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Abstract

This paper is build around the stationary anisotropic Stokes and Navier-Stokes systems with
an L°°-tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices in
R"*" with zero matrix traces. We analyze, in L-based Sobolev spaces, the non-homogeneous
boundary value problems of Dirichlet-transmission type for the anisotropic Stokes and
Navier-Stokes systems in a compressible framework in a bounded Lipschitz domain with
a transversal Lipschitz interface in R"”, n > 2 (n = 2, 3 for the nonlinear problems). Thus,
the interface intersects transversally the boundary of the Lipschitz domain and divides the
domain into two Lipschitz sub-domains. First, we use a mixed variational approach to prove
the well-posedness of linear problems related to the anisotropic Stokes system. Then we
show the existence of a weak solution to the Dirichlet and Dirichlet-transmission problems
for the nonlinear anisotropic Navier-Stokes system. This is done by implementing the Leray-
Schauder fixed point theorem and using various results and estimates from the linear case, as
well as the Leray-Hopf and some other norm inequalities. Explicit conditions for uniqueness
of solutions to the nonlinear problems are also provided.
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1 Introduction

Variational methods have been intensively used in the analysis of elliptic boundary prob-
lems, in particular, boundary value problems for the Stokes and Navier-Stokes equations
(see, e.g., [17, 26, 55]). Employing variational methods, Angot [4, 5] analyzed a well-
posedness of some Stokes/Brinkman problems with constant isotropic viscosity and a family
of embedded jump conditions on an immersed (transversal) interface with weak regularity
assumptions.

The authors in [32] combined a layer potential approach with the Leray-Schauder fixed
point theorem and proved existence results for a nonlinear Neumann-transmission problem
for the Stokes and Brinkman systems in L?, Sobolev, and Besov spaces.

Dong and Kim [19] obtained regularity results for the Stokes system with measurable
coefficients in one direction (see also [15]). Korobkov, Pileckas and Russo [39] analyzed
the flux problem in the theory of steady Navier-Stokes equations with constant coefficients
and non-homogeneous boundary conditions. Amrouche and Rodriguez-Bellido [2] proved
the existence of a very weak solution for the non-homogeneous Dirichlet problem for the
compressible Navier-Stokes system in a bounded domain of the class C!! in R3.

An alternative integral approach, which reduces boundary value problems for the Stokes
system with variable coefficients and a large spectrum of other variable-coefficient elliptic
partial differential equations to boundary-domain integral equations (BDIEs), by employing
explicit parametrix-based integral potentials, was developed in [12—14, 24, 48].

Mazzucato and Nistor [44] obtained well-posedness and regularity results in weighted
Sobolev spaces for the anisotropic linear elasticity equations with mixed boundary conditions
on polyhedral domains. Brewster et al. [9] used a variational approach to show well-posedness
of Dirichlet, Neumann and mixed boundary problems for higher order divergence-form ellip-
tic equations with L° coefficients in locally (¢, §)-domains and in Besov and Bessel potential
spaces.

The coupling of fluid flows with porous media flows involving the stationary incom-
pressible Navier-Stokes equations with constant viscosity and the Darcy equations with a
permeability given in terms of a uniformly elliptic matrix-valued function with L coeffi-
cients has been recently investigated in [27] (see also [26]).

The authors in [34] developed a variational analysis in the pseudostress setting for trans-
mission problems with internal interfaces in weighted Sobolev spaces for the anisotropic
Stokes and Navier-Stokes systems with L strongly elliptic coefficient tensor, see also [19].
Note that in [34] and [19] it was assumed that the coefficients of the viscosity tensor satisfy
a stronger ellipticity condition than in (2.4), for all matrices in R"*" (not only for sym-
metric and with zero-trace, see [34, Egs. (2)—(3)]). Such a condition allowed to explore the
associated non-symmetric pseudostress setting (see also [33], and [37, 38] for the Stokes
and Navier-Stokes systems with non-smooth coefficients in compact Riemannian setting).
The authors extended in [35] and [36] their variational analysis to other transmission and
exterior boundary problems with internal interfaces for the anisotropic Stokes and Navier-
Stokes systems by assuming that the corresponding L viscosity tensor coefficient satisfies
the ellipticity condition only in terms of symmetric matrices in R"*" with zero traces, that
is, the relaxed ellipticity condition (2.4). Only homogeneous Dirichlet conditions and zero
velocity jumps were considered in the (nonlinear) Navier-Stokes problems in [33-38].
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In this paper we investigate non-homogeneous Dirichlet-transmission problems for the
anisotropic Stokes and Navier-Stokes systems in a bounded Lipschitz domain of R" (n =
2, 3 for the nonlinear problems) with a transversal Lipschitz interface that intersects the
boundary of the domain. As in [35] and [36], we impose the ellipticity condition (2.4),
which is less restrictive than in [34] and [19]. We show well-posedness results for the linear
problems, as well as existence results for the nonlinear problems in L?-based Sobolev spaces.
First, we explore equivalent mixed variational formulations and prove the well-posedness of
linear Dirichlet-transmission problems for the anisotropic Stokes system in a compressible
framework in bounded Lipschitz domains of R" with transversal Lipschitz interfaces and
given data in L-based Sobolev spaces. Next, we use well-posedness results in the linear case
and the Leray-Schauder fixed point theorem and show the existence of a weak solution of the
Dirichlet problem for the anisotropic Navier-Stokes system with general non-homogeneous
data in L2-based Sobolev spaces in a bounded Lipschitz domain in R”, n = 2, 3. Finally,
we prove the existence of weak solutions u of the Dirichlet-transmission problems for the
anisotropic Navier-Stokes system in a bounded Lipschitz domain in R", n = 2, 3, with
transversal Lipschitz interface and data in L?-based Sobolev spaces.

In addition to their mathematical interest, the anisotropic Stokes and Navier-Stokes inter-
face problems analyzed in this paper describe multiphase flows of immiscible fluids with
variable anisotropic viscosity tensors and compressibility influenced, e.g., by varying tem-
perature of the fluids (cf., e.g., [20], [43, Chapter 3]) and transmission conditions prescribed
on the interfaces. They are motivated by various industrial, biological, medical and envi-
ronmental applications (see, e.g., [8, Section 1.1] and the references therein). Note that
mathematically the interface Stokes problems are close to the interface problems of elasticity
encountered in modelling composite materials, see, e.g., [S9] and the references therein, or
in unilateral contact problems, cf. [21, 22].

2 Anisotropic Stokes system with elliptic L viscosity tensor coefficient

Let £2 € R", n > 2, be an open set, and let £ denote a second order differential operator in

the component-wise divergence form!,

(ew); = du(al Ejpw), i=1,....n, @.1)

l

whereu = (uy, ..., u,) ", Ejg(u) := %(a,-u,g + 0gu ) are the entries of the symmetric part
[E(u) of Vu (the gradient of u), and af‘.ﬂ are essentially bounded, measurable, real-valued
components of the tensor viscosity coetficient A, that is,

A= (aaﬁ

) caP e @), 1<i,j.a.p<n, 2.2)
Y J1<i,jeB<n

ij
and satisfy the following symmetry conditions
aif (1) = af(n) = aff (). xeQ 23)

(see[52,Eqgs (3.1),(3.3)]). In addition, we require that A satisfies the ellipticity condition only
in terms of all symmetric matrices in R"*" with zero matrix trace. This ellipticity condition

! The standard notation dp for the first order partial derivative —, = 1, ..., n, and the Einstein summation
X

rule on repeated indices are used all along the paper.
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has been first used in [35, 36]. Thus, we assume that there exists a constant C, > 0 such
that, for almost all x € £2,

alf (iakjp = CplIEP . VE = Eadia=t..n € R

n
such that & = £ and Z&-i =0, (2.4)

i=1

where |& |2 = &;4&iw, and the superscript T denotes the transpose of a matrix.
The tensor coefficient A is endowed with the norm

A1 = max {5 L) i joas B=1...on} 2.5)
The tensor A can be also considered as consisting of n x n matrix valued functions A*?, that
is,

A = (A*P) A% = (aaﬁ

: )lsi,jsn Jl<a,f<n. (2.6)

l<a,B=<n’
and the symmetry conditions (2.3) lead to the following equivalent forms of the operator £
(Cw); = o (a]f 0puj). i=1,....n1 Lu=0d,(A%dpu), 2.7)

Let u be an unknown vector field, 7 be an unknown scalar field, f be a given vector field
and g be a given scalar field defined in £2. Then the equations

Lu,r):=La—Vr=f divu=gin (2.8)

determine the anisotropic Stokes system with variable viscosity tensor coefficient A =
(A“ﬁ) in a compressible framework.

According to (2.7) and (2.1), the Stokes operator £ can be written in any of the following
equivalent forms

1<a,B<n

L, ) = dy (AP dgu) — Vr, 2.9)
(L(u,7)); = aa(af‘fE,ﬁ(u)) —om, i=1,...,n. (2.10)

In addition, the following nonlinear system
Lu,7)—@-Vyu=f, divu=gin 2 (2.11)

is called the anisotropic Navier-Stokes system with variable viscosity tensor coefficient A =
(A“ﬂ )] <a.f<n in a compressible framework.

Ifg = 01n (2.8) and (2.11) one obtains the anisotropic Stokes and Navier-Stokes systems
in the incompressible case.

In the isotropic case, the tensor A in (2.2) has the following entries

af (x) = A(0)8iadjp + 10(x) (0S5 +dupdif) . 1 <iLj.a.p <n, 2.12)

where A, u € L°°(£2), and c;l < u(x) < ¢y forae. x € £2, with some constant ¢, > 0
(cf., e.g., Appendix III, Part I, Sect. 1 in [58]). Then it is immediate that condition (2.4) is
fulfilled (see also [36]) and thus our results apply also to the Stokes system in the isotropic
case.

The relaxed ellipticity condition (2.4) [for symmetric matrices with zero matrix trace] is
essentially weaker than, say, the corresponding strong ellipticity condition [for all matrices].
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For example, the isotropic viscosity tensor (2.12) satisfies the relaxed ellipticity condition
(2.4) for any constant A and any constant i > 0. However, if . < —2u/n, the tensor fails to
satisfy the strong ellipticity condition on the identity matrix, i.e., &y = 8io, i, ¢ € {1, ..., n},
(having the non-zero trace &; = n). Note also that the isotropic viscosity tensor (2.12)
fails to satisfy the strong ellipticity condition on the antisymmetric matrices, &, = —&gi,
i, € {1,...,n}, but still satisfies the relaxed ellipticity condition (2.4) . Imposing the
ellipticity condition only on the symmetric matrices is also intrinsically related to the fact
that the Stokes and Navier-Stokes equations can be formulated in terms of the symmetric
strain rate tensor E rather than the velocity gradient.

It appears that the relaxed ellipticity condition (2.4) is still sufficient to deduce the well-
posedness of the problems considered in the paper.

3 Functional framework and preliminaries

Given a Banach space X, its topological dual is denoted by X", and the notation (-, -) x means
the duality pairing of two dual spaces defined on a set X € R”.

3.1 Sobolev spaces on Lipschitz domains in R"

Let n > 2 and let £2 be a bounded Lipschitz domain in R” with connected boundary 952.
Let D(£2) := Cgo(.Q) denote the space of infinitely differentiable functions with compact
support in §2, equipped with the inductive limit topology. Let D’ (§2) denote the corresponding
space of distributions on §2, i.e., the dual of the space D(£2). Let L2(£2) be the Lebesgue
space of square-integrable functions on £2, and L°°(£2) be the space of (equivalence classes
of) essentially bounded measurable functions on §2. Let also

L{() == (f € L*(2): (f. o = 0}. 3.1
The dual of L(z)(.Q) is the space LZ(Q)/R. The Sobolev space H!(£2) is defined as

H'(2):={f e L*(2): Vf e L*(2)"}, (3.2)
and is endowed with the norm
1 W1y = 1F 17200y + 1V F 172000 - (3.3)
The space H! (£2) is the closure of D(£2) in H!(R"), and can be also described as
H'(2):={f e H'®R") :supp f € 2}, (3.4)

where suppf := {x € R" : f(x) # 0}. The dual of H'(£2) is the space H~! (£2). Since
D(£2) is dense in H'(£2) (see, e.g., [45, p. 77]), the dual of H'(£2), denoted by H ™' (£2), is
aspace of distributions. Then the following equivalent characterization of the spaces H*!(£2)
holds

HE'(Q2)={f e D'(2):3F € H*'(R") such that F|o = f}, (3.5)

where |y = ry is the restriction operator of functions or distributions to a set X.
The closure of D(£2) in H 1(£2) is denoted by H 1 (£2) and can be equivalently described
as the space of all functions in H 1 (£2) with null traces on 02, that is,

H' (2):={f e H'(2):y,f =00n 08}, (3.6)
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where y, : H @) > H 3 (0£2) is the trace operator. Recall that this is a linear, bounded
and onto operator (cf. [17], [46, Lemma 2.6], [51, Theorem 2.5.2]). We will use the same
notation y,, for the trace operator acting on vector-valued functions.

Note that the spaces H! (£2) and H'(£2) can be identified isomorphically via the operator
Eo of extension by zero outside £2 (see, e.g., [45, Theorem 3.33]). The dual of HY(£2) is
denoted by H! (£2), and is a space of distributions. (Note that H -Lr" = H7L(RY))
Moreover, the following spaces can be isomorphically identified (cf., e.g., [45, Theorem
3.14])

(H'@) =H7'2), H7'(2)=(H'(2))". (3.7)

Let s € (0, 1). Then the boundary Sobolev space H*(9£2) is defined by

B 2
H(0$2) := {f € L2(992) :/ / WO —FOF 4 oy < oo}, (3.8)
o Jag Ix—ylnTE

where oy is the surface measure on 952 (see, e.g., [51, Proposition 2.5.1]). The dual of
H*(3$2) is the space H*(3£2), and H*(382) = L*(382).

By H'(2)", H! (£2)", H*(952)" we denote the spaces of vector-valued functions whose
components belong to the spaces H L), H! (£2), and H*(952), respectively. For further
properties of Sobolev spaces we refer the reader to [31, 45, 51].

We will need the following well known result (see, e.g., [40, Lemma 2.5], [7], [3, Theorem
3.1]), for which we will provide several generalizations further on.

Proposition 3.1 Let 2 be a bounded Lipschitz domain in R", n > 2, with connected bound-
ary. Then the divergence operator div : HY(Q2)" —> L(z)(.Q) is bounded, linear and surjective.
It has a bounded, linear right inverse R : L%(Q) — H! (82)". Thus, there exists a constant
C = C(82,n) > 0 such that

div(Re f) = f, IRa fllmi@yr < Clflrag) V[ € L§(2). (3.9)

4 Dirichlet problems for the anisotropic compressible Stokes system in
bounded Lipschitz domains

DindoS and Mitrea [18] obtained well-posedness results in Sobolev and Besov spaces for
the Dirichlet problem for the Stokes and Navier-Stokes systems with smooth coefficients
in Lipschitz domains on compact Riemannian manifolds. Mitrea and Wright [51] obtained
well-posedness results in Sobolev and Besov spaces for Dirichlet problems for the Stokes
system with constant coefficients in Lipschitz domains in R” (see also the references therein,
and [2] for Dirichlet problems for the Stokes, Oseen and Navier-Stokes systems with constant
coefficients in a non-solenoidal framework). Dirichlet problems for the anisotropic Stokes
system in exterior Lipschitz domains and in R”, n > 3, have been studied in [34] by using
both variational and potential approaches (see also [16, 36] and [35]).

4.1 Mixed variational formulation for the anisotropic Stokes system in a bounded
Lipschitz domain with homogeneous Dirichlet condition

Let 2 C R", n > 2, be a bounded Lipschitz domain with connected boundary 9£2. Recall
that H'(£2)" is the closure of the space D(£2)" in H'(£2)" and that

|u|H1(.Q)" = ||Vu||L2(Q)n><n (41)
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is a norm on the space H!(£2), equivalent to the norm
lull gy = lull2@y + IVl 2gyxn (4.2)
(cf., e.g., [25, Theorem IL.5.1 and Remark I1.6.2]), that is,
ull g1y < ClIVUll 2 Yue H' (2)" (4.3)

for some constant ¢ = Co'(.Q, n) > 0. Letalso H~ ()" = (ﬁl(ﬂ)")/ endowed with the
norm

lgly-1@p = sup l(g.V)el. YgeH (),
veH (2)", IVl 41 gy =1

andlet || -l -1y~ denote the corresponding norm on H —l)m generated by the semi-norm
4.1),i.e.,

g1y = sup g Vel Yege HTH(@)". (44
VEHN (@), VY| 2 gynxn =1

This implies that
(8. V)l < lgllg-10y VYl 2. Yge HT'(2)", Vve H ()",
and
gl g1y < lglu-1op, YeeH ()" (4.5)

Letay.o : H'(2)" x H'(2)" — Randbg : H'(2)" x L?($2)/R — R be the bilinear
forms given by

ap.o,v) = <a;"ij,3(u), Eia(v)>9  Vu,ve H(Q), (4.6)
bo(v,q) == —(divv,q)e, Vve H(2)", Vq € L*(2)/R. (4.7)
Let us also introduce the following spaces of divergence-free vector fields
Hy (2)" = {we H'(2)" : divw = 0in 2},
AL@)" = {we B (2)" : divw = 0in 2}
We also have the characterization

A4,@2)" = [we B'@)" :ba(w.q) =0, Yg € LX(2)/R}.

Indeed, if divw = 0, then obviously b (w,q) = 0Vgq € LZ(Q)/R. On the other hand,

divw € L%(Q) for any w € I-OII(.Q)" (see Proposition 3.1). Since the space LZ(Q)/R is

dual to the space L3(£2), the condition bo (W, g) = 0V g € L*(£2)/R implies divw = 0.
The Holder inequality implies that there exists a constant C > 0, such that

lag; @, V)| < IVl 2@y VY 2(0yen, Y, v e H ()" (4.8)

Thus, the bilinear form ag. o (-, ) : H'(£2)" x H'(£2)" — R is bounded. Moreover, the
Korn first inequality applied to functions in HY(2)",

1
||VV||L2(_Q)n><n < 22 ”E(V) ||L2(_Q)n><n (49)
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(cf. [45, Theorem 10.1]) combined with the ellipticity condition (2.4) and the property that
the semi-norm ||V (-) || 2(ynxn is @ normin H'(§2)", shows that the bilinear form ap. ()

I:IdliV(Q)" X IfIJiV(Q)” — R is coercive, that is,

Vve HL (2)". (4.10)

|-
a2 (v, V) = S Cy IVl T gy

On the other hand, the surjectivity of the operator div : H! £2)" > L%(.Q) (see Proposi-

tion 3.1) shows that the bilinear and bounded form by, : ik 2)" x L(z)(.Q) — R satisfies
the inf-sup condition

b (v,
inf 2 (v, q)

sup = Cb,
qGLZ(Q)/R\{O} UGI-DI] (£2)"\{0} ”v”[fll(g)n ”q ”LZ(.Q)/R

with some constant ¢;, > 0 (see [23, Theorem A.56, Remark 2.7]). Then Theorem 2.34 in
[23] leads to the following well-posedness result, whose detailed proof can be consulted in
[35, Theorem 3.2] (see also [34, Lemma 3.1]).

Theorem 4.1 Let conditions (2.2)—(2.4) hold. Let ap.q and bg be the bilinear forms defined
in (4.6) and (4.7). Then the following properties hold.

(i) For all given data § € H™'(2)" and g € L%(.Q), the variational problem

{“A;Q(H,V)+b9(V77T)=<55V)9»VVEﬁl(Q)n’ 4.11)

bo(u,q) =—(g.9)a, Vg e L2(£2)/R

for (u, ) € ﬁl(.Q)” x L2(£2)/R is well-posed, that is, (4.11) has a unique solution
and there exists a constant C > 0 depending only on |A||, Cy, 2 and n, such that

lull i@y + 17ll222)r < C (I a-102y + lIgl120)) - (4.12)

(1) The pair (u, ) is the unique solution in H'(2)" x Lz(Q)/R of the Dirichlet problem
for the anisotropic Stokes system

{C(u,n) =-F divu=g in,

you=>0 ond$2, (4.13)

(iii) The solution can be represented in the form (u, w) = M(F, g), where 31 : H1(2)" x
L%(.Q) — HY2)" x LZ(Q)/R is a linear continuous operator.

4.2 Non-homogeneous Dirichlet problem for the anisotropic Stokes system
Let us consider the following non-homogeneous Dirichlet problem

(4.14)

Lu,r)=—-F, diva=g in$2,
You =@ onads2,

for the unknowns (u, 7) € H'(£2)" x L?(£2)/R, with the given data (F, g, @) € H~'(£2)" x
L2(Q2)x H 3 (0£2)", which satisfy the compatibility condition

/g(x)dx=/ ¢ -vdo, (4.15)
2 082

where v is the exterior unit normal to 052.
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To analyse the Dirichlet problem (4.14), we need the following well-known Bogovskii-
type result (see, e.g., [7, 28], and the proof of Theorem 3.2 in [2]).

Lemma4.2 For any (g, ) € L*(§2) x H%(B.Q)” satisfying condition (4.15), there exists
v e HY(2)" such that

divv=gin 2
{ygv=(pon 082, (4.16)
and there exists a constant ¢ = c(§2, n) > 0 such that
IVIay < e(Igliz + ol o) *17)

Theorem 4.3 Let conditions (2.2)—(2.4) hold. Then for all given data (§, g, ¢) € H(2)"x
L2(£2) x H% (082)" satisfying condition (4.15), the Dirichlet problem (4.14) has a unique
solution (u, 1) € H'(£2)" x LZ(Q)/R and there exists a constant C = C (82, Cp, ||A|l, n) >
0 such that

lullgroy + I7ll2@)yr = C (”g”]rl(g)n +llgllr22) + ”(p”H%(MZ)") . (4.18)
Proof Letv € H'(£2)" be the function given by Lemma 4.2. For the velocity-pressure couple
(v, 0), let us also define

§i=—LV,00=—Lve H(2) (4.19)

(cf. notations for £v in (2.7) and (2.1)). Then the fully non-homogeneous Dirichlet problem
(4.14) reduces to the following Dirichlet problem with homogeneous Dirichlet condition, for
the new function w :=u — v,

{I;(w,ﬂ) = (F-%, divw=0 in 2, (4.20)

YoW =0 onods2.

Theorem 4.1 implies that the Dirichlet problem (4.20) has a unique solution (w, 77) in the
space (u, ) € H L))" x L*(£2)/R and depends continuously on the given data of this
problem. Finally, the well-posedness of problem (4.20) implies that the couple (u = w+v, )
determines a solution of the full non-homogeneous Dirichlet problem (4.14) in the space
H'(£2)" x L*(£2)/R, and estimate (4.18) holds. This solution is unique by the uniqueness
statement in Theorem 4.1. O

5 Dirichlet-transmission problems for the anisotropic Stokes system in
bounded Lipschitz domains with transversal interfaces

Mitrea and Wright [51] obtained well-posedness results in Sobolev and Besov spaces for
transmission problems for the Stokes system with constant coefficients in Lipschitz domains
in R” (see also the references therein). Various transmission problems for the anisotropic
Stokes system in Lipschitz domains in R"”, n > 3, with internal interface and homoge-
neous conditions for traces, have been studied in [34] by using both variational and potential
approaches (see also [35] and [36]).

In this section we show the well-posedness of boundary value problems of Dirichlet-
transmission type for the anisotropic Stokes system in a compressible framework in bounded
Lipschitz domains with transversal Lipschitz interfaces satisfying the following assumption.
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Fig.1 Bounded composite
domain 2 = 2T U X UQR™
with the interface X, forn = 3

Assumption 5.1 Let n > 2 and £2 C R” be a bounded Lipschitz domain with connected
boundary 3$2. The domain £2 is divided into two disjoint Lipschitz sub-domains £2* and
27 by an (n — 1)-dimensional Lipschitz open interface X, such that 3¥ = ¥ N9 is a
non-empty (n — 2)-dimensional Lipschitz manifold if n > 2, and two distinct points if n = 2.
In this case X intersects d£2 transversally and 2 = 2+ U X U £27, see Fig. 1.

Thus, the remaining boundaries I't = 021\ X and ' =92~ \ X of 02" and 92,
respectively, are non-empty relatively open subsets of 92.

5.1 Sobolev spaces on bounded domains with partially vanishing traces

Let 2 C R" (n > 2) be a bounded Lipschitz domain with connected boundary 3£2’. Let D
and N be relatively open subsets of 3£2’, such that D has positive (n — 1)-Hausdorff measure,
DNN =%, DUN =32',and DNN = 39D = 3N is an (n — 2)-dimensional closed
Lipschitz submanifold of 92’

We need the following space defined on the Lipschitz domains £2’

Cy @) :={ol, : 9 € C*®R"", supp(9) N D =0} , 5.1

and let H),(2')" be the closure of C3(£2')" in H!'(£2')". The space H},(£2')" can be
equivalently characterized as

Hy2)' ={ve H ()" : (v, V)], =0} (5.2)
(cf. [9, Corollary 3.11]). Let also
Hj, 4, ()" :={w € H)(2')" : divw =0} (5.3)

Let = be arelatively open (n — 1)-dimensional subset of 32’, e.g., D or N. Let r denote
the operator of restriction of distributions from 32’ to Z. Then the boundary Sobolev spaces
on N are defined by

H2(&)" = [¢|E ¢ H%(a:z’)”] , (5.4)
"5y = {¢ cH B2 :¢=0 onof’ \E} , (5.5)

1 ~ 1 ; o~_ 1 1 4
H™2(E)" == (H2(&)"), H 2(&)" := (H2(&)") (5.6)

(cf., e.g., [45], [9, Definition 4.8, Theorem 5.1]).

Lemma 5.2 The trace operator y,, : H[l)(.Q’)” — Iti% (N)" is bounded, linear and surjec-

tive, with a (non-unique) bounded, linear right inverse yf;l CH? (N — HI])(.Q’)”.
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Proof Let )/(;1 D H? (882" — H'(£2)" be a bounded right inverse of the trace operator
Yo - HY(Q) - H%(E)Q’)” (cf. [17], [46, Lemma 2.6], [51, Theorem 2.5.2]). Conse-
quently, we have y, yg’,lqﬁ = ¢, forany ¢ € H% (082")". Therefore, if ¢ € ﬁ% (N)", that is,
¢ =0on D, then y,, )/f;l(b = 0 on D, and, thus, yg_/lqﬁ € H$(.Q/)". Hence, the existence
of a right inverse yX;I : H%(a.Q/)" — H'(£2)" of the trace operator Yo © HY(QH)" -
H? (0£2")" assures the existence of a bounded right inverse y{;l : A2 (N — Hé (2" of
the operator y,, : H}(2")" — HE(N)". m]

5.2 Sobolev spaces, conormal derivatives and Green'’s identity in a bounded
Lipschitz domain with a transversal Lipschitz interface

In the sequel, §2 is a bounded Lipschitz domain in R”, n > 2, satisfying Assumption 5.1.
We need the following spaces defined on the domains £2, 27 and 27,

Hlo(2)":={ve H'(2)" : (yov)|r+ =0}, (5.7)
Hs (25" = {vF e HY(QF)" : (y,.v5)|r= =0}, (5.8)

where Vor + H l@* - H 3 (32%) are the trace operators acting on functions defined on
the domains £2%. The spaces H },i (£2%)" can be equivalently described as

H} (25" = {vlgs :ve H-.(2)"}, (5.9)

and the space H'(2)" = {w e H'(2%)" : yo,w=0o0n 8.(2} can be identified with the
space

{(v+, V) eHL (2D x HL (27" : (v, v = (yg_v*)yz}. (5.10)
This property is an immediate consequence of Lemma B.1.
Let us next introduce the Sobolev spaces on the interface X' (cf., e.g., [9, 45]). First, define
the space
HZ(Z)" = [¢ e LX(X)" : 3¢t € HZ(32")" such that ¢ = ¢+\E] , (5.11)
which can be identified with the space
{¢ € LX) :3¢~ € H} (327" such that ¢ = ¢—|£} (5.12)
due to the equivalence of both of them to the space defined as in (3.8), with X' instead of 952
(see also Lemma B.2).
Let us also consider the space
ﬁ%(Z‘; aRt = {$+ € H%(89+)" : supp$+ C f} , (5.13)
which, by Lemma B.2(ii), can be identified with the space

H3(5: 007 ) = {%f e H2(327)" : suppp  C f} , (5.14)
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and both spaces inherit their norms from the spaces H 2 (B.Qi)” respectively. Let us denote

by H (X)" the space consisting of all functlons ¢ecH 2 (X)" such that their extensions by
zeroon 921, E ¢, belong to 2 (Z:; 0217 ie.,

Tt
1 o ~
HI(E)' = {p e H¥(ZY : E_, . ¢eH (5;02%))
1
Lemma B.2(ii) shows that the space Hy (X)" can be also defined as
1 1 o ~1
H(X)' :={¢ c H2(X)": E P H2(X;027)"}.

Y002

1
The space H, (X)" can be endowed with the norm

91y = max {nEMmqsnm Y 1y ) (m,)n} :
Note that the operators of extension by zero
o 1 ~1
E_ .t HN(Z)" — Hi(Z;90%) (5.15)

are continuous, and due to, e.g., [46, Theorem 2.10(i)] also surjective, implying that the space
H.% (2)" can be identified with the spaces H 3 (X; 92%)". In addition, by Theorem B.3 the
space H.% (X)" can be characterized as the weighted space HO%O(E) consisting of functions
¢ € H%(Z‘)", such that 8_%¢ € Lzl(Z‘)", where §(x) is the distance from x € X to the

boundary d X'. The counterpart of HO%(~) on smooth domains in R” has been considered in
[42, Chapter 1, Theorem 11.7] and on Lipschitz domains in [30, Corollary 1.4.4.10]. Note
1

also that the space HZ (+) is similar to the space Lﬁz (-) in [50, Eq. (2.212)], cf. also [48, p.3].

1
Lemma 5.3 The operator yy, : HY(2)" - HZ(Z)" given by

VeV = (y_rﬁ (V|Q+) ’)_‘,‘ y.o ( f))‘Z’ vveﬁl('@)n’ (5'16)

is linear, bounded and surjective.

Proof The linearity and boundedness of the operator y, are immediate consequences of the
linearity and boundedness of the trace operators

Yoot HA(2F) — H2 (55 002%), (5.17)

cf. Lemma 5.2. The equality of restrictions to X of the traces from 2% and £~ in (5.16)
follows from the inclusion v € H'! (£2)", see Lemma B.1(ii). The surjectivity of operators
(5.17) 1mphes the surjectivity of the Operator Vs ! H! £2)" — H, : (2H". To this end, let
¢ € HZ(X)". Then E: miq& € Hz(E 327%)" and by Lemma 5.2, there exist vt ¢
I“i (£2%)" such that yﬂiv = E;ﬁmi

on X. According to Lemma B.1(i) there exists a unique function v € H!(£2)" such that
V|o+ = v*. Moreover, since Yot vt = 0on I'*, we deduce that YoV =0 (a.e.)on a2, and

hence v € I-oll(.Q)". O

¢ on 32*. Hence, we obtain that YV = yov
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1
Lemma 5.3 implies that the space H, (X)" can be also characterised as
1 o
HZ(Z)" = {¢ € L3(X): v e H'(2)" such that

¢ = (V.Q+ (V|Q+)) |E = (y_(r (V|Q*)) |)_',‘] : (5'18)

In addition, we consider the spaces
1 ~
H™ (D) = (HE(D)"), H 2(Z)" = (H*()") . (5.19)

In Appendix A we provide a definition of the generalized conormal derivative, associated
with anisotropic Stokes operator £, on the entire boundary of the domain. If we need the
conormal derivative only on a part of the boundary of the domain, we do not not need
the extension of the PDE right hand side to the ‘tilde-space’ on the rest of the boundary.
To this end, we consider the following counterpart of Definition A.2 in the case of f* €
(H }i (.Qi)”)/; some characterisations of such spaces are available from Lemma B.6.

Definition 5.4 Let Assumption 5.1 and condition (2.2) hold. Let
Hi.(2F, L) = {(ui,ni,fi) e H'(2%)" x LX(Q%) x (H o (2%)")
LE, 7%) = e in Qi}. (5.20)

If (u¥, 7%, f%) € H}.. (2%, L), then the formula

((to+@= == F)1;. cpi>2 =@ Ejp®), Bty lo®) |

1
+ - 1 .+ rEs —1 4+ + 2 n
_<n (div(y_l® )>9i+<f vle >Qi, Vot e HI (D), (5.21)

+

defines the generalized conormal derivatives (t_Q:t(lli, TE: f'i))|)r € H _%(E )", where

1
y= 1 HX(Z)' - H 11“i (£2%)" are bounded right inverses of the trace operators Vot

ot
1
HlL..(2%)" > H} (D).

Note that, in view of Lemma 5.2, all duality pairings in formula (5.21) are well-defined.
Moreover, we have the following result, whose proof is omitted for the sake of brevity (cf.
[49, Proposition 8.1] for the Laplace operator, [38, Lemma 7.6] for extensions to compact
Riemannian manifolds, and [9, Definition 7.1] in the case of higher order elliptic operators,

see also [45, Lemma 4.3], [35, Lemma 2.3], [36, Lemma 1], [46, Definition 3.1, Theorem
3.2], [47], [51, Theorem 10.4.1]).

Lemma 5.5 Let Assumption 5.1 and conditions (2.2) and (2.3) hold.

(1) The generalized conormal derivative operators to+ : H;i K2t L) — H_% (X" are
linear and bounded, and definition (5.21) does not depend on the particular choice of right
1

inverses yg_il cHX (D) — H}i (82%)" of the trace operators Vs ° H}i )" —

1
H} (D). i
(i) Let (wh, 7%, %) € H1..(2F, L). Let w € L*(22) and f € H~1(82) be such that

mlor =nF, f=ft+f". (5.22)
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Then the following first Green identities hold
((toe @ 7 )1y W), = (0 Ejp 05, Eiaw®)
— (7, divwE) g + (F, wh)gs, YwE e HLL(2F)", (5.23)
and hence
((tor @™ 2" ED) s + (to-@™, 27 815 vew),
= <"ZﬁEjﬁ(“+), Em(W))m + <af-§ﬁEjﬁ(u_)a Eia(W)>Q,

— (m, divw)o + (F.w)o, Vwe H'(2)". (5.24)
Note that the existence of a function 7 € L%(£2) as in (5.22) follows from Lemma B.1,

while Lemma B.6 shows that f defined in (5.22) belongs to the space H “Leoyn,

5.3 Dirichlet-transmission problem with homogeneous Dirichlet conditions

First, we analyze the following Dirichlet-transmission problem for the anisotropic Stokes
system in £2 with homogeneous Dirichlet conditions

LT, 7%) = ge, divut = g|o+ in Q2+,
L ,n7)=f"|o-, divua™ = g|o- in 27,
(yﬂ+u+)|2 = S}/_qu_)lx - on X, (5 25)
(tor(ut, 7T fN)|; + (to-(u™, 77 f7) [, =¥, on X, '
(Ve u D)+ =0 onI"t,
(Yp—u)|r-=0 on "~

and the given data (F*,f’, g v, e @0. The space
0= (HL (7)) x (H-(27)") x LA(2) x H™2(D)" (5.26)

is endowed with the norm

(R = |If* 4 I /
¢ &Y )lgo =l II(H;+(Q+)n)+II ”(H;,(Q*)")

+ llgllz22) + sz”ﬂ*%(z)"'

The conormal derivative operators to+ and to—, as introduced in Definition A.2, correspond
to the outward unit normal vectors to £27 and £2~, respectively, that have opposite directions
on X. However, if one would consider the conormal derivatives with respect to unit normal
vectors of the same direction on X, then the sum in the corresponding transmission condition
in (5.25) would be replaced by the difference, leading to the jump of the conormal derivatives
as, e.g., in [34-36].
We show that (5.25) has a unique solution (u™, 7+, u™, 7 7) in the space
Xoro-1={0vTgT v g vi e H (@), v e H' (27",
0" =dqlo+. ¢~ =dqle-. 9 € L*(2)/R}, (5.27)

endowed with the norm

v, g™, Vg )lxg o = ||V+||H1(_Q+)n + IV g1y + gl 22y R
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(The choice of the space L?(£2)/R for the pressure is only for convenience, and one may
consider the space L%(.Q) as well.)

Let (w", 77, u",77) € X+ - and u™ and u™ satisfy the homogeneous interface
condition for traces in (5.25), ()/QJr ut) |y — (yg, u” )|, = 0on X. Then Lemma B.1 implies
that there exists a unique pair (u, 7) € HY(2)" x LZ(Q)/]R such that

uor=u, ug- =u", wor=n", To =7". (5.28)

Assuming that ut and u~ also satisfy the homogeneous Dirichlet condition in (5.25) we
have thatu € P.Il(Q)”. Therefore, (u, ) € P.II(Q)” X LZ(Q)/R.

Note that the membership of + to (H Ilur (.Q“‘)”)/ and the identification of this space
with the space defined by (B.13) in Lemma B.6 imply that T+ can be considered also as an
element from H ' (£2)". Similarly, the assumption e (HIL_ (Q*)”)/ implies that T can
be considered as an element from H 1 (§2)".

Let also § € H~!(£2)" be such that

(35 V).Q L= _<f+v V)Q+ - (f‘_a V>_Q— + (VIZa VEV)E
=—(f"+f.v), + (¥, Ve, YveH' ()", (5.29)

thatis, § = —(FT +f) + V;W;- Note that y;f : H_%(Z‘)” — H~1(£2)" is the adjoint of
1

the trace operator y. : H! (£2)" — HJZ(X)" defined by (5.16), and the support of Ve, is
a subset of X.

Now, we can show the well-posedness of the Dirichlet-transmission problem (5.25) (see
also [4, Theorem 1.2], [5, Corollary 3.1] for interface problems involving the Stokes and
Brinkman systems in Lipschitz domains with transversal interfaces and jump conditions in
the isotropic case (2.12)).

Theorem 5.6 Let Assumption 5.1 and conditions (2.2)—(2.4) hold.

(i) Then for all (F"',f‘, 8V, € 2)0 the Dirichlet-transmission problem (5.25) has a
unique solution (w™, x %, u™, 77) in the space Xqo+. o-, and there exists a positive
constant C = C(2F, 27, Ca, |A|l, n) such that

It 7t a )z, o < CIE T g v ) llgy (5.30)

(ii) The solution can be represented in the form (ut, 7t u=, 7n7) = U°F* . g, v,
where $1° @0 — X+ - is a linear continuous operator.

Proof Let us prove that the Dirichlet-transmission problem (5.25) with the unknowns
(u'*', a1t u, rr_) € X+ - isequivalent, in the sense of relations (5.28), to the variational
problem (4.11) with the unknowns (u, 7) € H'(£2)" x L2(£2)/R, and with § € H~'(22)"
given by (5.29).

First, assume that (u+, at u, n_) € X+ - satisfies the Dirichlet-transmission prob-
lem (5.25). Let (u, 7) € H! (£2)" x L%(.Q) be the pair defined by formula (5.28) (cf. Lemma
B.1). Then the first equation of variational problem (4.11) follows from the Green identity
(5.24) and relation (5.29) for §. The second equation in (4.11) follows from the equations
divu® = g|o+ in 2% and the inclusion divu € L2(£2).
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Conversely, assume that (u, 7) € H! (2)" x L¥(2) /R satisfies the variational problem
(4.11) and let (u*t, 7%) = (u| o=, 7| o=). Then the first equation in (4.11) can be written as

<a3f3Ej,3(u+), E,u(w*'))_(2+ — (7, div W"'>Q+

+ (a?;ﬂEjﬂ(“_)y Eiq(W)),- — (r7 . divw™),_
—({r W)y — (W) + (W ysWs =0, Ywe H (2)". (5.31)

Since the spaces D) are subspaces of ik (£2)", (the distributional form of) the
anisotropic Stokes equation in (5.25), in each of the domains 2+ and £2~, follows from
equation (5.31) written for all w € D(£21)" and w € D(£27)", respectively. A similar
argument yields that the second variational equation in (4.11) implies the divergence equa-
tion divu®* = gi in £2%. Thus, (u+, at,u, n‘) satisfies the anisotropic Stokes system
in 27 U £, the Dirichlet boundary condition (y. g utd)| = 0 on I'*, and the interface
condition (Vs uh)| s = (Y,-u7)[yon X Then substituting (5.31) into the Green identity
(5.24), we obtain the equation

(b b 7™ D) Ho- (™, 77 ) 5, (e Wls), = (¥, v W)y (5.32)

In view of Lemma 5.3, formula (5.32) implies

~ ~ 1
((t_q+(u+,7r+;f+)+tg—(u*,n*;f*))|2,¢>x =(V,.¢).. Vo e H (D). (533)

Therefore, (to+(ut, 7% fH)+to- (™, 77; f"))|2 =y, onX.

Consequently, the Dirichlet-transmission problem (5.25) and the variational problem
(4.11) are equivalent, as asserted. By Theorem 4.1, the variational problem (4.11) in the
space H'(£2)" x L2(£2)/R is well-posed. Hence the proved equivalence implies the well-
posedness of problem (5.25) in the space X+ -, and estimate (5.30) follows from (4.12)
and (5.29). Together with Theorem 4.1(iii) this also implies the representation of item (ii). O

5.4 Dirichlet-transmission problem with non-homogeneous interface and Dirichlet
conditions

Let the space ), consists of all elements
~ ~ _ / _ I —
1. gt e 0, ¥, 0 € (H(2D)") x (HL-(27)") x L*(27) x L*(27)
1
XHZ(Z)' x H™2(Z)" x H2(302)"

such that g™, g7, @, and @ 5, satisfy the compatibility condition

/xﬁg*dx—i—/_g’dx:/;Q(wvdcr—i—/zwx-vxdcr, (5.34)

where v ;. is the unit normal to X oriented from £ to £27. The space 9), is endowed with
the norm

P g e 0, ol, = IF I ,
IE T g™ e s Vo Ol = 0 gy I o

+ llell .

+ —
Hlg 2y + I8 2y + oy ||Hl sy +¥, ||H_%(2)" 1t oem

2 (
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Let us also define the space M, consisting of all elements
1
(€. 87 0,.9) € LX(2%) x LA(27) x Hl ()" x HZ(3R)"
satisfying the compatibility condition (5.34), and endowed with the norm

+ .- ot -
&7 8 @5 @lm, =g 22+ + 18" lI2(2-) + @y IIH%(W + llwllH%(m)n-

(5.35)
Let us consider the following non-homogeneous Dirichlet-transmission problem

Lt 7%) =FFge, divut =gF inQ+,
L ,7n7)=f"|g-, diva~ =g~ in 27,
Ve 05 — (v,-uD)s =0, N on X, (5.36)
(tor b, 7T D). + (to- (™, 77 f7)) [, =¥, on X, '
Vet D+ = @lp+ on 't
(Vo-u)lr- = olr- onl"~,

with the unknown fullctigns (ut, 7, u", x7) in the space X+ - defined in (5.27), and
with the given data (F7,f~, ¢, ¢ 7. 0. ¥ .. 9) € V..
In order to analyze the non-homogeneous Dirichlet-transmission problem, we need the

following Bogovskii-type transmission result.

Lemma 5.7 Let Assumption 5.1 hold. Then for all given data (g%, g™, @, 9) € M, there
exist vt € H'(£2%)" such that

divvt =gt in 7, (5.37)
divv. =g~ in2", (5.38)
Vs Vs = (g V)Iy =@, on X, (5.39)
Ve VOIre = @lps on I, (5.40)
(Vg-V)lr-=@lp- on '™, (5.41)
and there exists a constant Cx; = Cx (21, 27, n) > 0 such that
V=l 1@y < Cxliet g7 0sn @), - (5.42)
Proof Let us introduce the functions
1 .
—1 —1
vi=r,vg e+ Y2y igr @y (5.43)
_ _ 1 o
V=1, 750 — EVQEEEW,%, (5.44)

where y_Q_l : H%(H.Q)” — HY )" and yf;il, : H%(aﬂi)” — HY(2%)" are continuous

1 ~1
rrge D HE (D) —> HI(Z;902%)"
are operators of extension by zero, cf. (5.15), while r_, : HY(£2)" - H'(2%)" are restric-
tion operators to the corresponding domains, and each of these operators is continuous.

Then Vli belong to H'(£22%)", respectively, and satisfy transmission and boundary condi-
tions (5.39)—(5.41). Let us now define

right inverses to the corresponding trace operators, E

gf = divvi e L}(2%) (5.45)
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Then by the divergence Theorem and condition (5.34) we obtain
/ g (v)dx + / gy (X)dx = / gtdx + / g dx. (5.46)
Qo+ 2- o+ _

Let g € L2(£2) be such that &le, = gt — gft. Hence g belongs to the space L%(.Q)
defined in (3.1). Then by Proposition 3.1 there exists v, € H! (£2) satisfying

divv, = grin £2, (5.47)
and a constant C = C(£2, n) > 0 such that
V231 oy < Clig2l72) = CUlg™ =& 1200y + 187 =81 1720 (5:48)

Finally, choosing v* := Vli + r,. v2 and using inequality (5.48) and continuity of the
operators involved in (5.43)—(5.45), we obtain the desired result. ]

v+ ~
Let us define the operators £ : HY Q5" - H 1 Q)" cf. (2.1), as
(E5vE); = 0, B (@l Ejpv®). i=1.....n, VvteH'(@2%)", (5.49)

where E g+ are the operators of zero extensions from £2% onto R”. Then by (2.9) we have
4
that (£ v¥)| g+ = L(v¥,0) in 2F.

Theorem 5.8 Let Assumption 5.1 and conditions (2.2)~(2.4) hold. Then for all £+,T~, g%,
8,9, VIE, @) € Q. the Dirichlet-transmission problem (5.36) has a unique solution
(ut, 7w, u", n7) in the space X g+ o- and there exists a constant C = C(22%, 27, Cy,
A, n) > 0 such that

It atu a )z, o <CIET T, 8t 87 0, ¥, 0.

Proof Let vt € H'(£2%)" be the functions given by Lemma 5.7. Defining f+ = éivi €
H=1(2%)", we obtain that f¥| o+ = £(v¥,0) in 2F and to: (vE, 0; f£) = 0 by Defini-
tion A.2.

Then the fully non-homogeneous Dirichlet-transmission problem (5.36) reduces to the
following Dirichlet-transmission problem with homogeneous Dirichlet conditions on I'*

and homogeneous interface condition for the traces across X, for the new functions wE =
ut — vE
Lowt, ) = FF — )|+, divwt =0 in 2+,
Low 7 )==0F —fF)|o-, divw =0 in 2,
Vs WHls = (- W)l 5 o T 550
(torwh, m s fF — D)), + (to-(w™, 77 f —f7))|, =9, on X,
Ve WHIr+ =0 onI't,
Vy-W)lr-=0 onl~.

Theorem 5.6 implies that the Dirichlet-transmission problem (5.50) has a unique solu-
tion (W, 7%, w™, w7) in the space X+ o- and depends continuously on the given data
of this problem. Finally, the well-posedness of problem (5.50) implies that the functions
(vt = w* + vE, 7%) determine a solution of the full non-homogeneous Dirichlet-
transmission problem (5.36) in the space X+ -, and depends continuously on the given
data(f ™, f~, g7, g7, 0 > ¥, 9) €Y, This solution is unique by the uniqueness statement
in Theorem 5.6. O
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5.5 Dirichlet-transmission problem with fully non-homogeneous interface and
Dirichlet conditions

Let us now consider the non-homogeneous Dirichlet-transmission problem

Lut, 7)) =TTg+, divat =g* inQ+,
Lu,n)=T|g-, diva =g~ in2—,

Ve WDy = (v, u)l; = 0, 5 on ¥, (5.51)
(tor T, 7T D), + (to-™, 7 5f7))[; =¥, on X, :
Vet D)+ = 0" onI't,

(Vp-u - =9~ onl"",

with more general data (f7, T, g%, g, 0. V.. 0", ¢7) €, where Y consists of
~ ~_ _ _ / _ /
e e .0, ¥, 0T 07) € (HL (D)) x (H(27)")

X L2(27) x LX(27) x H>(5)" x H™2(Z)" x H2(I'YY" x H> (I'™)",

such that g*, g~, @ .. @™, @ satisfy the compatibility condition

/ g+dx+/ g_dx:/ q)+~vda+/ qo_-vdo—l—/ @, vedo, (552)
o+ - r+ - by

and the condition
1
@, —r;®t+r, @ € H (X)" (5.53)
for some extensions &+ € H?2 (8£2%)" such that - ot = o,
1
Remark 5.9 (i) Condition (5.53) is particularly satisfied if ¢ . € Hy' (¥)" and ot = T

for some ¢ € H%(B.Q)”, as in the case considered in Sect. 5.4. Indeed, we can choose
ot = Yo yg_l(p and obtain that #* ¢ H%(B.Qi)" and

+ —1 -1 +
Fre@T =1 aVor Vg Q=T YoV, =T 0 =9,

which implies that @* are extensions of ¢* from I'* to 922*. Moreover, the property
yg_l(p € H'(2)" implies that

r2¢+ —ry® = rzyg+ys;lgo —FsYo- yf;lgo =0.

(i1) If condition (5.53) is satisfied for some functions ®* € H% (8£2%)" such that ot =
- @ then it is also satisfied for all functions @F H? (8£2%)" such that 9+ = [ 5

1
because @+ — d’f =0 on I"* and hence s (+ — ¢f) € HZ (X)".

In order to analyze the non-homogeneous Dirichlet-transmission problem, we need the
following generalized Bogoskii-type transmission result.

Lemma 5.10 Let Assumption 5.1 hold and let

(¢ ¢ 0,01 07) e LAR21) x LX(R7) x HY(E)" x HX(I'MY' x HI(I'™)"

@ Springer



198  Page 20 of 47 M. Kohr et al.

satisfy conditions (5.52) and (5.53). Then there exist vE e HY(Q2%)" such that

divvt =gt in 7, (5.54)
divv. =g~ inf27, (5.55)
Vi VO =y Vs =9, on ¥, (5.56)
Vo VOl =" onr ™, (5.57)
VouVlr-=¢@ onI'", (5.58)

and, moreover,

IVl 1y + IV 1 -y < C):(llg+||L2(sz+) + 18" L2

+logll 1 +lleTll +lle~ |l (5.59)

H2 (D) H2 () H? (1_,)”)

with some constant Cx; = Cx (21,27, n) > 0.

Proof We will prove this lemma by modifying the proof of Lemma 5.7 appropriately. Let
y_(;i D H> 02%)" — H'(2%)" be some continuous right inverses to the corresponding
trace operators.

1 . .
Let @* ¢ H2(92%)" denote some extensions of the functions o* from I'* to 927,
thatis, r ., ®#* = ¢, Let us introduce the functions

S, =9, —r; " +r. 0, (5.60)
vit=yol@t+ %thamd)x), (5.61)
IR 7 C ey U Jo) (5.62)
Due to condition (5.53) and Remark 5.9(Gii), ®, € H.%(Z‘)" and hence l:?zﬁmi¢x €

H > (32%)". Then vf e HY(2%)" and satisfy transmission and boundary conditions (5.56)—
(5.58). Let us now define

gf == divvi e L2(2%) (5.63)

Then by the divergence Theorem and condition (5.52) we obtain

/m grdx+/97 gydx = /m g+dx+/g g dx. (5.64)

Let g» € L%(£2) be such that &lo. = gt — gli. Hence g belongs to the space L%(.Q)
defined in (3.1). Then by Proposition 3.1 there exists v, € H! (£2) such that

divvy =g in 2, [Vallgiey < Cllg2ll2o) - (5.65)

Finally, choosing v* := Vft +r,4 V2 and using the inequality in (5.65) and the continuity
of the operators involved in (5.60)—(5.63), we get the assertion. O

Theorem 5.11 Let Assumption 5.1 and conditions (2.2)—(2.4) hold. Then for all (N gt
g 0.V, o+, 7)) € the Dirichlet-transmission problem (5.51) has a unique solution
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(ut, 7, u", 77) in the space X+ - defined in (5.27), and there exists a constant C =
C(R71, 27, Ca, |IA]l, n) > 0 such that

It at w7 )z, , <CIET.T . e g7 0, ¥, 0T 0 )ly.

Proof We use arguments similar to those in the proof of Theorem 5.8. Let v € H!(£2%)"
vt v+
be given by Lemma 5.10. For the velocity-pressure couples (v, 0), let f = £ v* €

H! (£2%)", where operators :Si are defined in (5.49). Hence fi c H! (25, fi|_(2i =
L(vE,0) in 27, cf. (2.9), and to= (vE, 0; %) = 0 by Definition A.2.

Then for the new functions w* := u® — v¥*, the fully non-homogeneous Dirichlet-
transmission problem (5.51) reduces to the following Dirichlet-transmission problem with
homogeneous Dirichlet conditions on I"* and homogeneous interface condition for the traces

across X.

Lowt, xt)y = Ft =)o, divwt =0 in 2%,
Low ,n7)==F —f)|g-, divw =0 in 2,
Vo WHlz = (v, W)ls on X,

Fa-V ~ . (5.66)
(tor(wh, a T fF — D). + (to-(w™, 77 f —f7));, =¥, on X,
Ve WHIr+ =0 onI't,
(VouW)lr-=0 onl".

Theorem 5.6 implies that the Dirichlet-transmission problem (5.66) has a unique solution
(wh, ™, w™, 77) in the space X+ - and depends continuously on the given data of this
problem. Finally, the well-posedness of problem (5.66) implies that the functions (u* =
w* + vt 7F) determine a solution of the fully non-homogeneous Dirichlet-transmission
problem (5.51) in the space X+ -, and the solution depends continuously on the given
data (F*,f7,¢7, g7, 0., ¥,.. 9", ¢7) € . This solution is unique by the uniqueness
statement in Theorem 5.6. O

6 Dirichlet problem for the incompressible anisotropic Navier-Stokes
system with general data in a bounded Lipschitz domain

In this section, we show the existence of a weak solution of a fully non-homogeneous
Dirichlet problem for the anisotropic Navier-Stokes system in the incompressible case with
general data in L2-based Sobolev spaces in a bounded Lipschitz domain in R”, n = 2, 3. We
use the well-posedness result established in Theorem 4.1 for the Dirichlet problem for the
Stokes system and the following variant of the Leray-Schauder fixed point theorem (see [29,
Theorem 11.3]).

Theorem 6.1 Let X denote a Banach space and T : X — X be a continuous and compact
operator. If there exists a constant My > O such that |x||x < My for every pair (x,A) €
X x [0, 1] satisfying x = LT x, then the operator T has a fixed point xo (with || xo||x < Mp).

Recall that 2 C R”" is a bounded Lipschitz domain and denote

HE(02)" = {(p e HIOB2)" : (9, V)50 = 0}. 6.1)
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Restricting our analysis to the case n € {2, 3} will allow to use some compact embedding
results. Consider the following Dirichlet problem,

{L(u,n):—sﬂu-V)u, divu =0 in £2,

You =@ on d%2. 6.2)

for the couple of unknowns (u, 7) € H'(£2)" x L2(.Q)/]R and the given data (§, @) €
1

H™'(2)" x H} (02)".
The main tool for our next arguments is the following assertion (see, e.g., [39, (1.4)], [41]).

Lemma 6.2 Let ¢ € H,,% (082)". Then for any ¢ > O there exists Ve = V. (@; §2) € Hdliv(.Q)”
such that
yeVe = @ on 382 (6.3)
and the following Leray-Hopf inequality holds
(V- V)V, V)| < llVVIITa g ¥V € Hiy (2)" . (6.4)

Next we show the following existence result (see also [56, Proposition 1.1] in the isotropic
incompressible case (2.12) with u = 1).
Theorem 6.3 Let 2 C R, n € {2, 3}, be a bounded Lipschitz domain. Let conditions (2.2)—
1
(2.4) hold. Then for all given data (§, @) € H=Y(2)" x HZ (32)", the Dirichlet problem
for the anisotropic Navier-Stokes system (6.2) has a solution (n, 7) € H'(§2)" x L%(£2)/R.

Proof We reduce the analysis of the nonlinear problem (6.2) to the analysis of a nonlinear
operator in the Hilbert space ﬁ(}iv(ﬂ)” and show that this operator has a fixed-point due to
the Leray-Schauder Theorem (cf. [41], see also [39]).

To this end, we represent a solution of problem (6.2) in the form

u=ug+ve, (6.5)

where v, € H(}iv(.Q )" satisfies relations (6.3) and (6.4) with an ¢ that will be specified later,
while ug € I—?dliv(.Q)”.
Then the Dirichlet problem (6.2) reduces to the nonlinear equation

L(ug, 7) = Feup (6.6)
for the couple of unknowns (ug, 7) € I-}dliv (£2)" x L2(£2) /R, where
Fow:=—F— Lve +(WHVe) - V)WH V), Ywe HE (2)" (6.7)

(cf. notations in (2.7), (2.1) and (2.8)).
Forafixed v, € H&iV(Q)”, formula (6.7) defines a nonlinear mapping w — F.w, and the

nonlinear operator F, acts from H dliv (§2)" to H~1(£2)" due to the inclusion £v, € H~1(2)"
(provided by (2.5)) and estimate (C.6).
By Theorem 4.1, the linear operator

L£:HL(2)" x L2(2)/R — H™ ()" (6.8)
is an isomorphism. Its inverse operator can be split into two operator components,

L' =, P,
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where U : H1(2)" — H}, ()" and P : H~1(£2)" — L*(52)/R are linear continuous
operators such that L@UF, PF) = F for any F € H~!(£2)". By applying the operator £~
to equation (6.6) we obtain the equivalent nonlinear system

ug = Ugup, (6.9)
7w = Puy, (6.10)

where U, : ﬁchv(.Q)” — Ifl(}iv(Q)” and P; : ﬁc{iv(ﬂ)" — LZ(Q)/R are the nonlinear
operators defined as

Uw:=UF.w, (6.11)
Pow = PF.w (6.12)

(cf. also [41] for ;« = 1 in the isotropic incompressible case (2.12)).

Since 7 is not involved in (6.9), we will first prove the existence of a solution ug €
I:IdliV(Q)" to this equation and then use (6.10) as a representation formula. This formula
provides the existence of the pressure field 7 € L?(£2)/R.

In order to show the existence of a fixed point of the operator U, and, thus, the existence
of a solution of equation (6.9), we employ Theorem 6.1.

We show first that U, is continuous. Let w, w’ € ﬁ(}iv(ﬂ)". Then by (6.7) and (C.6) there
exists a constant ¢; > 0 such that

||F8w —F.w HH |(w V)w — (W - V)W’HH,

—](Q)n E }
+ [ Ve - VW = W) + (W= W) - V)V 1 )

< H((w —w) - V)w+ (W - V)(w— w’)HH,

I(Q)n

l(_Q)n
+2¢1 [W = W[ 1 g0 Vel e

<cilw- W/||H1(Q)n (Wl g1 c2yn + Wl 12y 4 20 Ve ll gy - (6.13)

This estimate shows that the operator F : fl&iv(ﬂ)” — H~Y(£2)" is continuous. Conse-
quently, the operator U, = U F; : fl(jliv(ﬂ)" — ﬁ(}iv(ﬂ)” is also continuous, as asserted.

Next we show that the operator U, is compact. To this end, we assume that {wy }xen is
a bounded sequence in the space IfIJiV(Q)” endowed with the norm, coinciding with semi-
norm (4.1), and prove that the sequence {F,w;}rcn contains a convergent subsequence in
H=Y(2)".

Let M > 0 be such that || w|| i) < M for all k € N. Since the embedding of the

V(_Q)n =
space Fldliv (£2)" into the space LY(2)" is compact (see, e.g., [1, Theorem 6.3]), there exists
a subsequence of {w; }ren, labeled as the sequence for the sake of brevity, which converges
in L*(£2)", and, hence, is a Cauchy sequence in L*(£2)". From (6.7), (C.6) and (C.15), we
obtain
[Fewi — Fewe HH_l(Q)n < ((wg — we) - VIWg + (We - V) (W — W)l g1y
Ve - V)W — W) + (W — We) - VIVl 1
<ci (||Wk||H1(_(z)n + Iwell gy + 2||V8||H1(_Q)") Wk — wWellpaoy
< 2¢1 (M + 11Vl gy ) IWe = Well ooy - (6.14)

This inequality, combined with the property that {wy }zen is a Cauchy sequence in the space
LY()n, implies that {F.w;}rcn is a Cauchy sequence in the space H _1(9)”. Therefore,
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F. : ﬁ(}iv(Q)” — H Y 2)"is a compact operator. Hence, the operator U, = UF, :
I-"Idliv )" — POIC}W(Q)" is also compact, as asserted.

Next, we show that there exists a constant My > 0 such thatif w € Ifldliv(ﬂ)" satisfies the
equation

w = AU.w (6.15)
for some A € [0, 1], then [[W|| g1 oy < Mo. Let us also introduce the function
q = AP:w. (6.16)

By applying the operator £ to equations (6.15)—(6.16) and by using relations (6.11) and
(6.12), we deduce that whenever the pair (w, 1) € Hdliv(.Q)” x R satisfies equation (6.15),
then the equation

LW, q) = AF.w, (6.17)
is also satisfied. (Recall the isomorphism property of operator (6.8).) Then the first Green
identity (A.1) implies the equation

<a;';!3Ej,3(w), Eia(w)>9 = —(WF.w, W)g (6.18)
which, in view of relation (6.7), takes the form
(@7 Ejpw), Eia(W)g = A(F, W)a = Mail Ejp(ve), Eia(W))g
= MW+ ve) - VIW, W), — A(Ve - VIVe, W), — A{(W - V)ve, W), . (6.19)

Relation (C.13) implies that (((W—l—vg) -V)w, w) o =0 Then by using the Korn first inequality
(4.9), the ellipticity condition (2.4), equation (6.19), the Holder inequality, relation (C.14),
and the Leray-Hopf inequality (6.4), we obtain for A > 0 that

| 2 1 2 ap
ECA ”VWHLZ(Q)nxn E CA ”E(W)HLZ(_Q)an f (aij E/ﬂ(w)a E‘l()((vv)>.Q
S MISN a1 VW L2 ymxn + AATTVWI L2(@ymxn [V Vel L2(gynxn
2 2
+ )"”VE ||L4(.Q)" ||Vw||L2(Q)"><" + )"8||Vw||L2(Q)n><n ) (620)
where the norm || - || g-1(p)» is defined in (4.4) and [IA]| is the norm of the viscosity tensor
coefficient given by (2.5). Hence, for A € [0, 1],
1 2
(5C2" = &)19Wlaayon < ISy + IANIVYel 2ymen + I¥elZe g -

Choosing ¢ < %C&l in the Leray-Hopf’s inequality (6.4), we obtain the estimate
2 2
VWl L2y < ﬂ (|||§|||H—1(Q)n + A 1VVellp2(@pnxn + ||Vs||L4(Q)n) , (6.21)

that is, |W|l 1oy < Mo, where My is given by the right hand side of (6.21) multiplied by
the equivalence constant between the norm and semi-norm in H! £2)".

Therefore, the operator Uy : H C}iV(Q)” — ﬁd]iv (£2)" satisfies the hypothesis of Theorem
6.1 (with X = IfldliV(Q)”), and hence it has a fixed point ug € ﬁdliv(.Q)”, that is, ug = U, uyp.
Then with 7 € L?(£2)/R as in (6.10), we obtain that the couple (up, 7) € H (2)" x
L*(£2)/R satisfies the nonlinear equation (6.6). Consequently, the couple (u, 7) = (Ve +
g, 7) € H'(£2)" x L2(2) /R is a solution of the nonlinear Dirichlet problem (6.2). (Recall
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1
that v, is an extension to Hdliv(.Q)” of the function ¢ € H,’ (0§2)", and, thus, it satisfies the
Dirichlet condition (6.3).) m]

7 Dirichlet-transmission problem for the anisotropic Navier-Stokes
system in a bounded Lipschitz domain with a transversal Lipschitz
interface

In this section we show the existence of weak solutions of Dirichlet-transmission problems
for the anisotropic Navier-Stokes system with data in L2-based Sobolev spaces in a bounded
Lipschitz domain in R", n = 2, 3, satisfying Assumption 5.1. First, we analyze a Dirichlet-
transmission problem for the incompressible Navier-Stokes system with general PDE right
hand sides and a jump of conormal derivatives on the transversal Lipschitz interface. We
reduce this nonlinear problem to a Dirichlet problem for the Navier-Stokes system whose
analysis is based on the Leray-Hopf inequality and the Leray-Schauder fixed point theorem.
Then, we study a Dirichlet-transmission problem for the anisotropic Navier-Stokes system in
a compressible framework with non-homogeneous Dirichlet condition and trace and conor-
mal derivative jumps across the internal Lipschitz interface. We use a Bogovskii-type result
established in Lemma 5.7, some useful estimates and the Leray-Schauder fixed point theorem
to show the existence of a weak solution to this nonlinear problem. In the case of small data,
the uniqueness of the weak solution is also established.

7.1 Dirichlet-transmission problem in a bounded Lipschitz domain with conormal
derivative jump on the transversal Lipschitz interface

Let us consider the following Dirichlet-transmission problem for the incompressible
anisotropic Navier-Stokes system with a prescribed conormal derivative jump but without
velocity jump on the interface,

Lt 7t =T+ + @™ - Vut, divat =0 in 27,

Lu,77)=T|g-+@ -V)u", divu- =0 in2-,

(V9+u )|z ()/Q_ll )|z OHZ,

(to+(ut, 7t f++EQ+_)Q(u+ Viut))| (7.1)
+(to-(w 7 + Eg- o™ V)u))|y =¥, onX,

Ve u D)+ = ¢|F+ on 't

v, u)r- = olp- on '~

with the unknown (u®, 7", u™,77) € X+, 2 and the given data (f+, T~ V.0 €

(H- 25)") x (HL (7)) x H 3 (Z)" x H., (382)" . Here X+ - isthe space defined
in (5.27), and E o+_, o are the zero extension operators from 27 to £2.

Existence of a weak solution

Let(u™, 7%, u",77) € X+ o-.Assumethatu™ and u™ satisfy the homogeneous interface
condition (y,,, ut)|, — (y,-u7 )|y =0o0n X. Then by Lemma B.1I, there exists a unique
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pair (u, 7) € H'(£2)" x L*(£2)/R such that
ulo+ = ut, Upo-=u, mlo+r= xt, Tlo-=m". (7.2)
Letalso § € H-'(2)" = (H'($2)")' C (H},(£2)") be such that
(F Ve =—F"+1"v),+ W, vsVz, Yve H' (2)", (7.3)

thatis, § = —(fT +f~) + vy, . Here yl: H_%(ZJ)" — H~1(£2)" denotes the adjoint
of the trace operator y;. : H! )" — ﬁ% (X)" defined by (5.16), and the support of y; [

is a subset of X.
An argument similar to that for problem (5.25) implies the following result.

Lemma 7.1 The nonlinear Dirichlet-transmission problem (7.1) is equiyalen{, in the sense
of relations (1.2), to the nonlinear Dirichlet problem (6.2) with § = —(fT +£7) + )/;1//2.

Proof Assume that (u+, atu,w _) € X+ - satisfy the nonlinear Dirichlet-transmission
problem (7.1). Then the Green identity (5.24) and the divergence theorem give the following
weak equations:

(a?jﬂEﬁjﬂ(u+), Eiq(W))gs — [, divw), — (T - Vyut,w),,
o —_ — —_ . — — —_ —
Haj; Ejp7), Eia(W))g — (w7, divw™),_ —{(@™ V)u W )o- (7.4)
—(fr W) — (7 W) + (W, yWs =0, Vwe H'(2)",
(divat, g) o+ + (divu=,g)o- =0, Vg e L*(2)/R.
Let us also complement these variational equations by the equations for traces from (7.1),

(y9+u+)|z = (y97u7)|z on X,
Vo 0D+ = @l p+ on """, (7.5)
Yy u)lr-=9¢lp-  onl.
Hence if (u+, at,u-, n‘) € X+ o- satisfy the Dirichlet-transmission problem (7.1),
they satisfy equations (7.4)—(7.5).

Conversely, assume that (u+,n+, u_,n_) € X+ - satisfy equations (7.4)—(7.5).
Since the spaces D(RF)" are subspaces of Al (£2)", the (distributional form of the)
anisotropic Navier-Stokes equations in (7.1), in each of the domains 2 and 2, follows
from the first equation in (7.4) written for all w € D(227)" and w € D(£27)", respec-
tively. Similarly, the second equation in (7.4) implies the equations div u® = 0 in £2*. Thus,
(u+, at,u, n‘) satisfies the anisotropic Navier-Stokes system in £2F U £2~ and the trace
conditions (7.5). Then substituting the first equation in (7.4) into the Green identity (5.24),
we obtain the equation

((tos (w7 T + Egi g™ - V)ut))|,
+Hte- (0, 75+ Eg- o - VIu))| o, (roeWls) = (¥, ve W)y
In view of Lemma 5.3, this formula can be written in the equivalent form
((to+ (0, 25 FF + Egep® - viut) |,
tto- (0,75 + Eg o - VIu))|5.9) =(¥,.9)5 Ve HI (D),
Therefore, (to+ (™, 7+ FH)+to- (™, 77;f7))| . = ¥, on X.Henceif (ut, 7+, u=,77) €

X+ - satisfy equations (7.4)—(7.5), they solve the Dirichlet-transmission problem (7.1).
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Consequently, problems (7.1) and the variational formulation (7.4)—(7.5) are equivalent.

Let again (u+, at u, rr_) € Xgq+ - and the homogeneous interface condition in
(7.5) be satisfied. Then there exists a unique pair (u, 7) € H! )" x Lz(.Q)/R defined
by relations (7.2) (cf. Lemma B.1). Then taking into account relation (7.3), the variational
formulation (7.4)—(7.5) reduces to

(i Ejpw), Eia(w>)g (- V)u, w)o — (r. divw)g

=(& W), Ywe H(Q)", (7.6)
(divu, g)o =0, Vg e L2(2)/R,
You =@ onos.

Repeating the arguments similar the above in this proof, one can see that the variational
formulation (7.6) is also equivalent to the nonlinear Dirichlet problem (6.2).
Consequently, problems (7.1) and (6.2) are equivalent, as asserted. O

Theorem 7.2 Let 2 C R", n € {2, 3}, be a bounded Lipschitz domazn satisfying Assump-
tion 5.1. Let conditions (2.2)—(2.4) hold. Then for all given data (f+, . ¥, @) inthe space

( (.Q'*')”) (H1 (2~ )") X H’f (2" x H (082)", the Dirichlet-transmission prob-
lem (7.1) for the anisotropic Navier-Stokes system has a weak solution (u*, 7+, u=,n7) €
X o+ - defined by relations (7.2) in terms of the solution (u, ) of the nonlinear Dirichlet

problem (6.2) with § = —(E* +17) + v}y .

Proof By Theorem 6.3, the Dirichlet problem (6.2) has a solution (u, ) € H(}iv(.Q)" X
L?(£2)/R and then, in view of Lemma 7.1, the functions (u*, 7", u™,77) € Xgo+ o-
defined by (7.2) satisfy the nonlinear problem (7.1) in the distribution sense. ]

Uniqueness result for the Dirichlet-transmission problem (7.1)

Next we show that an additional constraint to the given data of the nonlinear Dirichlet-
transmission problem (7.1) leads to the uniqueness of the weak solution of this problem.

Recall that y; T H ’%(2)" — HY(2)" is the adjoint of the trace operator y,. :
o 1
HY(2)" — HZ(X)" defined by (5.16), and that C, is the ellipticity constant in (2.4).
1
On the other hand, in view of Lemma 4.2, there exists an extension v, of ¢ € H?(082)" to

HJ, (£2), that is, y,, v, = ¢ on 952, and

v nxn < < C 7.7
1VVoll 120 Vol 1) ”(0”117(3.(2)'1 7.7

with some constant C = C(£2,n) > 0.

Then we prove the following uniqueness result (see also [56, Lemma 3.1] in the isotropic
case (2.12) with u = 1 and homogeneous Dirichlet condition, and [34, Theorem 4.2] for a
nonlinear transmission problem in a pseudostress approach).

Theorem7.3 Letn =2,3 and 2 C R" be a bounded Lipschitz domain satisfying Assump-
tion 5.1. Let conditions (2.2)—(2.4) be satisfied. Let (£T,f~, ¢, ¥ ) be given in the space

1
(HL (25" x (HL_(27)") x Hf 32)" x H™3(Z)". Let
1
GNF g1 @y + ECIAN+ C5 ' Ceoen ol <G (7.8)

szgw
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where Cy, C, co, and cy are the constants in (2.4), (7.7), (C.2), and (C.1), respectively,
while § = -t +f7) + Y2 (¥ ;). Then the nonlinear problem (7.1) has only one solution
(h, 7zt u, )Gx_(z-%—’g—

Proof The solution existence is implied by Theorem 7.2. To prove that it is unique under
the theorem conditions, let us assume that u, u® ¢ HdliV (£2)" are the velocities in two
solutions of the nonlinear problem (7.1) in the sense of (7.2). Let us write them in the form

u® =v, +ul’, i=1,2, (7.9)

where v, € Hdliv(.Q)” satisfies the relation y,v, = ¢ on 952 and estimate (7.7), while

ul) ul € AL (2)" satisty equations (6.6)~(6.7) with v, instead of v.

Letus denote @ := u¥ —u® = uél) (2) 7 i=aW —7® where 7 is the pressure

term corresponding tou®, i = 1, 2. Using the ﬁrst equations in the two upper lines of (7.1),
we obtain

@7 =u? . viu® — @?® . vu®. (7.10)
This implies that
(@F Ejp@). Eig(@), = —((@- V)ul. 1), — (@® . v)a,a),. (7.11)

Moreover, identity (C.13) and the inclusion u € I:’Id]iv (£2)" show that the last term in the
right-hand side of (7.11) equals zero. Therefore, equation (7.11) reduces to

(aP Ejp@). Eia@)g, = —((@- V)u. @), (7.12)
On the other hand, estimate (4.10) implies that

Va7, 2CA<G Ejp(@), Eig@),, , (7.13)

(R)nxn —

and by the Holder inequality and inequalities (C.2) and (7.7) together with (C.12) and (C.1),
we obtain

(@ v)u®. 1), | =|(@ v)u, u<1>) | < 18 sy IVl L2 yrn 10 a2y

= ||u||L4(Q)n||V“||L2(Q)nxn(||uo L2y + Vo llLa(@yn)

< coll VU2 gyen (COIIVUO 2@y + Cetlioll 3 (W>. (7.14)
Hence

”Vu”LZ(Q)nxn = ZCACOHVH”LZ(Q)M;': (C()”VUO ”LZ(Q)"X” + CC] ”(P” _Q)n) . (7]5)
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Moreover, an estimate similar to (6.20) with A = 1, combined with estimates (C.2), (C.1),
(C.12) and (7.7) together with relation (6.19) imply that

1 1 1
ECA IV 12 gyren = € @G 2 gyn = (a7 B0, Eraufl)

< |||3"|H_1(.Q)" ||Vu0 ”LZ(_Q)nxn + ”A” ||Vu0 )”LZ(Q)nxn ||VV¢ ”LZ(_Q)nxn
1 1 1
+ IVl 4 0 1V0G 2 2yen + 1V 2 g2ymen 105 | 2y IVl 2y

< 1B g1 2y 1VU 12 (@ yren + CIAN VU [ 2 yen [0l

H?(a.o)"
+C*lel?,  |IVu ||Lzmxn+Cc1co||<p|| IV o e -
HE Q) 0 (£2) (39),, L2(R2)
Thus, we obtain the estimate
10‘ — Ceiaoligll Ivad"|
5 Cc1C0||@Q (B,Q)” uo L2(2)nxn
< IFl5-1com + ClIA , + C2 3o . 7.16
ISl i1y + CIAN RNy o eI 1 o (7.16)
From (7.8) we have that
Ch'Ceoerlloll ) < 2Ci = AUB g 1an — ACIAI g <l
HIG2y 4 A ) HIGey — 2 A

This implies that the term (2 CA Ccioolloll ot (0 ) is positive. Dividing (7.16) by this
term and combining the resulting inequality with (7.15), we obtain

IV 2 gy < 2Cacol VBT 2 g0

S 1 n + C A + Cz 2

1l + ClALlel,y oo +Cocllol?
x| <o T +Cerllgll,y oo

1Ci' = Cacollelly o 62)
This finally reduces to the estimate
| S

ZCA ”Vu”LZ(Q)nxn

< [céummf.(g)n +CIAlloN, 1 o, +Ci' Caciliol, ) (W} IV 2 gy -

In view of assumption (7.8), this is possible only if Vu = 0, and since u € I-OII(.Q)", we
obtain that u® = u® in £2. Moreover, equation (7.10) reduces to the equation Vzr = 0,
that is, 7V = 7@ in L2(2)/R. ]

In the special case of zero Dirichlet datum on 9$2, we obtain the following result.

Corollary 7.4 Letn = 2,3 and 2 C R" be a bounded Lipschitz domain satisfying Assump-
tion 5.1. Let A satisfy conditions (2.2)—(2.4). Let (f', wz) e H ()" x H_%(Z‘)" and
Fe H ' () begivenby§ = —F" +) +y (¥ ,). If

2 1
oSN g-10y < ZC ) (7.17)

where cq is the constant given in (C.2), then the nonlinear problem (7.1) with ¢ = 0 has a
unique weak solution u € Hd]iv )"
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Note that for the isotropic case (2.12) with a constant parameter © > 0, it is easy to see
that C4 = 1/(2u). Then the uniqueness condition (7.17) reduces to the known uniqueness
condition

2 2
oSN g-1(2y < 1°

for the isotropic Navier-Stokes equation, cf. [56, Lemma 3.1].

7.2 Dirichlet-transmission problem for the compressible anisotropic Navier-Stokes
system with trace and conormal derivative jumps on a transversal Lipschitz
interface in a bounded Lipschitz domain

Let us consider the Dirichlet-transmission problem

Lut, 7t =F g+ + @™ - V)u, divut =g+ in 2+,

E(u‘,ﬂ‘):f‘lg— 4+ @ -V)u, diva™ =g~ in 27,

(y9+u+)|z _Q/_qu_”z‘ =¢2 on X,

(to+ (0t 75 FF + Ege ot - Viut))| (7.18)
+(to-(u. 7 F + Eg o™ - V)u))| . =¥, onX,

Vo WD)+ = @lp+ on 't

Vo-uD)lr-=9olr- onI"~

with the unknowns (ut, 7T, u7, 77) € X+ o and the given data
(f+ g, g™ NI YRS @. Recall that X+ - is the space defined in (5.27), and
). is the space defined in the beginning of Sect. 5.4.

Note that by Lemma 5.7 there exist some functions Vj € HY(2%)" such that

d1VV g in 2%,
(Vm (,,) s — (v, Vg)ls =9, onX, (7.19)
(Vgi" N+ =@lr= on I'*,
and some constant Cx; = Cx (27, 27, n) > 0 such that
Vg Lty < Cxli@t. 87 05 o), . (7.20)

where ||(gT, g7, @55 @)llm, is defined by (5.35).
By estimate (C.1) there exist some constants cli = cf—L(.Qi, n) > 0, such that

IVl L4ty < IV @y < ciIVIg @y, YV e H (25", (7.21)

where ¢ = max(cr, ¢; ). In addition, inequality (C.2) holds on 2.
Let us prove the existence of a solution to problem (7.18) by employing arguments similar
to those in the proof of Theorem 6.3.

Tbeoiem 7.5 Let Assumption 5.1 and conditions (2.2)—(2.4) hold with n € {2,3}. Let
(f+5 f_’ g+’ g_’ wz" V/;s (p) e 2)"
M 1f
_ | S R
I&™ 87,05 @l < 3C1l e (¢ +ep) 7' C5' (7.22)

where Cy, Cx, c] and co, are the constants in (2.4), (7.20), (7.21) and (C.2), respec-
tively, then the Dirichlet-transmission problem (7.18) for the Navier-Stokes system has
a solution (ut, 7+, u™,77) € Xo+ o-.
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(i) If
TN i1y + (BCsIAN+2C5 Crao(et +c0)) (8%, 87, 9. @)l
1.
<-C,°, (7.23)
4
where § = (F* + F’) - y;IIf 5 then the nonlinear Dirichlet-transmission problem

(7.18) has a unique solution (*, 7+t u=, nw7) € Xo+. o

Proof (i) Let us represent the unknowns u* of problem (7.18) in the form

ot =t 4 vE, (7.24)

where (v("f', V;) e H{(QT)" x H'\(27)" satisfy relations (7.19) and estimate (7.20). Then
the nonlinear Dirichlet-transmission problem (7.18) reduces to the problem

Ly, ) = Ffudlgr, divug =0 in 27,
L(u&,n&):(Faua)lgﬂ diva, =0 in 27,

Vo u)| s = (g-ug)l 5 B on X, (7.25)
(tg+(u3,JTJV;F;,‘ug))I)r + (to-(ug, 75 F u))|x =9, on X, |
Ve u) e =0 on '+,
(Vo-ug)lr-=10 onl'~,

for the unknowns (ug, nt g, m7) € Xg+ o, where
~ ~. v+ o
Fowh : =T5—L7ve + Egue[(WF +v5) - V)W +v))] (7.26)

6 . . . v+
and Eg+ is used here as a shorter notation for Ep+_, o. Recall that £ : H/(2%)" —

~ Ui
H~'(22%)" are the operators defined in (5.49) and (£~ v¥) |+ = L(v*, 0) in £2%. For fixed

V; e HY(2)", formula (7.26) defines nonlinear operators wt

H'(£2%)" to the space (HILi (.Qi)”)/ due to estimate (C.17), Lemma B.6, and the inclusion
ﬁivjf e H'(@%" — (HL. (25"

In addition, the inclusion (uar T, u,,77) € X+ -, the homogeneous interface con-
dition (y,,, ua“)l)S — (,-uy)ly = 0in (7.25), and Lemma B.1 imply that there exists a
unique pair (g, 7) € H'(£2)" x L*(£2)/R such that

— F‘;wi from the space

ug| o+ =Ug, Wwlo- =u,, 7|+ =nt, nwlg-=n". (7.27)

Since uar and u, also satisfy the homogeneous Dirichlet condition in (7.25) and are
divergence-free, we have that ug € ﬁdliv(.Q)". Hence, (ug, 7) € Foldliv (£2)" x LE2(2)/R.
For any w € ﬁdliv (£2)" let F,w be defined by

F,w = E‘;rmw—i—i;rmw - Vv,
v 4+ Y= o <] — —
= 3—(2 V;_ + £ V(p) + EQ+[(V$ . V)v(ﬂ + E_(r[(vqJ . V)V(p] + (w-V)w
+ (Eqevy + Eq-v,)) - VIW+ W (Eqe Vv + Eq-Vv,), (7.28)
where § := (f+ +f‘) - )/;102, y; : H_%(Z‘)" — H~'(£2)" is the adjoint of the trace
o 1
operator y. : HY(2)" — HZ(X)" defined by (5.16), and hence § € H~'(£2)" due
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to Lemma B.6. For fixed V:; e H'(£22%)", formula (7.28) defines a nonlinear operator

w — Fyw from I:'I(}iv([?)” to H1(£2)" due to Lemma B.6 and estimates (C.5) and (C.6).

Now, arguing as in the proof of Lemma 7.1 (cf. also Theorem 5.6), we obtain that the
nonlinear Dirichlet-transmission problem (7.25) with the unknowns (ug, 7", uy,77) €
X+ - is equivalent to the nonlinear equation

Ly, ) =Fyup in 2 (7.29)

for the unknowns (wg, 7) € H}, (£2)" x L*(2)/R, with F,, given by (7.28).
The following arguments are similar to those in the proof of Theorem 6.3. By Theorem 4.1,
the linear operator

L:HL(2) x L*(2)/R — H™'(2)" (7.30)
is an isomorphism. Its inverse operator can be split into two operator components,
=P,

where U : H-1(2)" - IfI(}iV(SZ)" and P : H-1(2)" — LZ(Q)/]R are linear continuous
operators such that L@UF, PF) = F for any F € H~'(£2)". Applying the operator £~! to
equation (7.29) we obtain the equivalent nonlinear system

uy = Uuy, (7.31)
7w = Puy, (7.32)

where U : IfIJiV(.Q)” — Iflc}iv(.Q)” and P : IfI(}iV(Q)” — Lz(Q)/R are the nonlinear
operators defined as

Uw :=UF,w, (7.33)
Pw:=PF,w. (7.34)

Since 7 is not involved in (7.31), we will first prove the existence of a solution uy €
I-QI(}iv (£2)" to this equation and then use (7.32) as a representation formula. This provides the
existence of a pressure field 7 € L2(£2)/R.

In order to show the existence of a fixed point of the operator U and, thus, the existence
of a weak solution of nonlinear problem (7.25), we employ Theorem 6.1.

Let us show first that U is continuous. Let w, w’ € IfIJiV(Q)”. Then by (7.28), (C.6),
(C.17) and (C.18) we obtain that

[Fow — F(ﬂw/”H*I(Q)" < |w-Vyw—w - )W,

L)y
+ | (Eqivi + Eq-vy)) - V)W —w)+ (w—w) (Eg+Vv} + E"QNV(;)”H_](W
< (W = W) - V)W + W VI = W) 1
+ 2D [W =W iy IV 1 ey + 19 1 2-y0)
= ”W - W,HHI(.Q)” (C%”W”HI(Q)" + C%”W/HH‘(Q)”
+ 2DV @iy + 2D Vg Lt @ p)-
This estimate shows that the operator Fy, : Iflc}iv(ﬂ)” — H~ )" is continuous. The
operator U=UTF, : IfIJiV(Q)” — IfIJiV(Q)” is also continuous, as asserted.
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Next we show that the operator U is compact. To this end, we assume that {wg }rcr is a
bounded sequence in the space IfldliV (£2)" and prove that the sequence {F, Wy }xcn contains a
convergent subsequence in H ~!(£2)".

Let M > 0 be such that [|wg || 1oy < M forall k € N. By (7.28),

oWk —Fowe | o1 oy = 1((We —We) - V)wg + (We - Wi — W)l g1y
[Fowi — Fowe| ;o1 g = I1CC ) - V)W + (We - V)( )l

+ | (Egevy + Eq-vy) - VIWe = WO 11 o

+ | (Wi = we) - (Eg+ Vv + Eg-Vv,) | -1 -

Employing estimates (C.6) and (C.15) to the first norm in the right hand side, (C.20) for the
second norm, and estimate (C.18) for the third norm, we obtain

”Ffﬂwk —Fywe ”H—l(mn < (Cl||Wk||H1(_Q)n +crllwel g oy
3¢V I + 3¢V, ||H1(Q_),l) Iwi — well sy
+ (@ 1ver 219 ey + €)%y 121V i oy 175 Wk = WOl oy
< (2c1M + 3¢V I o + 3¢V, ||H1(9_),1) 1w — well a2y

+ (<c2+)2||m+ IPIVE e @y + ()7 llve- ||2||v;||H1<gf>n) 175 (Wi — W)l L3y
(7.35)

where we denoted y. (W — Wy) 1= 1Yo+ (Wi — Wp) = 1y Yo (Wr — wy) and took into
account that r | yo+ (W —w¢) = 0and r__yo- (W —wg) = 0.

Since [|Wk|l g1 (o) < M and the embedding of the space H'(£2)" into the space L*(§2)"
is compact (see, e.g., [1, Theorem 6.3]), there exists a subsequence of {wy }rcn, labelled as
the sequence, which converges in L*(£2)", and, hence, is a Cauchy sequence in L))",

Since [|Wk |l g1y < M, the sequence {yy Wi }ken is bounded in HY2(x)". Further, for
n = 2,3 the space H'/2(X)" is compactly embedded in L3(X)". For bounded Lipschitz
domains in R"~, this follows by the Rellich-Kondrachev compactness theorems, e.g., from
the embedding results in [54, Section 2.2.4, Corollary 2(i)] for R"~! and can be extended to
(n — 1)-dimensional bounded Lipschitz manifolds by standard arguments (cf. also a more
general statement in [50, Proposition 3.8]). Then there exists a subsequence of {Wy}reN,
labelled as the sequence, such that {y; Wi }ren converges in L3(X)", and, hence, is a Cauchy
sequence in L3(X)".

Inequality (7.35) combined with this Cauchy property implies that the operator Fy, :
H} (2" — H™'(2)" is compact. Hence, the operator U = UF,, : H} (2)" —
I-QI(}iV (£2)" is also compact, as asserted.

It remains to show that there is a constant My > 0 such thatif w € I:?dliv(.Q)” satisfies the
equation

w = AUw (7.36)
for some A € [0, 1], then ||W|| g1y < Mo. Let us introduce the function
q = )Pw. (7.37)

By applying the operator £ to equations (7.36)—(7.37), and by using relations (7.33) and
(7.34), we deduce that whenever the pair (w, A) € Hdliv(.Q)” x R satisfies equation (7.36),
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the equation £(w, g) = AF,w is also satisfied. (Recall the isomorphism property of operator
(7.30).) Then the first Green identity (A.1) implies

ap. (W, V) = <a;’jﬂE,-,3(w),Em(v)> —OF,w. Vo Yve HL (@) (738

Q =
which, in view of relation (7.28), takes the form
anw.V) == 1F Ve =20 Eip (), EaW)g + (a5 Ejp(vp), EiaW))g )
— s [0 VIV T+ Ea- [0 - VIV, ]
+ ((ljfg+v;' + I%_va;) -V)w

+ W (Ege Vv + Eq-Vv,) + (w- V)w, v)Q  Vve BL@)". (139

Moreover, formula (C.13) and the inclusion w € I-?(}iv(Q)” imply the relation ((w .
Vw, w) o= 0. Then by (7.39) we obtain the formula

anaw.w) = =2 Wa 2@ Ejped), EaW)gs + (0 Ejpvp), EiaW)g)
—Ege (v - Vg ]+ Eo[(v, - VIvp )W)
- A( ((émv;; 4 ngv;) - v) W, w>9
— (W (Egrvvg + Eg-Vvy ) ow) . (7.40)

Arguments similar to those for estimate (6.20) combined with formula (7.40), the inclusion
A € [0, 1] and inequalities (C.2), (7.20), and (7.21) imply that

SC NI gy = G MBI s = s (v, W)
= ISla-1(0) ”VW”LZ(Q)HXW+||A||<”VV;_”L2(Q+)"M +IVv, ||L2(Q—)"><"> VW L2(gynxn
+ <||V$||L4(.Q+)n IV 2@y + 1V | 3=y 1 VY, “LQ(Q’)"X”)HWHL“(Q)”
+ (195 iy + 1V sy ) IV 2 gy Wt g2y
+ (1995 Niaggeyeen + 199 liagmyen ) IWIZ 4 gy
< IS a-12p IVWI L2(0yxn + ”A”<”V;”H'(Q+)" + ”V(;“H‘(Q*)")”VW“LZ(Q)"X"
+ coct (V5 11 oy + 1V 11y )1 VWl 2 2yeen
+ coct (Vg i@ + 1 Nt ) IV W12 g

+ (I Ntz + I 1o ) IV W22 g
< IBla-1@p VW22 + A1 Cs 1™ 87 0 @ A IITWI 2y
2¢0ciCE (g™, 87, @50 @I IITVWI 2 (yren
+2(coct +c)Cxll8t 87 @5 DNt VWL gy - (7.41)
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Therefore, we obtain the estimate

| _
(5%1 —2co(c} +c)Csll(g", 87, 9, (P)”M.) IWIl 2 (gymn

< I8l g-12y + ClANIGEY. 87 @, @), +2c0ciCE (8T 87 0. @),
(7.42)

In view of assumption (7.22), estimate (7.42) can be written in the form

||VW||L2(Q)n><n
10 -1y + CxIANIET. 87, 0. @llm, +2c0ciCEIIET, 87 0, @)1
_ .
- Tet = 2c0(ct +co)Cx (gt 87, 0. @,

)

(7.43)

that is, |W|l 1oy < Mo, where My is given by the right hand side of (7.43) multiplied by
the equivalence constant ¢ from 4.3).

Therefore, the operator U : I:Idliv )" > H dliv(.Q)” given by (7.33) satisfies the hypothe-
sis of Theorem 6.1 (for X = I:'I(}iv(Q)”), and hence it has a fixed point uy € IfI(}iV(Q)”,
that is, ug = Uug. Then with 7 € LZ(Q)/R as in (7.32), the couple (ugp, w) €
I-OIdliV(Q)" x L%(£2)/R satisfies the nonlinear equation (7.29). Consequently, the couples
(uaL + v:;, 7+, u, + Vo m7) € X+ - provide a solution of the nonlinear Dirichlet-
transmission (7.18) in the sense of relations (7.24). ( Recall the equivalence between the
nonlinear Dirichlet-transmission problem (7.25) and the nonlinear equation (7.29).)

(i1) Let us assume that condition (7.23) holds. Then it is immediate that condition (7.22)
holds as well, and, thus, the nonlinear Dirichlet-transmission problem (7.18) has at least one
solution in the space X+ o-.

Now, assume that the nonlinear problem (7.18) has two solutions, (u(l)"‘, M+ u—
7MW~y and @+, 7@+ 0@~ 737) in the space X o+ o-- Letus represent the velocities
in 2% in the form

u®* =vEuf* =12, (7.44)
where (V(_;, v,) € H'(2%)" x H!'(£27)" satisfy relations (7.19) and (7.20), while

ulor =0, 0@ ge =u®", 7O|ge = 2@+ 200 =70 (745
corresponds to the pairs (ug), 7®y e I-OII(.Q)” X Lz(Q)/R.

Let us also introduce the notations ug := u(()l) — u(()z), Ti=ag® 7@,

ﬁi — u(l)i _ u(Z)i ﬁi — n,(l)i _ n(Z)i

= Ul g+, =T|o*.

Using (7.28) and (7.29), we obtain
Ly, T) = EQ+[(U(1)+ . V)u(1)+ _ (u(2)+ . V)u(2)+]
+ E°97 [(u(l)* A V)u(l)* _ (u(z)* . V)u(z)f]
=1 (Vo + Eqi Vv + Eo-Vv,)

+ (S + Eqevi + Eg-vy,) - V)up in 2. (7.46)
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This implies that
(! Ejp @), Eia(@0))g = ~((0 - V)ug . Wo)g, — {(o - (Ego+ Vv + Eq-v,). W),
J (4 @
~(((EgvE + Eq-v,) - V)80, Wo), — ((u§ - V)Wo, Wo),. (7.47)

Moreover, identity (C.13) and the inclusion ug € I:]dliv(.Q)” show that the last term in the
right-hand side of (7.47) equals zero. Then inequality (4.10) and arguments similar to those
for (7.14) imply that

1

S Ci IV 2 e < {af] Ejp @0). Eia(@0))

1 _
< 3 IVu 2y VTN 2 gy

+2¢0(ct + c0)CxllEg™. 87 05 Ot I VBOI 2 gy (7.48)

Using in (7.48) estimate (7.43) for w = u(()l) , after some simplifications, we obtain

2
ch —2co(cf +c0)Cxll(g". 87 9, ‘/’)”M.) IV8oI17 2 gy
< c%(nmmf](mn +CslAllIET. ¢ 0y @,
+200¢]CH (8™ 87, 950 0, ) IV I3 gy (7.49)
and hence
%cgzuvaoniz(wx,, < (BB i1 @y + ECsIANIGET. 87 0, @lan,
+2C; co(cf + c)Cxll(g™. 87, 05, @),
— G4} +0)? = 200e)) CENE T 87, 0, O, ) IVTOI 2 g e
< (BB N1y + BCSIANIGET 87,0, @) lan,
+2C; o(e} + c)Cxll 8™, 87 00 Olae ) IVl 2 gy -

In view of condition (7.23), this is possible only if

— 1 2

V80112 2 gy = IV = )l 2 2y0n = 0.
Hence, u(()l) = u(()Q) in £ and relations (7.44) imply that u* = u®%* in 2%, Finally,
equation (7.46) leads to VT = 0, that is, 7)) = 7@ in L2(£2)/R. o
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APPENDIX
A Generalized conormal derivative for the anisotropic Stokes system

Understanding the Stokes equation in (2.8) in the sense of distributions and taking into
account that the Schwartz test function space D(£2)" is dense in H'(£2)", we obtain the
following assertion that is essentially used in the main text of the paper.

Lemma A.1 Let 2 be a bounded Lipschitz domain in R"*, n > 2, and let conditions (2.2),
(2.3) be satisfied. Then the following first Green identity holds

(a;‘;ﬁE,-ﬁ(u), Eia(W)), — (7. divw)e + (f,w)o =0, Ywe H'(2)", (A.1)

forall (u, ) € H'(2)" x L*(2) and £ € H™'(2)" such that L(u, ) = f in 2.

As in [35, Definition 2.2] and [36, Definition 1], we introduce the generalized conormal
derivatives as follows (see also [45, Lemma 4.3], [46, Definition 3.1, Theorem 3.2], [34,
Definition 2.4], [51, Theorem 10.4.1]).

Definition A.2 Let conditions (2.2) and (2.3) be satisfied and

H'(2,C) = {(u,n, f)e HI(Q)" x L2(2) x H-'(@2)" : Lu, 7) = f|g in .Q}

If (u, 7, f) € H'(£2, L), then the generalized conormal derivative to (u, 7; ) € H™2 (9£2)"
is defined in the weak form as

(to,7:6), @) = (al Ejp), Eia(y, ' @), — (7, divy, @),
+(fv,'®),, V& c H>(02)" (A2)

where yg_l . H3 (8£2)" — H'(£2)" is a bounded right inverse of the trace operator Vo !
HY(2)" —> H% (0£2)". We use the simplified notation tg (u, ) for to (u, ; 0).

B Extension results for Sobolev spaces on Lipschitz domains with Lipschitz
interfaces

Let 2 C R", n > 2, be a bounded Lipschitz domain satisfying Assumption 5.1. Thus,
2 = 27U XUR™, where ¥ is the (n — 1)-dimensional Lipschitz interface between the
disjoint Lipschitz sub-domains £2* and £27, and X meets transversally 2. The boundary
927 of £2% is partitioned into two relatively open subsets I'* and X, while I't and I"~
are not empty. Let y_, be the trace operator from H L% to H 3 882%).

The proof of the following extension property is based on similar arguments to those for
Theorem 5.13 in [9] (see also Lemma C.1 in [36]). We omit the details for the shortness.
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Lemma B.1 The following assertions hold.

() Let ut € HY(2%) and u= € HY(27) be such that Yorut =y, u~ on X. Then
there exists a unique function u € H'($2) such that u|g+ = u™. Moreover, there exists
C =C(n, 2%) > 0such that |lull g1 q) < C (Il g1 o+y + Il g1a-)) -

(i) Ifu € H'(£2) then Voi (Ulo+) =y, (ule-) on X.

LemmaB.2 Let I'y and I> be two (n— 1)-dimensional Lipschitz hyper-surfaces in R, n > 2,
that coincide on a relatively open (n—1)-dimensional subset I't (having a Lipschitz boundary
ifn Z 2). Assume that either one of the following conditions holds:

(1) It and I’y are the graphs of two Lipschitz functions;
(2) Iy and I can be mapped by rigid rotations into two Lipschitz graphs;
(3) Il and I are two bounded Lipschitz hyper-surfaces in R”.

Let 0 < s < 1 and functions f; € L>(I}), fi =0on I\ To, i = 1,2, and f> = fi on I,.
Then f1 € H*(I") if and only if fo € H*(I).

Proof (1) Let Iy and I'> be graphs of two Lipschitz functions x, = ¢1(x’) and x, = & (x’),
x’ € R*! and I be the image of a domain Sy € R !, ie., x, = ¢1(x") = & (x’) for
x' €S c RL

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [45, p. 98]), f1 €
H*(IN),0 < 5 < 1, meansthat f;, € H*(R"~), where f, (x') = fi(x', {1(x)),x" e R*~L.
On the other hand, fr,(x) = fo(x', (x") = fitx’, &1(x")) for x” € Sp, and fp, (x") =
A ) =0= fix, o (x") for x’ € R"~1\ ). Hence fz,(x') = fz, (x') for almost
any x' € R"=! which implies f; € H*(I') if and only if f, € H*(I%).

(2) Let further i = 1, 2. By the assumption of item (2), there exist constant invertible
rotation matrices ®; € R"*" such that I'* = {x = &;y, y € [I}},i = 1,2, are Lipschitz
graphs, i.e., they are represented by two Lipschitz functions, x1 , = ¢1(x}) and x2 ,, = £2(x5),
where x1 ,, X2, € R and x}, x} € R"*~!. By the definition of Sobolev spaces on Lipschitz
hyper-surfaces, the inclusion f; € H®(I;) implies that f;, € H*(R" 1), where fr(x)) =
[i@7 (], G (x)), ] e R

Let I';; C I7* be the images of I through the above mapping, i.e., I > x; = &;y,
y € I, and, on the other hand, I 3 x; = (x/, £ (x))), x; € So;i, where Sp; are Lipschitz
domains in R"~!, Then

O =0 (¥, b)) =y=& (), () =D %1, Vyeln, x| € Sor, xh € Soo,
and

fo () = H(@ (), @) = HO) = AG) = A@ (], &) = fr(x]),
Vy eIy, xi € So1, xé € Soy. (B.1)

By definition of the rigid rotation matrices and graph functions, we have,
(1, Q1)) = @1y = (P1y, @1,y), (¥, La(x3)) = Py = (P, P2ny), v € I,

where the matrices @/ € R®=Dx" and @; , € R are parts of the corresponding matrices
®;. Then

X =@y = 0@, (x5, 02(xy) ¥y = Pyy = Pyb1 (%1, C1(x))) s ¥] € Sor, x5 € Soo.
(B.2)
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Since ¢ and ¢, are Lipschitz functions, relations (B.2) imply that x| = x{(x}) and x} =
x}(x}) are mutually inverse bi-Lipschitz mappings for x| € So1, x5 € So2.

Assume now that fi € H*(I'}) and f; = 0 on Iy \ T'g. Then fo € HS(R"1y and
fey =0o0n R-1 \ So1. Assume also that a function f> € L2(I%) is such that = fionly
and f> =0on I3 \ IT'g. From (B.1) we have for any x} € Sp, that

for(x5) = fr, (x](x3)), (B.3)

where the Lipschitz map x| (x}) is defined for x/, € So by (B.2). By the Kirszbraun theorem
(cf., Lemma 1.29 and Theorem 1.31 in [57]) the map x}(x}) can be extended to all x} €
R"~! with the same Lipschitz constant. Hence, taking into account that f, (xi) = 0 for
xj € R\ o1 and fr, (x) = 0 for x5 € R"~!\ Sy, we obtain that for such extension,
relation (B.3) holds for almost any x/, € R"~!. Then, cf., e.g., Theorem 3.23 in [45], the
inclusion f;, € H* (R"~1) implies that fo € HS(R" ') and thus f» € H*(I}).

(3) Assume now that I and I> are bounded Lipschitz hyper-surfaces in R” and arrange
finite covers of both of them by open balls such that the intersections of each ball with
the corresponding surface can be extended (possibly after some rigid rotations) to Lipschitz
graphs. Moreover we choose the covers in such a way that the balls covering the closure of
Iy coincide for both surfaces. Arranging the subordinate partition of unity (see, e.g., [45, p.
98]) and employing item (2) for the balls intersecting the boundary of I yield the asserted
result. O

Let us show that the space H (-) can be characterized as the weighted space Hj,(-), whose
counterpart on smooth domains in R” was given in [42, Chapter 1, Theorem 11.7], see also
Corollary 1.4.4.10 in [30] for Lipschitz domains.

Theorem B.3 Let I' be a (n — 1)-dimensional Lipschitz graph or a bounded Lipschitz hyper-
surface in R", n > 2, and let Iy be its relatively open (n — 1)-dimensional subset with
a (n — 2)-dimensional Lipschitz boundary oI if n>2; if n=2 a1 consists of two distinct
points. Let 0 < s < 1.

Let H,(I) denote the space of all functions ¢ € HS (Io), such that §5¢ € L3(Ip),
where §(x) is the distance in R from x to the boundary 9 I.

Then the space HSO(F 0) coincides with the space H}(Iy), i.e., with the space of all
functions from H*(Iy) such that their extensions by zero to I belong to H*(I').

Proof Let first I" be graph of a Lipschitz function x, = ¢(x’) € R, x’ € R""!, and I be
the image of a domain Sy ¢ R"~!,i.e., x, = ¢(x) for x’ € So C R"~!. Forall x, ¥ € Ty,
we have

W =% <lx ==X —FP+ 1) —cEP <VI+ A2 =% (B4

where A is a finite Lipschitz constant of the function ¢ on the domain Sp. The distance to the
boundary is defined as

§(x) = inf |x —%|= inf V|x' =12 + ¢ () — ¢@)IA (B.5)
xedly x'€dSy

Denoting §'(x") = infzeyg, |x" — &, we obtain from (B.5) and (B.4) that

8§ (x) <8x) <VI1+ A28 (x)). (B.6)

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [45, p. 98]), f €
H*(I'),0 < s < 1, means that f; € H*(R"™!), where f; (x") = f(x', ¢(x)), x' € R*~!
and ¢ € I-OIX(FO), 0 < s < 1, means that ¢, € I-OIS(S()).
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Let ¢ € Hj,(I'p). Then ¢ € I-OIS(I"O), 8§75¢ € L?>(I'y). The surface measure formula

do(x) = /1 + |grad ¢ (x)|2dx’ (B.7)

(see, e.g. [45, Eq. (3.28)]) together with (B.6) implies that ¢, € I-OIS(SO) and (8) ¢, €
L2(Sp), where ¢ (x") = @', ¢(x")), x" € Sp. Then by Corollary 1.4.4.10 in [30] we obtain
that the extension of ¢, by zero from Sg to R~ ! belongs to H* (R"~!) and hence the extension
of ¢ by zero from I to I" belongs to H*(I").

Conversely, let ¢ € H®(Ip) be such that its extension by zero from I to I belongs
to H*(I'). Then ¢, (x") = ¢ (x’, {(x')) belongs to H*(Sp) and its extension by zero from
to Sy to R*~! belongs to H*® (R"—1Y. Hence by Corollary 1.4.4.10 in [30] we obtain that
¢c € H(Sp) and (8")~*¢ € L*(Sp), which by (B.6) and (B.7) implies that § ¢ € L>(I)
and thus ¢ € H,(I0).

Let now I" be a (n — 1)-dimensional bounded Lipschitz hyper-surface. Let us arrange a
finite cover of the hyper-surface by open balls such that, as usual, the intersections of each
ball with the hyper-surface can be extended (maybe after corresponding rigid rotations) to
a Lipschitz graph. Arranging the subordinate partition of unity (see, e.g., [45, p. 98]) and
employing the above arguments to each of these graphs we obtain the asserted result. O

In addition, the following extension result holds (see also [55, p. 373]).

LemmaB.4 Letn > 2 and 2 C R”" be a bounded Lipschitz domain satisfying Assump-
tion 5.1. Then there exists a linear bounded extension operator Eq+_, o from the space
H (2" 10 H'(2)".

Proof Let u™ ¢ HIL+ (21", Letu, € H}_+ (£2)" be the function defined by u, :=
Eorout, where Eo+_, o = rg o Eg+_,gn, and Eg+_,gn is the Rychkov extension
operator from H'(£21)" to H'(R")" (cf., e.g., [51, Theorem 2.4.1]). Thus, 7o+ (u,) = u™,
where ro+ denotes the restriction to 2.

In addition, (y,u,) € H2(I;92)" and (ypuy)l,. € H3 ()" Let Ep 5
((yQ ug) Ip—) be the extension of (y,u,, )|~ by zero on X'. Then Lemma B.2 (3) (applied to
the functions f; = y,u,, andf, = Er-_ 5 ((y,u,)|r-), which are equal on I"~ and vanish
on 't and X, respectively) implies that E"pf%); ((y,2 ll)|['7) IS ﬁ% (I"'"; 0827)". Moreover,

since the trace operator Voo HY(27) > H% (0£27) is onto, there existsu™ € H; K2-H
such that

w =y NEr-L s ((punl,. ). (B.8)

2

where y(;_l : H% (327)" — H(£27)"is abounded linear right inverse of the trace operator

Voo ! H'(2H)" > H%(BQ_)” (see [17], [46, Lemma 2.6], [51, Theorem 2.5.2]).
Thus, u™ € H'(27)", (v, u)ly = 0. (v, u7)|[ = (Vpu,)l,.. Let ug be the

extension by zero of u™ in 2%, uy := EQ*H‘Q+U7 . Therefore, ug € H'(£2)" and ug = 0
in £27. In addition, (y,up)| - = (vouy)l,.— . Moreover,

) +_p -
ui=u, —u =Ep+ou — Eg-_,o+u

=Eqroout —Eg g+ ()’S;l (Eo‘r’%z((ygug)h-—))) ~ (B.9)
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satisfies u € H!(£2)" and, by construction, (YoW!,» = 0,ie, y,u = 0 (ae)on I
Moreover, u| ., = u' in 2%, Consequently, u is an extension of u* from H1L+ (27" to
H'(2)".

Finally, we define the extension operator Eg+_, o : Hp., (27)" — H'(£2)", such that
Eg+_, o(uh) := u, where u has been constructed above. Consequently,

Egiquti=Eqiout —Eg-_ o+ (y:z_fl (EF_—’E (v (Ear—ou) |r*)>> )

(B.10)
An alternative construction of such an extension map can be consulted in [55, pp. 373, 374].
m}
Let us introduce the space (cf., e.g., [45, p. 76]),
H;(R”)" ={® e H '(R")" :supp® C I'*}. (B.11)
r
Note that, ¢ € H;+l (R™)" if and only if @ = y} ¢, i.e.,
r

(v, ®)2 = (vov.dlag VveH (Q) (B.12)

for some ¢ € A2 (I"™)", which is uniquely defined by @, cf. [46, Theorem 2.10(ii)].

LemmaB.5 The dual (Hjler (SZ)”)/ of the space HIL+ (£2)" can be identified with the space
H=Y(2)"/H- (R")".
r+
Proof First, we remark that due to (B.12), the space H }Jr (£21)" defined as in (5.2) can be
also equivalently defined as
HL (2" ={ve HY(2)" : yov=00nT"}
={ve H' @) : (yav.d)ag =0, Vo e A2}
= {veHl(sz)" (v, P)o=0,Vde H;:(R”)”} =H'Q) L H;:(R”)”.
r r
Then a duality argument (see, e.g., [53, Sections 4.8, 4.9]) yields the required identification.
O

Two more identifications are proved in the following assertion.

LemmaB.6 The dual (H}., (.Q"‘)”)/ of the space H{., (27" can be identified with the space
H! (.Q+)”/H;+1(R”)” and also with the space
r

lpe H ' (@2)" :p=00n027}. (B.13)

Proof The identification with H~'(2)"/ H;+1 (R™)" follows from Lemma B.5 applied to
ot '

To prove the identification with the space in (B.13), assume first that ¢ belongs to the
space defined in (B.13). Thus,

pe H ' (@)= (A'(2)") and (9. ¥ )o = (@, ¥ )o- =0, VY~ € D7),
(B.14)
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i.e., ¢ has the support in 2+ (¢ = 0 on £27). We have used the equivalent description of the
space H! (£2)" given in formula (3.7) and the identification of AH! (£2)" and H! £2)".

Note that the functional ¢ : AH! (£2)" — Ris linear and bounded. Let Eg+_, o be a linear
bounded extension operator from H 11“+ (27" to ik (£2)", which exists in view of Lemma
B.4. Therefore, the functional

¢ =90oEqi_o:Hl(2)' >R, ¢¥") =9 (Egimo¥"), V¥ eH . (21)
is linear and bounded as well. Hence, we have that
b =0 @), V¥ eHL (2N wherey = Egi (") e H'(2)".

This definition agrees well with the condition that ¢ (¢ ~) = 0 for any ¢y~ € D(£27)", and
shows that for a fixed Eg+_, o, any functional ¢ from the space (B.13) can be identified with
a functional ¢ € (H}.. (.Q“‘)”)/.

To prove that the functional ¢ does not depend on the extension operator Eq+_, o, let us

consider two such extension operators, E ’(ﬁ gand E,. o from H 1 p (21" o H (2)",
generating for a fixed ¢ two functionals, ¢’ := ¢ o E_QJr%Q and¢” :==¢o EQ*».Q Then

YU —¢" W) =0 (Egi_o¥") — 0 (Ege_o¥™)
=0 (Egeo¥" — Ege_o¥™). V¥ e HL (@M.

Denoting ¥ := E/Q+_>9¢+ EL. _Ql// we obtain that ¥, € H'(£2)" and ¥, = 0
in 27, implying that e Yy € H'(£27)" and hence Vo-¥o = 0. Thus, there exist
vy, ¢ H(@@)" C H £)" c H! (R”)" such that ¥, = r,¥( and a sequence
{Wilien € D(£27)" converging to ¥ in H! (£27)". By (B.14) then ¢ (¥ () = @(r,¥o) =
lim; 00 @(r, W) = lim; o0 @(¥;) = 0, and, hence, the asserted independence property
follows.

Conversely, assume that ¢ € (H IL+ (.Q'*‘)")/ and let r_, o+ be the restriction operator
from the space H' (£2)" to HIL+ (£21)". Then the functional @ := ¢org_, o+ : H'(2)" - R
is linear and bounded, i.e., ¢ € H~1(£2)". In addition, for any ¥~ € D(£27)", we have
that y~ € H'(£2)", and accordingly that ¢ (w_) = ¢(0) = 0, where the last equality is
provided by the linearity of the functional ¢ : H 11“+ (27)" — R. Consequently, ¢ belongs
to the space defined in (B.13).

For any ¥ € H'(2)", ¢ from the space (B.13), and ¢ = ¢ o Eq+_, o, we have,
oY) —dporgor(¥) =@W) —(Egtgorg.o+¥)
=9 —Eg+gorg.o+¥) =0,

because 1} =% — Ey+ g oro_ o+ =0in 27. Hence r971/~r € H'(£27)" and thus this
function can be approximated by functions from D(£27)".

On the other hand, forany ¢+ € HILJr RH", ¢ (HIL+ (25", and @ := poro_ o+,
we have,

dW) —@(Egi  ou) =W ) —@orgior(Egio¥ ™) =¢@") —¢@™) =0.

This implies that ¢ can be identified with ¢ through the relations ¢ := ¢ orp_, o+ :
H'(2)" > Randp =9oEgi_o: H, (21" —> R. O
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C Useful norm estimates

In this appendix we provide several estimates, embeddings, and identities (some of them
well known), used in the analysis of the Navier-Stokes problems. Let §2 denote a bounded
Lipschitz domainin R", n € {2, 3}. Let Eg be the extension by zero operator from £2 to R".
e By the Sobolev embedding theorem (see, e.g., [1, Theorem 6.3]), the space H! (£2)"is
compactly embedded in L4(£2)" and there exists a constant ¢; = ¢ (£2, n) > 0 such that

IVl a2y < ctlVlgion. YveH' (@)". (C.1)

Due to the equivalence in H! (§2)" of the semi-norm ||V (+) |l L2(2ynxn With the norm |- {| g1
given by (3.3), estimate (C.1) also implies

VIl L4y < ol VVIl2@pmn, YV e H ()", (C.2)

with some constant ¢y = co(£2,n) > 0.
e By the Holder inequality, we obtain for all v, vo, v3 € H Ly,

H{(v1 - VIva, va) ol < Vil ey V3l La oy 1V V2l L2(2ynxn
<cilvi ||L4(_Q)" ||V3||H1(Q)" ”VVZHLZ(_Q)"X”- (C.3)
This also means that for all v, vo, v3 € H! (£2)",
(Ealvi - Vovalvs) | < 1HE@vil V3l L2 | Ea V¥all 2 nyees

< IVillzaey V31l a2y 1V V2l L2 (2ynxn

=< cllvill oy V3l @y IV V2l 2 (gynxn s (C4)

where V3 € H!(R")" is such that r, V3 = v3. This implies that I;“g[(vl - V)v,] belongs to
the space H~1(22)" = (H'(£2)") . Moreover, in view of (C.1), for all vi, v2 € H'(£2)",

|Eatevi- vl < EIvillep Il ey ©5)

H-1(2)
Taking v3 € H! (£2)" in (C.3), it follows that the term (v; - V)v; belongs to the dual of
the space HL(£2)", that is, to the space H~Y(£2)" and for all vi, v, € H(£2)",
(v - VIVall -1y < cllVill ey 1V V2l L2(gynxn
= cilvillpaey IVall gy < C12||V1 a1y V2l gy (C.6)
e The dense embedding of the space D(2)" into H L), the divergence theorem and
estimate (C.6) imply the following identity for any vy, v2, v3 € H'(£2)"

((vi-V)va,v3)o = /Q V- (vi(v2-v3))dx — ((V-v)V3 + (V1 - V)v3, Va) o

=(yavi-v,vev2-veVidye — (V- vD)Vi+ (Vi - V)V3, V2) 0 , (C.7)
where v is the normal vector on 952 directed outward £2.

To obtain an alternative versions of estimate (C.4), which does notinvolve || VVa | 12(gynxn,
letuse (C.7) and take into account that yo vy, yoVa, yeVvs € H 1/2(9§2)". Further, we employ
that for the Lipschitz domain 2 € R", n = 2, 3, the space H2@0)" is continuously
embedded in L3(32)" (e.g., by the embeddings in [54, Section 2.2.4, Corollary 2(i)] for
R*~! that can be extended to Lipschitz surfaces by standard arguments, cf. also a more
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general statement in [50, Proposition 3.8]). Thus, there exists a constant co = ¢2(0£2, n),
such that

Il 300y < c2llgllmirgay . Yée H202)". (C8)
Hence by the Holder inequality we have for all vi, vo, vz € H L)y,
[(vavi v, veva - vava)aa| < lllvevillvevalllsree)llvevallspo)
< Slyevilmreayllvevalzeapn lvevalmirooy- (C.9)
Then from (C.7) and (C.9) we obtain for any vy, v2, v3 € H'(2)m
((vi - V)va, vad ol < llve P Ivill g oy Ve vall ooy V3 g1 oy
+ 2c1lvill gy V2l Loy V31 2y
= Vil oy @Gllve 1P lvevalsgay + 2cilvalls@m Vsl gy, (C.10)

where ||y |l := e g @)y — H1200) 1s the norm of the trace operator.
e For v3 € H'(£2)", (C.7) simplifies to

(Vi - VIVa, v3) o =— (V- vDV3+ (Vi - VIV3, W) , YVi,vae H (2)", vae H' (2)",
(C.11)

In view of (C.11) we also obtain the identity

(Vi - V)Va, v3) g =— (V1 - V)V3, Va)o , Y VI € HE ()", vae H'(2)", vse H (2)",
(C.12)

and hence the well known formula
(Vi -V)v2,v2)o =0, Vvi € HE (2)", va € H'(2)". (C.13)
Arguments similar to those for (C.3) and identity (C.12) imply the estimate
(V1 - VIV, va) ol = [{(Vi - V)V3, Vo) ol < IVillzacoy V2l L4y IVV3 I 2 (2ynxn (C.14)
for all vi € Hdliv(‘Q)n’ vo € HY(2)", v3 € ﬁl(Q)”. Therefore,
(v ’V)VZHH—I(Q)” <NV - VIvallg-1¢oy < ||Vl||L4(_Q)"||V2||L4(Q)"
< c1lvillg ey IV2ll s ¥ Vi € Hgy (2)". v2 € H'(2)". (C.15)

e Let now Assumption 5.1 hold and £2’ be either 27 or £27. Similar to (C.4) we have for
all vi, vo € H'(£22")" and v3 € H'(£2)" that

(Eatevi-Vvalovs) | =11 DIv2 va)g
< Vil ag@yn V31l g @y 1V V2l L2 grynsn (C.16)

where ¢| = ¢|(£2', n), cf. (C.1). Taking v3 € H(£2)" in (C.16), we find that ro Eol(v; -
V)v>] belongs to H~1(£2)" and

” /

H Eq/[(vi-V)va] HH*‘(Q)” <cilvi ||L4(_(z')n ”VZ”HI(Q’)"
=< (C/l)z”Vl”Hl(_Q')n ”VZ”HI(_Q’)" , Vv, V2 € HI(Q/)n .

(C.17)
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If, moreover, v € H!(£2)", then (C.17) implies

- /
| Earttrgvi-Voval|, o< el IVl oy

< (DXIVill gy IVl iy » Yvi € HY(2)", vo e HY(2)".  (C.18)

e Let again Assumption 5.1 hold. In order to obtain some alternative versions of estimates

(C.16) and (C.17), which do not involve [|VV2 | 12(grynxn, we implement (C.10) for 2" and
find that for all vi, vo € H'(£2/)" and v3 € H'(£2)"

‘(EQ/[(vl - V)val, V3>Q‘ = [{(v1 - V)v2, v3) o/

< Vil g @y (E v P lve val oy + 261 Ivall @y Vsl gy (C.19)

where ¢, = ¢2(982, n). If we take v3 € H'(£2)", then (C.19) implies

[t -voval|, o< i (5 1ve P lvevallag

+26{ Vall gy ) ¥ Vi v2 € H(2)" (C.20)
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