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34.1 Introduction

The mixed (Dirichlet-Neumann) boundary value problem for the steady-state
Stokes system of PDEs for an incompressible viscous fluid with variable vis-
cosity coefficient is reduced to a system of direct segregated Boundary-Domain
Integral Equations (BDIEs). Mapping properties of the potential type integral
operators appearing in these equations are presented in appropriate Sobolev
spaces. We also prove the equivalence between the original BVP and the cor-
responding BDIE system.

Let Ω = Ω+ ⊂ R3 be a bounded connected domain with boundary ∂Ω =
S, which is a closed and simply connected infinitely differentiable manifold
of dimension 2, and Ω = Ω ∪ S. The exterior of the domain Ω is denoted
as Ω− = R3 \ Ω. Moreover, let S = SD ∪ SN where both SN and SD are
non-empty disjointed and simply connected open manifolds of S.

Let v be the velocity vector field; p the pressure scalar field and µ ∈ C∞(Ω)
be the variable kinematic viscosity of the fluid such that µ(x) > c > 0.

For a compressible fluid the stress tensor operator, σij , for an arbitrary
couple (v, p) is defined as

σji(v, p)(x) := −δji p(x) + µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi
− 2

3
δijdiv v

)
,

and the Stokes operator is defined as

Aj(v, p)(x) : =
∂

∂xi
σji(v, p)(x)

=
∂

∂xi

(
µ(x)

(
∂vj
∂xi

+
∂vi
∂xj
− 2

3
δijdivv

))
− ∂p

∂xj
, j, i ∈ {1, 2, 3},
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where δji is Kronecker symbol. Here and henceforth we assume the Einstein
summation in repeated indices from 1 to 3. We also denote the Stokes operator
as A = {Aj}3j=1.

For an incompressible fluid div v = 0, which reduces the stress tensor
operator and the Stokes operator, respectively, to

σij(v, p)(x) = −δji p(x) + µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)
,

Aj(v, p)(x) =
∂

∂xi

(
µ(x)

(
∂vj
∂xi

+
∂vi
∂xj

))
− ∂p

∂xj
.

In what follows Hs(Ω) = Hs
2(Ω), Hs(∂Ω) = Hs

2(∂Ω) are the Bessel po-
tential spaces, where s ∈ R is an arbitrary real number (see, e.g., [LiMa73],
[McL00]). We recall that Hs coincide with the Sobolev–Slobodetski spaces
W s

2 for any non-negative s. We denote by H̃s(Ω) the subspace of Hs(R3),
H̃s(Ω) := {g : g ∈ Hs(R3), supp g ⊂ Ω}; similarly, H̃s(S1) = {g ∈
Hs(S), supp g ⊂ S1} is the Sobolev space of functions having support
in S1 ⊂ S = ∂Ω. We will also use the notation like Hs(Ω) = [Hs(Ω)]n

for the n−dimensional counterparts of all the aforementioned spaces. Let
Hs

div(Ω) = {v ∈Hs(Ω) : div v = 0} be the divergence-free Sobolev space.
We will also make use of the following spaces, (cf. e.g. [Co88] [CMN09])

H1,0(Ω;A) := {(v, p) ∈H1(Ω)× L2(Ω) : A(v, p) ∈ L2(Ω)},
H1,0

div(Ω;A) := {(v, p) ∈H1
div(Ω)× L2(Ω) : A(v, p) ∈ L2(Ω)},

endowed with the same norm, ‖(v, p)‖H1,0
div(Ω;L) = ‖(v, p)‖H1,0(Ω;L), where

‖(v, p)‖H1,0(Ω;L) :=
(
‖v‖2H1(Ω) + ‖p‖2L2(Ω) + ‖A(v, p)‖2L2(Ω)

) 1
2

.

For sufficiently smooth functions v and p in Ω±, we can write the classical
traction operators on the boundary S as

T±i (v, p)(x) := γ±σij(v, p)(x)nj(x), (34.1)

where nj(x) denote components of the unit outward normal vector n(x) to
the boundary S of the domain Ω and γ± are the trace operators from inside
and outside Ω.

Traction operators (34.1) can be continuously extended to the canonical
traction operators T± : H1,0(Ω±,A) → H−

1
2 (S) defined in the weak form

similar to [Co88, Mi11, CMN09] as

〈T±(v, p),w〉S := ±
∫
Ω±

[
A(v, p)γ−1w + E

(
(v, p),γ−1w

)]
dx,



34 BDIEs for the Stokes equations with variable viscosity 3

∀ (v, p) ∈ H1,0(Ω±,A), ∀w ∈H
1
2 (S).

Here the operator γ−1 : H
1
2 (S)→H1(R3) denotes a continuous right inverse

of the trace operator γ : H1(R3)→H
1
2 (S), and the bilinear form E is defined

as

E ((v, p),u) (x) : =
1

2
µ(x)

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)
− 2

3
µ(x)div v(x) divu(x)− p(x)divu(x).

Furthermore, if (v, p) ∈ H1,0(Ω,A) and u ∈H1(Ω), the following first Green
identity holds, cf. [Co88, Mi11, CMN09],

〈T+(v, p),γ+u〉S =

∫
Ω

[A(v, p)u+ E ((v, p),u) (x)]dx. (34.2)

For (v, p) ∈ H1,0
div(Ω±,A) the canonical traction operators can be reduced

to T± : H1,0
div(Ω±,A)→H−

1
2 (S) defined as

〈T±(v, p),w〉S := ±
∫
Ω±

[
A(v, p)γ−1divw + E(v,γ−1divw)

]
dx

∀ (v, p) ∈ H1,0
div(Ω±,A), ∀w ∈H

1
2 (S).

Here the operator γ−1div : H
1
2 (S) → H1

div(R3) denotes a continuous right
inverse of the trace operator γ : H1

div(R3) → H
1
2 (S), and the bilinear form

E reduces to

E(v,u)(x) :=
µ(x)

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)
.

For (v, p) ∈ H1,0
div(Ω,A) and u ∈ H1

div(Ω), the first Green identity takes the
same form (34.2), where E ((v, p),u) (x) reduces to E (v,u) (x).

Applying the identity (34.2) to the pairs (v, p) ∈ H1,0
div(Ω,A) and (u, q) ∈

H1,0
div(Ω,A) with exchanged roles and subtracting the one from the other, we

arrive at the second Green identity, cf. [McL00, Mi11],∫
Ω

[Aj(v, p)uj −Aj(u, q)vj ] dx =

∫
S

[Tj(v, p)uj − Tj(u, q)vj ] dS. (34.3)

Now we are ready to define the mixed boundary value problem for which we
aim to derive equivalent boundary-domain integral equation systems (BDIEs)
and investigate the existence and uniqueness of their solutions.

For f ∈ L2(Ω), ϕ0 ∈ H
1
2 (SD) and ψ0 ∈ H−

1
2 (SN ), find (v, p) ∈

H1,0
div(Ω,A) such that:

A(v, p)(x) = f(x), x ∈ Ω, (34.4a)
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rSD
γ+v(x) = ϕ0(x), x ∈ SD, (34.4b)

rSN
T+(v, p)(x) = ψ0(x), x ∈ SN . (34.4c)

The following assertion can be easily proved by the Lax-Milgram lemma.

Theorem 1 Mixed boundary value problem (34.4) is uniquely solvable.

34.2 Parametrix and Parametrix-Based Hydrodynamic
Potentials

When µ(x) = 1, the operator A becomes the constant-coefficient Stokes op-
erator Å, for which we know an explicit fundamental solution defined by the
pair of distributions (ůk, q̊k) where ůkj represent components of the incom-
pressible velocity fundamental solution and q̊k represent the components of
the pressure fundamental solution (see e.g. [La69], [KoWe06], [HsWe08]).

ůkj (x,y) = − 1

8π

{
δkj

|x− y|
+

(xj − yj)(xk − yk)

|x− y|3

}
,

q̊k(x,y) =
xk − yk

4π|x− y|3
, j, k ∈ {1, 2, 3}.

Therefore (ůk, q̊k) satisfy

Åj(ůk, q̊k)(x) =

3∑
i=1

∂2ůkj
∂x2i

− ∂q̊k

∂xj
= δkj δ(x− y)

Let us denote σ̊ij(v, p) := σij(v, p)|µ=1. Then in the particular case, for
µ = 1 and the fundamental solution (ůk, q̊k)k=1,2,3 of the operator Å, the
stress tensor σ̊ij(ůk, q̊k)(x− y) reads

σ̊ij(ů
k, q̊k)(x− y) =

3

4π

(xi − yi)(xj − yj)(xk − yk)

|x− y|5
,

and the boundary traction becomes

T̊i(x; ůk, q̊k)(x,y) : = σ̊ij(ů
k, q̊k)(x− y)nj(x)

=
3

4π

(xi − yi)(xj − yj)(xk − yk)

|x− y|5
nj(x).

Let us define a pair of functions (uk, qk)k=1,2,3 as

ukj (x,y) =
1

µ(y)
ůkj (x,y) = − 1

8πµ(y)

{
δkj

|x− y|
+

(xj − yj)(xk − yk)

|x− y|3

}
,

(34.5)
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qk(x,y) =
µ(x)

µ(y)
q̊k(x,y) =

µ(x)

µ(y)

xk − yk
4π|x− y|3

, j, k ∈ {1, 2, 3}. (34.6)

Then

σij(x;uk, qk)(x,y) =
µ(x)

µ(y)
σ̊ij(ů

k, q̊k)(x− y),

Ti(x;uk, qk)(x,y) := σij(x;uk, qk)(x,y)nj(x) =
µ(x)

µ(y)
T̊i(x; ůk, q̊k)(x,y).

Substituting (34.5)-(34.6) to the Stokes system gives

Aj(x;uk, qk)(x,y) = δkj δ(x− y) +Rkj(x,y), (34.7)

where

Rkj(x,y) =
1

µ(y)

∂µ(x)

∂xi
σ̊ij(ů

k, q̊k)(x− y) = O(|x− y|)−2)

is a weakly singular remainder. This implies that (uk, qk) is a parametrix of
the operator A.

Let us define the parametrix-based Newton-type and remainder vector
potentials

Ukρ(y) = Ukjρj(y) :=

∫
Ω

ukj (x,y)ρj(x)dx,

Rkρ(y) = Rkjρj(y) :=

∫
Ω

Rkj(x,y)ρj(x)dx, y ∈ R3,

for the velocity, and the scalar Newton-type and remainder potentials

Qρ(y) = Qjρj(y) :=

∫
Ω

q̊j(x,y)ρj(x)dx, (34.8)

R•ρ(y) = R•jρj(y) := 2 v.p.

∫
Ω

∂q̊j(x,y)

∂xi

∂µ(x)

∂xi
ρj(x)dx

−4

3
v(y) · ∇µ(y), y ∈ Ω, (34.9)

for the pressure. The integral in (34.9) is understood as a 3D strongly singular
integral in the Cauchy sense.

For the velocity, let us also define the parametrix-based single layer poten-
tial, double layer potential and their respective direct values on the boundary,
as follows,

Vkρ(y) = Vkjρj(y) := −
∫
S

ukj (x,y)ρj(x) dSx, y /∈ S,

Wkρ(y) = Wkjρj(y) := −
∫
S

Tj(x;uk, qk)(x,y)ρj(x) dSx, y /∈ S,
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Vkρ(y) = Vkjρj(y) := −
∫
S

ukj (x,y)ρj(x) dSx, y ∈ S,

Wkρ(y) =Wkjρj(y) := −
∫
S

Tj(x;uk, qk)(x,y)ρj(x) dSx, y ∈ S.

Let us also denote

W ′kρ(y) =W ′kjρj(y) := −
∫
S

Tj(y;uk, q̊k)(x,y)ρj(x) dSx, y ∈ S.

For pressure in the variable coefficient Stokes system, we will need the
following the single-layer and double layer potentials,

Pρ(y) = Pjρj(y) := −
∫
S

q̊j(x,y)ρj(x)dSx,

Πρ(y) = Πjρj(y) := −2

∫
S

∂q̊j(x,y)

∂n(x)
µ(x)ρj(x)dSx, y /∈ S.

The parametrix-based integral operators, depending on the variable coeffi-
cient µ(x), can be expressed in terms of the corresponding integral operators
for the constant coefficient case, µ = 1,

Ukρ(y) =
1

µ(y)
Ůkρ(y), (34.10)

Rkρ(y) =
−1

µ(y)

[
2
∂

∂yj
Ůki(ρj∂iµ)(y) + 2

∂

∂yi
Ůkj(ρj∂iµ)(y)

+ Q̊k(ρj∂jµ)(y)
]
, (34.11)

Qjρj(y) = Q̊jρj(y), R•jρj(y) = −2
∂

∂yi
Q̊j(ρj∂iµ)(y)

−2v(y) · ∇µ(y), (34.12)

Vkρ(y) =
1

µ(y)
V̊kρ(y), Wkρ(y) =

1

µ(y)
W̊k(µρ)(y), (34.13)

Vkρ(y) =
1

µ(y)
V̊kρ(y), Wkρ(y) =

1

µ(y)
W̊k(µρ)(y), (34.14)

Pjρj(y) = P̊jρj(y), Πjρj(y) = Π̊j(µρj)(y), (34.15)

W ′kρ = W̊ ′kρ−
(
∂iµ

µ
V̊kρ+

∂kµ

µ
V̊iρ−

2

3
δki
∂jµ

µ
V̊jρ

)
ni. (34.16)

Note that the velocity potentials defined above are not incompressible for the
variable coefficient µ(y).

The following assertions of this section are well known for the constant
coefficient case, see e.g. [KoWe06, HsWe08]. Then by relations (34.10)-(34.16)
we obtain their counterparts for the variable-coefficient case.
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Theorem 2 The following operators are continuous.

Uik : H̃s(Ω)→ Hs+2(Ω), s ∈ R, (34.17)

Uik : Hs(Ω)→ Hs+2(Ω), s > −1

2
, (34.18)

Rik : H̃s(Ω)→ Hs+1(Ω), s ∈ R, (34.19)

Rik : Hs(Ω)→ Hs+1(Ω), s > −1

2
, (34.20)

Pk : Hs− 3
2 (S)→ Hs−1(Ω), s ∈ R, (34.21)

Πk : Hs− 1
2 (S)→ Hs−1(Ω), s ∈ R, (34.22)

Qk : H̃s−2(Ω)→ Hs−1(Ω), s ∈ R, (34.23)

R•k : Hs(Ω)→ Hs(Ω), s > −1

2
. (34.24)

Let us also denote

L±k ρ(y) := T±k (Wρ, Πρ)(y), y ∈ S,

where T±k are the traction operators for the compressible fluid.

Theorem 3 Let s ∈ R. Let S1 and S2 be two non empty manifolds on S with
smooth boundary ∂S1 and ∂S2, respectively. Then the following operators are
continuous,

Vik : Hs(S)→ Hs+ 3
2 (Ω), Wik : Hs(S)→ Hs+ 1

2 (Ω),

Vik : Hs(S)→ Hs+1(S), Wik : Hs(S)→ Hs+1(S),

rS2Vik : H̃s(S1)→ Hs+1(S2), rS2Wik : H̃s(S1)→ Hs+1(S2),

L±ik : Hs(S)→ Hs−1(S), W ′ik : Hs(S)→ Hs+1(S).

Theorem 4 If τ ∈ H1/2(S), ρ ∈ H−1/2(S), then the following jump rela-
tions hold,

γ±Vkρ = Vkρ, γ±Wkτ = ∓1

2
τk +Wkτ

T±k (V ρ,Pρ) = ±1

2
ρk +W ′kρ,

(L±k − L̂k)τ = −γ±
[
(∂iµ)Wk(τ ) + (∂kµ)Wi(τ )− 2

3
δki (∂jµ)Wjτ

]
ni,

L̂k(τ ) = L̊k(µτ ).

Proposition 1 The following operators are compact,

Rik : Hs(Ω)→ Hs(Ω), R•k : Hs(Ω)→ Hs−1(Ω), s ∈ R,

γ+Rik : Hs(Ω)→ Hs− 1
2 (S), T±ik(R,R•) : Hs(Ω)→ Hs− 3

2 (S), s >
1

2
.
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Proposition 2 Let s ∈ R and S1 be a non empty submanifold of S with
smooth boundary. Then the following operators are compact,

(L±ik − L̂ik) : H̃s(S1)→ Hs−1(S).

34.3 The Third Green Identities

Let B(y, ε) ⊂ Ω be a ball of a radius ε around a point y ∈ Ω. Applying
the second Green identity (34.3) in the domain Ω \ B(y, ε) to any (v, p) ∈
H1,0

div(Ω;A) and to the fundamental solution (uk, qk) and taking the limit as
ε→ 0, we obtain the following third Green identity

v + Rv − V T+(v, p) +Wγ+v = UA(v, p) in Ω. (34.25)

Similarly, applying the first Green identity (34.2) in the domain Ω \ B(y, ε)
to any (v, p) ∈ H1,0

div(Ω;A) and to the pressure part of the constant-coefficient
fundamental solution q̊k, for uk, and taking the limit as ε→ 0, we obtain the
following parametrix-based third Green identity for pressure,

p+R•v − PT+(v, p) +Πγ+v = QA(v, p) in Ω. (34.26)

If the couple (v, p) ∈ H1,0
div(Ω;A) is a solution of the Stokes PDE (34.4a)

with variable coefficient, then (34.25) and (34.26) give

v + Rv − V T+(v, p) +Wγ+v = Uf , (34.27)

p+R•v − PT+(v, p) +Πγ+v = Qf in Ω. (34.28)

We will also need the trace and traction of the third Green identities for
(v, p) ∈ H1,0

div(Ω;A) on S:

1

2
γ+v + R+v − VT+(v, p) + Wγ+v = γ+Uf , (34.29)

1

2
T+(v, p) + T+(R,R•)v −W ′T+(v, p) + L+γ+v = T+(U ,Q)f . (34.30)

One can prove the following two assertions that are instrumental for proof
of equivalence of the BDIEs and the mixed PDE.

Lemma 1. Let v ∈ H1
div(Ω), p ∈ L2(Ω), f ∈ L2(Ω), Ψ ∈ H−

1
2 (S) and

Φ ∈H
1
2 (S) satisfy the equations

p+R•v − PΨ +ΠΦ = Qf in Ω,

v + Rv − V Ψ +WΦ = Uf in Ω.

Then (v, p) ∈ H1,0
div(Ω,A) and solve the equation A(y;v, p) = f . Moreover,

the following relations hold true:

V (Ψ − T+(v, p))(y)−W (Φ− γ+v)(y) = 0, y ∈ Ω,

P(Ψ − T+(v, p))(y)−Π(Φ− γ+v)(y) = 0, y ∈ Ω.
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Lemma 2. Let S = S1 ∪ S2, where S1 and S2 are open non-empty non-
intersecting simply connected submanifolds of S with infinitely smooth bound-

aries. Let Ψ∗ ∈ H̃
− 1

2
(S1), Φ∗ ∈ H̃

1
2
(S2). If

V Ψ∗(x)−WΦ∗(x) = 0 P(Ψ∗)−Π(Φ∗) = 0 in Ω,

then Ψ∗ = 0 and Φ∗ = 0 on S.

34.4 Boundary-domain integral equation system for the
mixed problem

We aim to obtain a segregated boundary-domain integral equation system
for mixed BVP (34.4). To this end, let the functions Φ0 ∈ H

1
2 (S) and Ψ0 ∈

H−
1
2 (S) be respective continuations of the boundary functions ϕ0 ∈H

1
2 (SD)

and ψ0 ∈H
− 1

2 (SN ) from (34.4b) and (34.4c). Let us now represent

γ+v = Φ0 +ϕ, T+(v, p) = Ψ0 +ψ on S, (34.31)

where ϕ ∈ H̃
1
2
(SN ) and ψ ∈ H̃

− 1
2
(SD) are unknown boundary functions.

Let us now take equations (34.27) and (34.28) in the domain Ω and re-
strictions of equations (34.29) and (34.30) to the boundary parts SD and SN ,
respectively. Substituting there representations (34.31) and considering fur-
ther the unknown boundary functions ϕ and ψ as formally independent of
(segregated from) the unknown domain functions v and p, we obtain the fol-
lowing system of four boundary-domain integral equations for four unknowns,

(v, p) ∈ H1,0
div(Ω,A), ϕ ∈ H̃

1
2
(SN ) and ψ ∈ H̃

− 1
2
(SD):

p+R•v − Pψ +Πϕ = F0 in Ω, (34.32a)
v + Rv − V ψ +Wϕ = F in Ω, (34.32b)

rSD
γ+Rv − rSD

Vψ + rSD
Wϕ = rSD

γ+F −ϕ0 on SD, (34.32c)

rSN
T+(R,R•)v − rSN

W ′ψ + rSN
L+ϕ = rSN

T+(F , F0)−ψ0 on SN ,
(34.32d)

where

F0 = Qf + PΨ0 −ΠΦ0, F = Uf + V Ψ0 −WΦ0. (34.33)

Applying Lemma 1 to (34.33) and taking into account the continuity of oper-
ators (34.20) and (34.24), one can prove that (F0,F ) ∈ H1,0(Ω,A).

We denote the right hand side of BDIE system (34.32) as

F11 := [F0,F , rSD
γ+F −ϕ0, rSN

T+
F ,F −ψ0]>, (34.34)

which implies F11 ∈ H1,0(Ω,A)×H
1
2 (SD)×H−

1
2 (SN ).
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Note that BDIE system (34.32) can be split into the BDIE system of 3
vector equations (34.32b), (34.32c), (34.32d) for 3 vector unknowns, v, ψ and
ϕ, and the separate equation (34.32a) that can be used, after solving the
system, to obtain the pressure, p. However since the couple (v, p) shares the
space H1,0

div(Ω,A), equations (34.32b), (34.32c), (34.32d) are not completely
separate from equation (34.32a).

Theorem 5 (Equivalence Theorem) Let f ∈ L2(Ω) and let Φ0 ∈H−
1
2 (S)

and Ψ0 ∈ H−
1
2 (S) be some fixed extensions of ϕ0 ∈ H

1
2 (SD) and ψ0 ∈

H−
1
2 (SN ) respectively.

(i) If some (v, p) ∈ H1,0
div(Ω;A) solve mixed BVP (34.4), then (p,v,ψ,ϕ) ∈

H1,0
div(Ω;A)× H̃

− 1
2
(SD)× H̃

1
2
(SN ), where

ϕ = γ+v −Φ0, ψ = T+(v, p)− Ψ0 on S, (34.35)

solve BDIE system (34.32).

(ii) If (p,v,ψ,ϕ) ∈ H1,0
div(Ω;A)×H̃

− 1
2
(SD)×H̃

1
2
(SN ) solve the BDIE system

(34.32) then (v, p) solve mixed BVP (34.4) and the functions ψ,ϕ satisfy
(34.35).

(iii) BDIE system (34.32) is uniquely solvable in H1,0
div(Ω;A) × H̃

− 1
2
(SD) ×

H̃
1
2
(SN ).

Proof. (i) Let (v, p) ∈ H1,0
div(Ω;A) be a solution of the BVP. Let us de-

fine the functions ϕ and ψ by (34.35). By the BVP boundary conditions,
γ+v = ϕ0 = Φ0 on SD and T+(v, p) = ψ0 = Ψ0 on SN . This implies

that (ψ,ϕ) ∈ H̃
− 1

2
(SD)× H̃

1
2
(SN ). Taking into account the Green identities

(34.26)-(34.30), we immediately obtain that (p,v,ϕ,ψ) solve system (34.32).

ii) Conversely, let (p,v,ψ,ϕ) ∈ H1,0
div(Ω;A)× H̃

− 1
2
(SD)× H̃

1
2
(SN ) solve

BDIE system (34.32). If we take the trace of (34.32b) restricted to SD, use
the jump relations for the trace of W , see Theorem 5, and subtract it from

(34.32c), we arrive at rSD
γ+v − 1

2
rSD

ϕ = ϕ0 on SD. As ϕ vanishes on SD,
therefore the Dirichlet condition of the BVP is satisfied.

Repeating the same procedure but taking the traction of (34.32a) and
(34.32b), restricted to SN , using the jump relations for the traction of V

and subtracting it from (34.32d), we arrive at rSN
T (v, p)− 1

2
rSN

ψ = ψ0 on
SN . As ψ vanishes on SN , therefore the Neumann condition of the BVP is
satisfied. Since ϕ0 = Φ0 on SD and ψ0 = Ψ0 on SN , the conditions (34.35)
are satisfied, respectively, on SD and SN .

Also we have that Ψ ∈ H−
1
2 and Φ ∈ H−

1
2 . We note that if (v, p) ∈

L2(Ω) ×H1
div(Ω) then A(v, p) = f ∈ L2(Ω). Due to relations (34.32a) and

(34.32b) the hypotheses of the Lemma 1 are satisfied with Ψ = ψ + Ψ0 and
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Φ = ϕ + Φ0 . As a result we obtain that (v, p) is a solution of A(v, p) = f
satisfying

V (Ψ∗)−W (Φ∗) = 0, P(Ψ∗)−Π(Φ∗) = 0 in Ω, (34.36)

where

Ψ∗ = ψ + Ψ0 − T+(v, p) Φ∗ = ϕ+Φ0 − γ+v

Since Ψ∗ ∈ H̃
− 1

2
(SD) and Φ∗ ∈ H̃

1
2
(SN ), and (34.36) hold true, applying

Lemma 2 for S1 = SD and S2 = SN we obtain Ψ∗ = Φ∗ = 0 on S. This
implies conditions (34.35).

(iii) The uniqueness of the BDIEs (34.32) follows from from the uniqueness
of the BVP, see Theorem 1, and items (i) and (ii). ut
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