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0. Introduction

Investigation of stress singularity in a plane problem for bonded isotropic hereditarily
elastic (visco-elastic) aging infinite wedge begun in [8] is continued here. The stress
asymptotics at the singular point are obtained at initial time t"#0; at tPR for
loads tending to harmonically oscillating or to constant ones in time. At small times,
the power expansion with respect to time and the power-logarithmic asymptotic with
respect to radius is presented. At finite times t3[0,R) as well as at tPR, the
estimates for stresses at the singular point are obtained for sufficiently arbitrary
loading behaviour.

We shall use in this paper the notions and notations of [8]. References on the
numbers of formulas and sections of [8] will be preceded by the symbol I, reference on
Appendix denotes the Appendix of [8].

1. Finite times (t3[0,R))

Consider the general case of aging hereditary Dundurs operators a
6
, b

6
whose out-of-

integral terms a0(q),b°(q)3C[0, ¹ ] and integral operators a
6
*, b

1
*3 VC(0, ¹ ). Let an

action be applied at q"0, and t'0 be a time instant under consideration,
0)t)¹(R. Let prescribed loading functions g(l)

i
, gJ (0)

i
3CLª

2
(d

g
, 1; 0, ¹ )]. Then

due to [8, Appendix, point 80], the right-hand side of system (I.3.17)
G3CH0

2
(S (d

g
, 1); 0, ¹ ).

Rewrite system (I.3.17) in the form

B0(c, t)F(c, t)#[B
6
*(c)F(c, · )](t)"G (c, t).
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For cOc
k
(t) the inverse matrix (B0)~1(c, t) of the out-of-integral terms exists and

can be represented by (I.4.3). At the matrix Volterra integral operator B
6
*(c), only the

two last rows differ from zero. Let us represent the matrix operator of this system in
the form of multiplication of two operators:

M[I#B
6
33 * (c)]B0(c, · )F(c, . )N(t)"G (c, t), B

6
3 3 *(c) :"B

1
*(c)(B0)~1(c, · ). (1.1)

Here I is the identity (8]8)-matrix.
After inverting the matrix Volterra operator given by square brackets we arrive at

the algebraic system for F:

B0(c, t)F(c, t)"G33 (c, t). (1.2)

The right-hand side of this system is the solution of the system of the Volterra
integral equations of the second kind with the identity matrix of out-of-integral
coefficients:

G33 (c, t)#[B
1
33 * (c)G33 (c, · )](t)"G (c, t). (1.3)

Suppose also that d
gs`

(t)(1, where d
gs`

(t) is given by (I.4.11). The kernel matrix
B33 *(c, t, q)"B*(c, t, q)A(c, q)/*(c, q), and the elements of B*(c, t, q)A(c, q) are, by
Cramer’s rule, the determinants of the matrix B0(c, q) one row of which is replaced by
a corresponding row of the matrix B*(c, t, q). The direct analysis of these determinants
(see (I.3.18)), on account of the memberships a0 (q), b0 (q)3C[0, t], a

6
*, b

6
*3VC(0, t)

and estimate (I.4.6), shows that

B33 *(c, t, q)"a*(t, q)B33 *a (c, q) #b* (t, q)B33 b(c, q),

DB33 *a (c, q) D, DB33 *b (c, q) D(M(SM @
r
(q)), c3S@

r
(q), ∀S@

r
(q) (1.4)

where B33 *a (c, q), B33 *b (c, q) are meromorphic functions of c, and S @
r
(q) is a perforated strip

(S@-without r-neighbourhoods of all c
k
(q)). If S@ does not include the zeros c

k
(q), or

c
k
are independent of q, then M is independent of q, too. Hence, B

1
33 * (c)3VCH[S@; 0, t]

(see point 60 of section I.2) for any S@ that does not include c
k
(q), q3[0, t].

Particularly, B
6
33 *(c)3VCH[S(d

gs`
(t), 1); 0, t]. From Appendix, point 100, we then

obtain that the operator I#B
1
33 * (c) is invertible for every c3S (d

gs`
(t), 1), and the

inverse operator [I#B
6
33 *(c)]~1 acts in CH0

2
(S (d

gs`
(t), 1); 0, t). Hence, the solution

G33 (c, t) of (1.3) belongs to the same class as its right-hand side G (c, t).
Since the left-hand sides of the systems (1.2) and (I.4.1) are identical, we obtain by

the same reasoning as in section I.4 for the solution of system (1.2) that F3CHI
2
[ (#

~
,

#
`

; S (d
gs`

(t), 1); 0, t) and, consequently (see Appendix, point 20), '(l)
j

, ((l)
j
3

CH3
2
(d

gs`
(t), 1; ¼ (l)

j
; 0, t). It means that a priori supposed membership (I.3.15)

holds for d3
0
"d

gs`
(t). By Appendix, point 60 we arrive, as in section I. 4, at the same

estimates (I.4.13) for the complex potentials. Consequently, for the stresses and strains
we get the same estimate (I.4.18):

Dp (l)
ij

(o, h, q) D, De(l)
ij

(o, h, q) D(MII
0
(t)o~dgs` (t)~e

∀e3 (0, 1!d
gs`

(t) ), ∀h3[h(l){
~

, h(l){
`

)L(h(l)
~

, h(l)
`

), ∀q3[0, t].

The parameter d
gs`

(t) is given by (I.4.11), i.e., is independent of the integral operators
a
6
, b

1
and is determined only by the instantaneous Dundurs parameters a0 (q), b0 (q),

q3[0, t] and by the behavior of the prescribed load as oP0. The remark given in
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section I.4 after (I.4.18) also holds. An analogous estimate for a homogeneous (not
bonded) hereditarily-elastic body was obtained in [7].

If the a0 and b0 are independent of time, particularly if the materials of the body
parts are hereditary but not aging, then the power d

gs`
in estimate (I.4.18) is

independent of time t and coincides with the main stress singularity power c
k
in the

corresponding elastic body whose elastic moduli coincide with the instantaneous
elastic moduli "(l)0, k(l)0 of the hereditary body considered. If a0(q), b0 (q) depend on
time, then the parameter d

gs`
(t) coincides with the supremum on the segment [0, t] of

the stress singularity power for a classical elastic body, whose moduli coincide with
the momentary moduli "(l)0(q), k(l )0 (q) of the considered body. Thus, if there are no
zeros c

k
of * (c, q) in the strip 0)Re c(1, i.e., stress singularity is absent in the

corresponding classical problems with the same elastic moduli for all q'0, then the
stress singularity in a bonded hereditarily-elastic aging body will not occur at any
finite time moment q (for sufficiently smooth loads).

2. Initial time

Let us consider the solution asymptotics at t"#0. Let the boundary loads g(l)
i

( · , 0),
f (0){
i

( · , 0)3 Ķ (d
g
, 1). The hereditary operators a

6
, b

6
in matrix (I.3.18) are reduced in

this case to multiplication by the constants a0 (0), b0 (0), respectively. Repeating again
the reasoning of section I.4, we obtain asymptotics (I.4.16), (I.4.17) for stresses and
strains, where t"0 must be set. Thus, the asymptotics in this case are the same as for
the non-hereditary elastic body with Lame@ constants "(l)0

i
(0), k (l)0

i
(0).

3. Small times

Let us now present the dependence of the asymptotics on time for non-zero but small
times. This representation will explain, to a certain extent, why we succeeded in
obtaining estimate (1.4) only but not asymptotics for finite times.

As before g(l)
i

, gJ (0)
i

3CLª
2
(d

g
, 1; 0, ¹ ), 0)¹(R, then G3CH0

2
(S(d

g
, 1); 0, ¹ ). Let

also the kernels of the Dundurs operators a
6

and b
6

be of the Abel type, i.e.,
a*(t, q)"a*

#
(t, q) (t!q)~f, b*(t, q)"b*

#
(t, q) (t!q)~f, where the functions a*

#
(t, q),

b*
#
(t, q) are continuous. (The results for the case of continuous kernels a* (t, q), b*(t, q)

will be obtained by the substitution f"0.) Then due to (I.3.18), (1.1), (I.4.3), the
kernels B*(c, t, q), B33 *(c, t, q) are also of the Abel type: B*(c, t, q)"B*

#
(c, t, q)(t!q)~f,

B33 *(c, t, q)"B33 *
#
(c, t, q) (t!q)~f, where B*

#
(c, t, q) is continuous with respect to t, q for

any c. For every t, q, by (1.1) and (I.4.4), B33 *
#
(c, t, q)) is a meromorphic function with the

poles at c
k
(q), and the pole multiplicity is equal to the rank P

k* (q) of the eigenvalue
c
k
(q), P

k*
(q) :"max

n/1%Nk
(P

kn
(q)))N0

k
(q). The kernel B3 3 *

#
(c, t, q) is continuous in

t, q3[0, ¹ ]][0, ¹ ] uniformly with respect to c on any strip SM @ which does not
include c

k
(q), and hence B

6
33 *
#
3VCH(S@; 0, ¹ ) for such S @.

Let Q be an arbitrary positive integer. Then from (1.3) and (1.2), we get:

F(c, t)"(B0)~1(c, t)G33 (c, t)"
Q
+
q/0

F
q
(c, t)#F (R)

Q`1
(c, t), (3.1)

F
q
(c, t) :"(B0)~1(c, t)M[!B33 *(c)]qG(c, · )N(t), (3.2)

F (R)
Q`1

(c, t) :"(B0 )~1(c, t)M[!B33 *(c)]Q`1G33 (c, · )N (t).
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3.1. ¹he case of constant momentary Dundurs’ parameters

Let in this subsection, the out-of-integral terms a0, b0 be independent on time. (This
particularly holds for non-aging hereditary materials.) Then the matrices B0 (c),
(B0)~1(c) and the zeros c

k
are independent of t too.

Taking into account definition (3.2), the memberships for G(c, t) and B
1
*
#

described
at the beginning of section 3, the statements given in points 8°, 9° of Appendix,
and estimates (I.4.7)—(I.4.10) for (B0)~1(c), we obtain that the functions
F
q
3CH3

2
[ (#

~
, #

`
; S@; 0, ¹ ) in any strip S@LS (d

g
, 1) that does not include c

k
.

Let us denote

F
q
(c, t, q

1
, . . . , q

q
) :"(!1)qB33 *

#
(c, t, q

1
)B33 *

#
(c, q

1
, q

2
) . . . B33 *

#
(c, q

q~1
, q

q
)

If cOc
k
, then using the mean value theorem, we get from (3.2):

F
q
(c, t) :"(B0)~1(c) P

t

0

(t!q
1
)~fdq

1 P
q1

0

(q
1
!q

2
)~f dq

2
. . .

P
qq~1

0

(q
q~1

!q
q
)~fdq

q
F

q
(c, t, q

1
, . . . , q

q
)G (c, q

q
)

"(B0 )~1(c)F
q
(c, t, qJ

1
, . . . , qJ

q
)G(c, qJ

q
) P

t

0

(t!q
1
)~fdq

1

]P
q1

0

(q
1
!q

2
)~fdq

2
. . . P

qq~1

0

(q
q~1

!q
q
)~fdq

q
"tq (1~f)F (t)

q
(c, t), (3.3)

F (t)
q

(c, t) :"C
q
(B0)~1(c)F

q
(c, t, qJ

1
, . . . , qJ

q
)G (c, qJ

q
), (3.4)

C
q
:"

q
<
p/1

B (( p!1)(1!f)#1, 1!f)"[! (1!f)]q/! (q (1!f)#1).

Here 0)qJ
q
(t))· · ·)qJ

1
(t))t, B is the Beta-function, and ! is the Gamma-

function.
Comparing the left- and right-hand sides of (3.3) we get that F (t)

q
3CH3

2
[ (#

~
, #

`
;

S@; ¹
1
, ¹ ) for any ¹

1
3 (0, ¹ ) and any strip S@LS (d

g
, 1) that does not include c

k
.

Moreover, due to (3.4) and continuity (uniform with respect to c3S@) of
F
q
(c, t, qJ

1
(t), . . . , qJ

q
(t) ) at t"0, the functions F (t)

q
(c, t) are bounded and continuous in

t at t"0 (in the sense of definition of CH
2

in point 40 of section I.2). Hence,
F (t)

q
3CH3

2
[ (#

~
, #

`
; S@; 0, ¹ ). Besides, DB0(c)F

q
(c, t) D, DB0(c)F(t)

q
(c, t) D(M@@(SM @

r
), for

any perforated strip S@
r
LS (d

g
, 1); F

q
(c, t) and, consequently, F (t)

q
(c, t) are meromor-

phic functions of c with poles of the multiplicity (q#1)P
k*

at c
k
, and all the coefficients

of their Laurent’s expansions near c
k
are continuous in t.

Analogously, F (R)
Q`1

(c, t)"t(Q`1)(1~f) F (Rt)
Q`1

(c, t), and the functions F (R)
Q`1

,
F (Rt)

Q`1
3CH3

2
[ (#

~
, #

`
; S (d

gs`
, 1); 0, ¹ ).

Then we obtain from (3.1)

F(c, t)"
Q
+
q/0

tq (1~f)F (t)
q

(c, t)#t(Q`1)(1~f)F (Rt)
Q`1

(c, t).

In this representation the term F (t)
0

(c, t) coincides with the function F(c, t) for the
degenerate case, given by (I.4.2).
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Applying the inverse Mellin transform, we have

'(l)
j

(z
j
, t)"

1

2ni C
Q
+
q/0

tq(1~f) P
d`*=

d`*=

[F (t)
q

(c, t)]
4l~4`j

z~c
j

dc

#t(Q`1)(1~f) P
d`*=

d`*=

[F (Rt)
Q`1

(c, t)]
4l~4`j

z~c
j

dcD3CH
2
(d

gs`
, 1; ¼

jl
; 0, ¹ ),

( j"1%2)

where d
gs`

(d(1, and analogous formulas for ((l)
j

(z
j
, t).

Shifting, as in section I.4, the integration path of the first integral to the left into the
strip S(d

g
, d

~
), calculating residues of the integrand and using Appendix, points 20

and 60, for estimates on S (d
g
, d

~
), we get representations for the potentials '(l)

j
(z

j
, t),

((l)
j

(z
j
, t) and, consequently, for the stresses:

p(l)
ij

(o, h, t)"
Q
+
q/0

tq(1~f)p(lq)
ij

(o, h, t)#t(Q`1)(1~f)p(l,Q`1,R)
ij

(o, h, t), (3.5)

p(lq)
ij

(o, h, t)" +
dg:R% ck:1

o~ck
(q`1)Pk*~1

+
n/0

lnn o
PI kn
+
p/1

KI (q)
knp

(t)FI (lq)
ijknp

(h)#p (lq)
*ij

(o, h, t),

Dp (lq)
*ij

(o, h, t) D(M
*
o~dg~e ∀e3 (0, d

~
!d

g
),

Dp(l,Q`1,R)
ij

(o, h, t) D(M(R)o~dgs`~e ∀e3 (0, 1!d
gs`

),

∀h3[h(l){
j~

, h(l){
j`

]L(h(l)
~

, h(l)
`

), ∀t3[0, ¹ ]; KI (q)
knp

(t)3C[0, ¹ ].

Here Q*0 is an arbitrary integer. The stress singularity powers c
k
are zeros of the

function * (c), determined by the instantaneous Dundurs parameters a0, b0. The sense
and properties of the stress intensity factors KI (q)

knp
(t), eigenfunctions FI (lq )

ijknp
(h), and

parameters PI
kn
*8 are close to those (without waves) given in section I.4. The term

p(l0)
ij

(o, h, t) has the asymptotic representation given by the classical elastic solutions
with the moduli equal to the instantaneous moduli of hereditary media at t"0. The
other terms p(lq)

ij
(o, h, t) have the stress singularity powers c

k
as p(l0)

ij
(o, h, t), however,

the possible number and the powers of their logarithmic terms grow linearly with q.
The remainder term coefficient p(l,Q`1,R)

ij
(o, h, t) has the same coarse estimate (1.4) in

o as the overall solution p(l)
ij

(o, h, t).
This means that for a small t and a fixed radius o, we can render the remainder term

t(Q`1)(1~f)p(l,Q`1,R)
ij

(o, h, t) in (3.5), having the principal singularity, arbitrarily small,
by choosing Q sufficiently large. But meanwhile, the number and maximal power
(Q#1)P

k*
!1 of logarithms in the other terms will grow, compensating, in a sense,

the decrease of the term with the principal singularity.
The representation for the case of continuous kernels is obtained by substituting

f"0. Then (3.5) becomes the expansion in integer powers of t.
Note that for the problem for non-aging hereditary materials with some particular

continuous (f"0) hereditary kernels for some special loadings, the two-term repres-
entation (Q"1), close in a sense to (3.5), was obtained in [2—4] by using the Laplace
transform in time.
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3.2. A general case of aging materials

10 Let now a0 (t), b0 (t) depend on time and belong to the space CV[0, ¹ ] of » times
continuously differentiable functions, »*0. Then the functions B0(c, q), (B0 )~1(c, q),
3CV[0, ¹ ] with respect to q in the whole c-plane (at cOc

k
(q) for (B0)~1(c, q)).

Consequently, the matrix (B0)~1(c, q) can be represented in the form of a trancated
Tailor series for every q3[0, ¹ ], every cOc

k
(q), and for appropriate q

*
(c, q)3[0, q]:

(B0)~1(c, q)"
V
+
v/0

qvB0(v)(c)#qVB3 0(V`1)(c, q)"
V`1
+
v/0

qw(v,V)B3 0(v) (c, q), (3.6)

B0(v) (c) :"
1

v!
[Lv(B0 )~1(c, t)/Ltv]

t/0
,

B3 0(V`1)(c, q) :"
1

»!
[LV(B0)~1(c, t)/LtV]

t/q* (c,q)!B0(V) (c),

B3 0(v)(c, q) :"B0(v)(c) (v"0%» ), w(v, » ) :"min(v, » ).

20 Differentiating the identity B0(c, q)(B0)~1(c, q)"I and taking into considera-
tion the properties of the matrix B0(c, q) (see (I.3.18)), it is possible to show that
B0(v) (c)"(B0)~1(c, 0)B[ 0(v)(c), where B[ 0(v) (c) is a meromorphic matrix function in the
whole c-plane with poles at c

k
(0) whose multiplicities are not greater than vP

k*
(0), and

DB[ 0(v)(c) D(M[ (SM @
r
(0))(R, c3SM @

r
(0), ∀S@. (3.7)

The function B3 0(V`1)(c, q)"(B0)~1(c, 0)B3[ 0(V`1)(c, q) where DB3[ 0(V`1)(c, q) D(
MI [ (SM @ )(R, c3SM @, ∀SM @LS(d

gs`
(¹ ), 1), and B3 [ 0(V`1)(c, q)P0 as qP0 uniformly with

respect to c on any strip SM @LS (d
gs`

(¹ ), 1) at qO0. The same uniform continuity of
B3[ 0(V`1)(c, q), in q follows from such property for (B0)~1(c, q) and from (3.6). Conse-
quently, B3[ 0(V`1)(c, q)3C[0, ¹ ] uniformly with respect to c on any strip SM @L
S(d

gs`
(¹ ), 1). For v)», we also denote B3[ 0(v) :"B[ 0(v)(c).

30 Let w
i
:"min(v

i
, » ), B(vi )(c, q

i
) :"qwi

i
B3 0(vi ) (c, q

i
). Then due to (3.6), the term

F
q
(c, t) given by (3.2) has the form

F
q
(c, t)"(B0)~1(c, t)M[!B

6
* (c)(B0)~1(c, · )]qG(c, · )N(t)

"

V`1
+

v0/0

V`1
+

v1/0

· · ·
V`1
+

vq/0

F (c`)
qv0v1 . . . vq

(c, t), (3.7)

F (c`)
qv0v1 . . . vq

(c, t) :"(B0)~1(c, 0)G
qv0v1, . . . , vq

(c, t),

G
qv0v1, . . . , vq

(c, t) :"(!1)qtw0B3[ 0(v0 )(c, t)MB
6
*(c)B(v1 )(c, · )B

6
* (c)B(v2) (c, · ) . . .

. . . B
6
* (c)B(vq )(c, · )G(c, · )N(t). (3.8)

"B3 0(v0)(c, t)tw0 P
t

0

dq
1
(t!q

1
)~fqw1

1 P
q1

0

dq
2
(q

1
!q

2
)~fqw2

2

. . . P
qq~1

0

dq
q
(q

q~1
!q

q
)~fqwq

q
F

qv1 . . . vq
(c, t, q

1
, . . . , q

q
)G(c, q

q
).
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Let v
i
)» (i"0#q), then B3 0(vi)(c, q)"B0(vi) (c), B3[ 0(vi) (c, q)"B[ 0(vi)(c) are indepen-

dent of q, t and

B* (c, t, q)B(vi) (c)"qviB* (c, t, q)B3 0(vi)(c)"qvi

[B* (c, t, q) (B0 )~1(c, 0)] B[ 0(vi)(c)

"qvi[a*(t, q)B33 *a (c, 0)#b*(t, q)B33 *b (c, 0)]B[ 0(vi) (c).

Taking into account estimates (1.4), (3.6@ ) we get that the operator
B
1
* (c)B(v)(c)3VCH(S@ ; 0, ¹ ) (see point 60 of Section I.2) for every S@ that does not

contain c
i
(0). Hence from the membership G3CH0

2
(S(d

g
, 1); 0, ¹ ), definition (3.8),

and point 90 of Appendix, we obtain that G (c`)
qv0 . . . , vq

(c, t)3CH0
2
(S@ ; 0, ¹ ) for every S@

belonging to S (d
g
, 1) and not containing c

k
(0). Hence due to estimates (I.4.7)—(I.4.10)

and point 70 of the Appendix, F(0`)
qv0 . . . , vq

3CH3[
2
(#

~
, #

`
; S@ ; 0, ¹ ) for such strip S@.

Summing the pole multiplicities of (B0 )~1(c, 0) and B[ 0(vi) (c), we get that F (c`)
qv0 . . . vq

(c, t)
is meromorphic in S (d

g
, 1) with poles at c

k
(0) of multiplicities not greater than

(q#1#+q
i/0

v
i
)P

k*
(0), and all the coefficients of its Laurent’s expansions near c

k
(0)

are continuous in t3[0, ¹ ].
If v

t
"»#1 for some i"0%q, then by the analogous reasoning and due to the

properties of the matrix B3[ 0(c, q) written above, we obtain that F (c`)
qv0 . . . vq

3

CH3
2
[ (#

~
, #

`
; S(d

gs`
(¹ ), 1); 0, ¹ ).

4° Let us denote

F
qv1 . . . vq

(c, t, q
1
, . . . , q

q
)

:"(!1)qB*
#
(c, t, q

1
)B3 0(v1) (c, q

1
)B*

#
(c, q

1
, q

2
)B3 0(v2)(c, q

2
) . . .

. . . B*
#
(c, q

q~1
, q

q
)B3 0(vq)(c, q

q
) (v

t
"0%»#1).

Taking into account the results of points 10 and 20 it is possible to draw the following
conclusions. Let all v

i
)», then the function F

qv1 . . . vq
(c, t, q

1
, . . . , q

q
) is meromorphic

in the whole c-plane with poles at c
k
(0) multiplicities of not greater than

(q#+q
i/1

v
i
)P

k*
(0); all the coefficients of its Laurent’s expansions near c

k
(0) are con-

tinuous in t, q
i
; DF

qv1 . . . vq
D (M

F
(SM @

r
(0))(R, and F

qv1 . . . vq
(c, t, q

1
, . . . , q

q
) is continuous

in t, q
i
3[0, ¹ ] uniformly with respect to c3SM @

r
(0), ∀S@. If some v

i
"»#1, then

F
qv1 . . . vq

(c, t, q
1
, . . . , q

q
) is holomorphic in c3S(d

gs`
(¹ ), 1); DF

qv1 . . . vq
D(M

F
(SM @ )(R;

F
qv1 . . . vq

(c, t, q
1
, . . . , q

q
) is continuous in t, q

i
; and F

qv1 . . . vq
(c, t, q

1
, . . . , q

q
)P0 as

Mt, q
1
, . . . , q

q
NP0 uniformly with respect to c on every strip SM @LS (d

gs`
(¹ ), 1).

Expression (3.8) can be rewritten in the form

F(0`)
qv0 . . . , vq

(c, t)"B3 0(v0)(c, t)tw0 P
t

0

dq
1
(t!q

1
)~fqw1

1 P
q1

0

dq
2
(q

1
!q

2
)~fqw2

2
. . . ,

. . . P
qq~1

0

dq
q
(q

q~1
!q

q
)~fqwq

q
F
qv1 . . . vq

(c, t, q
1, . . . qq )G(c, q

q
).

Taking into account that

tw0 P
t

0

(t!q
1
)~fqw1

1
dq

1 P
q1

0

(q
1
!q

2
)~fqw2

2
dq

2
. . . P

q
q~1

0

(q
q~1

!q
q
)~fqwq

q
dq

q

"C
w0w1 . . . wq

tq(1~f)`w0`w1`. . .`wq ,
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where C
w0w1 . . . wq

are constants, and using the mean value theorem, we have

F (c`)
qv0 . . . vq

(c, t)"tq(1~f)`w0`> > >`wqF (tc`)
qv0. . . vq

(c, t), (3.9)

F (tc`)
qv0 . . . vq

(c, t) :"B3 0(v0)(c, t)F
qv1 . . . vq

(c, t, qJ
1
, . . . , qJ

q
)G(c, qJ

q
)C

w1 . . . wq
, (3.10)

where 0)qJ
q
(c, t))· · ·)qJ

1
(c, t))t.

The functions F (tc`)
qv0 . . . vq

(c, t) have the same properties as described in point 20 for the
corresponding F (c`)

qv0 . . . vq
(c, t), and moreover, if v

i
"»#1 for some i"0%q, then

F (tc`)
qv0 . . . vq

(c, 0)"0. These properties for tO0 follow from (3.9); for t"0, they follow
from (3.10) and from the corresponding properties of F

qv1 . . . vq
(c, t, q

1
, . . . , q

q
) given

above.
50 Substituting (3.9) into (3.7) and collecting the addends with the equal powers of t,

we obtain

F
q
(c, t)"

(q`1)V
+
v/0

tv`q(1~f)F (tc)
qv

(c, t)#tV`q(1~f)F (tc)
qV`

(c, t), (3.11)

F (tc)
qv

(c, t) :" +
v0`> > >`vq/v

F (tc`)
qv0 . . . vq

(c, t), v
i
)»,

where to F (tc)
qV`

(c, t) all the terms tw0`> > >`wq~VF (tc`)
qv1 . . . vq

(c, t) are collected for which at
least one v

i
"»#1 (i.e., that were constructed by use of B3 0(V`1)(c, q)). Consequently,

F (tc)
qv

(c, t) is meromorphic in S (d
g
, 1) with poles at c

k
(0) of multiplies not greater than

(q#1#v)P
k*

(0), and all the coefficients of its Laurent’s expansions near c
k
(0) are

continuous in t3[0, ¹ ]. In addition, F (tc)
qv

3CH3
2
[ (#

~
, #

`
; S @ ; 0, ¹ ) for every S@

belonging to S (d
g
, 1) and not including c

k
(0).

Adding to the last term in (3.11) also the terms from the sum, whose powers are
greater than »#q(1!f), we have

F
q
(c, t)"

V
+
v/0

tv`q (1~f) F (tc)
qv

(c, t)#tV`q(1~f)F (Rtc)
qV

(c, t), (3.12)

F (Rtc)
qV

(c, t) :"F (tc)
qV`

(c, t)#
(q`1)V

+
v/V`1

tv~VF (tc)
qv

(c, t).

The functions F (Rtc)
qV

3CH3
2
[ (#

~
, #

`
; S (d

gs`
(¹ ), 1); 0, ¹ ) and F (Rtc)

qV
(c, 0)"0.

By an analogous way it is possible to show that the remaining term of (3.1) is
represented in the form F (R)

Q`1
(c, t)"t(Q`1)(1~f) F (Rt)

Q`1
(c, t), where F (Rt)

Q`1
3

CH3
2
[ (#

~
, #

`
; S(d

gs`
(¹ ), 1); 0, ¹ ).

After substituting (3.12) into (3.1), we get:

F(c, t)"
Q
+
q/0

V
+
v/0

tv`q(1~f)F (tc)
qv

(c, t)#tVF (Rtc)
QV* (c, t)#t(Q`1)(1~f)F (Rt)

Q`1
(c, t),

(3.13)

F (Rtc)
QV* (c, t) :"

Q
+
q/0

tq(1~f)F (Rtc)
qV

(c, t). (3.14)

Let the function int(x) be the integer part of x. Denote

Q
`

(v) :"int[(»!v)/(1!f)]. (3.15)
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To get in the sum only those terms having powers of t not greater than rV (power in
the first remainder term), let us set Q"Q

`
(0), interchange the order of summation in

(3.13), and retain in the sum only the terms with q)Q
`

(v) including the other ones to
the remainder term. Taking into account that (Q

`
(0)#1)(1!f)'», we can write:

F(c, t)"
V
+
v/0

Q` (v)
+
q/0

tv`q(1~f)F (tc)
qv

(c, t)#tVF (Rc)
V`

(c, t), (3.16)

F (Rc)
V`

(c, t) :"F (Rtc)
Q`(0)V* (c, t)#t(Q` (0)`1)(1~f)~VF (Rt)

Q` (0)`1
(c, t)

#

V
+
v/1

Q`(0)
+

q/Q`(v)`1

tv`q(1~f)F (tc)
qv

(c, t). (3.17)

Due to the properties of the functions F (Rtc)
qV

, F (R)
Q`1

, and F (tc)
qv

, we obtain from (3.14)
and (3.17) that F (Rc)

V`
3CH3

2
[ (#

~
, #

`
; S (d

gs`
(¹ ), 1); 0, ¹ ) and F (Rc)

V`
(c, 0)"0.

60 We apply then the inverse Mellin transform to (3.16), shift the integration path of
the transform for the terms in the sum to the left into the strip S (d

g
, d

~
(0)), and

evaluate residues as in section 3.1 (it is possible to see that the conditions as
Im rP$R sufficient for the shift are met). Using the estimates of Appendix, point 60,
and the Kolosov—Muskhelishvili formulas (I.1.3), we obtain the stress representation:

p (l)
ij

(o, h, t)"
V
+
v/0

Q`(v)
+
q/0

tv`q(1~f)p(lqv)
ij

(o, h, t)#tVp(lV`)
ij

(o, h, t), (3.18)

p(lqv)
ij

(o, h, t)" +
dg:R%ck:1

o~ck(0)
Pkvq

+
n/0

lnno
P
I
kn

+
p/1

KI (qv)
knp

(t)FI (lqv)
ijknp

(h)#p(lqv)
*ij

(o, h, t),

(3.19)
P
kvq

:"(v#q#1)P
k*

(0)!1, Dp(lqv)
*ij

(o, h, t) D(M
*
o~dg~e ∀e3 (0, d

~
(0)!d

g
),

p(lV`)
ij

(o, h, t)(M(R)o~dgs`(T)`e ∀e3 (0, 1!d
gs`

(¹ )),

∀h3[h(l){
~

, h(l){
`

]L(h(l)
~

, h(l)
`

), ∀t3[0, ¹ ], KI (q)
knp

(t)3C[0, ¹ ]. (3.20)

The stress singularity powers c
k
(0) are zeros for the function * (c, 0), determined by

the instantaneous Dundurs parameters a0(0), b0(0) at the initial time instant t"0.
The sense and properties of the stress intensity factors KI (qv)

knp
(t), eigenfunctions FI (lqv)

ijknp
(h),

and parameters PI
kn

are analogous to those given in section I.4. The functions
p(lqv)
*ij

(o, h, t), p(lV`)
ij

(o, h, t) are continuous with respect to t3[0, ¹ ] for any
o, h3¼ (l) and p(lV`)

ij
(o, h, 0)"0. The term p(l00)

ij
(o, h, t) has the asymptotics given by

the classical elastic solutions with the moduli equal to the instantaneous moduli of
hereditary media at t"0. The other terms p(lqv)

ij
(o, h, t) have the same stress singular-

ity powers c
k
(0) as p(l00)

ij
(o, h, t), however, the possible number of their logarithmic

terms grows linear with v#q. The residual term p(lV`)
ij

(o, h, t) has the same rough
estimate (1.4) with respect to o as the total solution p(l)

ij
(o, h, t).

The corresponding representation for the case of continuous kernels a*(t, q), b*(t, q)
is obtained from (3.15) and (3.18)—(3.20) by substituting f"0. Then we can collect the
terms with equal powers of t and obtain from (3.18) the representation with the single
summation:

p(l)
ij

(o, h, t)"
V
+
v/0

tvp(lv)
ij

(o, h, t)#tVp(lV`)
ij

(o, h, t). (3.21)

The form of p(lv)
ij

(o, h, t) coincides with the form of p(l0v)
ij

(o, h, t) from (3.19).
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On the other hand, if »"1, i.e. the instantaneous Dundurs parameters a0 (t), b0(t)
are only continuous, then only one term remains in the sum in (3.18), and for this case
we have

p(l)
ij

(o, h, t)"p(l00)
ij

(o, h, t)#p(l0`)
ij

(o, h, t), (3.22)

where the asymptotic for p(l00)
ij

(o, h, t) is given by (3.19), the estimate for p(l0`)
ij

(o, h, t)
by (3.20) and p(l0`)

ij
(o, h, 0)"0.

Choosing the considered time moment t"¹ at the asymptotic representations
(3.5), (3.18)— (3.22), we obtain that the power d

gs`
(¹ ) of the remainder term estimates

depends due to (I.4.11) only on the instantaneous Dundurs parameters a0 (q), b0 (q) at
times q)¹, i.e., at times preceding (and coinciding) the considered one ¹.

4. Long behaviour time (tPR)

Let a0(q), b0 (q) be continuous and bounded on [0,R), a
N
* , b

M
*3VC(0,R). Suppose

g(l)
i

, gJ (0)
i

belong to CLª
2
(d

g
, 1;R), i.e., these functions have bounded norms in the sense

of point 10 of section I.2 but may have no limits as tPR. Then, the Mellin transform
G3CH0

2
(S (d

g
, 1); 0,R). We will investigate in this section the solution behaviour on

the whole half-axis [0,R)U t and for tPR. When necessary, we will consider further
some more narrow classes of the hereditary operators a

N
, b
M
and of the boundary loads

g(l)
i

, gJ (0)
i

.
In the degenerate case all the asymptotics and estimates of section I.4 are true for

¹"R and t, q3[0,R).
Let us now consider the non-degenerate heredity for three cases of load behaviour

when tPR: the loads belonging to CLª
2
(d

g
, 1; 0,R) only, the loads belonging to

CLª
2
(d

g
, 1; 0,R) and tending to the oscillating ones in time, and the loads belonging to

CLª
2
(d

g
, 1; 0,R) and stabilizing in time.

4.1. ¸oads bounded in a sense as tPR

Like in section 1, we arrive in this case to equations (1.2) and (1.3), where
BII (c)3VCH [S (d

gs`
(R); 0,R]. Let the Dundurs operators a

6
, b
M
tend to a

N
~ , b

M
~ of the

convolution type, i.e. these exist constats a0(R), b0 (R) and functions a*~ (q),
b*~(q)3¸

1
(0,R) such that a0(q)Pa0(R), b0 (q)Pb0 (R) as qPRand

sup
T0xt:=

P
t

T0

Da*(t, q)!a*~(t!q) DdqP0,

sup
T0xt:=

P
t

T0

Db*(t, q)!b*~(t!q) D dqP0, (¹
0
PR).

Such property is quite natural for aging materials (see e.g. [1]).
Let us introduce notations

aL * (u) :"P
=

0

a*~(q)e~uqdq, bK * (u) :"P
=

0

b*~(q)e~uqdq,

aL (u) :"a0(R)#aL * (u), bK (u) :"b0(R)#bK (u), (4.1)
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and let Bª (c, u) be obtained from the operator matrix B
6
(c) (see (I.3.18)) after replacing

a
N
, b
M
by aL (u), bK (u). Let cL

k
(u) be zeros of the function det[Bª (c, u)] and

dK :"sup
k,u

Re cL
k
(u) (Re cL

k
(u)(1, Reu*0), d= :"max[d

gs`
(R), dK ]. (4.2)

Suppose d=(1 (it will be the case at least for the operators a
N
, b
N
with sufficiently

small norms DDDa*; 0,RDDD and DDDb*; 0,RDDD defined in section I.2, point 50). Then
according to [6, Theorem 3.19], which is a generalization of the half-line
Paley—Wiener theorem, the operator I#B

6
3 3 *(c) is invertible on the half-axis [0,R)U t

for c3S (d=, 1), and the inverse operator [I#B33
6
*(c)]~1 acts in CH0

2
(S(d=, 1); 0,R).

Hence, the solution G33 of (1.3) belongs to CH0
2
(S (d=, 1); 0,R).

Then we obtain by the same reasoning as in sections I.4 and 1 that the solution of
the system (1.2) F3CHI

2
[ (#

~
, #

`
; S (d=, 1); 0,R) and the same estimates (I.4.13) hold

for the complex potentials '(l)
j

(z
j
, t), '(l)

j
(z

j
, t), where the parameter d

gs`
(t) must be

replaced by d=. Consequently, for the stresses and strains we have:

Dp(l)
ij

(o, h, q) D, De(l)
ij

(o, h, q) D(MII
=

o~d=~e

∀e3 (0, 1!d=), ∀h3[h(l){
~

, h(l){
`

]L(h(l)
~

, h(l)
`

), ∀q3[0,R), (4.3)

where the constant MII
=

is independent of o, h, q; d= is given by (4.2) and determined
by the behaviour of the momentary Dundurs parameters a0 (q), b0(q) and of the limit
convolution kernels a*~(q), b*~(q) on the whole half-axis [0,R)Uq (and certainly by
smoothness of given loads at oP0). Estimates (4.3) are more coarse than (1.4) but they
are uniform with respect to q on the half-axis [0,R).

4.2. Harmonic oscillations (tPR)

Let us consider an important particular case of loads. Suppose g(l)
i

(o, t), gJ (0)
i

(o, t)
belong to CLª

2
(d

g
, 1; 0,R) and tend to time harmonic functions g(l)

*) (o)e*)t, gJ (0)
*) (o)e*)t

as tPR, i.e.,

sup
T0

)t:=

Eg(l)
*

( · , t)!g (l)
*) ( · ) e*)tE

2
P0, ¹

0
PR,

sup
T0xt:=

EgJ (0)
*

( · , t)!gJ (0)
*) ( · ) e*)tE

2
P0, ¹

0
PR, (4.4)

where g(l)
*) (o), gJ (0)

*) (o)3 Ķ
2
(d

g
, 1) (see point 10 of section I.2).

Then (see [6, Theorem 2.16]) also their Mellin transform G (c, t) tends to G) (c)e*)t

as tPR, where G)3H0
2
(S (d

g
, 1) ), and

sup
T0xt:=

M0
2
[G ( · , t)!G) ( · )e*)t ; d]P0, ¹

0
PR (4.5)

uniformly with respect to d on every [d
0
, d

=
]L(d

g
, 1) (see definition 30 of section I.2).

Let the operators a
N
, b
N
tend to operators a

N
~, b

N
~ of the convolution type and, in

addition, a
N
*, b

N
* are operators with fading memory, i.e.,

P
T0

0

Da*(t, q) D dqP0, P
T0

0

Db*(t, q) D dqP0, (tPR),

for any ¹
0
3[0,R).
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Suppose d=(1, where d= is defined by (4.2); then (see (I.3.18)) the operator B33 (c) in
(1.3) belongs to VCH[S (d=, 1); 0,R], tends to a convolution operator, and is the
operator with fading memory on S (d=, 1), i.e.,

P
T0

0

sup
c|S{

DB33 (c, t, q) D dqP0, (¹
0
PR), ∀SM @3S (d=, 1).

Under these conditions, it follows from [6, Lemma 3.28, Theorem 3.29, and Theorem
3.25] that the solution G33 (c, t) of (1.3) tends to G33 ) (c)e*)t in the sense of (4.5) as tPR,

where G33 )(c)"[I#BIIK (c, i)) ]~1G) (c)3H0
2
(S(d=, 1)).

The solution of (1.2) is F(r, t)"(B0 )~1(r, t)G33 (r, t). At the same time

(B0)~1(c, t)"(B0 )~1(c,R)#(B0)~1(c, t)B[
~

(c, t),

B[
~

(c, t) :"[B0(c, t)!B0 (c,R)](B0)~1 (c,R).

Taking into account the form of matrix B0 (see (I.3.18)), we obtain that
supc|S{[B[ ~(c, t) DP0 (tPR), ∀SM @LS (d=, 1). Using the estimates (I.4.7)—(I.4.10) for
(B0)~1 and [6, Lemma 2.17], we obtain that F(c, q)PF) (c)e*)t as tPR, and

sup
T0xt:=

M [(F( · , t)!F) ( · ) e*)t ; #
~

, #
`

; d)P0, ¹
0
PR (4.6)

uniformly with respect to d on every [d
0
, d

=
]L(d

g
, 1) (see definition 40 of section I.2).

Moreover, F)(c)"(B0 )~1(c,R)G33 ) (c)"Bª ~1(c, i))G)(c)3HI
2
[ (#

~
, #

`
; S (d=, 1)).

As above, the matrix Bª (c, i)) is obtained from B (c) after replacing the Dundurs
operators a

N
, b
N
by their complex counterparts aL (i)), bK (i)) given by (4.1). The latter, in

turn, we also be obtained by replacing of the elastic hereditary operators k
N
(l), i

N
(l)

in (I.3.12) by their complex counterparts kL (l)(i)), iL (l)(i)) given by the formulas of
type (4.1).

From [6, Theorems 2.16, 1.15], after applying the inverse Mellin transform, we have
that '(l)

j
(z

j
, t)P'(l)

j)(z
j
) e*)t, ((l)

j
(z

j
, t)P((l)

j) (z
j
) e*)t(tPR) and

sup
T0xt:=

M
2
['(l)

j
( · , t)!'(()

j)( · ) e*)t ; ¼ (l)
j

; d]P0, ¹
0
PR,

sup
T0xt:=

M
2
[((l)

j
( · , t)!((l)

j)( · ) e*)t ; ¼ (l){
jG

; d]P0, ¹
0
PR (4.7)

for every d3[d
0
, d

=
]L(d

g
, 1) (see definition 30 of section I.2), and ¼ (l){

jG
is like in

definition of CH3
2

in section I.3. Moreover,

'(l)
j) (z

j
)"

1

2ni P
d`*=

d~*=

[F)(c)]
4l~4`j

z~c
j

dc,

((l)
j) (z

j
)"

1

2ni P
d`*=

d~*=

[F) (c)]
4l~2`j

z~c
j

dc, (4.8)

d=(d(1, '(l)
j) (z

j
), ((l)

j) (z
j
)3HI

2
(d=, 1; ¼(h(l)

j~
, h(l)

j`
) ).

The class HI
2

is defined analogously as to e.g. CH3
2

given in section I.3.
For any real ), Bª ~1 (c, i)) is a meromorphic function with poles of a finite multipli-

city at the zeros cL
k
(i)) of the function det[Bª (c, i))] and has the properties analogous

to those described in section I.4 for the matrix B0 (c, t). Due to holomorphy of G)(c) in
S(d

g
, 1), we can continue the function F) (c)"Bª ~1 (c, i))G) (c) analytically from
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S(d=, 1) into S (d
g
, 1). Shifting, as usual, the integration path in (4.8) to the left and

evaluating the residues of the integrands at cL
k
(i)), we obtain for the amplitudes

p
i,j) (o, h), e

ij) (o, h) the same classical asymptotics (I.4.16), (I.4.17), where all the
parameters depend on the frequency ) instead of time t and c

k
(t) must be replaced by

cL
k
(i)). Moreover,

p
ij
(o, h, t)Pp

ij) (o, h) e*)t, e
ij
(o, h, t)Pe

ij)(o, h) e*)t (tPR).

Thus if the loads, tend to those oscillating harmonically in time, an aging hered-
itarily-elastic body possesses fading memory, and its hereditary operators tend to
operators of the convolution type, then the stress and strain asymptotics at large times
are the same as for classical elastic body, whose elastic moduli coincide with complex
moduli of the body considered.

4.3. Stabilizing loads

Let g(l)
i

(o, t), gJ (0)
i

(o, t) belong to CLª
2
(d

g
, 1; 0,R) and tend to functions g(l)

i0
(o)"

g(l)
i

(o,R), gJ (0)
i0

(o)"gJ (0)
i

(o,R) (in the sense of (4.4) for )"0) as tPR. Let a
N
, b
N
have

the same properties as in subsection 4.2. Then we obtain a special case of section 4.2 at
)"0.

Thus, we again come for t"R to classical elasticity asymptotics (I.4.16), (I.4.17)
for the limiting values p

ij
(o, h,R), e

ij
(o, h,R), where c

k
(t) must be replaced by

c
k=

"cL
k
(0)— zeros of the determinant of matrix Bª (c, 0) obtained from B

6
(c) after

replacing the Dundurs operators a
N
, b
N
by their long-time counterparts aL (0), bK (0) given

by (4.1), and

p
ij
(o, h, t)Pp

ij
(o, h,R), e

ij
(o, h, t)Pe

ij
(o, h,R) (tPR).

That means, stress and strain asymptotics at large times and stabilizing loads for an
aging hereditarily-elastic body with fading memory and with hereditary operators
tending to operators of the convolution type, are the same as for classical elastic body,
whose elastic moduli coincide with long-time moduli of the body considered.

Let us remark that, since estimates (1.4) are not uniform with respect to t on the
half-infinite interval, then they, generally speaking, do not correspond as tPR to the
asymptotics obtained for the case when loads g(l)

i
(o, t), gJ (0)

t
(o, t) tend to finite limits

g(l)
i

(o,R), gJ (0)
i

(o,R) or to oscillating loads g(l)
i) (o), gJ (0)

i) (o). The last asymptotics may
not correspond to each other (for different frequencies )). However, all the asymp-
totics and estimates given in the paper correspond to uniform estimate (4.3) and refine
it for these special cases.

5. Solution in other function classes

For the sake of brevity, we have considered here and in Part I only the case of
continuous in time (in a sense) loads, i.e., g(l)

i
, gJ (0)

i
3C Ķ

2
(d

g
, 1; 0, ¹ ); then the solution

that is Kolosov-Muskhelishvili potentials '(l)
j

, ((l)
j

belong to CH3
2
(d

gs`
, 1; ¼ (l)

j
; 0, ¹ ).

If the loads belong to the more wide class ¸
=
Ķ
2
(d

g
, 1; 0, ¹ ) of functions g(o, t) such

that ess sup0)t)¹
Eg (. , t); dE

2
(R for any d3 (d

0
, d

=
) or to the class BLª

2
(d

g
, 1; 0, ¹ )

of functions g (o, t) such that sup0)t)¹
Eg ( . , t); dE

2
(R, for any d3 (d

0
, d

=
) (cf.

Section I.2, point 10 ), then the solution in the corresponding classes
¸
=
HI

2
(d

ge`
, 1; ¼ (l)

j
; 0, ¹ ) or BH3

2
(d

ge`
, 1; ¼ (l)

j
; 0, ¹ ) is obtained by the analogous
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procedure. The last two classes are respectively defined as in Section I.3 by use of the
class ¸

=
H

2
(d

0
, d

=
; ¼(h

~
, h

`
); 0,¹ ) of functions h (z, t )3H

2
(d

0
, d

=
; ¼(h

~
, h

`
))

with respect to z for almost every t3[0, ¹ ] and such that ess sup0)t)¹
M

2
(h(. , t);

h
~

, h
`

; d)(R for any d3 (d
0
, d

=
), or of the class BH

2
(d

0
, d

=
; ¼ (h

~
, h

`
); 0, ¹ ) of

functions h(z, t)3H
2
(d

0
, d

=
; ¼(h

~
, h

`
)) with respect to z for every t3[0, ¹ ] and

such that sup0)t)¹
M

2
(h (. , t); h

~
, h

`
; d)(R for any d3 (d

0
, d

=
) (cf. Section I.2.

point 3). Moreover, the results concerning the asymptotics and estimates hold with
account of the following remarks.

The asymptotics (I.4.16) as well as estimates (I.4.18), (4.1) and (4.3) hold for all
t3[0, ¹] if g(l)

i
, gJ (0)

i
3BLª

2
(d

g
, 1; 0, ¹ ) and only for almost all t3[0, ¹] if

g(l)
i

, gJ (0)
i

3¸
=
Ķ
2
(d

g
, 1; 0, ¹ ).

For the degenerate and non-aging parameters a
N
"a0"const., b

1
"b0"const., the

stress intensity factors K
knp

(t) are bounded on [0, ¹] if g(l)
i

, gJ (0)
i

3BLª
2
(d

g
, 1; 0, ¹ ) and

are only essentially bounded on [0, ¹] if g(l)
i

, gJ (0)
i

3¸
=
Ķ
2
(d

g
, 1; 0, ¹ ).

Results of Section 3 are proved only for g(l)
i

, gJ (0)
i

3C Ķ
2
(d

g
, 1; 0, ¹ ).

6. Bonded body of general geometry

For the present, we discussed problems for a bonded infinite wedge without mass
forces. However, by use of the Kondrat’ev method [5] it seems possible to show that
the results obtained here concerning principal (singular) asymptotic terms (with
0)c

k
(1) are extendible to the problems for a finite or infinite body with mass forces

and curvilinear boundaries of the body having the same local geometry (see [7]).
By repeating practically the same reasoning, it is easy to show that the given

approach is also applicable for intersection of a few interfaces and for other boundary
conditions on the external boundary and on the interface.

7. Conclusion

Thus, singular asymptotics and estimates of stresses and strains were considered near
the corner point in the plane problems of hereditary elasticity for a bonded aged
wedge. We succeeded in obtaining the following results.

1. If the Dundurs parameters a, b are not hereditary operators (degenerate case)
then in any time instant the stress asymptotics is the same as for a classical elastic
body, whose elastic moduli coincide with the instantaneous moduli of the body
considered at the same time instant.

2. For finite times 0)t(R, estimate (1.4) for stresses and strains is obtained,
whose power for the case of sufficiently smooth loads coincides with the suprem-
um over the segment [0, t] of the stress singularity power in a classical elastic
body, whose moduli coincide with the instantaneous moduli of the body con-
sidered. Particularly for a non-aging hereditary body, if the instantaneous elastic
moduli are such that any stress singularity is impossible at the initial time
instant, then stress singularity cannot arise for any other finite time instant (for
sufficiently smooth loads).

3. For initial time t"0, i.e., immediately after applying a load, the asymptotics
of stresses and strains are the same as for a classical elastic body, whose
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elastic moduli coincide with the instantaneous moduli of the body considered for
t"0.

4. For small times t'0, the solution is represented by an expansion with respect to
powers of t. Asymptotic of each term of the expansion includes the same stress
singularities as for a classical elastic body, whose elastic moduli coincide with the
instantaneous moduli of the body considered, but the power and the number of
logarithm multiplicands grow linearly with the number of the expansion term.

5. For large times (tPR) for an aging hereditarily-elastic body with fading-
memory and with hereditary operators tending to operators of the convolution
type, stress and strain asymptotics are the same as for a classical elastic body,
whose elastic moduli coincide (i) with the complex moduli of the body considered
for loads tending to those oscillating harmonically in time; and (ii) with the
long-time moduli of the body considered for loads tending to those constant
in time.
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