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a b s t r a c t 

A history-dependent cohesive zone model approach is used to study the crack behaviour in elastic and visco- 

elasto materials. The cohesive (yield) stress at the cohesive zone points is related to the nonlinear normalised 

equivalent stress functional over the stress history at these points, and is expressed in the form of an Abel-type 

(fractional) integral. We analyse the cohesive zone length evolution in time and the crack tip opening during the 

stationary crack stage as well as during the propagating crack stage. We consider the external load increasing 

linearly with time and compare the solution with the case of the constant load. We obtain the solution numerically 

and analyse the influence of the viscoelasticity by comparing with the case of purely elastic behaviour of the bulk 

of the material. 
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. Introduction 

An important assumption needed in order to use linear elastic frac-
ure mechanics is that the inelastic region at the crack tip must be neg-
igible in comparison to the size of the whole crack itself. However, in
any situations this assumption does not hold. In such cases, elasto-
lastic fracture mechanics is considered instead, which particularly in-
ludes cohesive zone models. They allow modelling of short and long
rack growth as well as crack nucleation and initiation. In such models,
t is assumed that there exists a cohesive zone, CZ, which is the area
etween two separating but still sufficiently close surfaces ahead of the
rack tip, see the shaded region in Fig. 1 . 

At this cohesive zone, cohesive tractions pull the cohesive faces to-
ether. The external loads applied to a body cause the crack to propagate
nd could also cause the crack faces to move further away from each
ther. By implementing a cohesive zone model, we would like to find
ut the size of this cohesive zones, and more importantly, when the crack
ill start to propagate and how fast will it propagate thereafter. When

he crack propagates, the cohesive forces vanish at the points where
he cohesive zone opening reaches a critical value and these points be-
ome the crack surface points, while the new material points, where the
istory-dependent normalised equivalent stress reaches a critical value,
oin the cohesive zone. So, the CZ is practically attached to the crack tip
head of the crack and moves with the crack, keeping the normalised
quivalent stress finite in the body. 
∗ Corresponding author. 

E-mail address: sergey.mikhailov@brunel.ac.uk (S.E. Mikhailov). 

i  

m  

p

ttps://doi.org/10.1016/j.ijmecsci.2018.05.032 

eceived 2 February 2018; Received in revised form 3 May 2018; Accepted 15 May 2

vailable online 16 May 2018 

020-7403/© 2018 Elsevier Ltd. All rights reserved. 
There have been many cohesive zone models (employing differ-
nt traction-separation laws) introduced in the literature. The simplest
odel, introduced by Leonov–Panasyuk–Dugdale (LPD) (1959–1960),

ee [3,8] , is when the cohesive stress, that can be associated with the
ield stress, 𝜎y , is constant, while the bulk of the material is elastic. This
odel is one of the most popular cohesive zone models and many mod-

fications of this model have been made and widely used in nonlinear
racture mechanics. 

The 3 main compounds of a cohesive zone model are: 

• the constitutive equations in the bulk of the material; 
• the constitutive equations in the cohesive zone; 
• the criterion for the cohesive zone to break, i.e., the crack to propa-

gate. 

The model presented in this paper is an extension of the LPD model
o linear visco-elastic behaviour of the bulk of materials with non-linear
istory-dependent constitutive equations in the cohesive zone. Our aim
s to find the time-evolution of the CZ before the crack starts propagat-
ng, the delay time, after which the crack will start to propagate, and
odel further the time-evolution of the crack and the CZ. In all these

tages we assume the quasi-static evolution of crack and cohesive zones,
.e., the dynamic effects are not considered. The case of a constant ex-
ernal load was studied in [6] , with some preliminary results published
n [7] . The focus of this paper is to show that the suggested model and
ethods for solving the corresponding crack problems are equally ap-
licable to the external load variable in time. 
018 
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Fig. 1. Cohesive zone. 
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. Problem formulation 

Let the problem geometry be as in Fig. 1 , i.e., the crack occupies
he interval [− ̂𝑎 ( ̂𝑡 ) , ̂𝑎 ( ̂𝑡 )] and the cohesive zone occupies the intervals
− ̂𝑐 ( ̂𝑡 ) , − ̂𝑎 ( ̂𝑡 )] and [ ̂𝑎 ( ̂𝑡 ) , ̂𝑐 ( ̂𝑡 )] in an infinite linearly elastic or viscoelastic
ody under plane strain or plain stress conditions. The body is loaded at
nfinity by traction 𝑞 ( ̂𝑡 ) in the direction normal to the crack, applied at
he time ̂𝑡 = 0 and is constant in the coordinate 𝑥̂ . The crack is traction-
ree, i.e., 𝜎̂𝑦̂ ̂𝑦 ( ̂𝑥 , 0 , ̂𝑡 ) = 0 for |𝑥̂ | < 𝑎̂ ( ̂𝑡 ) . To simplify the notations, we de-
ote the normal stress ahead of the crack as 𝜎̂, i.e., 𝜎̂( ̂𝑥 , ̂𝑡 ) = 𝜎̂𝑦̂ ̂𝑦 ( ̂𝑥 , 0 , ̂𝑡 ) .
he initial CZ tip coordinate and crack tip coordinate are prescribed,
̂ (0) = 𝑎̂ (0) = 𝑎̂ 0 , while the functions 𝑐 ( ̂𝑡 ) and 𝑎̂ ( ̂𝑡 ) for time ̂𝑡 > 0 are to be
ound. 

We will now formulate and normalise the principal equations while
onsidering two cases: a constant external load 𝑞 and an external load
̂ ( 𝑡 ) varying in time. 

.1. Natural form of the cohesive zone condition 

First, as in [6] , we will replace the LPD cohesive zone stress condi-
ion, 𝜎 = 𝜎𝑦 , with the history-dependent condition 

( ̂𝝈; ̂𝑡 ) = 1 , (1)

here 

( ̂𝝈; ̂𝑡 ) = 

( 

𝛽

𝑏𝜎
𝛽

0 
∫

𝑡 

0 
|𝝈̂( ̂𝜏) |𝛽 ( ̂𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑 ̂𝜏

) 

1 
𝛽

(2)

s the normalised history-dependent equivalent stress, |𝝈̂| is the maxi-
um of the principal stresses, and ̂𝑡 denotes time. 

The parameters 𝜎0 and b are material constants in the assumed
ower-type relation 

̂
 ∞( ̂𝜎) = 

( 

𝜎̂

𝜎0 

) − 𝑏 
(3)

etween the physical rupture time 𝑡 ∞ and the constant uniaxial tensile
tress 𝜎̂ applied to a sample without cracks. These parameters can be
btained by fitting the creep durability experimental data on macro-
amples. Here, b is dimensionless, 𝑡 ∞ has units of time, e.g., seconds, s ,
nd if the stress 𝜎̂ is in Pascals, Pa, then 𝜎̂0 has units Pa·s 1/ b . For many
tructural materials the parameter b is in the range between 5 and 20,
f. e.g. [10] and references therein. The dimensionless parameter 𝛽 is
 material constant in the nonlinear accumulation rule for durability
nder variable load, see [10] . Further details of this model can be found
n [4,6] . 

Note that relations (1) –(2) were implemented in [5,11] to solve a
imilar crack propagation problem without a cohesive zone; i.e. it was
ssumed that when condition (1) is reached at a point, the crack spreads
o this point. However, such local approach appeared to be inapplicable
or b ≥ 2. In this paper, a cohesive zone approach is developed instead,
519 
n order to cover the larger range of b values relevant to structural ma-
erials. In the CZ approach, when condition (1) is reached at a point, the
ohesive zone spreads to this point. 

As proved in [6, Section 3.2] , the CZ model is applicable only if ma-
erial parameters, b and 𝛽, of the history dependent yield condition, are
uch that b > 0, 0 < 𝛽 < b . This implies that the CZ model is not applica-
le for the Robinson-type history-dependent yield condition, based on
he power-type durability diagram, for which 𝛽 = 𝑏 . 

The cohesive zone condition (1) –(2) at a point 𝑥̂ on the cohesive zone
an be rewritten as 

𝑡 

𝑡 𝑐 ( ̂𝑥 ) 
𝜎̂𝛽 ( ̂𝑥 , ̂𝜏)( ̂𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑 ̂𝜏 = 

𝑏𝜎
𝛽

0 
𝛽

− ∫
𝑡 𝑐 ( ̂𝑥 ) 

0 
𝜎̂𝛽 ( ̂𝑥 , ̂𝜏)( ̂𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑 ̂𝜏, (4)

or 𝑡 ≥ ̂𝑡 𝑐 ( ̂𝑥 ) and 𝑎̂ ( ̂𝑡 ) ≤ |𝑥̂ | ≤ 𝑐 ( ̂𝑡 ) . Here, 𝑡 𝑐 ( ̂𝑥 ) denotes the time when the
ohesive zone spreads to the point 𝑥̂ . Eq. (4) is an inhomogeneous non-
inear Volterra integral equation of the Abel type (fractional integral
quation) with unknown function 𝜎̂𝛽 ( ̂𝑥 , ̂𝑡 ) for ̂𝑡 ≥ ̂𝑡 𝑐 ( ̂𝑥 ) . 

.2. Normalised form of the cohesive zone condition 

To simplify condition (4) , and other equations further on, we nor-
alise the variables, which will make them dimensionless and reduce

he number of significant parameters. This also make the comparison of
he results for constant and variable load cases more illustrative. 

For the constant loading case, 𝑞 ( ̂𝑡 ) = 𝑞 0 is independent of time, and
sing Eq. (3) we denote 

̂
 ∞ = ̂𝑡 ∞

(
𝑞 0 
)
= 

( 

𝑞 0 
𝜎0 

) − 𝑏 
. 

hen we can introduce the normalised time, point coordinate, crack tip
oordinate, cohesive zone tip coordinate, and stress as follows, 

 = 

𝑡 

𝑡 ∞
, 𝑥 = 

𝑥̂ 

𝑎̂ 0 
, 𝑎 ( 𝑡 ) = 

𝑎̂ ( 𝑡 ̂𝑡 ∞) 
𝑎̂ 0 

, 𝑐( 𝑡 ) = 

𝑐 ( 𝑡 ̂𝑡 ∞) 
𝑎̂ 0 

, 𝜎( 𝑥, 𝑡 ) = 

𝜎̂( 𝑥 ̂𝑎 0 , 𝑡 ̂𝑡 ∞) 
𝑞 0 

, 

(5) 

nd the normalised external load becomes 𝑞( 𝑡 ) = 𝑞 ( ̂𝑡 )∕ ̂𝑞 0 = 1 . 
The situation is a bit more complicated when the load is time-

ependent, particularly, when it is given by a linear function, i.e.,
̂ ( ̂𝑡 ) = 𝑞̇ ̂𝑡 , with 𝑞̇ = 𝑐𝑜𝑛𝑠𝑡 . Let us denote by t •∞ the corresponding rup-
ure time, i.e., the time when the cohesive zone spreads over the infi-
ite plane without crack, under the time-variable load. To obtain 𝑡 ∙∞,
e consider condition (1) –(2) for dele te ̂𝝈( ̂𝜏) = 𝑞 ( ̂𝜏) = 𝑞̇ ̂𝜏, which reduces

o 

̇ 𝛽 ∫
𝑡 

0 
𝜏𝛽 ( ̂𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑 ̂𝜏 = 

𝑏𝜎
𝛽

0 
𝛽

. (6)

xpressing the integral in (6) in terms of the Beta-function and solving
he equation for ̂𝑡 = ̂𝑡 ∙∞ gives 

̂
 ∙∞ = 

( 

𝜎0 
𝑞̇ 𝛼

) 

𝑏 
1+ 𝑏 

, (7) 
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∶= 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝑏 

𝛽 B 

[
𝛽

𝑏 
, 1 + 𝛽

] ⎞ ⎟ ⎟ ⎟ ⎠ 
−1∕ 𝛽

, 

nd B is the Beta-function. 
For the load linearly increasing in time, the load maximum, reached

efore rupture in the infinite plane without crack, is evidently 𝑞 ( ̂𝑡 ∙∞) =
̇  ̂𝑡 ∙∞. Let us also introduce the reference constant load 𝑞 0 = 𝜎0 ̂𝑡 

−1∕ 𝑏 
∙∞ under

hich such plane ruptures at the same time ̂𝑡 ∙∞. Expressing 𝑞̇ and ̂𝑡 ∙∞ in
erms of 𝑞 ( ̂𝑡 ∙∞) and 𝑞 0 from these two equations and substituting them
n Eq. (7) , we obtain 

̂ 0 = 𝛼𝑞 ( ̂𝑡 ∙∞) . 

Now, similarly to the case of constant load, we can introduce the nor-
alised time, coordinate variable, crack tip coordinate, cohesive zone

ip coordinate, and stress as follows, 

 = 

𝑡 

𝑡 ∙∞
, 𝑡 𝑐 = 

𝑡 𝑐 

𝑡 ∙∞
, 𝑥 = 

𝑥̂ 

𝑎̂ 0 
, 

 ( 𝑡 ) = 

𝑎̂ ( 𝑡 ̂𝑡 ∙∞) 
𝑎̂ 0 

, 𝑐( 𝑡 ) = 

𝑐 ( 𝑡 ̂𝑡 ∙∞) 
𝑎̂ 0 

, 𝜎( 𝑥, 𝑡 ) = 

𝜎̂( 𝑥 ̂𝑎 0 , 𝑡 ̂𝑡 ∙∞) 
𝑞 0 

, (8)

nd the normalised external load becomes 

( 𝑡 ) = 

𝑞 ( ̂𝑡 ) 
𝑞 0 

= 

𝑡 ̇𝑞 

𝑞 0 
= 

𝑡 ̂𝑡 ∙∞𝑞̇ 

𝑞 0 
= 

𝑡 

𝛼
. 

Hence, after the normalisation, we arrive at the following form of
he cohesive zone condition (4) for both the constant and variable load

𝑡 

𝑡 𝑐 ( 𝑥 ) 
𝜎𝛽 ( 𝑥, 𝜏)( 𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑𝜏 = 

𝑏 

𝛽
− ∫

𝑡 𝑐 ( 𝑥 ) 

0 
𝜎𝛽 ( 𝑥, 𝜏)( 𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑𝜏 (9)

or a ( t ) ≤ | x | ≤ c ( t ). 

.3. Stress ahead of the cohesive zone 

Let us first consider the case of linear elastic constitutive equations
or the bulk of the material. Applying the results by Muskhelishvili (see
12] , Section 120), we have for the stresses ahead of the cohesive zone
n the elastic material, 

̂ ( ̂𝑥 , ̂𝑡 ) = 

𝑥̂ √
𝑥̂ 2 − 𝑐 2 ( ̂𝑡 ) 

⎛ ⎜ ⎜ ⎜ ⎝ 𝑞 ( ̂𝑡 ) − 

2 
𝜋 ∫

𝑐 ( ̂𝑡 ) 

𝑎̂ ( ̂𝑡 ) 

√ 

𝑐 2 ( ̂𝑡 ) − 𝜉2 

𝑥̂ 2 − 𝜉2 
𝜎̂( ̂𝜉, ̂𝑡 ) 𝑑 ̂𝜉

⎞ ⎟ ⎟ ⎟ ⎠ , (10)

or ̂𝑡 ≤ ̂𝑡 𝑐 ( ̂𝑥 ) and |𝑥̂ | > 𝑐 ( ̂𝑡 ) . As one can see from Eq. (10) , 𝜎̂( ̂𝑥 , ̂𝑡 ) has gen-
rally a square root singularity as 𝑥̂ tends to 𝑐 . 

Normalising time, space and stress using Eq. (5) for the constant
oad case and (8) for the variable load case, we arrive at the following
quation for the normalised stress ahead of the crack tip 

( 𝑥, 𝑡 ) = 

𝑥 √
𝑥 2 − 𝑐 2 ( 𝑡 ) 

( 

𝑞( 𝑡 ) − 

2 
𝜋 ∫

𝑐( 𝑡 ) 

𝑎 ( 𝑡 ) 

√
𝑐 2 ( 𝑡 ) − 𝜉2 

𝑥 2 − 𝜉2 
𝜎( 𝜉, 𝑡 ) 𝑑𝜉

) 

for |𝑥 | > 𝑐 ( 𝑡 ) 

(11)

here 

( 𝑡 ) = 

{ 

1 for a constant load 
𝑡 

𝛼
for a variable load. 

(12)

.4. The stress intensity factor 

A sufficient condition for the normalised equivalent stress, Λ, to be
ounded at the cohesive zone tip is that the stress 𝜎̂ is bounded, while
he necessary condition for the latter is that the stress intensity factor, 𝐾̂ ,
520 
s zero there. Multiplying the stress in Eq. (10) by 
√
𝑥̂ − 𝑐 ( ̂𝑡 ) and taking

he limit as 𝑥̂ tends to 𝑐 ( ̂𝑡 ) yields 

̂
 ( ̂𝑐 ( ̂𝑡 ) , ̂𝑡 ) = 

√ 

𝑐 ( ̂𝑡 ) 
2 

⎛ ⎜ ⎜ ⎜ ⎝ 𝑞 ( ̂𝑡 ) − 

2 
𝜋 ∫

𝑐 ( ̂𝑡 ) 

𝑎̂ ( ̂𝑡 ) 

𝜎̂( ̂𝜉, ̂𝑡 ) √ 

𝑐 2 ( ̂𝑡 ) − 𝜉2 
𝑑 ̂𝜉

⎞ ⎟ ⎟ ⎟ ⎠ . 
n the constant loading case, we will use normalisation relations (5) as
ell as the following normalisation for the stress intensity factor 

( 𝑐, 𝑡 ) = 

𝐾̂ ( 𝑐 𝑎̂ 0 , 𝑡 ̂𝑡 ∞) 

𝑞 0 
√
𝑎̂ 0 

, 

hile, in the variable loading case, we will use normalisation relations
8) as well as the following normalisation for the stress intensity factor 

( 𝑐, 𝑡 ) = 

𝐾̂ ( 𝑐 𝑎̂ 0 , 𝑡 ̂𝑡 ∙∞) 

𝑞 0 ( ̂𝑡 ) 
√
𝑎̂ 0 

. 

inally, this leads to the following normalised equation for the stress
ntensity factor 

( 𝑐( 𝑡 ) , 𝑡 ) = 

√ 

𝑐( 𝑡 ) 
2 

( 

𝑞( 𝑡 ) − 

2 
𝜋 ∫

𝑐( 𝑡 ) 

𝑎 ( 𝑡 ) 

𝜎( 𝜉, 𝑡 ) √
𝑐 2 ( 𝑡 ) − 𝜉2 

𝑑𝜉

) 

. (13)

here q ( t ) is given by (12) . 

.5. Objectives 

Further on we will study the evolution of the cohesive zone length
ith time during two stages: (i) stationary crack stage; and (ii) prop-
gating crack stage. In each of these two stages, we will consider two
odels for the bulk of the material: (a) linear elasticity and (b) linear

iscoelasticity. The main parameters involved in the CZM equations are
 and 𝛽. 

We will compare the results for the external load varying in time
nd for the constant one. The suitability of the numerical method used
n these problems has been analysed in [4,6] , where mesh-refinements
nd the numerical convergence rates were considered. 

. Cohesive zone growth for a stationary crack 

In this section we will consider the stationary crack stage, before the
rack starts propagating, i.e., 𝑎 ( 𝑡 ) = 𝑎 (0) = 1 , and thus only the cohesive
one grows with time. 

The details of the algorithm used to find the cohesive zone length
ith respect to time can be found in Section 4.1 in [6] . Briefly, we in-

roduce a time mesh with time steps t i . At each time step t i , we solve
quation 𝐾( 𝑐 𝑖 , 𝑡 𝑖 ) = 0 to obtain c ( t i ). 

In order to evaluate the integral in (13) , we need to find the stress
n the cohesive zone as well as the cohesive zone tip coordinate. To
hat end, we solve integral equation (9) for 𝜎𝛽( x, t i ) when 𝑥 = 𝑐( 𝑡 𝑘 ) ,
 = 0 , 1 , 2 , 3 , … , 𝑖 − 1 , where 𝑡 𝑐 ( 𝑥 ) = 𝑡 𝑘 , employing analytical solution of
he generalised Abel-type integral equation. As the right hand side of
q. (9) depends on the stresses ahead of the cohesive zone tip, we use
q. (11) to obtain 𝜎𝛽( x, t ) for x > c ( t ), when t ≤ t k . 

All programming in this section and further on was implemented in
ATLAB. The integrals were evaluated in terms of the Gauss hypergeo-
etric function 2 F 1 . We were solving the problem for several different b

nd for 𝛽 = 𝑏 ∕2 , 𝛽 = 𝑏 ∕3 , 𝛽 = 𝑏 ∕4 , 𝛽 = 𝑏 ∕6 or 𝛽 = 𝑏 ∕8 (for such choices of
the Gauss hypergeometric functions can be represented in a simple an-
lytical form). Note that this limitation on 𝛽 choices is not essential and
an be avoided if an appropriate general numerical integration scheme
s used for approximating the weakly-singular Abel-type integrals. 

Using the outlined numerical scheme, we obtained the evolution of
he cohesive zone tip position as well as the stress distribution on the
ohesive zone. 

The curves in Fig. 2 show that the cohesive zone length ahead of
he stationary crack is monotonically and continuously increasing with
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Fig. 2. CZ tip coordinate vs. time for 𝑏 = 4 , 𝛽 = 2 . 

Fig. 3. 𝜎( c ( t ∗ ), t ) for 𝑏 = 4 , 𝛽 = 2 at 𝑡 ∗ = 0 . 6 . 
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ime. We can also conclude that the CZ tip coordinate grows more
apidly with time in the constant loading case than in the variable load-
ng case. From Fig. 3 we can see that the stress at a material point ahead
f the cohesive zone is growing monotonically in time t , peaking at the
ime t ∗ when the point becomes the CZ tip, and then monotonically de-
reasing inside the CZ. 

Note that on the stationary crack stage, the cohesive zone evolution
nd stress distribution are the same for the elastic and visco-elastic mod-
ls and do not depend on the elastic constants or visco-elastic operators
n the considered problem. 

. Crack tip opening 

We will first consider the case when the bulk of the material is lin-
arly elastic and then convert the obtained solution to the case of linear
isco-elastic materials using the so-called Volterra principle. 

.1. Linear elastic material 

The crack opening is calculated similar to the classical LPD model in
3,8] and is presented as 

 ̂𝑢 𝑒 ]( ̂𝑥 , ̂𝑡 ) = [ ̂𝑢 ( ̂𝑞 ) 𝑒 ]( ̂𝑥 , ̂𝑡 ) + [ ̂𝑢 ( ̂𝜎) 𝑒 ]( ̂𝑥 , ̂𝑡 ) , 

here 

 ̂𝑢 ( ̂𝑞 ) 𝑒 ]( ̂𝑥 , ̂𝑡 ) = − 

𝜘 + 1 
2 𝜋𝜇

𝑞 ( ̂𝑡 ) ∫
𝑐 ( ̂𝑡 ) 

− ̂𝑐 ( ̂𝑡 ) 
Γ̃( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) 𝑑 ̂𝜉 (14)
r  

521 
nd 

 ̂𝑢 ( ̂𝜎) 𝑒 ]( ̂𝑥 , ̂𝑡 )= 

𝜘 +1 
2 𝜋𝜇

( 

∫
− ̂𝑎 ( ̂𝑡 ) 

− ̂𝑐 ( ̂𝑡 ) 
𝜎̂( ̂𝜉, ̂𝑡 ) ̃Γ( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) 𝑑 ̂𝜉+ ∫

𝑐 ( ̂𝑡 ) 

𝑎̂ ( ̂𝑡 ) 
𝜎̂( ̂𝜉, ̂𝑡 ) ̃Γ( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) 𝑑 ̂𝜉

) 

. 

(15) 

n the above expressions, 𝜇 = 𝐸∕[2(1 + 𝜈)] is the shear modulus, E is
oung’s modulus of elasticity and 𝜈 is Poisson’s ratio, 𝜘 = 3 − 4 𝜈 un-
er the plain strain conditions, while 𝜘 = (3 − 𝜈)∕(1 + 𝜈) under the plain
tress conditions, and finally, 

( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) = ln 
⎡ ⎢ ⎢ ⎢ ⎣ 
𝑐 2 ( ̂𝑡 ) − 𝑥̂ ̂𝜉 − 

√ 

( ̂𝑐 2 ( ̂𝑡 ) − 𝑥̂ 2 )( ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 ) 

𝑐 2 ( ̂𝑡 ) − 𝑥̂ ̂𝜉 + 

√ 

( ̂𝑐 2 ( ̂𝑡 ) − 𝑥̂ 2 )( ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 ) 

⎤ ⎥ ⎥ ⎥ ⎦ . (16)

fter integrating (14) and combining the integrals ranging from − ̂𝑐 ( ̂𝑡 ) to
 ̂𝑎 ( ̂𝑡 ) and from 𝑎̂ ( ̂𝑡 ) to 𝑐 ( ̂𝑡 ) in (15) , we obtain 

 ̂𝑢 ( ̂𝑞 ) 𝑒 ]( ̂𝑥 , ̂𝑡 ) = 

𝑞 ( ̂𝑡 )(1 + 𝜘) 
2 𝜇

√ 

𝑐 2 ( ̂𝑡 ) − 𝑥̂ 2 , 

 ̂𝑢 ( ̂𝜎) 𝑒 ]( ̂𝑥 , ̂𝑡 ) = 

𝜘 + 1 
2 𝜋𝜇

( 

∫
𝑐 ( ̂𝑡 ) 

𝑎̂ ( ̂𝑡 ) 
𝜎̂( ̂𝜉, ̂𝑡 )Γ( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) 𝑑 ̂𝜉

) 

, 

here 

( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) = ln 
⎡ ⎢ ⎢ ⎢ ⎣ 
2 ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 − 𝑥̂ 2 − 2 

√ 

( ̂𝑐 2 ( ̂𝑡 ) − 𝑥̂ 2 )( ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 ) 

2 ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 − 𝑥̂ 2 + 2 
√ 

( ̂𝑐 2 ( ̂𝑡 ) − 𝑥̂ 2 )( ̂𝑐 2 ( ̂𝑡 ) − 𝜉2 ) 

⎤ ⎥ ⎥ ⎥ ⎦ . 
e can remark that Γ( ̂𝑥 , ̂𝜉; ̂𝑐 ( ̂𝑡 )) < 0 when 𝑥̂ 2 , ̂𝜉2 < 𝑐 2 ( ̂𝑡 ) . 
The crack tip opening occurs at 𝑥 = 𝑎 ( 𝑡 ) and therefore is 

̂
𝑒 

(
𝑡 
)
∶= 

[
𝑢̂ 𝑒 
](
𝑎̂ 
(
𝑡 
)
, ̂𝑡 
)

= 

1 + 𝜘 
2 𝜇

( 

𝑞 

√ 

𝑐 2 
(
𝑡 
)
− 𝑎̂ 2 

(
𝑡 
)
+ 

1 
𝜋 ∫

𝑐 ( ̂𝑡 ) 

𝑎̂ ( ̂𝑡 ) 
𝜎̂
(
𝜉, ̂𝑡 

)
Γ
(
𝑎̂ 
(
𝑡 
)
, ̂𝜉; ̂𝑐 

(
𝑡 
))
𝑑 ̂𝜉

) 

. 

(17) 

sing the space, time, and stress normalisation given previously, we will
pply the normalisations 

𝑒 ( 𝑡 ) = 

8 𝜇 𝛿𝑒 ( 𝑡 ̂𝑡 ∞) 
𝑞 0 ̂𝑎 0 (1 + 𝜘) and 𝛿𝑒 ( 𝑡 ) = 

8 𝜇 𝛿𝑒 ( 𝑡 ̂𝑡 ∙∞) 
𝑞 0 ̂𝑎 0 (1 + 𝜘) , (18)

or the constant and varying load cases, respectively. Consequently, we
ave the following formula for the normalised crack tip opening 

𝑒 ( 𝑡 ) = 

4 
𝜋

( 

𝑞( 𝑡 ) 𝜋
√
𝑐( 𝑡 ) 2 − 𝑎 ( 𝑡 ) 2 + ∫

𝑐( 𝑡 ) 

𝑎 ( 𝑡 ) 
𝜎( 𝜉, 𝑡 )Γ( 𝑎 ( 𝑡 ) , 𝜉; 𝑐( 𝑡 )) 𝑑𝜉

) 

. (19)

here, as before, q ( t ) is given by (12) . 

.2. Linear viscoelastic material 

To obtain the crack tip opening in the viscoelastic case, we will im-
lement the so-called Volterra principle, according to which we have to
eplace the elastic constants 𝜇 and 𝜈 in the elastic solution by the cor-
esponding viscoelastic operators, to arrive at the viscoelastic solution.
lthough this approach is not always applicable to viscoelastic prob-

ems with moving boundaries, it is possible to show, see [14] , that this
pproach leads to a viscoelastic solution for the plane symmetric prob-
em with a straight propagating crack. This particularly means that the
tress representation ahead of the CZ tip following from the results by
uskhelishvili, see [12] , and given by Eq. (11) , which does not include

he elastic constants at all, is valid also for the considered viscoelastic
roblem. 

For simplicity, we will consider the viscoelastic material with con-
tant (purely elastic) Poisson’s ratio 𝜈 (and thus the parameter ϰwill also
emain constant). Then, to obtain the crack opening in the viscoelastic
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Fig. 4. Crack opening vs. time for viscoelastic and elastic materials with 𝑏 = 4 , 
𝛽 = 2 , 𝑚 = 5 , 𝜃 = 1 . 
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𝑈 ( 𝑡, 𝑎 ( 𝑡 ) , 𝑐( 𝑡 )) = 𝛿 ( 𝑡 ) − 𝛿 = 0 for the viscoelastic case. 
ase, we have to replace 1 
𝜇

in (17) by the second kind Volterra integral

perator 𝝁−1 defined by 

𝝁
−1 𝜎̂

)(
𝑡 
)
= 

𝜎̂
(
𝑡 
)

𝜇
+ ∫

𝑡 

0 
𝐽̇ 
(
𝑡 − 𝜏

)
𝜎̂( ̂𝜏) 𝑑 ̂𝜏, 

is the instant shear modulus and J is the creep function. To this end,
he crack opening in the viscoelastic case can be presented as 

̂
𝑣 

(
𝑡 
)
= 

(
𝝁
−1 𝜇𝛿𝑒 

)(
𝑡 
)
= 𝛿𝑒 

(
𝑡 
)
+ 𝜇 ∫

𝑡 

0 
𝐽̇ 
(
𝑡 − 𝜏

)
𝛿𝑒 ( ̂𝜏) 𝑑 ̂𝜏. (20)

We will further use the creep function of a standard linear solid, 

 

(
𝑡 − 𝜏

)
= 

1 
𝜇
+ 

𝜃̂

𝜂

( 

1 − 𝑒 
− 1 
𝜃̂
( ̂𝑡 − ̂𝜏) 

) 

, 

nd so 

̇
 

(
𝑡 − 𝜏

)
= 

1 
𝜂
𝑒 
− 1 
𝜃̂
( ̂𝑡 − ̂𝜏) 

, 

here 𝜃̂ denotes the relaxation time and 𝜂 the viscosity. So, Eq. (20) be-
omes 

̂
𝑣 

(
𝑡 
)
= 𝛿𝑒 

(
𝑡 
)
+ 

𝜇

𝜂 ∫
𝑡 

0 
𝑒 
− 1 
𝜃 ( ̂𝑡 − ̂𝜏) 𝛿𝑒 ( ̂𝜏) 𝑑 ̂𝜏. (21)

e further use the same normalisations as before to normalise space,
ime, and stress. Furthermore, for the elastic crack tip opening we use
ormalisation (18) , whereas the similar formulas to normalise the vis-
oelastic crack tip opening are as follows, 

𝑣 ( 𝑡 ) = 

8 𝜇 𝛿𝑣 ( 𝑡 ̂𝑡 ∞) 
𝑞 0 ̂𝑎 0 (1 + 𝜘) and 𝛿𝑣 ( 𝑡 ) = 

8 𝜇 𝛿𝑣 ( 𝑡 ̂𝑡 ∙∞) 
𝑞 0 ̂𝑎 0 (1 + 𝜘) , (22)

or the constant and varying load cases, respectively. Consequently, the
ormalised crack tip opening for the viscoelastic case is given by 

𝑣 ( 𝑡 ) = 𝛿𝑒 ( 𝑡 ) + 𝑚 ∫
𝑡 

0 
𝑒 
− ( 𝑡 − 𝜏) 

𝜃 𝛿𝑒 ( 𝜏) 𝑑𝜏 (23)

here 𝑚 = 

𝜇𝑡 ∞
𝜂
, 𝜃 = 

𝜃̂

𝑡 ∞
for the constant load and 𝑚 = 

𝜇𝑡 ∙∞
𝜂

, 𝜃 = 

𝜃̂

𝑡 ∙∞
for

he variable load, and these parameters are dimensionless. 
Implementing the integration procedure described in [6] , we ob-

ained numerical results for the crack tip opening in a viscoelastic ma-
erial with parameters 

= 1 , 𝑚 = 5 , (24)

hat can be attributed to PMMA (cf. Appendix A in [6] ), and compared
hem with the elastic material case, see Fig. 4 . 

. Cohesive zone growth for a propagating crack 

.1. Crack growth criterion 

As in the LPD model, we assume that the crack starts to propagate
hen the crack tip opening 𝛿 reaches a critical value 𝛿𝑐 . For example,

he experimentally determined value for PMMA is 𝛿𝑐 = 0 . 0016 mm, see
2, Section 10.3.2] . Using the normalisations given in Eq. (18) and pa-
ameters 

∕ ̂𝑞 0 = 23 , 𝜘 = 1 . 6 , 𝑎̂ 0 = 0 . 1 mm , (25)

he normalised critical crack tip opening becomes 

𝑐 ≈ 1 . 13 . (26)

he time instant, when the crack tip opening reaches a critical value,
ill be referred to as the fracture delay time and denoted by 𝑡 𝑑 , where

 d corresponds to the normalised delay time. 
In terms of the normalised crack tip openings, the crack begins to

row when 𝛿( t ) reaches the critical value 𝛿c . During the crack propaga-
ion stage, the crack tip opening satisfies equation 

( 𝑡 ) = 𝛿 , 𝑡 ≥ 𝑡 (27)
𝑒 𝑐 𝑑 
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or the purely elastic case; and 

𝑣 ( 𝑡 ) = 𝛿𝑐 , 𝑡 ≥ 𝑡 𝑑 (28)

or the viscoelastic case. In the crack propagation stage, the crack length
 ( t ) varies with time and is no longer a constant value. The next section
ill explain the algorithm used to study how the crack length and CZ

ength evolve with time. 

.2. Numerical algorithm 

The crack length a is equal to 1 for all steps t < t d , and at 𝑡 = 𝑡 𝑑 the
rack length begins to grow. The first aim in the crack propagation stage
s to find the delay time, t d . This is done by solving Eqs. (27) or, respec-
ively, (28) using the secant method, while 𝑎 ( 𝑡 𝑑 ) = 1 ; the corresponding
alue of c ( t d ) is obtained by setting the stress intensity factor at the CZ
ip to zero. 

To calculate the crack length and the CZ length at t > t d , we use a
niform time mesh with time steps 𝑡 𝑖 = 𝑡 𝑑 + 𝑖 ⋅ ℎ, where h is the same
tep size used during the stationary crack stage. We then implement an
terative method to solve Eq. (27) (in the elastic case) or (28) (in the
isco-elastic case) for a ( t i ). To this end, we need c ( t i ) at each iteration,
nd this is obtained by setting the stress intensity factor at the CZ to
ero. Thus we have the following equations to be solved. q(t) 

(a) The condition Λ( 𝜎( 𝑥 ) , 𝑡 ) = 1 , i.e., 

∫
𝑡 

𝑡 𝑐 ( 𝑥 ) 
𝜎𝛽 ( 𝑥, 𝜏)( 𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑𝜏 = 

𝑏 

𝛽
− ∫

𝑡 𝑐 ( 𝑥 ) 

0 
𝜎𝛽 ( 𝑥, 𝜏)( 𝑡 − 𝜏) 

𝛽
𝑏 
−1 
𝑑𝜏, (29)

for a ( t ) ≤ | x | ≤ c ( t ), t > t c ( x ). 
(b) The stress ahead of the CZ tip, 

𝜎( 𝑥, 𝑡 ) = 

𝑥 √
𝑥 2 − 𝑐 2 ( 𝑡 ) 

( 

𝑞( 𝑡 ) − 

2 
𝜋 ∫

𝑐( 𝑡 ) 

𝑎 ( 𝑡 ) 

√
𝑐 2 ( 𝑡 ) − 𝜉2 

𝑥 2 − 𝜉2 
𝜎( 𝜉, 𝑡 ) 𝑑𝜉

) 

, (30)

for | x | > c ( t ). 
(c) The zero stress intensity factor at the CZ tip, 

𝐾( 𝑡, 𝑎 ( 𝑡 ) , 𝑐( 𝑡 )) = 

√ 

𝑐( 𝑡 ) 
2 

( 

𝑞( 𝑡 ) − 

2 
𝜋 ∫

𝑐( 𝑡 ) 

𝑎 ( 𝑡 ) 

𝜎( 𝜉, 𝑡 ) √
𝑐 2 ( 𝑡 ) − 𝜉2 

𝑑𝜉

) 

. (31)

(d) Setting the crack tip opening to the critical value 

𝑈 ( 𝑡, 𝑎 ( 𝑡 ) , 𝑐( 𝑡 )) = 𝛿𝑒 ( 𝑡 ) − 𝛿𝑐 = 0 for the elastic case 
𝑣 𝑐 
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Fig. 5. Delay time and rupture time vs. 𝛽 for 𝑏 = 4 (variable load). 

Fig. 6. Delay time and rupture time vs. b for 𝛽 = 1∕2 (variable load). 
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Fig. 7. Crack length vs. time for 𝑏 = 4 , constant load. 

Fig. 8. Crack length vs. time for 𝑏 = 1 . 5 , constant load. 

Fig. 9. Crack length vs. time for 𝑏 = 4 , variable load. 
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The details of the algorithm used for finding the length of the crack
ith respect to time, and the corresponding CZ length at that time, can
e found in Section 6.1 in [6] . 

.3. Numerical results 

We will look at the elastic as well as the viscoelastic bulk of the
aterial under constant and variable external loads, with some material
arameters given in (24) –(26) , while the values of b and 𝛽 are presented
n figure legends and captions. 

Graphs for the dependence of the delay time and corresponding rup-
ure time on the material model parameters b and 𝛽 are given in Figs. 5
nd 6 , for the case of variable loading. Fig. 5 shows the results for fixed
 = 4 and 𝛽 = 𝑏 ∕8 , 𝛽 = 𝑏 ∕6 , 𝛽 = 𝑏 ∕4 , 𝛽 = 𝑏 ∕3 , 𝛽 = 𝑏 ∕2 . Fig. 6 illustrates the
esults for fixed 𝛽 = 1∕2 and for 𝑏 = 8 𝛽, 𝑏 = 6 𝛽, 𝑏 = 4 𝛽, 𝑏 = 3 𝛽, 𝑏 = 2 𝛽. 

Figs. 7–10 show the evolution of the crack length in time. 
Figs. 11–14 show the evolution of the cohesive zone length, 𝑙( 𝑡 ) =

( 𝑡 ) − 𝑎 ( 𝑡 ) , in time. If the crack propagates faster than the cohesive zone,
hen eventually the cohesive zone will vanish. 

The results for the propagating crack stage show significant differ-
nces while comparing the case of a constant load with that of a variable
oad. In the variable loading case, the crack begins to grow at a much
ater time than in the constant loading case, as expected. 
523 
For the variable loading case, Figs. 15 and 16 illustrate the CZ and
rack evolution for 𝑏 = 18 , which is of the same order as for PMMA, see
 [6] , Appendix A), and 𝛽 = 𝑏 ∕2 = 9 . It is evident from these figures that,
hen b is large, the crack grows very rapidly, so that the delay time, t d ,

s rather close to the rupture time, t r , cf. also Fig. 6 . 
In [6] , a detailed inspection of the onset of crack growth was given

nder constant external load. It has been observed that for some pa-
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Fig. 10. Crack length vs. time for 𝑏 = 1 . 5 , variable load. 

Fig. 11. CZ length vs. time for 𝑏 = 4 (elastic case). 

Fig. 12. CZ length vs. time for 𝑏 = 1 . 5 (elastic case). 

Fig. 13. CZ length vs. time for 𝑏 = 4 (viscoelastic case). 

Fig. 14. CZ length vs. time for 𝑏 = 1 . 5 (viscoelastic case). 

Fig. 15. a ( t ) and c ( t ) for 𝑏 = 18 , 𝛽 = 9 (variable loading, elastic case). 

524 
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Fig. 16. CZ length 𝑙 = 𝑐( 𝑡 ) − 𝑎 ( 𝑡 ) vs. time for 𝑏 = 18 , 𝛽 = 9 (variable loading, 

elastic case). 

Fig. 17. Crack length vs. time, near the delay time, for 𝑏 = 18 , 𝛽 = 9 , (variable 

loading, elastic case). 
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ameter sets, the crack growth starts by an instant crack length jump
ollowed by a continuous growth. Fig. 17 , where we present the graph
f the crack length at the onset of crack growth in more details, shows
hat this effect holds also in the variable load case. 

. Conclusions 

We can draw the following conclusions from the obtained results for
onstant and variable external load. 

• A novel non-linear history-dependent generalisation of the Leonov–
Panasyuk–Dugdale cohesive zone model of crack propagation in lin-
early elastic and visco-elastic materials was presented in the paper,
525 
extending to the variable external load the results of [6] for the con-
stant external load case. The obtained results show that the CZ model
with the history-dependent yield condition (1) –(2) on the cohesive
zone can be used for numerical simulation of the crack propagation
under both, constant and variable loads. 

• After the crack starts, the crack growth rate increases, while the CZ
length decreases with time. 

• The time, when the CZ length decreases to zero seems to coincide
with the time, when the crack length becomes infinite and can be
associated with the complete rupture of the body. 

• In the elastic case for some material parameters, there is an unstable
crack growth (a jump) at the onset of crack propagation, followed
by a stable crack growth. 

• Employing a similar approach, the problem described in this article
can be generalised in several directions. First, the external loading
with a more general time-dependence, e.g., periodic or polynomial
in time, can be analysed. Second, the history-dependent CZ model
with time-variable loading can be implemented in three-dimensional
problems with a penny-shaped crack with a 2D cohesive zone at-
tached to the crack front, geometrically similar to the setting in [15] .
For bodies and cracks having more general shapes, when there is no
analytic solution for the bulk of material, the history-dependent CZM
can be still used if some general numerical methods like Boundary El-
ement Method, Finite Element Method, Mesh Free Methods, etc. are
implemented, cf. [1,13] . Third, the transient dynamic crack propa-
gation can be also considered, e.g., similar to [9] but without the
assumption of infinite cohesive zone. 
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