖2
H

1
2
00(Σ)n

:= ‖φ‖2
H

1
2 (Σ)n

+ ‖ρ− 1
2φ‖2

L2(Σ)n

(cf. [33, Chapter 1, Theorem 11.7], see also [13]).
In addition, we consider the spaces

H− 1
2 (Σ)n :=

(
H

1
2• (Σ)n

)′
, H̃− 1

2 (Σ)n :=
(
H

1
2 (Σ)n

)′
. (3.11)

Lemma 3.6. The operator γΣ : H1
Γ+(Ω)n → H

1
2• (Σ)n given by

γΣv :=
(
γ

Ω+

(
v|

Ω+

)) ∣∣
Σ =

(
γ

Ω−

(
v|

Ω−

)) ∣∣
Σ , ∀ v ∈ H1

Γ+(Ω)n , (3.12)

is linear, bounded and surjective.

Proof. The linearity and boundedness of the operator γΣ follow from the linearity and boundedness of the 
trace operators

γ
Ω+ : H1

Γ+(Ω+)n → H̃
1
2 (Σ; ∂Ω+)n , γ

Ω− : H1(Ω−)n → H
1
2 (∂Ω−)n (3.13)

(see Lemma 2.2). Moreover, the equality of restrictions to Σ of the traces from Ω+ and Ω− in (3.12) follows 
from Lemma B.1(ii) and the membership of v in H1(Ω)n. In addition, the operators in (3.13) are surjective 

(for the first of them see Lemma 2.2), and then the operator γΣ : H1
Γ+(Ω)n → H

1
2• (Σ)n is also surjective. To 

this end, assume that ϕ ∈ H
1
2• (Σ)n. Therefore, E̊

Σ→∂Ω±ϕ ∈ H̃
1
2 (Σ; ∂Ω±)n and Lemma 2.2 implies that there 

exist v± ∈ H1
Γ±(Ω±)n such that γ

Ω±v± = E̊
Σ→∂Ω±ϕ on ∂Ω±. Consequently, 

(
γ

Ω+v+) ∣∣
Σ =

(
γ

Ω−v−) ∣∣
Σ on 

Σ, and by Lemma B.1(i), there exists v ∈ H1(Ω)n such that v|Ω± = v±. Moreover, γ
Ω±v± = 0 on Γ±, 

and hence v ∈ H̊1(Ω)n, and γΣv = ϕ. Thus, the operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n is surjective. Since 

H̊1(Ω)n ⊂ H1
Γ+(Ω)n, the operator γΣ : H1

Γ+(Ω)n → H
1
2• (Σ)n is surjective as well. �

Lemma 3.6 implies that the space H
1
2• (Σ)n can be also characterized as

H
1
2• (Σ)n =

{
φ ∈ L2(Σ) : ∃v ∈ H1

Γ+(Ω)n such that φ =
(
γ

Ω+

(
v|

Ω+

)) ∣∣
Σ =

(
γ

Ω−

(
v|

Ω−

)) ∣∣
Σ

}
. (3.14)

3.3. The generalized conormal derivative for the Stokes system on a transversal interface in a bounded 
Lipschitz domain

Recall that the space HHH1(Ω, L) and the conormal derivative operator tΩ : HHH1(Ω, L) → H− 1
2 (∂Ω)n are 

given by Definition A.2, which assumes that the distribution f̃ there is an element of H̃−1(Ω)n. For the case 
when f̃ belongs to 

(
H1

Γ+(Ω)n
)′ but is not fixed as an element of H̃−1(Ω)n, the conormal derivative tΩ(u, π; ̃f)

can not be uniquely defined on the entire boundary ∂Ω but its restriction to Γ− can (see Definition 3.2).
Let us now consider the following counterpart of Definition 3.2 giving the restriction of conormal derivative 

to the interface Σ (cf. [28, Definition 5.4]).

Definition 3.7. Let Assumption 3.5 and condition (1.2) hold. Let

HHH1
Γ±(Ω±,L) :=

{
(u±, π±, f̃±) ∈ H1

Γ±(Ω±)n × L2(Ω±) ×
(
H1

Γ±(Ω±)n
)′ : L(u±, π±) = f̃±|Ω± in Ω±

}
.

(3.15)
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If (u±, π±, ̃f±) ∈HHH1
Γ±(Ω±, L), then the formula

〈(
tΩ±(u±, π±; f̃±)

)
|Σ ,Φ±〉

Σ
:=

〈
aαβij Ejβ(u±), Eiα(γ−1

Ω±Φ±)
〉

Ω±
−
〈
π±,div(γ−1

Ω±Φ±)
〉

Ω±

+
〈
f̃±, γ−1

Ω±Φ±
〉

Ω±
, ∀Φ± ∈ H

1
2• (Σ)n , (3.16)

defines the generalized conormal derivative 
(
tΩ±(u±, π±; ̃f±)

)
|Σ ∈ H− 1

2 (Σ)n, where γ−1
Ω± : H

1
2• (Σ)n →

H1
Γ±(Ω±)n represents a bounded right inverse of the trace operator γ

Ω± : H1
Γ±(Ω±)n → H

1
2• (Σ)n.

According to Lemma 2.2, all duality pairings in formula (3.16) are well-defined. Moreover, we have the 
following result, whose proof is omitted for the sake of brevity (cf. [41, Proposition 8.1] for the Laplace 
operator, [30, Lemma 7.6] for extensions to compact Riemannian manifolds, and [7, Definition 7.1] in the 
case of higher order elliptic operators, see also [37, Lemma 4.3], [27, Lemma 2.3], [26, Lemma 1], [38, 
Definition 3.1, Theorem 3.2], [42, Theorem 10.4.1]).

Lemma 3.8. Let Assumption 3.5 and conditions (1.2) and (1.3) hold.

(i) The generalized conormal derivative operator tΩ± : HHH1
Γ±(Ω±, L) → H− 1

2 (Σ)n is linear and bounded, 
and definition (3.16) does not depend on the particular choice of the right inverse γ−1

Ω± : H
1
2• (Σ)n →

H1
Γ±(Ω±)n of the trace operator γ

Ω± : H1
Γ±(Ω±)n → H

1
2• (Σ)n.

(ii) Let (u+, π+, ̃f+) ∈HHH1
Γ+(Ω+, L) and (u−, π−, ̃f−) ∈HHH1(Ω−, L). Let π ∈ L2(Ω) and f̃ ∈

(
H1

Γ+(Ω)n
)′ be 

such that

π|Ω± = π± ,
〈
f̃ ,w

〉
Ω :=

〈
f̃+,w|Ω+

〉
Ω+ +

〈
f̃−,w|Ω−

〉
Ω− , ∀w ∈ H1

Γ+(Ω)n . (3.17)

Then the following Green identity holds

〈(
tΩ+(u+, π+; f̃+)

)
|Σ +

(
tΩ−(u−, π−; f̃−)

)
|Σ , γΣw

〉
Σ

+
〈(

tΩ−(u−, π−; f̃−)
)
|
Γ− ,

(
γΩw

)
|Γ−

〉
Γ−

=
〈
aαβij Ejβ(u+), Eiα(w)

〉
Ω+

+
〈
aαβij Ejβ(u−), Eiα(w)

〉
Ω−

− 〈π,divw〉Ω + 〈f̃ ,w〉Ω , ∀ w ∈ H1
Γ+(Ω)n .

(3.18)

Note that the existence of a function π ∈ L2(Ω) as in (3.17) follows from Lemma B.1, while f̃ defined 
in (3.17) belongs to the space 

(
H1

Γ+(Ω)n
)′. (Indeed, the relations f̃+ ∈

(
H1

Γ+(Ω+)n
)′ and 

(
H1

Γ+(Ω+)n
)′

↪→(
H1

Γ+(Ω)n
)′ imply that f̃+ ∈

(
H1

Γ+(Ω)n
)′. In addition, the embedding f̃− ∈ H̃−1(Ω−)n implies that f̃− ∈(

H1
Γ+(Ω)n

)′. Thus, f̃ = f̃+ + f̃− belongs indeed to 
(
H1

Γ+(Ω)n
)′.)

4. Mixed and mixed-transmission problems for the anisotropic Stokes system in bounded Lipschitz 
domains

Well-posedness results for the mixed problem for the Stokes and Brinkman systems with an L∞ scalar 
viscosity coefficient in Lipschitz domains on compact Riemannian manifolds have been obtained in [30, 
Theorem 7.9] and [31, Theorem 8.4]. Mixed problems for the Stokes system with constant coefficients in 
polyhedral domains, or in bounded Lipschitz domains of R2, have been analyzed in [35, Theorem 5.1] and 
[44, Theorem 3.1]. Well-posedness and regularity results for the elasticity equations with mixed boundary 
conditions on polyhedral domains have been obtained in [36]. Well-posedness results for the mixed problem 
for higher-order elliptic operators in (ε, δ)-domains have been established in [7, Theorem 7.3].
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In this section we show the well-posedness of boundary value problems of mixed-transmission type for 
the anisotropic Stokes system in a compressible framework, in bounded Lipschitz domains with internal 
Lipschitz interfaces.

4.1. Mixed problem for the anisotropic compressible Stokes system

Let us now consider the following variational problem.
For given data (F, g) ∈

(
H1

Γ+(Ω)n
)′ × L2(Ω), find (u, π) ∈ H1

Γ+(Ω)n × L2(Ω) such that{
aA;Ω(u,w) + bΩ(w, π) = 〈F,w〉Ω , ∀w ∈ H1

Γ+(Ω)n ,

bΩ(u, q) = −〈g, q〉Ω, ∀ q ∈ L2(Ω) ,
(4.1)

where aA;Ω : H1
Γ+(Ω)n ×H1

Γ+(Ω)n → R, bΩ : H1
Γ+(Ω)n × L2(Ω) → R are the bilinear forms given by

aA;Ω(v,w) :=
〈
Aαβ∂β(v), ∂α(w)

〉
Ω

=
〈
aαβij Ejβ(v), Eiα(w)

〉
Ω , ∀v, w ∈ H1

Γ+(Ω)n , (4.2)

bΩ(v, q) := − 〈divv, q〉Ω , ∀v ∈ H1
Γ+(Ω)n , ∀ q ∈ L2(Ω) . (4.3)

Theorem 4.1. Let conditions (1.2)-(1.4) and Assumption 3.1 hold. Then for all given data (F, g) ∈(
H1

Γ+(Ω)n
)′ × L2(Ω), the variational problem (4.1) is well-posed, that is, it has a unique solution (u, π) ∈

H1
Γ+(Ω)n × L2(Ω) and there exists a constant C = C(Ω, Γ+, Γ−, CA, ‖A‖, n) > 0, such that

‖u‖H1(Ω)n + ‖π‖L2(Ω) ≤ C
(
‖F‖H−1(Ω)n + ‖g‖L2(Ω)

)
. (4.4)

Proof. First, we note that condition (1.2) and the Hölder inequality imply that the bilinear form aA;Ω :
H1

Γ+(Ω)n×H1
Γ+(Ω)n → R is bounded. In addition, assumption (1.4) combined with the first Korn inequality 

for functions in H1
Γ+(Ω)n (cf., e.g., [36, Proposition 5, Eq. (53)]) implies that

C0C
−1
A ‖u‖2

H1(Ω)n ≤ C−1
A ‖E(u)‖2

L2(Ω)n×n

≤
〈
aαβij Ejβ(u), Eiα(u)

〉
Ω

= aA;Ω(u,u) , ∀u ∈ H1
Γ+;div(Ω)n , (4.5)

with some constant C0 = C0(Ω, Γ+, Γ−, CA, ‖A‖, n) > 0.
Second, it is immediate that the bilinear form bΩ : H1

Γ+(Ω)n×L2(Ω) → R given by (4.3) is also bounded. 
In addition, Lemma 2.3(ii) shows that the operator div : H1

Γ+(Ω)n/H1
Γ+;div(Ω)n → L2(Ω) is an isomorphism. 

Then by, e.g., [18, Theorem A.56, Remark 2.7] there exists a constant CΓ+ > 0 such that the bilinear form 
bΩ(·, ·) satisfies the inf-sup condition

inf
q∈L2(Ω)\{0}

sup
v∈H1

Γ+ (Ω)n\{0}

bΩ(v, q)
‖v‖H1

Γ+ (Ω)n‖q‖L2(Ω)
≥ CΓ+ . (4.6)

Hence due to, e.g., Theorem 2.34 in [18] (with X = H1
Γ+(Ω)n, V := KerB = H1

Γ+;div(Ω)n, which is the null 
space of the operator B := −div : X → M , and M = L2(Ω)) shows that there exists a unique solution 
(u, π) ∈ H1

Γ+(Ω)n × L2(Ω) of the variational problem (4.1), which satisfies inequality (4.4). �
Let us prove the following well-posedness result for the mixed boundary value problem with homogeneous 

Dirichlet condition (see also [31, Theorem 8.4] for the isotropic Stokes system in the compact Riemannian 
setting).
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Theorem 4.2. Let conditions (1.2)-(1.4) and Assumption 3.1 hold. Then for all given data (f̃ , g, ψ
Γ− ) ∈(

H1
Γ+(Ω)n

)′×L2(Ω) ×H− 1
2 (Γ−)n, the mixed Dirichlet-Neumann problem for the anisotropic Stokes system⎧⎪⎨⎪⎩

L(u, π) = f̃ |Ω, divu = g in Ω ,

(γΩu)|
Γ+ = 0 on Γ+ ,(

tΩ(u, π; f̃)
)
|Γ− = ψ

Γ− on Γ−
(4.7)

has a unique solution (u, π) in H1(Ω)n×L2(Ω) and there exists a constant C0 = C0(Ω, Γ+, Γ−, CA, ‖A‖, n) >
0, such that

‖u‖H1(Ω)n + ‖π‖L2(Ω) ≤ C0

(
‖f̃‖

H̃−1(Ω+)n + ‖g‖L2(Ω) + ‖ψ
Γ−‖

H− 1
2 (Γ−)n

)
. (4.8)

Proof. Let us prove that the mixed problem (4.7) is equivalent to variational problem (4.1) with F ∈(
H1

Γ+(Ω)n)′ defined by

〈F,w〉Ω =
〈
ψ

Γ− , γΩw
〉

Γ−
−
〈
f̃ ,w

〉
Ω , ∀ w ∈ H1

Γ+(Ω)n . (4.9)

First, let us prove that if (u, π) ∈ H1(Ω)n×L2(Ω) is a solution of the boundary value problem (4.7) then 
it solves the variational problem (4.1) with F given by (4.9). Indeed, the homogeneous Dirichlet boundary 
condition in (4.7) implies that u ∈ H1

Γ+(Ω)n. Then the first equation in (4.1) follows from the Green identity 
(3.3), the Neumann boundary condition in (4.7), and notation (4.9). The second equation in (4.1) follows 
from the equation divu = g in (4.7) and a duality argument.

Conversely, assume that the pair (u, π) ∈ H1
Γ+(Ω)n ×L2(Ω) satisfies the variational problem (4.1). Then 

u satisfies the Dirichlet boundary condition in (4.7), and the first equation in (4.1) can be written as〈
aαβij Ejβ(u), Eiα(w)

〉
Ω −

〈
π,divw

〉
Ω −

〈
f̃ ,w

〉
Ω = 0, ∀w ∈ H1

Γ+(Ω)n. (4.10)

Since D(Ω)n ⊂ H1
Γ+(Ω)n, formula (4.10) holds also for any w ∈ D(Ω)n, which implies the anisotropic Stokes 

equation in (4.7) in the sense of distributions. Moreover, the second equation in (4.1) is the variational form 
of the equation divu = g in Ω.

In addition, formula (3.2) and the first equation in (4.1) with w = γ−1
Ω

Φ ∈ H1
Γ+(Ω)n yield

〈(
tΩ(u, π; f̃)

)
|Γ− ,Φ

〉
Γ− =

〈
ψ

Γ− ,Φ
〉

Γ−
, ∀Φ ∈ H̃

1
2 (Γ−)n ,

and thus, 
(
tΩ(u, π; ̃f)

)
|Γ− = ψ

Γ− on Γ−.
Consequently, the mixed problem (4.7) is equivalent to the variational problem (4.1) with F given by 

(4.9), as asserted. Theorem 4.1 shows then that the mixed problem (4.7) has a unique solution, given by 
the solution of the variational problem (4.1), and inequality (4.8) follows from inequality (4.4) and the 
continuity of the operators involved in relation (4.9). �

In order to analyze the fully non-homogeneous mixed problem, we need the following Bogovskii-type 
result.

Lemma 4.3. Let Assumption 3.1 hold. Then for (g, ϕ
Γ+ ) ∈ L2(Ω) × H

1
2 (Γ+)n given, there exist a field 

v ∈ H1(Ω)n and a constant C
Γ+ = C

Γ+ (Ω, Γ+, n) > 0 such that

divv = g in Ω , (4.11)

γΩv = ϕ
Γ+ on Γ+ , (4.12)
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and

‖v‖H1(Ω)n ≤ C
Γ+

(
‖g‖L2(Ω) + ‖ϕ

Γ+ ‖H 1
2 (Γ+)n

)
. (4.13)

Proof. Let us introduce the function

v1 := γ−1
Ω E

Γ+→∂Ω
ϕ

Γ+ , (4.14)

where γ−1
Ω : H

1
2 (∂Ω)n → H1(Ω)n is a continuous right inverse of the trace operator γΩ : H1(Ω)n →

H
1
2 (∂Ω)n, and E

Γ+→∂Ω
: H 1

2 (Γ+)n → H
1
2 (∂Ω)n is a continuous extension operator (see, e.g., Proposition 

4.1 in [41] for the existence of such an operator). Then v1 belongs to H1(Ω)n. Let us now define

g1 := divv1 ∈ L2(Ω). (4.15)

Hence g − g1 ∈ L2(Ω). Then due to Lemma 2.3 there exist v0 ∈ H1
Γ+ (Ω)n and a constant C0

Γ+ =
C0

Γ+ (Ω, Γ+, n) > 0 such that

divv0 = g − g1 in Ω , (4.16)

‖v0‖H1(Ω)n ≤ C0
Γ+‖g − g1‖L2(Ω) ≤ C0

Γ+ (‖g‖L2(Ω) + ‖g1‖L2(Ω)) . (4.17)

Finally, choosing v := v1 + v0 and using inequality (4.17) and the continuity of the operators involved 
in (4.14)-(4.15), we obtain the desired result. �

Let us consider the spaces

XΩ := H1(Ω)n × L2(Ω) , (4.18)

YΩ :=
(
H1

Γ+(Ω)n
)′ × L2(Ω) ×H

1
2 (Γ+)n ×H− 1

2 (Γ−)n . (4.19)

Then we obtain the following well-posedness result.

Theorem 4.4. Let conditions (1.2)-(1.4) and Assumption 3.1 hold. Then for all given data (f̃ , g, ϕ
Γ+ , ψΓ− ) ∈

YΩ, there exists a constant C = C(Ω, Γ+, Γ−, CA, ‖A‖, n) > 0, such that the mixed Dirichlet-Neumann 
problem for the anisotropic Stokes system⎧⎪⎨⎪⎩

L(u, π) = f̃ |Ω, divu = g in Ω ,

(γΩu)|
Γ+ = ϕ

Γ+ on Γ+ ,(
tΩ(u, π; f̃)

)
|Γ− = ψ

Γ− on Γ−
(4.20)

has a unique solution (u, π) ∈ XΩ, which satisfies the inequality

‖u‖H1(Ω)n + ‖π‖L2(Ω) ≤ C
(
‖f̃‖

H̃−1(Ω+)n + ‖g‖L2(Ω) + ‖ϕ
Γ+‖H 1

2 (Γ+)n
+ ‖ψ

Γ−‖
H− 1

2 (Γ−)n

)
. (4.21)

Moreover, the solution can be represented as (u, π) = T Ω

(
f̃ , g,ϕ

Γ+ ,ψΓ−

)
, where T Ω : YΩ → XΩ is a linear 

and continuous operator.

Proof. Let v ∈ H1(Ω)n be the function given by Lemma 4.3. For the velocity-pressure couple (v, 0), let us 
also define the field f̌ with the entries
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f̌i := ∂αE̊Ω
(
aαβij Ejβ(v)

)
, i = 1, . . . , n, (4.22)

where E̊Ω is the operator of zero extension from Ω to Rn. Hence f̌ ∈ H̃−1(Ω)n↪→
(
H1

Γ+(Ω)n
)′, 

f̃ − f̌ ∈
(
H1

Γ+(Ω)n
)′, f̌ |Ω = L(v, 0) in Ω, as follows from (1.7), and tΩ(v, 0; ̌f) = 0 due to Definition 3.2.

Using the notation u0 := u − v and taking into account that

tΩ(u0, π; f̃ − f̌) = tΩ(u − v, π; f̃ − f̌) = tΩ(u, π; f̃) − tΩ(v, 0; f̌) = tΩ(u, π; f̃) ,

we reduce problem (4.20) to the mixed problem⎧⎪⎨⎪⎩
L(u0, π) = (f̃ − f̌)|Ω, divu0 = 0 in Ω ,

(γΩu0)|Γ+ = 0 on Γ+ ,(
tΩ(u0, π; f̃ − f̌)

)
|Γ− = ψ

Γ− on Γ−
(4.23)

for (u0, π) ∈ H1(Ω)n ×L2(Ω). Theorem 4.2 shows that problem (4.23) is uniquely solvable and its solution 
depends continuously on the right hand sides f̃ − f̌ ∈

(
H1

Γ+(Ω)n
)′ and ψ

Γ− ∈ H− 1
2 (Γ−)n.

Then the pair (u, π) = (v + u0, π) ∈ H1(Ω)n × L2(Ω) is a solution of the mixed problem (4.20), which, 
due to Theorem 4.2 and Lemma 4.3 (for v), depends continuously on the data (f̃ , g, ϕ

Γ+ , ψΓ− ), that is, 
estimate (4.21) holds. By using again Theorem 4.2, it follows that this solution is unique. Moreover, the 
linearity and boundedness of the solution operator T Ω : YΩ → XΩ is an immediate consequence of the 
linearity of the mixed problem (4.20) and of estimate (4.21). �
4.2. Mixed-transmission problem with homogeneous Dirichlet and interface trace conditions

Let us consider the spaces

XΩ+,Ω− := H1(Ω+)n × L2(Ω+) ×H1(Ω−)n × L2(Ω−) , (4.24)

YΩ+,Ω− :=
(
H1

Γ+(Ω+)n
)′×H̃−1(Ω−)n × L2(Ω) ×H− 1

2 (Σ)n×H− 1
2 (Γ−)n , (4.25)

and the mixed-transmission problem for the anisotropic Stokes system with homogeneous Dirichlet and 
interface trace conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ , divu+ = g|Ω+ in Ω+ ,

L(u−, π−) = f̃−|Ω− , divu− = g|Ω− in Ω− ,

(γ
Ω+u+)|Σ − (γ

Ω−u−)|Σ= 0 on Σ ,(
tΩ+(u+, π+; f̃+)

)
|Σ +

(
tΩ−(u−, π−; f̃−)

)
|Σ = ψ

Σ
on Σ ,

(γ
Ω+u+)|

Γ+ = 0 on Γ+,(
tΩ−(u−, π−; f̃−)

)
|Γ− = ψ

Γ− on Γ− ,

(4.26)

with the given data (f̃+, ̃f−, g, ψ
Σ
, ψ

Γ− ) ∈ YΩ+,Ω− and the unknown (u+, π+,u−, π−) ∈ XΩ+,Ω− .
Note that the conormal derivative operators tΩ+ and tΩ− involved in the second transmission condition 

in (4.26), are considered as in Definition 3.2 and correspond to the outward unit normals to Ω+ and Ω−, 
respectively, that have opposite directions on Σ. However, one can instead consider also the conormal 
derivatives with respect to unit normals of the same direction on Σ, but then the sum in the second 
transmission condition in (4.26) needs to be replaced by the difference and leads to the jump of the conormal 
derivatives. Such an approach has been considered in [25–27].

Now, let (u+, π+,u−, π−)∈XΩ+,Ω− be such that u+ and u− satisfy the interface condition (γ
Ω+u+)|Σ =

(γ
Ω−u−)|Σ on Σ. Then Lemma B.1 implies that there exists a unique pair 

(
u, π

)
∈ H1(Ω)n × L2(Ω) such 

that
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u|Ω+ = u+, u|Ω− = u−, π|Ω+ = π+, π|Ω− = π−. (4.27)

Moreover, if u+ satisfies also the homogeneous Dirichlet condition in (4.26), then (u, π) ∈ H1
Γ+(Ω)n×L2(Ω).

Theorem 4.5. Let Assumption 3.5 and conditions (1.2)-(1.4) hold. Then for all given data (f̃+, ̃f−, g, ψ
Σ
,ψ

Γ− )
∈ YΩ+,Ω− , the mixed-transmission problem (4.26) for the anisotropic Stokes system has a unique solution 
(u+, π+,u−, π−) in the space XΩ+,Ω− and there exists a constant C = C(Ω+, Ω−, CA, ‖A‖, n) > 0 such that

∥∥∥ (u+, π+,u−, π−) ∥∥∥
XΩ+,Ω−

≤ C
∥∥∥(f̃+, f̃−, g,ψ

Σ
,ψ

Γ−

)∥∥∥
YΩ+,Ω−

. (4.28)

Proof. Let us prove that the mixed-transmission problem (4.26) with the unknown (u+, π+,u−, π−) ∈
XΩ+,Ω− is equivalent, in the sense of relations (4.27), to the variational problem (4.1) with the unknown 
(u, π) ∈ H1

Γ+(Ω)n × L2(Ω), and F ∈
(
H1

Γ+(Ω)n)′ is given by

〈F,w〉Ω :=
〈
ψ

Σ
, γΩw

〉
Σ +

〈
ψ

Γ− , γΩw
〉

Γ−
−
(〈

f̃+,w|Ω+
〉
Ω+ +

〈
f̃−,w|Ω−

〉
Ω−

)
=
〈
ψ

Σ
, γΣw

〉
Σ +

〈
ψ

Γ− , γΩw
〉

Γ−
−
(〈

f̃+,w|Ω+
〉
Ω+ +

〈
f̃−,w|Ω−

〉
Ω−

)
=
〈
γ∗

Σ
ψ

Σ
,w

〉
Ω +

〈
γ∗

Ω
ψ

Γ− ,w
〉

Ω
−
(〈

f̃+,w|Ω+
〉
Ω+ +

〈
f̃−,w|Ω−

〉
Ω−

)
, ∀ w ∈ H1

Γ+(Ω)n , (4.29)

where γ∗
Ω

: H− 1
2 (Γ−)n →

(
H1

Γ+(Ω)n)′ is the adjoint of the operator γΩ : H1
Γ+(Ω)n → H̃

1
2 (Γ−)n, and 

γ∗
Σ

: H− 1
2 (Σ)n →

(
H1

Γ+(Ω)n)′ is the adjoint of the operator γΣ : H1
Γ+(Ω)n → H

1
2• (Σ)n (see Lemma 2.2 and 

Lemma 3.6). Therefore,

F = γ∗
Σ
ψ

Σ
+ γ∗

Ω
ψ

Γ− −
(
f̃+ + f̃−

)
.

Recall that the space 
(
H1

Γ+(Ω+)n)′ can be identified with a subspace of H−1(Ω)n given by (B.2) (see 
Lemma B.3).

First, assume that (u+, π+,u−, π−) ∈ XΩ+,Ω− satisfies the mixed-transmission problem (4.26). Then the 
first equation of the variational problem (4.1) follows from the Green identity (3.18) applied to the pairs 
(u+, π+) ∈ H1

Γ+(Ω+)n × L2(Ω+) and (u−, π−) ∈ H1(Ω−)n × L2(Ω−) in Ω+ and Ω−, respectively, with 
w ∈ H1

Γ+(Ω)n and f̃ = −F, where F ∈
(
H1

Γ+(Ω)n)′ is given by formula (4.29). The second equation in (4.1)
follows from the equations divu± = g|Ω± in Ω±.

Conversely, let (u, π) ∈ H1
Γ+(Ω)n × L2(Ω) satisfy the variational problem (4.1) and let (u±, π±) :=

(u|Ω± , π|Ω±) in Ω±. Then the inclusion u ∈ H1
Γ+(Ω)n implies that the Dirichlet condition (γ

Ω+u+)|
Γ+ = 0

on Γ+ and the interface condition (γ
Ω+u+)|Σ = (γ

Ω−u−)|Σ on Σ are satisfied. Therefore, we obtain that 
(u+, π+,u−, π−) ∈ XΩ+,Ω− . In addition, the first equation in (4.1) can be written as

〈
aαβij Ejβ(u), Eiα(w)

〉
Ω −

〈
π,divw

〉
Ω −

〈
F,w

〉
Ω = 0, ∀w ∈ H1

Γ+(Ω)n. (4.30)

Since D(Ω±)n ⊂ H1
Γ+(Ω)n, formula (4.30) holds also for any w ∈ D(Ω±)n. Then the distributional form of 

the anisotropic Stokes equation in (4.26), corresponding to each of the domains Ω+ and Ω−, follows from 
equation (4.30) written for all w ∈ D(Ω+)n and w ∈ D(Ω−)n, respectively. The second variational equation 
in (4.1) yields the divergence equation divu = g in Ω, and hence divu± = g|Ω± in Ω±. Therefore, the pairs 
(u±, π±) satisfy the anisotropic Stokes system in Ω±. Then by using again the first equation in (4.1) and by 
applying the Green identity (3.18) to the pairs (u±, π±) in Ω±, we obtain for any w ∈ D(Ω)n ⊂ H̊1(Ω)n ⊂
H1

+(Ω)n that
Γ
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〈(
tΩ+(u+, π+; f̃+)

)∣∣
Σ −

(
tΩ−(u−, π−; f̃−)

)∣∣
Σ, (γΩw)|Σ

〉
Σ

=
〈
ψ

Σ
, γΣw

〉
Σ . (4.31)

The dense embedding of the space D(Ω)n in H̊1(Ω)n shows that formula (4.31) is satisfied also for any 

w ∈ H̊1(Ω)n. Moreover, since the trace operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n defined by (3.12) is surjective (see 

the proof of Lemma 3.6), formula (4.31) can be written as

〈(
tΩ+(u+, π+; f̃+)

)∣∣
Σ −

(
tΩ−(u−, π−; f̃−)

)∣∣
Σ,ϕ

〉
Σ

=
〈
ψ

Σ
,ϕ

〉
Σ , ∀ϕ∈ H

1
2• (Σ)n .

Therefore, 
(
tΩ+(u+, π+; ̃f+)

)
Σ
−
(
tΩ−(u−, π−; f̃−)

)∣∣
Σ = ψ

Σ
on Σ. Definition (3.2) and the first equation in 

(4.1) imply also that 
(
tΩ(u, π; ̃f)

)
|Γ− = ψ

Γ− on Γ−.
Consequently, the mixed-transmission problem (4.26) is indeed equivalent to the variational problem 

(4.1). According to Theorem 4.1, there exists a unique solution (u, π) ∈ H1
Γ+(Ω)n×L2(Ω) of the variational 

problem (4.1) with F ∈
(
H1

Γ+(Ω)n)′ given by (4.29). Hence the equivalence just proved implies the well-
posedness of the mixed-transmission problem (4.26) in the space XΩ+,Ω− , and estimate (4.28) follows from 
(4.4) and (4.29). �
4.3. Mixed-transmission problem with non-homogeneous Dirichlet and interface trace conditions

The remaining part of this section is devoted to the well-posedness of a fully non-homogeneous mixed-
transmission problem for the anisotropic Stokes system. In order to analyze such a problem, we need the 
following Bogovskii-type result.

Lemma 4.6. Let Assumption 3.5 hold. Then for all given data (g, ϕ
Σ
, ϕ

Γ+ ) ∈ L2(Ω) ×H
1
2 (Σ)n ×H

1
2 (Γ+)n, 

there exist two functions v+ ∈ H1(Ω+)n and v− ∈ H1(Ω−)n such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
divv+ = g|Ω+ in Ω+

divv− = g|Ω− in Ω−

(γ
Ω+v+)|Σ − (γ

Ω−v−)|Σ = ϕ
Σ

on Σ ,

(γ
Ω+v+)|Γ+ = ϕ

Γ+ on Γ+ .

(4.32)

Moreover, there exists a constant CΣ = CΣ(Ω+, Ω−, n) > 0, such that

‖v+‖H1(Ω+)n +‖v−‖H1(Ω−)n ≤CΣ

(
‖g‖L2(Ω)+‖ϕ

Σ
‖
H

1
2 (Σ)n

+‖ϕ
Γ+ ‖H 1

2 (Γ+)n

)
.

Proof. Let us introduce the functions

v+
1 := 0 in Ω+, v−

1 := −γ−1
Ω−EΣ→∂Ω−ϕ

Σ
in Ω−, (4.33)

where γ−1
Ω− : H 1

2 (∂Ω−)n → H1(Ω−)n is a continuous right inverse of the trace operator γΩ− : H1(Ω−)n →
H

1
2 (∂Ω−)n, and E

Σ→∂Ω− : H 1
2 (Σ)n → H

1
2 (∂Ω−)n is a continuous extension operator. Then v±

1 belong to 
H1(Ω±)n, respectively, and these functions satisfy the transmission condition in (4.32). Let us now define

g+
1 := 0 in Ω+, g−1 := divv−

1 in Ω−, (4.34)

and let G ∈ L2(Ω) be such that

G|Ω± = g|Ω± − g±1 . (4.35)
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Then by Lemma 4.3 there exists a solution w ∈ H1(Ω)n of the boundary problem{
divw = G in Ω ,

γΩw = ϕ
Γ+ on Γ+ ,

(4.36)

and, moreover, there exists a constant C
Γ+ = C

Γ+ (Ω, Γ+,n) > 0 such that

‖w‖H1(Ω)n ≤ C
Γ+

(
‖g‖L2(Ω)+‖g−1 ‖L2(Ω−) + ‖ϕ

Γ+‖H 1
2 (Γ+)n

)
. (4.37)

Finally, choosing v± ∈ H1(Ω±)n such that v± := v±
1 +w|Ω± , and using inequality (4.37) and the continuity 

of the operators involved in (4.33)-(4.34), we obtain the desired result. �
For a better presentation of the next result, let us recall that XΩ+,Ω− and YΩ+,Ω− are the spaces defined 

in (4.24) and respectively (4.25). Thus,

YΩ+,Ω− :=
(
H1

Γ+(Ω+)n)′ × H̃−1(Ω−)n × L2(Ω) ×H
1
2 (Σ)n ×H− 1

2 (Σ)n ×H
1
2 (Γ+)n ×H− 1

2 (Γ−)n .

Then we have the following well-posedness result.

Theorem 4.7. Let Assumption 3.5 and conditions (1.2)-(1.4) be satisfied. Then the following properties hold.

(i) For all given data (f̃+, ̃f−, g, ϕ
Σ
, ψ

Σ
, ϕ

Γ+ , ψΓ− ) ∈ YΩ+,Ω− , the mixed-transmission problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ , divu+ = g|Ω+ in Ω+ ,

L(u−, π−) = f̃−|Ω− , divu− = g|Ω− in Ω− ,

(γ
Ω+u+)|Σ − (γ

Ω−u−)|Σ = ϕ
Σ

on Σ ,(
tΩ+(u+, π+; f̃+)

)
|Σ +

(
tΩ−(u−, π−; f̃−)

)
|Σ = ψ

Σ
on Σ ,

(γ
Ω+u+)|

Γ+ = ϕ
Γ+ on Γ+ ,(

tΩ−(u−, π−; f̃−)
)
|Γ− = ψ

Γ− on Γ−

(4.38)

has a unique solution (u+, π+,u−, π−) ∈ XΩ+,Ω− , and there exists a constant C = C(Σ, Γ+, Γ−, CA, ‖A‖,
n) >0, such that∥∥∥ (u+, π+,u−, π−) ∥∥∥

XΩ+,Ω−
≤ C

∥∥∥(f̃+, f̃−, g,ϕ
Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ−

)∥∥∥
YΩ+,Ω−

.

(ii) The solution of the mixed-transmission problem (4.38) can be represented as

(u+, π+,u−, π−) = T
(
f̃+, f̃−, g,ϕ

Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ−

)
,

where T : YΩ+,Ω− → XΩ+,Ω− is a linear and continuous operator.

Proof. (i) For (g, ϕ
Σ
, ϕ

Γ+ ) ∈ L2(Ω) ×H
1
2 (Σ)n ×H

1
2 (∂Ω)n given, there exist the functions v± ∈ H1(Ω±)n

satisfying the boundary value problem (4.32). For the velocity-pressure couples (v±, 0), let

f̌±
i := ∂αE̊Ω±

(
aαβij Ejβ(v±)

)
, i = 1, . . . , n, (4.39)

where E̊Ω± is the operator of zero extension from Ω± to Rn. Therefore, we have that f̌+ ∈ H̃−1(Ω+)n ↪→(
H1

Γ+(Ω+)n
)′ and f̌− ∈ H̃−1(Ω−)n, where f̌± = (f̌±

1 , . . . , f̌±
n ). Moreover, f̌±|Ω± = L(v±, 0) in Ω± (see 

(1.7)), and tΩ±(v±, 0; ̌f±) = 0 (due to Definition 3.2).
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Then by considering the change of variables w± := u± − v± ∈ H1(Ω±)n, the fully nonhomogeneous 
mixed-transmission problem (4.38) reduces to the following mixed-transmission problem with the homoge-
neous Dirichlet condition on Γ+ and the homogeneous interface condition for the traces across Σ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(w+, π+) = (f̃+ − f̌+)|Ω+ , divw+ = 0 in Ω+ ,

L(w−, π−) = (f̃− − f̌−)|Ω− , divw− = 0 in Ω− ,

(γ
Ω+w+)|Σ − (γ

Ω−w−)|Σ= 0 on Σ ,(
tΩ+(w+, π+; f̃+−f̌+)

)
|Σ +

(
tΩ−(w−, π−; f̃−−f̌−)

)
|Σ = ψ

Σ
on Σ ,

(γ
Ω+w+)|

Γ+ = 0 on Γ+,(
tΩ−(w−, π−; f̃−−f̌−)

)
|Γ− = ψ

Γ− on Γ− ,

(4.40)

where f̃+ − f̌+ ∈
(
H1

Γ+(Ω+)n
)′ and f̃− − f̌− ∈ H̃−1(Ω−)n. In view of Theorem 4.5, the mixed-transmission 

problem (4.40) has a unique solution (w+, π+,w−, π−) in the space XΩ+,Ω− .
Then (u+, π+,u−, π−) = (v+ + w+, π+, v− + w−, π−) ∈ XΩ+,Ω− is a solution of the mixed-transmission 

problem (4.38) and satisfies the asserted estimate. This solution is unique due to the uniqueness statement 
of Theorem 4.5. Moreover, the solution can be represented as in item (ii), and by estimate of item (i) and 
the linearity of the mixed-transmission problem (4.38), the solution operator T : YΩ+,Ω− → XΩ+,Ω− is 
continuous and linear, as asserted. �
5. Mixed and mixed-transmission problems for the anisotropic compressible Navier-Stokes system in 
bounded Lipschitz domains

In the first part of this section we describe the existence and uniqueness result of a weak solution of 
a fully non-homogeneous mixed Dirichlet-Neumann problem for the anisotropic Navier-Stokes system in 
a compressible, case with small data in L2-based Sobolev spaces in a bounded Lipschitz domain in Rn, 
n = 2, 3. The second part is concerned with a well-posedness result of a weak solution for a nonlinear 
mixed-transmission problem for the Navier-Stokes system in a bounded Lipschitz domain with a transversal 
interface satisfying Assumption 3.5.

5.1. Mixed problem for the anisotropic compressible Navier-Stokes system with small data in L2-based 
Sobolev spaces on a bounded Lipschitz domain

Let us consider the nonlinear mixed Dirichlet-Neumann problem for the anisotropic compressible Navier-
Stokes system ⎧⎪⎨⎪⎩

L(u, π) = f̃ |Ω + (u · ∇)u, divu = g in Ω ,

(γΩu)|
Γ+ = ϕ

Γ+ on Γ+ ,(
tΩ(u, π; f̃ + E̊Ω→Rn((u · ∇)u))

)
|Γ− = ψ

Γ− on Γ− ,

(5.1)

with the couple of unknowns (u, π) ∈ H1(Ω)n × L2(Ω), n = 2, 3 (see also [31, Theorem 9.1] for the mixed 
problem for the incompressible isotropic Navier-Stokes system in Lipschitz domains on compact Riemannian 
manifolds, with L∞ coefficients and homogeneous Dirichlet condition).

Theorem 5.1. Let n = 2, 3 and Ω ⊂ Rn be a bounded Lipschitz domain satisfying Assumption 3.1. Then 
there exist two constants λ, γ > 0 depending on Ω, Γ+, Γ−, ‖A‖, and the ellipticity constant CA, such that 
for all given data (f̃ , g, ϕ

Γ+ , ψΓ− ) ∈
(
H1

Γ+(Ω)n
)′ ×L2(Ω) ×H

1
2 (Γ+)n ×H− 1

2 (Γ−)n satisfying the condition

‖f̃‖(H1 (Ω)n
)′ + ‖g‖L2(Ω) + ‖ϕ ‖ 1 + ‖ψ ‖ − 1 ≤ λ,
Γ+ Γ+ H 2 (Γ+)n Γ− H 2 (Γ−)n
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the mixed problem (5.1) for the anisotropic Navier-Stokes system has a unique solution (u, π) ∈ H1(Ω)n ×
L2(Ω), such that ‖u‖H1(Ω)n ≤ γ. The solution depends continuously on the given data (f̃ , g, ϕ

Γ+ , ψΓ− ).

Proof. We use arguments similar to those for [31, Theorem 9.1] for a mixed problem for the incompressible 
isotropic Navier-Stokes system in a Lipschitz domain on a compact Riemannian manifold. Let E̊Ω be the 
operator of extension by zero from Ω to Rn. Let also

NΩ(v) := E̊Ω
(
(v · ∇)v

)
, ∀v± ∈ H1(Ω)n . (5.2)

According to estimate (C.5) we have that NΩ(v) ∈ H̃−1(Ω)n ↪→
(
H1

Γ+(Ω)n
)′, and there exists a constant 

CΩ > 0 depending only on Ω such that for all v, w ∈ H1(Ω)n, we have the estimates

‖NΩ(v)‖(H1
Γ+ (Ω)n

)′ ≤ CΩ‖v‖H1(Ω)n‖∇v‖L2(Ω)n×n ≤ CΩ‖v‖2
H1(Ω)n , (5.3)

‖NΩ(v) −NΩ(w)‖(H1
Γ+ (Ω)n

)′ ≤ CΩ
(
‖v‖H1(Ω)n + ‖w‖H1(Ω)n

)
‖v − w‖H1(Ω)n . (5.4)

Therefore, the nonlinear operator NΩ : H1(Ω)n →
(
H1

Γ+(Ω)n
)′ is bounded and continuous.

Next, for the given data (f̃ , g, ϕ
Γ+ , ψΓ− ) ∈

(
H1

Γ+(Ω)n
)′ ×L2(Ω) ×H

1
2 (Γ+)n ×H− 1

2 (Γ−)n and for a fixed 
u in the space H1(Ω)n, such that divu = g in Ω, we consider the following linear mixed problem for the 
Stokes system ⎧⎪⎨⎪⎩

L(v, q) = f̃ |Ω + (NΩ(u)) |Ω , divv = g|Ω in Ω ,

(γΩv)|Γ+ = ϕ
Γ+ on Γ+ ,(

tΩ(v, π; f̃ +NΩ(u))
)
|Γ− = ψ

Γ− on Γ− ,

(5.5)

with the couple of unknowns (v, q) ∈ H1(Ω)n × L2(Ω).
Since 

(
f̃ +NΩ(u)

)
∈
(
H1

Γ+(Ω)n
)′, Theorem 4.4 shows that the linear problem (5.5) has a unique solution 

(v, q) ∈ XΩ that can be expressed in terms of the corresponding (bounded linear) solution operator T Ω :
YΩ → XΩ, as follows

(v, q) := (U(u), P (u)) = T Ω

(
f̃ +NΩ(u) , g,ϕ

Γ+ ,ψΓ−

)
, (5.6)

where XΩ and YΩ are the spaces defined in (4.18) and (4.19), respectively.
Then the linearity and boundedness of the operator T Ω and estimate (5.3) imply that there exists 

a constant c > 0 depending on Ω, Γ+, Γ−, ‖A‖, and the ellipticity constant CA, such that for every 
w ∈ H1(Ω)n we have the estimate

∥∥(U(w), P (w)
)∥∥
XΩ

≤ c
∥∥(f̃ , g,ϕ

Γ+ ,ψΓ−

)∥∥
YΩ

+ cCΩ‖w‖2
H1(Ω)n . (5.7)

Next we show that the nonlinear operator U : H1(Ω)n → H1(Ω)n is invariant over a closed ball of the 
space H1(Ω)n. To this end, let us consider the constants

λ := 3γ
4c , γ := 1

4CΩc
, (5.8)

where CΩ and c are the constants from inequalities (5.3), (5.4), (5.7). Let also

Bγ :=
{
v ∈ H1(Ω)n : divv = g|Ω in Ω , ‖v‖H1(Ω)n ≤ γ

}
. (5.9)
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Then the assumption 
∥∥(f̃ , g, ϕ

Γ+ , ψΓ−

)∥∥
YΩ

≤ λ, and inequality (5.7) imply that the operator U maps the 
closed ball Bγ into itself, as asserted. In addition, expression (5.6) of U and inequality (5.4) yield the 
estimate

‖U(v) − U(w)‖H1(Ω)n ≤ 1
2‖v − w‖H1(Ω)n , ∀v, w ∈ Bγ ,

which shows that the mapping U : Bγ → Bγ is a contraction. The Banach fixed point theorem then yields 
the existence and uniqueness of a fixed point u ∈ Bγ of U, that is, U(u) = u. Moreover, definition (5.6) of 
the operator TΩ implies that (u, P (u)) is a solution of the nonlinear mixed problem (5.1) in the space XΩ, 
such that ‖u‖H1(Ω)n ≤ γ. This solution is unique due to the uniqueness of the fixed point of the mapping U
on Bγ (see the proof of [25, Theorem 4.2] for further details), and depends continuously on the given data 
(f̃ , g, ϕ

Γ+ , ψΓ− ) ∈YΩ by the continuity of the solution operator T Ω. �
5.2. Mixed-transmission problem for the anisotropic compressible Navier-Stokes system with small data in 
L2-based Sobolev spaces on a bounded Lipschitz domain with a transversal Lipschitz interface

Let Ω ⊂ Rn, n = 2, 3, be a bounded Lipschitz domain satisfying Assumption 3.5.
Let us recall the definition of our main spaces

XΩ+,Ω− := H1(Ω+)n × L2(Ω+) ×H1(Ω−)n × L2(Ω−) ,

YΩ+,Ω− :=
(
H1

Γ+(Ω+)n
)′ × H̃−1(Ω−)n × L2(Ω) ×H

1
2 (Σ)n ×H− 1

2 (Σ)n ×H
1
2 (Γ+)n ×H− 1

2 (Γ−)n ,

and consider the following non-homogeneous Poisson problem of mixed-transmission type for the anisotropic 
Navier-Stokes system in a compressible framework

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ + (u+ · ∇)u+ , divu+ = g|Ω+ in Ω+,

L(u−, π−) = f̃−|Ω− + (u− · ∇)u− , divu− = g|Ω− in Ω−,

(γ
Ω+u+)|Σ − (γ

Ω−u−)|Σ = ϕ
Σ

on Σ ,(
tΩ+

(
u+, π+; f̃+ + E̊Ω+→Ω−(u+ · ∇)u+))∣∣

Σ
+
(
tΩ−

(
u−, π−; f̃− + E̊Ω−→Ω+(u− · ∇)u−))∣∣

Σ = ψ
Σ

on Σ ,

(γ
Ω+u+)|Γ+ = ϕ

Γ+ on Γ+ ,(
tΩ−(u−, π−; f̃−)

)
|Γ− = ψ

Γ− on Γ− ,

(5.10)

with the given data (f̃+, ̃f−, g, ϕ
Σ
, ψ

Σ
, ϕ

Γ+ , ψΓ− ) in the space YΩ+,Ω− and the unknown (u+, π+, u−, π−)
in XΩ+,Ω− .

By combining Theorem 4.7 with the Banach fixed point theorem we prove the following well-posedness 
result for the nonlinear mixed-transmission problem (5.10) (see also [25, Theorem 4.2] for a transmission 
problem for the Navier-Stokes system in the Euclidean pseudostress setting). Recall that CA is the constant 
in (1.4).

Theorem 5.2. Let n = 2, 3 and Ω ⊂ Rn be a bounded Lipschitz domain satisfying Assumption 3.5. Let 
conditions (1.2)-(1.4) hold. Then there exist two constants α, β > 0, depending on Ω+, Ω−, ‖A‖, and CA, 
such that for all given data (f̃+, ̃f−, g, ϕ

Σ
, ψ

Σ
,ϕ

Γ+ , ψΓ− ) ∈YΩ+,Ω− , with

∥∥∥(f̃+, f̃−, g,ϕ
Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ− )
∥∥∥
YΩ+,Ω−

≤ α ,
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the mixed-transmission problem for the Navier-Stokes system (5.10) has a unique solution (u+, π+, u−, π−) ∈
XΩ+,Ω− , such that ‖u+‖H1(Ω+)n + ‖u−‖H1(Ω−)n ≤ β. Moreover, this solution depends continuously on 
(f̃+, ̃f−, g, ϕ

Σ
, ψ

Σ
,ϕ

Γ+ , ψΓ− ).

Proof. We use arguments similar to those for Theorem 4.2 in [25] devoted to a transmission problem for the 
anisotropic Stokes and Navier-Stokes systems in complementary Lipschitz domains in R3, in a pseudostress 
approach. Recall that E̊Ω±→Ω are the operators of extensions by zero from Ω± to Ω. Let

NΩ±(v±) := E̊Ω±→Ω
(
(v± · ∇)v±), ∀v± ∈ H1(Ω±)n . (5.11)

Estimate (C.5) shows that NΩ+(v+) ∈ H̃−1(Ω+)n ↪→
(
H1

Γ+(Ω+)n
)′ and NΩ−(v−) ∈ H̃−1(Ω−)n. Moreover, 

there exists a constant C1 > 0 depending only on Ω+ and Ω− such that for all v±, w± ∈ H1(Ω±)n, we have 
the estimates

‖NΩ±(v±)‖
H̃−1(Ω±)n ≤ C1‖v±‖H1(Ω±)n‖∇v±‖L2(Ω±)n×n ≤ C1‖v±‖2

H1(Ω±)n , (5.12)

‖NΩ±(v±) −NΩ±(v±)‖
H̃−1(Ω±)n ≤ C1

(
‖v±‖H1(Ω±)n + ‖w±‖H1(Ω±)n

)
‖v± − w±‖H1(Ω±)n , (5.13)

which show that the nonlinear operators NΩ+ : H1
Γ+(Ω+)n → H̃−1(Ω+)n and NΩ− : H1(Ω−)n → H̃−1(Ω−)n

are bounded and continuous. Moreover, the continuity of the embeddings H1
Γ+(Ω+)n ↪→ H1(Ω+)n and 

H̃−1(Ω+)n ↪→
(
H1

Γ+(Ω+)n
)′ and the boundedness and continuity of the operator NΩ+ : H1(Ω+)n →

H̃−1(Ω+)n imply also the boundedness and continuity of the operator NΩ+ : H1
Γ+(Ω+)n →

(
H1

Γ+(Ω+)n
)′. 

We then have the estimates

‖NΩ+(v+)‖(H1
Γ+ (Ω+)n

)′ ≤ C1‖v+‖2
H1(Ω+)n , (5.14)

‖NΩ+(v+) −NΩ+(w+)‖(H1
Γ+ (Ω+)n

)′ ≤ C1
(
‖v+‖H1(Ω+)n + ‖w+‖H1(Ω+)n

)
‖v+ − w+‖H1(Ω+)n , (5.15)

where, for the sake of brevity, we have kept the same constant C1 in all inequalities (5.12) up to (5.15).
Now, for (f̃+, ̃f−, g, ϕ

Σ
, ψ

Σ
,ϕ

Γ+ , ψΓ− ) ∈ YΩ+,Ω− given and for a fixed pair (u+,u−) in H1(Ω+)n ×
H1(Ω−)n, such that divu± = g|Ω± in Ω±, we consider the following linear mixed-transmission problem for 
the Stokes system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(v+, q+) = f̃+|Ω+ + (NΩ+(u+)) |Ω+ , divv+ = g|Ω+ in Ω+,

L(u−, π−) = f̃−|Ω− + (NΩ−(u−)) |Ω− , divv− = g|Ω− in Ω−,

(γ
Ω+v+)|Σ − (γ

Ω−v−)|Σ = ϕ
Σ

on Σ ,(
tΩ+

(
v+, q+; f̃+ +NΩ+(u+)

))∣∣
Σ

+
(
tΩ−

(
v−, q−; f̃− +NΩ−(u−)

)∣∣
Σ = ψ

Σ
on Σ ,

(γ
Ω+v+)|Γ+ = ϕ

Γ+ on Γ+ ,(
tΩ−(v−, π−; f̃− +NΩ−(u−))

)
|Γ− = ψ

Γ− on Γ− ,

(5.16)

with the unknown (v+, q+, v−, q−) ∈ XΩ+,Ω− .
In view of the relations 

(
f̃+ +NΩ+(u+)

)
∈ H̃−1(Ω+)n, 

(
f̃−+NΩ−(u−)

)
∈ H̃−1(Ω−)n, and H−1(Ω+)n ↪→(

H1
Γ+(Ω+)n

)′, Theorem 4.7 (ii) implies that problem (5.16) has a unique solution that can be expressed in 
terms of the corresponding (bounded linear) solution operator T : YΩ+,Ω− → XΩ+,Ω− , as follows(

v+, q+,v−,v−, q−
)

:=
(
U+(u+,u−), P+(u+,u−),U−(u+,u−), P−(u+,u−)

)
=T

(
f̃+ +NΩ+(u+), f̃− +NΩ−(u−),ϕ

Σ
,ψ

Σ
, g,ϕ

Γ+ ,ψΓ−

)
. (5.17)
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Then the linearity and boundedness of the operator T and estimates (5.12) and (5.14) imply that there 
exists a constant C2 = C2(Ω+, Ω−, CA, ‖A‖) > 0 such that for all (w+, w−) ∈H1(Ω+)n×H1(Ω−)n we have∥∥(U+(w+,w−), P+(w+,w−),U−(w+,w−), P−(w+,w−)

)∥∥
XΩ+,Ω−

≤ C2
∥∥(f̃+, f̃−, g,ϕ

Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ−

)∥∥
YΩ+,Ω−

+ C1C2

(
‖w+‖2

H1(Ω+)n + ‖w−‖2
H1(Ω−)n

)
≤ C2

∥∥(f̃+, f̃−, g,ϕ
Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ−

)∥∥
YΩ+,Ω−

+ C1C2‖(w+,w−)‖2
H1(Ω+)n×H1(Ω−)n .

(5.18)

The next step of our arguments is to show that the nonlinear operator (U+, U−) : H1(Ω+)n×H1(Ω−)n→
H1(Ω+)n × H1(Ω−)n is invariant over a closed ball of the space H1(Ω+)n × H1(Ω−)n. In order to prove 
this property, let

α := 3β
4C2

, β := 1
4C1C2

, (5.19)

where C1 and C2 are the constants from inequalities (5.12), (5.13), (5.14), (5.15), and (5.18). Let also

Bβ :=
{
(v+,v−) ∈ H1(Ω+)n ×H1(Ω−)n : divv± = g|Ω± in Ω± , ‖v+‖H1(Ω+)n + ‖v−‖H1(Ω−)n ≤ β

}
.

(5.20)

Then by assuming that ∥∥(f̃+, f̃−, g,ϕ
Σ
,ψ

Σ
,ϕ

Γ+ ,ψΓ−

)∥∥
YΩ+,Ω−

≤ α , (5.21)

and by using inequalities (5.18) and (5.21), we obtain that the operator (U+, U−) maps the closed ball Bβ

into itself, as asserted.
In addition, by using expression (5.17) of the operator (U+, P+, U−, P−), the linearity of the operator 

T , and inequalities (5.13) and (5.15), we obtain the following estimate

‖(U+, P+,U−, P−)(v+,v−) − (U+, P+,U−, P−)(w+,w−)‖XΩ+,Ω−

≤ C2

(
‖NΩ+(v+) −NΩ+(w+)‖H1(Ω+)n + ‖NΩ−(v−) −NΩ−(w−)‖H1(Ω−)n

)
≤ C1C2

((
‖v+‖H1(Ω+)n + ‖w+‖H1(Ω+)n

)
‖v+ − w+‖H1(Ω+)n

+
(
‖v−‖H1(Ω+)n + ‖w−‖H1(Ω−)n

)
‖v− − w−‖H1(Ω−)n

)
≤ 2C1C2β

(
‖v+ − w+‖H1(Ω+)n + ‖v− − w−‖H1(Ω−)n

)
= 1

2‖(v
+,v−)−(w+,w−)‖H1(Ω+)n×H1(Ω−)n , ∀ (v+,v−), (w+,w−)∈Bβ .

In particular, we deduce the estimate

‖(U+,U−)(v+,v−) − (U+,U−)(w+,w−)‖H1(Ω+)n×H1(Ω−)n

≤ 1
2‖(v

+,v−) − (w+,w−)‖H1(Ω+)n×H1(Ω−)n , ∀ (v+,v−), (w+,w−) ∈ Bβ ,

which shows that the map (U+, U−) : Bβ → Bβ is a contraction. Then the Banach fixed point theorem yields 
that (U+, U−) has a unique fixed point (u+, u−) ∈ Bβ , that is, (U+(u+,u−),U−(u+,u−)) = (u+, u−). 
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Moreover, definition (5.17) of the operator T implies that (u+, P+(u+,u−), u−, P−(u+, u−)) is a so-
lution of the nonlinear mixed-transmission problem (5.10) in the space XΩ+,Ω− , such that ‖u+‖H1(Ω+)n +
‖u−‖H1(Ω−)n ≤ β. This solution is unique due to the uniqueness of the fixed point of the map (U+, U−)
on Bβ (see the proof of [25, Theorem 4.2] for further details), and depends continuously on the given data 
(f̃+, ̃f−, g, ϕ

Σ
, ψ

Σ
,ϕ

Γ+ , ψΓ− ) ∈YΩ+,Ω− by the continuity of the solution operator T . �
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Appendix A. The generalized conormal derivative for the Stokes system in a bounded Lipschitz domain

Interpreting the Stokes equation in (1.6) in the sense of distributions and using the dense embedding of 
the space D(Ω)n into H̊1(Ω)n, we obtain the following result.

Lemma A.1. Assume that Ω is a bounded Lipschitz domain in Rn, n ≥ 2, and that conditions (1.2), (1.3) are 
satisfied. Let (u, π) ∈ H1(Ω)n ×L2(Ω) and f ∈ H−1(Ω)n be such that L(u, π) = f in Ω. Then the following 
Green identity holds〈

aαβij Ejβ(u), Eiα(w)
〉
Ω − 〈π,divw〉Ω + 〈f ,w〉Ω = 0 , ∀w ∈ H̊1(Ω)n .

By following [27, Definition 2.2] and [26, Definition 1], we introduce the concept of the generalized 
conormal derivative for the anisotropic Stokes system as follows (see also [37, Lemma 4.3], [38, Definition 
3.1, Theorem 3.2], [25, Definition 2.4], [42, Theorem 10.4.1]).

Definition A.2. Let conditions (1.2) and (1.3) be satisfied and let

HHH1(Ω,L) :=
{

(u, π, f̃) ∈ H1(Ω)n × L2(Ω) × H̃−1(Ω)n : L(u, π) = f̃ |Ω in Ω
}
.

If (u, π, ̃f) ∈ HHH1(Ω, L), then the generalized conormal derivative tΩ(u, π; ̃f) ∈ H− 1
2 (∂Ω)n is defined by the 

formula〈
tΩ(u, π; f̃),Φ

〉
∂Ω

:=
〈
aαβij Ejβ(u), Eiα(γ−1

Ω
Φ)

〉
Ω −

〈
π,div(γ−1

Ω
Φ)

〉
Ω +

〈
f̃ , γ−1

Ω
Φ
〉
Ω , ∀Φ ∈ H

1
2 (∂Ω)n ,

(A.1)

where γ−1
Ω

: H 1
2 (∂Ω)n → H1(Ω)n is a bounded right inverse of the trace operator γΩ : H1(Ω)n → H

1
2 (∂Ω)n. 

We use the simplified notation tΩ(u, π) for tΩ(u, π; 0).

Appendix B. Extension properties in Sobolev spaces on Lipschitz domains with internal Lipschitz 
interfaces

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain that satisfies Assumption 3.5. Hence, Ω = Ω+∪Σ ∪Ω−, 
where Σ is an (n − 1)-dimensional Lipschitz interface that intersects transversally ∂Ω, and Ω+ and Ω− are 
disjoint Lipschitz sub-domains of Ω. Moreover, ∂Ω± = Σ∪Γ±. Let γ

Ω± be the trace operator from H1(Ω±)
to H

1
2 (∂Ω±).
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The result of the following lemma has been obtained in [28, Lemma B.1] (see also [26, Lemma C.1]).

Lemma B.1. The following assertions hold.

(i) Let u+ ∈ H1(Ω+) and u− ∈ H1(Ω−) be such that γ
Ω+u

+ = γ
Ω−u− on Σ. Then there exists a unique 

function u ∈ H1(Ω) such that u|Ω± =u±. Moreover, there exists C=C(n, Ω±) > 0 such that ‖u‖H1(Ω) ≤
C
(
‖u+‖H1(Ω+) + ‖u−‖H1(Ω−)

)
.

(ii) If u ∈ H1(Ω) then [γu]|Σ = 0, where [γΩu]|Σ := γ
Ω+ (u|Ω+) − γ

Ω− (u|Ω−) on Σ.

The next result has been obtained in [28, Lemma B.2].

Lemma B.2. Let 0 ≤ s ≤ 1. Then the following assertions hold.

(i) Let Γ1 and Γ2 be the graphs of two Lipschitz functions xn = ζ1(x′) and xn = ζ2(x′), x′ ∈ Rn−1. Let 
the graphs coincide on a part Γ0, which is the image of a set S0 ⊂ Rn−1, i.e., xn = ζ1(x′) = ζ2(x′) for 
x′ ∈ S0. Let fi ∈ L2(Γi), fi = 0 on Γi \ Γ0, i = 1, 2, and f2 = f1 on Γ0. Then f1 ∈ H̃s(Γ0) if and only 
if f2 ∈ H̃s(Γ0).

(ii) Let Γ1 and Γ2 be two compact (n −1)-dimensional Lipschitz surfaces in Rn that coincide on a relatively 
open subset Γ0 (having a Lipschitz boundary if n > 2). Let fi ∈ L2(Γi), fi = 0 on Γi \Γ0, i = 1, 2, and 
f2 = f1 on Γ0. Then f1 ∈ H̃s(Γ0) if and only if f2 ∈ H̃s(Γ0).

Let us now consider the following space

H−1
Γ+

(Rn)n = {Φ ∈ H−1(Rn)n : suppΦ ⊆ Γ+} (B.1)

(cf., e.g., [37, p. 76]). Then we have the following equivalence results (cf. [28, Lemmas B.5 and B.6]).

Lemma B.3. Let Assumption 3.5 be satisfied. Then the following properties hold.

(i) The dual 
(
H1

Γ+(Ω)n
)′ of the space H1

Γ+(Ω)n can be identified with H̃−1(Ω)n/H−1
Γ+

(Rn)n.
(ii) The dual 

(
H1

Γ+(Ω+)n
)′ of the space H1

Γ+(Ω+)n can be identified with the space H̃−1(Ω+)n/H−1
Γ+

(Rn)n
and with the space {

ϕ ∈ H−1(Ω)n : ϕ = 0 on Ω−} . (B.2)

Appendix C. Estimates of the nonlinear term in the Navier-Stokes equation

Let Ω be a bounded Lipschitz domain in Rn, n ∈ {2, 3}, and E̊Ω be the zero extension operator from Ω
to Rn.

• By the Sobolev embedding theorem (see, e.g., [1, Theorem 6.3]), the space H1(Ω)n is compactly 
embedded in L4(Ω)n and there exists a constant c1 = c1(Ω, n) > 0 such that

‖v‖L4(Ω)n ≤ c1‖v‖H1(Ω)n , ∀v ∈ H1(Ω)n . (C.1)

The equivalence in H̊1(Ω)n of the semi-norm ‖∇(·)‖L2(Ω)n×n with the norm ‖ · ‖H1(Ω)n given by (2.3) and 
estimate (C.1) imply that there exists a constant c0 = c0(Ω, n) > 0 such that

‖v‖L4(Ω)n ≤ c0‖∇v‖L2(Ω)n×n , ∀ v ∈ H̊1(Ω)n . (C.2)
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• By the Hölder inequality, we obtain for all v1, v2, v3∈H1(Ω)n,

|〈(v1 · ∇)v2,v3〉Ω| ≤ ‖v1‖L4(Ω)n‖v3‖L4(Ω)n‖∇v2‖L2(Ω)n×n ≤ c1‖v1‖L4(Ω)n‖v3‖H1(Ω)n‖∇v2‖L2(Ω)n×n .

(C.3)

This also implies that∣∣∣〈E̊Ω[(v1 · ∇)v2],v3

〉
Ω

∣∣∣ ≤ ‖ |E̊Ωv1| |V3| ‖L2(Rn)‖E̊Ω∇v2‖L2(Rn)n×n

≤ ‖v1‖L4(Ω)n‖v3‖L4(Ω)n‖∇v2‖L2(Ω)n×n

≤ c1‖v1‖L4(Ω)n‖v3‖H1(Ω)n‖∇v2‖L2(Ω)n×n , ∀v1,v2,v3 ∈ H1(Ω)n , (C.4)

where V3 ∈ H1(Rn)n is such that rΩV3 = v3. This shows that E̊Ω[(v1 · ∇)v2] belongs to the space 
H̃−1(Ω)n =

(
H1(Ω)n

)′. Moreover, inequality (C.1) implies for all v1, v2 ∈ H1(Ω)n,∥∥∥E̊Ω[(v1 · ∇)v2]
∥∥∥
H̃−1(Ω)n

≤ c21‖v1‖H1(Ω)n‖v2‖H1(Ω)n . (C.5)
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