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Abstract
This paper is build around the stationary anisotropic Stokes and Navier-Stokes systems with
an L∞-tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices in
R
n×n with zeromatrix traces.We analyze, in L2-basedSobolev spaces, the non-homogeneous

boundary value problems of Dirichlet-transmission type for the anisotropic Stokes and
Navier-Stokes systems in a compressible framework in a bounded Lipschitz domain with
a transversal Lipschitz interface in R

n , n ≥ 2 (n = 2, 3 for the nonlinear problems). Thus,
the interface intersects transversally the boundary of the Lipschitz domain and divides the
domain into two Lipschitz sub-domains. First, we use a mixed variational approach to prove
the well-posedness of linear problems related to the anisotropic Stokes system. Then we
show the existence of a weak solution to the Dirichlet and Dirichlet-transmission problems
for the nonlinear anisotropic Navier-Stokes system. This is done by implementing the Leray-
Schauder fixed point theorem and using various results and estimates from the linear case, as
well as the Leray-Hopf and some other norm inequalities. Explicit conditions for uniqueness
of solutions to the nonlinear problems are also provided.
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1 Introduction

Variational methods have been intensively used in the analysis of elliptic boundary prob-
lems, in particular, boundary value problems for the Stokes and Navier-Stokes equations
(see, e.g., [17, 26, 55]). Employing variational methods, Angot [4, 5] analyzed a well-
posedness of some Stokes/Brinkman problems with constant isotropic viscosity and a family
of embedded jump conditions on an immersed (transversal) interface with weak regularity
assumptions.

The authors in [32] combined a layer potential approach with the Leray-Schauder fixed
point theorem and proved existence results for a nonlinear Neumann-transmission problem
for the Stokes and Brinkman systems in L p , Sobolev, and Besov spaces.

Dong and Kim [19] obtained regularity results for the Stokes system with measurable
coefficients in one direction (see also [15]). Korobkov, Pileckas and Russo [39] analyzed
the flux problem in the theory of steady Navier-Stokes equations with constant coefficients
and non-homogeneous boundary conditions. Amrouche and Rodríguez-Bellido [2] proved
the existence of a very weak solution for the non-homogeneous Dirichlet problem for the
compressible Navier-Stokes system in a bounded domain of the class C1,1 in R

3.
An alternative integral approach, which reduces boundary value problems for the Stokes

system with variable coefficients and a large spectrum of other variable-coefficient elliptic
partial differential equations to boundary-domain integral equations (BDIEs), by employing
explicit parametrix-based integral potentials, was developed in [12–14, 24, 48].

Mazzucato and Nistor [44] obtained well-posedness and regularity results in weighted
Sobolev spaces for the anisotropic linear elasticity equations withmixed boundary conditions
on polyhedral domains. Brewster et al. [9] used a variational approach to showwell-posedness
of Dirichlet, Neumann andmixed boundary problems for higher order divergence-form ellip-
tic equationswith L∞ coefficients in locally (ε, δ)-domains and in Besov andBessel potential
spaces.

The coupling of fluid flows with porous media flows involving the stationary incom-
pressible Navier-Stokes equations with constant viscosity and the Darcy equations with a
permeability given in terms of a uniformly elliptic matrix-valued function with L∞ coeffi-
cients has been recently investigated in [27] (see also [26]).

The authors in [34] developed a variational analysis in the pseudostress setting for trans-
mission problems with internal interfaces in weighted Sobolev spaces for the anisotropic
Stokes and Navier-Stokes systems with L∞ strongly elliptic coefficient tensor, see also [19].
Note that in [34] and [19] it was assumed that the coefficients of the viscosity tensor satisfy
a stronger ellipticity condition than in (2.4), for all matrices in R

n×n (not only for sym-
metric and with zero-trace, see [34, Eqs. (2)–(3)]). Such a condition allowed to explore the
associated non-symmetric pseudostress setting (see also [33], and [37, 38] for the Stokes
and Navier-Stokes systems with non-smooth coefficients in compact Riemannian setting).
The authors extended in [35] and [36] their variational analysis to other transmission and
exterior boundary problems with internal interfaces for the anisotropic Stokes and Navier-
Stokes systems by assuming that the corresponding L∞ viscosity tensor coefficient satisfies
the ellipticity condition only in terms of symmetric matrices in R

n×n with zero traces, that
is, the relaxed ellipticity condition (2.4). Only homogeneous Dirichlet conditions and zero
velocity jumps were considered in the (nonlinear) Navier-Stokes problems in [33–38].
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In this paper we investigate non-homogeneous Dirichlet-transmission problems for the
anisotropic Stokes and Navier-Stokes systems in a bounded Lipschitz domain of Rn (n =
2, 3 for the nonlinear problems) with a transversal Lipschitz interface that intersects the
boundary of the domain. As in [35] and [36], we impose the ellipticity condition (2.4),
which is less restrictive than in [34] and [19]. We show well-posedness results for the linear
problems, as well as existence results for the nonlinear problems in L2-based Sobolev spaces.
First, we explore equivalent mixed variational formulations and prove the well-posedness of
linear Dirichlet-transmission problems for the anisotropic Stokes system in a compressible
framework in bounded Lipschitz domains of Rn with transversal Lipschitz interfaces and
given data in L2-based Sobolev spaces. Next, we use well-posedness results in the linear case
and the Leray-Schauder fixed point theorem and show the existence of a weak solution of the
Dirichlet problem for the anisotropic Navier-Stokes system with general non-homogeneous
data in L2-based Sobolev spaces in a bounded Lipschitz domain in R

n , n = 2, 3. Finally,
we prove the existence of weak solutions u of the Dirichlet-transmission problems for the
anisotropic Navier-Stokes system in a bounded Lipschitz domain in R

n , n = 2, 3, with
transversal Lipschitz interface and data in L2-based Sobolev spaces.

In addition to their mathematical interest, the anisotropic Stokes and Navier-Stokes inter-
face problems analyzed in this paper describe multiphase flows of immiscible fluids with
variable anisotropic viscosity tensors and compressibility influenced, e.g., by varying tem-
perature of the fluids (cf., e.g., [20], [43, Chapter 3]) and transmission conditions prescribed
on the interfaces. They are motivated by various industrial, biological, medical and envi-
ronmental applications (see, e.g., [8, Section 1.1] and the references therein). Note that
mathematically the interface Stokes problems are close to the interface problems of elasticity
encountered in modelling composite materials, see, e.g., [59] and the references therein, or
in unilateral contact problems, cf. [21, 22].

2 Anisotropic Stokes systemwith elliptic L∞ viscosity tensor coefficient

Let Ω ⊆ R
n , n ≥ 2, be an open set, and let L denote a second order differential operator in

the component-wise divergence form1,

(Lu)i := ∂α

(
aαβ
i j E jβ(u)

)
, i = 1, . . . , n, (2.1)

where u = (u1, . . . , un)�, E jβ(u) := 1
2 (∂ j uβ + ∂βu j ) are the entries of the symmetric part

E(u) of ∇u (the gradient of u), and aαβ
i j are essentially bounded, measurable, real-valued

components of the tensor viscosity coefficient A, that is,

A :=
(
aαβ
i j

)

1≤i, j,α,β≤n
, aαβ

i j ∈ L∞(Ω), 1 ≤ i, j, α, β ≤ n, (2.2)

and satisfy the following symmetry conditions

aαβ
i j (x) = aiβα j (x) = aα j

iβ (x), x ∈ Ω (2.3)

(see [52, Eqs (3.1),(3.3)]). In addition, we require thatA satisfies the ellipticity condition only
in terms of all symmetric matrices in Rn×n with zero matrix trace. This ellipticity condition

1 The standard notation ∂β for the first order partial derivative
∂

∂xβ
, β = 1, . . . , n, and the Einstein summation

rule on repeated indices are used all along the paper.
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has been first used in [35, 36]. Thus, we assume that there exists a constant CA > 0 such
that, for almost all x ∈ Ω ,

aαβ
i j (x)ξiαξ jβ ≥ C−1

A
|ξ |2 , ∀ ξ = (ξiα)i,α=1,...,n ∈ R

n×n

such that ξ = ξ� and
n∑

i=1

ξi i = 0, (2.4)

where |ξ |2 = ξiαξiα , and the superscript � denotes the transpose of a matrix.
The tensor coefficient A is endowed with the norm

‖A‖ := max
{
‖aαβ

i j ‖L∞(Ω) : i, j, α, β = 1 . . . , n
}

. (2.5)

The tensorA can be also considered as consisting of n× n matrix valued functions Aαβ , that
is,

A = (
Aαβ

)
1≤α,β≤n , Aαβ :=

(
aαβ
i j

)

1≤i, j≤n
, 1 ≤ α, β ≤ n . (2.6)

and the symmetry conditions (2.3) lead to the following equivalent forms of the operator L

(Lu)i = ∂α

(
aαβ
i j ∂βu j

)
, i = 1, . . . , n; Lu = ∂α

(
Aαβ∂βu

)
, (2.7)

Let u be an unknown vector field, π be an unknown scalar field, f be a given vector field
and g be a given scalar field defined in Ω . Then the equations

L(u, π) := Lu − ∇π = f, div u = g in Ω (2.8)

determine the anisotropic Stokes system with variable viscosity tensor coefficient A =(
Aαβ

)
1≤α,β≤n in a compressible framework.

According to (2.7) and (2.1), the Stokes operatorL can be written in any of the following
equivalent forms

L(u, π) = ∂α

(
Aαβ∂βu

) − ∇π, (2.9)

(L(u, π))i = ∂α

(
aαβ
i j E jβ(u)

) − ∂iπ, i = 1, . . . , n . (2.10)

In addition, the following nonlinear system

L(u, π) − (u · ∇)u = f , div u = g in Ω (2.11)

is called the anisotropic Navier-Stokes system with variable viscosity tensor coefficient A =(
Aαβ

)
1≤α,β≤n in a compressible framework.

If g = 0 in (2.8) and (2.11) one obtains the anisotropic Stokes and Navier-Stokes systems
in the incompressible case.

In the isotropic case, the tensor A in (2.2) has the following entries

aαβ
i j (x) = λ(x)δiαδ jβ + μ(x)

(
δα jδβi + δαβδi j

)
, 1 ≤ i, j, α, β ≤ n , (2.12)

where λ,μ ∈ L∞(Ω), and c−1
μ ≤ μ(x) ≤ cμ for a.e. x ∈ Ω , with some constant cμ > 0

(cf., e.g., Appendix III, Part I, Sect. 1 in [58]). Then it is immediate that condition (2.4) is
fulfilled (see also [36]) and thus our results apply also to the Stokes system in the isotropic
case.

The relaxed ellipticity condition (2.4) [for symmetric matrices with zero matrix trace] is
essentially weaker than, say, the corresponding strong ellipticity condition [for all matrices].
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For example, the isotropic viscosity tensor (2.12) satisfies the relaxed ellipticity condition
(2.4) for any constant λ and any constant μ > 0. However, if λ < −2μ/n, the tensor fails to
satisfy the strong ellipticity condition on the identity matrix, i.e., ξiα = δiα , i, α ∈ {1, . . . , n},
(having the non-zero trace ξi i = n). Note also that the isotropic viscosity tensor (2.12)
fails to satisfy the strong ellipticity condition on the antisymmetric matrices, ξiα = −ξαi ,
i, α ∈ {1, . . . , n}, but still satisfies the relaxed ellipticity condition (2.4) . Imposing the
ellipticity condition only on the symmetric matrices is also intrinsically related to the fact
that the Stokes and Navier-Stokes equations can be formulated in terms of the symmetric
strain rate tensor E rather than the velocity gradient.

It appears that the relaxed ellipticity condition (2.4) is still sufficient to deduce the well-
posedness of the problems considered in the paper.

3 Functional framework and preliminaries

Given a Banach spaceX , its topological dual is denoted byX ′, and the notation 〈·, ·〉X means
the duality pairing of two dual spaces defined on a set X ⊆ R

n .

3.1 Sobolev spaces on Lipschitz domains inRn

Let n ≥ 2 and let Ω be a bounded Lipschitz domain in R
n with connected boundary ∂Ω .

Let D(Ω) := C∞
0 (Ω) denote the space of infinitely differentiable functions with compact

support inΩ , equippedwith the inductive limit topology. LetD′(Ω) denote the corresponding
space of distributions on Ω , i.e., the dual of the space D(Ω). Let L2(Ω) be the Lebesgue
space of square-integrable functions on Ω , and L∞(Ω) be the space of (equivalence classes
of) essentially bounded measurable functions on Ω . Let also

L2
0(Ω) := { f ∈ L2(Ω) : 〈 f , 1〉Ω = 0} . (3.1)

The dual of L2
0(Ω) is the space L2(Ω)/R. The Sobolev space H1(Ω) is defined as

H1(Ω) := {
f ∈ L2(Ω) : ∇ f ∈ L2(Ω)n

}
, (3.2)

and is endowed with the norm

‖ f ‖2H1(Ω)
= ‖ f ‖2L2(Ω)

+ ‖∇ f ‖2L2(Ω)n
. (3.3)

The space H̃1(Ω) is the closure of D(Ω) in H1(Rn), and can be also described as

H̃1(Ω) := {
f̃ ∈ H1(Rn) : supp f̃ ⊆ Ω

}
, (3.4)

where supp f := {x ∈ Rn : f (x) �= 0}. The dual of H̃1(Ω) is the space H−1(Ω). Since
D(Ω) is dense in H1(Ω) (see, e.g., [45, p. 77]), the dual of H1(Ω), denoted by H̃−1(Ω), is
a space of distributions. Then the following equivalent characterization of the spaces H±1(Ω)

holds

H±1(Ω) = { f ∈ D′(Ω) : ∃ F ∈ H±1(Rn) such that F |Ω = f } , (3.5)

where |X = rX is the restriction operator of functions or distributions to a set X .
The closure of D(Ω) in H1(Ω) is denoted by H̊1(Ω) and can be equivalently described

as the space of all functions in H1(Ω) with null traces on ∂Ω , that is,

H̊1(Ω) := { f ∈ H1(Ω) : γΩ f = 0 on ∂Ω}, (3.6)
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where γΩ : H1(Ω) → H
1
2 (∂Ω) is the trace operator. Recall that this is a linear, bounded

and onto operator (cf. [17], [46, Lemma 2.6], [51, Theorem 2.5.2]). We will use the same
notation γΩ for the trace operator acting on vector-valued functions.

Note that the spaces H̃1(Ω) and H̊1(Ω) can be identified isomorphically via the operator
E̊Ω of extension by zero outside Ω (see, e.g., [45, Theorem 3.33]). The dual of H1(Ω) is
denoted by H̃−1(Ω), and is a space of distributions. (Note that H̃−1(Rn) = H−1(Rn).)
Moreover, the following spaces can be isomorphically identified (cf., e.g., [45, Theorem
3.14]) (

H1(Ω)
)′ = H̃−1(Ω), H−1(Ω) = (

H̃1(Ω)
)′

. (3.7)

Let s ∈ (0, 1). Then the boundary Sobolev space Hs(∂Ω) is defined by

Hs(∂Ω) :=
{
f ∈ L2(∂Ω) :

∫

∂Ω

∫

∂Ω

| f (x) − f (y)|2
|x − y|n−1+2s dσxdσy < ∞

}
, (3.8)

where σy is the surface measure on ∂Ω (see, e.g., [51, Proposition 2.5.1]). The dual of
Hs(∂Ω) is the space H−s(∂Ω), and H0(∂Ω) = L2(∂Ω).

By H1(Ω)n , H̃1(Ω)n , Hs(∂Ω)n we denote the spaces of vector-valued functions whose
components belong to the spaces H1(Ω), H̃1(Ω), and Hs(∂Ω), respectively. For further
properties of Sobolev spaces we refer the reader to [31, 45, 51].

Wewill need the following well known result (see, e.g., [40, Lemma 2.5], [7], [3, Theorem
3.1]), for which we will provide several generalizations further on.

Proposition 3.1 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, with connected bound-
ary. Then the divergence operator div : H̊1(Ω)n → L2

0(Ω) is bounded, linear and surjective.

It has a bounded, linear right inverseRΩ : L2
0(Ω) → H̊1(Ω)n. Thus, there exists a constant

C = C(Ω, n) > 0 such that

div(RΩ f ) = f , ‖RΩ f ‖H1(Ω)n ≤ C‖ f ‖L2(Ω), ∀ f ∈ L2
0(Ω). (3.9)

4 Dirichlet problems for the anisotropic compressible Stokes system in
bounded Lipschitz domains

Dindos̆ and Mitrea [18] obtained well-posedness results in Sobolev and Besov spaces for
the Dirichlet problem for the Stokes and Navier-Stokes systems with smooth coefficients
in Lipschitz domains on compact Riemannian manifolds. Mitrea and Wright [51] obtained
well-posedness results in Sobolev and Besov spaces for Dirichlet problems for the Stokes
system with constant coefficients in Lipschitz domains inRn (see also the references therein,
and [2] for Dirichlet problems for the Stokes, Oseen andNavier-Stokes systemswith constant
coefficients in a non-solenoidal framework). Dirichlet problems for the anisotropic Stokes
system in exterior Lipschitz domains and in R

n , n ≥ 3, have been studied in [34] by using
both variational and potential approaches (see also [16, 36] and [35]).

4.1 Mixed variational formulation for the anisotropic Stokes system in a bounded
Lipschitz domain with homogeneous Dirichlet condition

Let Ω ⊂ R
n , n ≥ 2, be a bounded Lipschitz domain with connected boundary ∂Ω . Recall

that H̊1(Ω)n is the closure of the space D(Ω)n in H1(Ω)n and that

|u|H1(Ω)n := ‖∇u‖L2(Ω)n×n (4.1)
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is a norm on the space H̊1(Ω), equivalent to the norm

‖u‖H1(Ω)n = ‖u‖L2(Ω)n + ‖∇u‖L2(Ω)n×n (4.2)

(cf., e.g., [25, Theorem II.5.1 and Remark II.6.2]), that is,

‖u‖H1(Ω)n ≤ C̊‖∇u‖L2(Ω)n×n ∀ u ∈ H̊1(Ω)n (4.3)

for some constant C̊ = C̊(Ω, n) > 0. Let also H−1(Ω)n = (
H̊1(Ω)n

)′ endowed with the
norm

‖g‖H−1(Ω)n := sup
v∈H̊1(Ω)n , ‖v‖H1(Ω)n=1

|〈g, v〉Ω | , ∀ g ∈ H−1(Ω)n,

and let ||| ·|||H−1(Ω)n denote the corresponding norm on H−1(Ω)n generated by the semi-norm
(4.1), i.e.,

|||g|||H−1(Ω)n := sup
v∈H̊1(Ω)n , ‖∇v‖L2(Ω)n×n=1

|〈g, v〉Ω | , ∀ g ∈ H−1(Ω)n . (4.4)

This implies that

|〈g, v〉Ω | ≤ |||g|||H−1(Ω)n ‖∇v‖L2(Ω)n×n , ∀ g ∈ H−1(Ω)n, ∀ v ∈ H̊1(Ω)n,

and

‖g‖H−1(Ω)n ≤ |||g|||H−1(Ω)n , ∀ g ∈ H−1(Ω)n . (4.5)

Let aA;Ω : H̊1(Ω)n × H̊1(Ω)n → R and bΩ : H̊1(Ω)n × L2(Ω)/R → R be the bilinear
forms given by

aA;Ω(u, v) :=
〈
aαβ
i j E jβ(u), Eiα(v)

〉

Ω
, ∀u, v ∈ H̊1(Ω)n , (4.6)

bΩ(v, q) := −〈div v, q〉Ω, ∀ v ∈ H̊1(Ω)n, ∀ q ∈ L2(Ω)/R . (4.7)

Let us also introduce the following spaces of divergence-free vector fields

H1
div(Ω)n := {w ∈ H1(Ω)n : divw = 0 in Ω} ,

H̊1
div(Ω)n := {w ∈ H̊1(Ω)n : divw = 0 in Ω}

We also have the characterization

H̊1
div(Ω)n =

{
w ∈ H̊1(Ω)n : bΩ(w, q) = 0, ∀ q ∈ L2(Ω)/R

}
.

Indeed, if divw = 0, then obviously bΩ(w, q) = 0 ∀ q ∈ L2(Ω)/R. On the other hand,
divw ∈ L2

0(Ω) for any w ∈ H̊1(Ω)n (see Proposition 3.1). Since the space L2(Ω)/R is
dual to the space L2

0(Ω), the condition bΩ(w, q) = 0 ∀ q ∈ L2(Ω)/R implies divw = 0.
The Hölder inequality implies that there exists a constant C > 0, such that

|aA;Ω(u, v)| ≤ C‖∇u‖L2(Ω)n×n‖∇v‖L2(Ω)n×n , ∀u, v ∈ H̊1(Ω)n . (4.8)

Thus, the bilinear form aA;Ω(·, ·) : H̊1(Ω)n × H̊1(Ω)n → R is bounded. Moreover, the
Korn first inequality applied to functions in H̊1(Ω)n ,

‖∇v‖L2(Ω)n×n ≤ 2
1
2 ‖E(v)‖L2(Ω)n×n (4.9)

123



  198 Page 8 of 47 M. Kohr et al.

(cf. [45, Theorem 10.1]) combined with the ellipticity condition (2.4) and the property that
the semi-norm ‖∇(·)‖L2(Ω)n×n is a norm in H̊1(Ω)n , shows that the bilinear form aA;Ω(·, ·) :
H̊1
div(Ω)n × H̊1

div(Ω)n → R is coercive, that is,

aA;Ω(v, v) ≥ 1

2
C−1
A

‖∇u‖2L2(Ω)n×n , ∀ v ∈ H̊1
div(Ω)n . (4.10)

On the other hand, the surjectivity of the operator div : H̊1(Ω)n → L2
0(Ω) (see Proposi-

tion 3.1) shows that the bilinear and bounded form bΩ : H̊1(Ω)n × L2
0(Ω) → R satisfies

the inf-sup condition

inf
q∈L2(Ω)/R\{0}

sup
v∈H̊1(Ω)n\{0}

bΩ(v, q)

‖v‖H̊1(Ω)n
‖q‖L2(Ω)/R

≥ cb ,

with some constant cb > 0 (see [23, Theorem A.56, Remark 2.7]). Then Theorem 2.34 in
[23] leads to the following well-posedness result, whose detailed proof can be consulted in
[35, Theorem 3.2] (see also [34, Lemma 3.1]).

Theorem 4.1 Let conditions (2.2)–(2.4) hold. Let aA;Ω and bΩ be the bilinear forms defined
in (4.6) and (4.7). Then the following properties hold.

(i) For all given data F ∈ H−1(Ω)n and g ∈ L2
0(Ω), the variational problem

{
aA;Ω(u, v) + bΩ(v, π) = 〈F, v〉Ω , ∀ v ∈ H̊1(Ω)n,

bΩ(u, q) = −〈g, q〉Ω , ∀ q ∈ L2(Ω)/R
(4.11)

for (u, π) ∈ H̊1(Ω)n × L2(Ω)/R is well-posed, that is, (4.11) has a unique solution
and there exists a constant C > 0 depending only on ‖A‖, CA, Ω and n, such that

‖u‖H1(Ω)n + ‖π‖L2(Ω)/R ≤ C
(‖F‖H−1(Ω)n + ‖g‖L2(Ω)

)
. (4.12)

(ii) The pair (u, π) is the unique solution in H1(Ω)n × L2(Ω)/R of the Dirichlet problem
for the anisotropic Stokes system

{L(u, π) = −F, div u = g in Ω ,

γΩu = 0 on ∂Ω ,
(4.13)

(iii) The solution can be represented in the form (u, π) = U(F, g), where U : H−1(Ω)n ×
L2
0(Ω) → H1(Ω)n × L2(Ω)/R is a linear continuous operator.

4.2 Non-homogeneous Dirichlet problem for the anisotropic Stokes system

Let us consider the following non-homogeneous Dirichlet problem
{L(u, π) = −F, div u = g in Ω ,

γΩu = ϕ on ∂Ω ,
(4.14)

for the unknowns (u, π) ∈ H1(Ω)n×L2(Ω)/R, with the given data (F, g,ϕ) ∈ H−1(Ω)n×
L2(Ω) × H

1
2 (∂Ω)n , which satisfy the compatibility condition

∫

Ω

g(x)dx =
∫

∂Ω

ϕ · νdσ , (4.15)

where ν is the exterior unit normal to ∂Ω .
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To analyse the Dirichlet problem (4.14), we need the following well-known Bogovskii-
type result (see, e.g., [7, 28], and the proof of Theorem 3.2 in [2]).

Lemma 4.2 For any (g,ϕ) ∈ L2(Ω) × H
1
2 (∂Ω)n satisfying condition (4.15), there exists

v ∈ H1(Ω)n such that
{
div v = g in Ω

γΩ v = ϕ on ∂Ω ,
(4.16)

and there exists a constant c = c(Ω, n) > 0 such that

‖v‖H1(Ω)n ≤ c
(
‖g‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)n

)
. (4.17)

Theorem 4.3 Let conditions (2.2)–(2.4)hold. Then for all givendata (F, g,ϕ) ∈ H−1(Ω)n×
L2(Ω) × H

1
2 (∂Ω)n satisfying condition (4.15), the Dirichlet problem (4.14) has a unique

solution (u, π) ∈ H1(Ω)n×L2(Ω)/R and there exists a constantC = C(Ω,CA, ‖A‖, n) >

0 such that

‖u‖H1(Ω)n + ‖π‖L2(Ω)/R ≤ C

(
‖F‖H−1(Ω)n + ‖g‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)n

)
. (4.18)

Proof Let v ∈ H1(Ω)n be the function given by Lemma 4.2. For the velocity-pressure couple
(v, 0), let us also define

F̌ := −L(v, 0) = −Lv ∈ H−1(Ω)n (4.19)

(cf. notations forLv in (2.7) and (2.1)). Then the fully non-homogeneous Dirichlet problem
(4.14) reduces to the following Dirichlet problem with homogeneous Dirichlet condition, for
the new function w := u − v,

{
L(w, π) = −(F − F̌), divw = 0 in Ω ,

γΩw = 0 on ∂Ω .
(4.20)

Theorem 4.1 implies that the Dirichlet problem (4.20) has a unique solution (w, π) in the
space (u, π) ∈ H1(Ω)n × L2(Ω)/R and depends continuously on the given data of this
problem.Finally, thewell-posedness of problem (4.20) implies that the couple (u = w+v, π)

determines a solution of the full non-homogeneous Dirichlet problem (4.14) in the space
H1(Ω)n × L2(Ω)/R, and estimate (4.18) holds. This solution is unique by the uniqueness
statement in Theorem 4.1. ��

5 Dirichlet-transmission problems for the anisotropic Stokes system in
bounded Lipschitz domains with transversal interfaces

Mitrea and Wright [51] obtained well-posedness results in Sobolev and Besov spaces for
transmission problems for the Stokes system with constant coefficients in Lipschitz domains
in R

n (see also the references therein). Various transmission problems for the anisotropic
Stokes system in Lipschitz domains in R

n , n ≥ 3, with internal interface and homoge-
neous conditions for traces, have been studied in [34] by using both variational and potential
approaches (see also [35] and [36]).

In this section we show the well-posedness of boundary value problems of Dirichlet-
transmission type for the anisotropic Stokes system in a compressible framework in bounded
Lipschitz domains with transversal Lipschitz interfaces satisfying the following assumption.
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Fig. 1 Bounded composite
domain Ω = Ω+ ∪ Σ ∪ Ω−
with the interface Σ , for n = 3 �

�

Assumption 5.1 Let n ≥ 2 and Ω ⊂ R
n be a bounded Lipschitz domain with connected

boundary ∂Ω . The domain Ω is divided into two disjoint Lipschitz sub-domains Ω+ and
Ω− by an (n − 1)-dimensional Lipschitz open interface Σ , such that ∂Σ = Σ ∩ ∂Ω is a
non-empty (n−2)-dimensional Lipschitz manifold if n > 2, and two distinct points if n = 2.
In this case Σ intersects ∂Ω transversally and Ω = Ω+ ∪ Σ ∪ Ω−, see Fig. 1.

Thus, the remaining boundaries Γ + = ∂Ω+ \Σ and Γ − = ∂Ω− \Σ of ∂Ω+ and ∂Ω−,
respectively, are non-empty relatively open subsets of ∂Ω .

5.1 Sobolev spaces on bounded domains with partially vanishing traces

Let Ω ′ ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary ∂Ω ′. Let D

and N be relatively open subsets of ∂Ω ′, such that D has positive (n−1)-Hausdorff measure,
D ∩ N = ∅, D ∪ N = ∂Ω ′, and D ∩ N = ∂D = ∂N is an (n − 2)-dimensional closed
Lipschitz submanifold of ∂Ω ′.

We need the following space defined on the Lipschitz domains Ω ′

C∞
D (Ω ′)n := {

ϕ|
Ω′ : ϕ ∈ C∞(Rn)n, supp (ϕ) ∩ D = ∅} , (5.1)

and let H1
D(Ω ′)n be the closure of C∞

D (Ω ′)n in H1(Ω ′)n . The space H1
D(Ω ′)n can be

equivalently characterized as

H1
D(Ω ′)n = {

v ∈ H1(Ω ′)n : (γ
Ω′ v

) |D = 0
}

(5.2)

(cf. [9, Corollary 3.11]). Let also

H1
D;div(Ω

′)n := {
w ∈ H1

D(Ω ′)n : divw = 0
}
. (5.3)

LetΞ be a relatively open (n−1)-dimensional subset of ∂Ω ′, e.g., D or N . Let rΞ denote
the operator of restriction of distributions from ∂Ω ′ toΞ . Then the boundary Sobolev spaces
on N are defined by

H
1
2 (Ξ)n :=

{
φ|Ξ : φ ∈ H

1
2 (∂Ω ′)n

}
, (5.4)

H̃
1
2 (Ξ)n :=

{
φ ∈ H

1
2 (∂Ω ′)n : φ = 0 on ∂Ω ′ \ Ξ

}
, (5.5)

H− 1
2 (Ξ)n := (

H̃
1
2 (Ξ)n

)′
, H̃− 1

2 (Ξ)n := (
H

1
2 (Ξ)n

)′ (5.6)

(cf., e.g., [45], [9, Definition 4.8, Theorem 5.1]).

Lemma 5.2 The trace operator γ
Ω′ : H1

D(Ω ′)n → H̃
1
2 (N )n is bounded, linear and surjec-

tive, with a (non-unique) bounded, linear right inverse γ −1
Ω′ : H̃ 1

2 (N )n → H1
D(Ω ′)n .
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Proof Let γ −1
Ω′ : H

1
2 (∂Ω ′)n → H1(Ω ′)n be a bounded right inverse of the trace operator

γ
Ω′ : H1(Ω ′)n → H

1
2 (∂Ω ′)n (cf. [17], [46, Lemma 2.6], [51, Theorem 2.5.2]). Conse-

quently, we have γ
Ω′ γ −1

Ω′ φ = φ, for any φ ∈ H
1
2 (∂Ω ′)n . Therefore, if φ ∈ H̃

1
2 (N )n , that is,

φ = 0 on D, then γ
Ω′ γ −1

Ω′ φ = 0 on D, and, thus, γ −1
Ω′ φ ∈ H1

D(Ω ′)n . Hence, the existence
of a right inverse γ −1

Ω′ : H
1
2 (∂Ω ′)n → H1(Ω ′)n of the trace operator γ

Ω′ : H1(Ω ′)n →
H

1
2 (∂Ω ′)n assures the existence of a bounded right inverse γ −1

Ω′ : H̃ 1
2 (N )n → H1

D(Ω ′)n of
the operator γ

Ω′ : H1
D(Ω ′)n → H̃

1
2 (N )n . ��

5.2 Sobolev spaces, conormal derivatives and Green’s identity in a bounded
Lipschitz domain with a transversal Lipschitz interface

In the sequel, Ω is a bounded Lipschitz domain in R
n , n ≥ 2, satisfying Assumption 5.1.

We need the following spaces defined on the domains Ω , Ω+ and Ω−,

H1
Γ ±(Ω)n := {

v ∈ H1(Ω)n : (γΩ v)|Γ ± = 0
}
, (5.7)

H1
Γ ±(Ω±)n := {

v± ∈ H1(Ω±)n : (γ
Ω± v

±)|Γ ± = 0
}

, (5.8)

where γ
Ω± : H1(Ω±) → H

1
2 (∂Ω±) are the trace operators acting on functions defined on

the domains Ω±. The spaces H1
Γ ±(Ω±)n can be equivalently described as

H1
Γ ±(Ω±)n := {

v|Ω± : v ∈ H1
Γ ±(Ω)n

}
, (5.9)

and the space H̊1(Ω)n = {
w ∈ H1(Ω±)n : γΩw = 0 on ∂Ω

}
can be identified with the

space
{(
v+, v−) ∈ H1

Γ +(Ω+)n × H1
Γ −(Ω−)n : (γ

Ω+ v
+)∣∣

Σ
= (

γ
Ω− v

−)∣∣
Σ

}
. (5.10)

This property is an immediate consequence of Lemma B.1.
Let us next introduce the Sobolev spaces on the interfaceΣ (cf., e.g., [9, 45]). First, define

the space

H
1
2 (Σ)n :=

{
φ ∈ L2(Σ)n : ∃ φ+ ∈ H

1
2 (∂Ω+)n such that φ = φ+∣∣

Σ

}
, (5.11)

which can be identified with the space
{
φ ∈ L2(Σ)n : ∃ φ− ∈ H

1
2 (∂Ω−)n such that φ = φ−∣∣

Σ

}
(5.12)

due to the equivalence of both of them to the space defined as in (3.8), with Σ instead of ∂Ω

(see also Lemma B.2).
Let us also consider the space

H̃
1
2 (Σ; ∂Ω+)n :=

{
φ̃

+ ∈ H
1
2 (∂Ω+)n : supp φ̃

+ ⊆ Σ
}

, (5.13)

which, by Lemma B.2(ii), can be identified with the space

H̃
1
2 (Σ; ∂Ω−)n :=

{
φ̃

− ∈ H
1
2 (∂Ω−)n : supp φ̃

− ⊆ Σ
}

, (5.14)
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and both spaces inherit their norms from the spaces H
1
2 (∂Ω±)n , respectively. Let us denote

by H
1
2• (Σ)n the space consisting of all functions φ ∈ H

1
2 (Σ)n such that their extensions by

zero on ∂Ω+, E̊
Σ→∂Ω+ φ, belong to H̃

1
2 (Σ; ∂Ω+)n , i.e.,

H
1
2• (Σ)n := {φ ∈ H

1
2 (Σ)n : E̊

Σ→∂Ω+ φ ∈ H̃
1
2 (Σ; ∂Ω+)n}.

Lemma B.2(ii) shows that the space H
1
2• (Σ)n can be also defined as

H
1
2• (Σ)n := {φ ∈ H

1
2 (Σ)n : E̊

Σ→∂Ω− φ ∈ H̃
1
2 (Σ; ∂Ω−)n}.

The space H
1
2• (Σ)n can be endowed with the norm

‖φ‖
H

1
2• (Σ)n

= max

{
‖E̊

Σ→∂Ω+ φ‖
H

1
2 (∂Ω+)n

, ‖E̊
Σ→∂Ω− φ‖

H
1
2 (∂Ω−)n

}
.

Note that the operators of extension by zero

E̊
Σ→∂Ω± : H

1
2• (Σ)n → H̃

1
2 (Σ; ∂Ω±)n (5.15)

are continuous, and due to, e.g., [46, Theorem 2.10(i)] also surjective, implying that the space

H
1
2• (Σ)n can be identified with the spaces H̃

1
2 (Σ; ∂Ω±)n . In addition, by Theorem B.3 the

space H
1
2• (Σ)n can be characterized as the weighted space H

1
2
00(Σ) consisting of functions

φ ∈ H
1
2 (Σ)n , such that δ− 1

2 φ ∈ L2(Σ)n , where δ(x) is the distance from x ∈ Σ to the

boundary ∂Σ . The counterpart of H
1
2
00(·) on smooth domains in R

n has been considered in
[42, Chapter 1, Theorem 11.7] and on Lipschitz domains in [30, Corollary 1.4.4.10]. Note

also that the space H
1
2• (·) is similar to the space L p

s,z(·) in [50, Eq. (2.212)], cf. also [48, p.3].

Lemma 5.3 The operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n given by

γΣ v := (
γ

Ω+
(
v|

Ω+
)) ∣∣

Σ
= (

γ
Ω−

(
v|

Ω−
)) ∣∣

Σ
, ∀ v ∈ H̊1(Ω)n , (5.16)

is linear, bounded and surjective.

Proof The linearity and boundedness of the operator γΣ are immediate consequences of the
linearity and boundedness of the trace operators

γ
Ω± : H1

Γ ±(Ω±)n → H̃
1
2 (Σ; ∂Ω±)n, (5.17)

cf. Lemma 5.2. The equality of restrictions to Σ of the traces from Ω+ and Ω− in (5.16)
follows from the inclusion v ∈ H̊1(Ω)n , see Lemma B.1(ii). The surjectivity of operators

(5.17) implies the surjectivity of the operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n . To this end, let

φ ∈ H
1
2• (Σ)n . Then E̊

Σ→∂Ω± φ ∈ H̃
1
2 (Σ; ∂Ω±)n and by Lemma 5.2, there exist v± ∈

H1
Γ ±(Ω±)n such that γ

Ω± v
± = E̊

Σ→∂Ω± φ on ∂Ω±. Hence, we obtain that γΣ v
+ = γΣ v

−
on Σ . According to Lemma B.1(i) there exists a unique function v ∈ H1(Ω)n such that
v|Ω± = v±. Moreover, since γ

Ω± v
± = 0 on Γ ±, we deduce that γΩ v = 0 (a.e.) on ∂Ω , and

hence v ∈ H̊1(Ω)n . ��
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Lemma 5.3 implies that the space H
1
2• (Σ)n can be also characterised as

H
1
2• (Σ)n =

{
φ ∈ L2(Σ) : ∃ v ∈ H̊1(Ω)n such that

φ = (
γ

Ω+
(
v|

Ω+
)) ∣∣

Σ
= (

γ
Ω−

(
v|

Ω−
)) ∣∣

Σ

}
. (5.18)

In addition, we consider the spaces

H− 1
2 (Σ)n := (

H
1
2• (Σ)n

)′
, H̃− 1

2 (Σ)n := (
H

1
2 (Σ)n

)′
. (5.19)

In Appendix A we provide a definition of the generalized conormal derivative, associated
with anisotropic Stokes operator L, on the entire boundary of the domain. If we need the
conormal derivative only on a part of the boundary of the domain, we do not not need
the extension of the PDE right hand side to the ‘tilde-space’ on the rest of the boundary.
To this end, we consider the following counterpart of Definition A.2 in the case of f̃± ∈(
H1

Γ ±(Ω±)n
)′
; some characterisations of such spaces are available from Lemma B.6.

Definition 5.4 Let Assumption 5.1 and condition (2.2) hold. Let

HHH1
Γ ±(Ω±,L) :=

{
(u±, π±, f̃±) ∈ H1(Ω±)n × L2(Ω±) × (

H1
Γ ±(Ω±)n

)′ :
L(u±, π±) = f̃±|Ω± in Ω±}. (5.20)

If (u±, π±, f̃±) ∈ HHH1
Γ ±(Ω±,L), then the formula

〈(
tΩ±(u±, π±; f̃±)

)|Σ ,Φ±〉

Σ

:=
〈
aαβ
i j E jβ(u±), Eiα(γ −1

Ω± Φ±)
〉

Ω±

−
〈
π±, div(γ −1

Ω± Φ±)
〉

Ω± +
〈
f̃±, γ −1

Ω± Φ±〉

Ω± , ∀ Φ± ∈ H
1
2• (Σ)n , (5.21)

defines the generalized conormal derivatives
(
tΩ±(u±, π±; f̃±)

)|Σ ∈ H− 1
2 (Σ)n , where

γ −1
Ω± : H

1
2• (Σ)n → H1

Γ ±(Ω±)n are bounded right inverses of the trace operators γ
Ω± :

H1
Γ ±(Ω±)n → H

1
2• (Σ)n .

Note that, in view of Lemma 5.2, all duality pairings in formula (5.21) are well-defined.
Moreover, we have the following result, whose proof is omitted for the sake of brevity (cf.
[49, Proposition 8.1] for the Laplace operator, [38, Lemma 7.6] for extensions to compact
Riemannian manifolds, and [9, Definition 7.1] in the case of higher order elliptic operators,
see also [45, Lemma 4.3], [35, Lemma 2.3], [36, Lemma 1], [46, Definition 3.1, Theorem
3.2], [47], [51, Theorem 10.4.1]).

Lemma 5.5 Let Assumption 5.1 and conditions (2.2) and (2.3) hold.

(i) The generalized conormal derivative operators tΩ± : HHH1
Γ ±(Ω±,L) → H− 1

2 (Σ)n are
linear andbounded, and definition (5.21)does not depend on the particular choice of right

inverses γ −1
Ω± : H

1
2• (Σ)n → H1

Γ ±(Ω±)n of the trace operators γ
Ω± : H1

Γ ±(Ω±)n →
H

1
2• (Σ)n.

(ii) Let (u±, π±, f̃±) ∈ HHH1
Γ ±(Ω±,L). Let π ∈ L2(Ω) and f̃ ∈ H−1(Ω) be such that

π |Ω± = π±, f̃ = f̃+ + f̃− . (5.22)
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Then the following first Green identities hold

〈(
tΩ±(u±, π±; f̃±)

)|Σ , γΣw
±〉

Σ
=
〈
aαβ
i j E jβ(u±), Eiα(w±)

〉

Ω±

− 〈π, divw±〉Ω± + 〈f̃,w±〉Ω± , ∀ w± ∈ H1
Γ ±(Ω±)n , (5.23)

and hence
〈(
tΩ+(u+, π+; f̃+)

)|Σ + (
tΩ−(u−, π−; f̃−)

)|Σ , γΣw
〉
Σ

=
〈
aαβ
i j E jβ(u+), Eiα(w)

〉

Ω+ +
〈
aαβ
i j E jβ(u−), Eiα(w)

〉

Ω−

− 〈π, divw〉Ω + 〈f̃,w〉Ω , ∀ w ∈ H̊1(Ω)n . (5.24)

Note that the existence of a function π ∈ L2(Ω) as in (5.22) follows from Lemma B.1,
while Lemma B.6 shows that f̃ defined in (5.22) belongs to the space H−1(Ω)n .

5.3 Dirichlet-transmission problemwith homogeneous Dirichlet conditions

First, we analyze the following Dirichlet-transmission problem for the anisotropic Stokes
system in Ω with homogeneous Dirichlet conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ , div u+ = g|Ω+ in Ω+ ,

L(u−, π−) = f̃−|Ω− , div u− = g|Ω− in Ω− ,

(γ
Ω+u

+)|Σ = (γ
Ω−u

−)|Σ on Σ ,

(tΩ+(u+, π+; f̃+))|Σ + (tΩ−(u−, π−; f̃−))|Σ = ψ
Σ

on Σ ,

(γ
Ω+u

+)|Γ + = 0 on Γ + ,

(γ
Ω−u

−)|Γ − = 0 on Γ −

(5.25)

and the given data (̃f+, f̃−, g,ψ
Σ
) ∈ Y0. The space

Y0 := (
H1

Γ +(Ω+)n
)′ × (

H1
Γ −(Ω−)n

)′ × L2
0(Ω) × H− 1

2 (Σ)n (5.26)

is endowed with the norm

‖(̃f+, f̃−, g,ψ
Σ
)‖Y0 := ‖̃f+‖(

H1
Γ + (Ω+)n

)′ + ‖̃f−‖(
H1

Γ − (Ω−)n
)′

+ ‖g‖L2(Ω) + ‖ψ
Σ
‖
H− 1

2 (Σ)n
.

The conormal derivative operators tΩ+ and tΩ− , as introduced in Definition A.2, correspond
to the outward unit normal vectors toΩ+ andΩ−, respectively, that have opposite directions
on Σ . However, if one would consider the conormal derivatives with respect to unit normal
vectors of the same direction onΣ , then the sum in the corresponding transmission condition
in (5.25) would be replaced by the difference, leading to the jump of the conormal derivatives
as, e.g., in [34–36].

We show that (5.25) has a unique solution (u+, π+,u−, π−) in the space

XΩ+,Ω− : = {
(v+, q+, v−, q−) : v+ ∈ H1(Ω+)n, v− ∈ H1(Ω−)n,

q+ = q|Ω+ , q− = q|Ω− , q ∈ L2(Ω)/R
}
, (5.27)

endowed with the norm

‖(v+, q+, v−, q−)‖XΩ+,Ω− = ‖v+‖H1(Ω+)n + ‖v−‖H1(Ω−)n + ‖q‖L2(Ω)/R.
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(The choice of the space L2(Ω)/R for the pressure is only for convenience, and one may
consider the space L2

0(Ω) as well.)
Let (u+, π+,u−, π−) ∈ XΩ+,Ω− and u+ and u− satisfy the homogeneous interface

condition for traces in (5.25), (γ
Ω+u

+)|Σ − (γ
Ω−u

−)|Σ = 0 onΣ . Then Lemma B.1 implies
that there exists a unique pair (u, π) ∈ H1(Ω)n × L2(Ω)/R such that

u|Ω+ = u+, u|Ω− = u−, π |Ω+ = π+, π |Ω− = π− . (5.28)

Assuming that u+ and u− also satisfy the homogeneous Dirichlet condition in (5.25) we
have that u ∈ H̊1(Ω)n . Therefore, (u, π) ∈ H̊1(Ω)n × L2(Ω)/R.

Note that the membership of f̃+ to
(
H1

Γ +(Ω+)n
)′

and the identification of this space
with the space defined by (B.13) in Lemma B.6 imply that f̃+ can be considered also as an
element from H−1(Ω)n . Similarly, the assumption f̃− ∈ (

H1
Γ −(Ω−)n

)′
implies that f̃− can

be considered as an element from H−1(Ω)n .
Let also F ∈ H−1(Ω)n be such that

〈F, v〉Ω : = −〈
f̃+, v

〉
Ω+ − 〈

f̃−, v
〉
Ω− + 〈ψ

Σ
, γΣ v〉Σ

= −〈
f̃+ + f̃−, v

〉
Ω

+ 〈γ ∗
Σ
ψ

Σ
, v〉Ω , ∀ v ∈ H̊1(Ω)n , (5.29)

that is, F = −(f̃+ + f̃−) + γ ∗
Σ
ψ

Σ
. Note that γ ∗

Σ
: H− 1

2 (Σ)n → H−1(Ω)n is the adjoint of

the trace operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n defined by (5.16), and the support of γ ∗

Σ
ψ

Σ
is

a subset of Σ .
Now, we can show the well-posedness of the Dirichlet-transmission problem (5.25) (see

also [4, Theorem 1.2], [5, Corollary 3.1] for interface problems involving the Stokes and
Brinkman systems in Lipschitz domains with transversal interfaces and jump conditions in
the isotropic case (2.12)).

Theorem 5.6 Let Assumption 5.1 and conditions (2.2)–(2.4) hold.

(i) Then for all (̃f+, f̃−, g,ψ
Σ
) ∈ Y0 the Dirichlet-transmission problem (5.25) has a

unique solution (u+, π+,u−, π−) in the space XΩ+,Ω− , and there exists a positive
constant C = C(Ω+,Ω−,CA, ‖A‖, n) such that

‖(u+, π+,u−, π−)‖XΩ+,Ω− ≤ C‖(̃f+, f̃−, g,ψ
Σ
)‖Y0 (5.30)

(ii) The solution can be represented in the form (u+, π+,u−, π−) = U0 (̃f+, f̃−, g,ψ
Σ
),

whereU0 : Y0 → XΩ+,Ω− is a linear continuous operator.

Proof Let us prove that the Dirichlet-transmission problem (5.25) with the unknowns(
u+, π+,u−, π−) ∈ XΩ+,Ω− is equivalent, in the sense of relations (5.28), to the variational

problem (4.11) with the unknowns (u, π) ∈ H̊1(Ω)n × L2(Ω)/R, and with F ∈ H−1(Ω)n

given by (5.29).
First, assume that

(
u+, π+,u−, π−) ∈ XΩ+,Ω− satisfies the Dirichlet-transmission prob-

lem (5.25). Let (u, π) ∈ H̊1(Ω)n × L2
0(Ω) be the pair defined by formula (5.28) (cf. Lemma

B.1). Then the first equation of variational problem (4.11) follows from the Green identity
(5.24) and relation (5.29) for F. The second equation in (4.11) follows from the equations
div u± = g|Ω± in Ω± and the inclusion div u ∈ L2(Ω).
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Conversely, assume that (u, π) ∈ H̊1(Ω)n × L2(Ω)/R satisfies the variational problem
(4.11) and let (u±, π±) = (u|Ω± , π |Ω±). Then the first equation in (4.11) can be written as

〈
aαβ
i j E jβ(u+), Eiα(w+)

〉
Ω+ − 〈

π+, divw+〉
Ω+

+ 〈
aαβ
i j E jβ(u−), Eiα(w−)

〉
Ω− − 〈

π−, divw−〉
Ω−

− 〈
f̃+,w

〉
Ω+ − 〈

f̃−,w
〉
Ω− + 〈ψ

Σ
, γΣw〉Σ = 0 , ∀w ∈ H̊1(Ω)n . (5.31)

Since the spaces D(Ω±)n are subspaces of H̊1(Ω)n , (the distributional form of) the
anisotropic Stokes equation in (5.25), in each of the domains Ω+ and Ω−, follows from
equation (5.31) written for all w ∈ D(Ω+)n and w ∈ D(Ω−)n , respectively. A similar
argument yields that the second variational equation in (4.11) implies the divergence equa-
tion div u± = g± in Ω±. Thus,

(
u+, π+,u−, π−) satisfies the anisotropic Stokes system

in Ω+ ∪ Ω−, the Dirichlet boundary condition (γ
Ω±u

±)|
Γ ± = 0 on Γ ±, and the interface

condition (γ
Ω+u

+)|Σ = (γ
Ω−u

−)|Σ on Σ . Then substituting (5.31) into the Green identity
(5.24), we obtain the equation

〈(
tΩ+(u+, π+; f̃+)+tΩ−(u−, π−; f̃−)

)∣∣
Σ

, (γΩw)|Σ
〉
Σ

= 〈
ψ

Σ
, γΣw

〉
Σ

. (5.32)

In view of Lemma 5.3, formula (5.32) implies

〈(
tΩ+(u+, π+; f̃+)+tΩ−(u−, π−; f̃−)

)∣∣
Σ

,φ
〉
Σ

= 〈
ψ

Σ
,φ

〉
Σ

, ∀ φ ∈ H
1
2• (Σ)n . (5.33)

Therefore,
(
tΩ+(u+, π+; f̃+)+tΩ−(u−, π−; f̃−)

)∣∣
Σ

= ψ
Σ
on Σ .

Consequently, the Dirichlet-transmission problem (5.25) and the variational problem
(4.11) are equivalent, as asserted. By Theorem 4.1, the variational problem (4.11) in the
space H̊1(Ω)n × L2(Ω)/R is well-posed. Hence the proved equivalence implies the well-
posedness of problem (5.25) in the space XΩ+,Ω− , and estimate (5.30) follows from (4.12)
and (5.29). Together with Theorem 4.1(iii) this also implies the representation of item (ii). ��

5.4 Dirichlet-transmission problemwith non-homogeneous interface and Dirichlet
conditions

Let the spaceY• consists of all elements

(̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ) ∈ (

H1
Γ +(Ω+)n

)′ × (
H1

Γ −(Ω−)n
)′ × L2(Ω+) × L2(Ω−)

×H
1
2• (Σ)n × H− 1

2 (Σ)n × H
1
2 (∂Ω)n

such that g+, g−, ϕ, and ϕ
Σ
satisfy the compatibility condition

∫

Ω+
g+dx +

∫

Ω−
g−dx =

∫

∂Ω

ϕ · νdσ +
∫

Σ

ϕ
Σ

· νΣ dσ , (5.34)

where νΣ is the unit normal to Σ oriented from Ω+ to Ω−. The space Y• is endowed with
the norm

‖(̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ)‖Y• := ‖̃f+‖(

H1
Γ + (Ω+)n

)′ + ‖̃f−‖(
H1

Γ − (Ω−)n
)′

+‖g+‖L2(Ω+) + ‖g−‖L2(Ω−) + ‖ϕ
Σ
‖
H

1
2• (Σ)n

+ ‖ψ
Σ
‖
H− 1

2 (Σ)n
+ ‖ϕ‖

H
1
2 (∂Ωn)

.
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Let us also define the space M• consisting of all elements

(g+, g−,ϕ
Σ
,ϕ) ∈ L2(Ω+) × L2(Ω−) × H

1
2• (Σ)n × H

1
2 (∂Ω)n

satisfying the compatibility condition (5.34), and endowed with the norm

‖(g+, g−,ϕ
Σ
,ϕ)‖M• := ‖g+‖L2(Ω+) + ‖g−‖L2(Ω−) + ‖ϕ

Σ
‖
H

1
2• (Σ)n

+ ‖ϕ‖
H

1
2 (∂Ω)n

.

(5.35)

Let us consider the following non-homogeneous Dirichlet-transmission problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ , div u+ = g+ in Ω+ ,

L(u−, π−) = f̃−|Ω− , div u− = g− in Ω− ,

(γ
Ω+u

+)|Σ − (γ
Ω−u

−)|Σ = ϕ
Σ

on Σ ,(
tΩ+(u+, π+; f̃+)

)|Σ + (
tΩ−(u−, π−; f̃−)

)|Σ = ψ
Σ

on Σ ,

(γ
Ω+u

+)|Γ + = ϕ|Γ + on Γ + ,

(γ
Ω−u

−)|Γ − = ϕ|Γ − on Γ − ,

(5.36)

with the unknown functions (u+, π+,u−, π−) in the space XΩ+,Ω− defined in (5.27), and
with the given data (̃f+, f̃−, g+, g−,ϕ

Σ
,ψ

Σ
,ϕ) ∈ Y•.

In order to analyze the non-homogeneous Dirichlet-transmission problem, we need the
following Bogovskii-type transmission result.

Lemma 5.7 Let Assumption 5.1 hold. Then for all given data (g+, g−,ϕ
Σ
,ϕ) ∈ M• there

exist v± ∈ H1(Ω±)n such that

div v+ = g+ in Ω+, (5.37)

div v− = g− in Ω−, (5.38)

(γ
Ω+ v

+)|Σ − (γ
Ω− v

−)|Σ = ϕ
Σ

on Σ , (5.39)

(γ
Ω+ v

+)|Γ + = ϕ|Γ + on Γ + , (5.40)

(γ
Ω− v

−)|Γ − = ϕ|Γ − on Γ − , (5.41)

and there exists a constant CΣ = CΣ(Ω+,Ω−, n) > 0 such that

‖v±‖H1(Ω±)n ≤ CΣ‖(g+, g−,ϕ
Σ
,ϕ)‖M• . (5.42)

Proof Let us introduce the functions

v+
1 := r

Ω+ γ −1
Ω ϕ + 1

2
γ −1
Ω+ E̊Σ→∂Ω+ ϕ

Σ
, (5.43)

v−
1 := r

Ω− γ −1
Ω ϕ − 1

2
γ −1
Ω− E̊Σ→∂Ω− ϕ

Σ
, (5.44)

where γ −1
Ω : H 1

2 (∂Ω)n → H1(Ω)n and γ −1
Ω± : H 1

2 (∂Ω±)n → H1(Ω±)n are continuous

right inverses to the corresponding trace operators, E̊
Σ→∂Ω± : H

1
2• (Σ)n → H̃

1
2 (Σ; ∂Ω±)n

are operators of extension by zero, cf. (5.15), while r
Ω± : H1(Ω)n → H1(Ω±)n are restric-

tion operators to the corresponding domains, and each of these operators is continuous.
Then v±

1 belong to H1(Ω±)n , respectively, and satisfy transmission and boundary condi-
tions (5.39)–(5.41). Let us now define

g±
1 := div v±

1 ∈ L2(Ω±) (5.45)

123



  198 Page 18 of 47 M. Kohr et al.

Then by the divergence Theorem and condition (5.34) we obtain
∫

Ω+
g+
1 (x)dx +

∫

Ω−
g−
1 (x)dx =

∫

Ω+
g+dx +

∫

Ω−
g−dx . (5.46)

Let g2 ∈ L2(Ω) be such that g2|Ω± = g± − g±
1 . Hence g2 belongs to the space L2

0(Ω)

defined in (3.1). Then by Proposition 3.1 there exists v2 ∈ H̊1(Ω) satisfying

div v2 = g2 in Ω , (5.47)

and a constant C = C(Ω, n) > 0 such that

‖v2‖2H1(Ω)n
≤ C‖g2‖2L2(Ω)

= C(‖g+ − g+
1 ‖2L2(Ω+)

+ ‖g− − g−
1 ‖2L2(Ω−)

). (5.48)

Finally, choosing v± := v±
1 + r

Ω± v2 and using inequality (5.48) and continuity of the
operators involved in (5.43)–(5.45), we obtain the desired result. ��

Let us define the operators Ľ
± : H1(Ω±)n → H̃−1(Ω±)n , cf. (2.1), as

(Ľ
±
v±)i := ∂α E̊Ω±

(
aαβ
i j E jβ(v±)

)
, i = 1, . . . , n, ∀ v± ∈ H1(Ω±)n , (5.49)

where E̊Ω± are the operators of zero extensions from Ω± onto R
n . Then by (2.9) we have

that
(
Ľ

±
v±)|Ω± = L(v±, 0) in Ω±.

Theorem 5.8 Let Assumption 5.1 and conditions (2.2)–(2.4) hold. Then for all (̃f+, f̃−, g+,

g−,ϕ
Σ
,ψ

Σ
,ϕ) ∈ Y• the Dirichlet-transmission problem (5.36) has a unique solution

(u+, π+,u−, π−) in the space XΩ+,Ω− and there exists a constant C = C(Ω+,Ω−,CA,

‖A‖, n) > 0 such that

‖(u+, π+,u−, π−)‖XΩ+,Ω− ≤ C‖(̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ)‖Y•

Proof Let v± ∈ H1(Ω±)n be the functions given by Lemma 5.7. Defining f̌± := Ľ
±
v± ∈

H̃−1(Ω±)n , we obtain that f̌±|Ω± = L(v±, 0) in Ω± and tΩ±(v±, 0; f̌±) = 0 by Defini-
tion A.2.

Then the fully non-homogeneous Dirichlet-transmission problem (5.36) reduces to the
following Dirichlet-transmission problem with homogeneous Dirichlet conditions on Γ ±
and homogeneous interface condition for the traces across Σ , for the new functions w± :=
u± − v±.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(w+, π+) = (̃f+ − f̌+)|Ω+ , divw+ = 0 in Ω+,

L(w−, π−) = (̃f− − f̌−)|Ω− , divw− = 0 in Ω−,

(γ
Ω+w

+)|Σ = (γ
Ω−w

−)|Σ on Σ,(
tΩ+(w+, π+; f̃+ − f̌+)

)|Σ + (
tΩ−(w−, π−; f̃− − f̌−)

)|Σ = ψ
Σ

on Σ,

(γ
Ω+w

+)|Γ + = 0 on Γ +,

(γ
Ω−w

−)|Γ − = 0 on Γ −.

(5.50)

Theorem 5.6 implies that the Dirichlet-transmission problem (5.50) has a unique solu-
tion (w+, π+,w−, π−) in the space XΩ+,Ω− and depends continuously on the given data
of this problem. Finally, the well-posedness of problem (5.50) implies that the functions
(u± = w± + v±, π±) determine a solution of the full non-homogeneous Dirichlet-
transmission problem (5.36) in the space XΩ+,Ω− , and depends continuously on the given
data (̃f+, f̃−, g+, g−,ϕ

Σ
,ψ

Σ
,ϕ) ∈ Y•. This solution is unique by the uniqueness statement

in Theorem 5.6. ��
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5.5 Dirichlet-transmission problemwith fully non-homogeneous interface and
Dirichlet conditions

Let us now consider the non-homogeneous Dirichlet-transmission problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ , div u+ = g+ in Ω+ ,

L(u−, π−) = f̃−|Ω− , div u− = g− in Ω− ,

(γ
Ω+u

+)|Σ − (γ
Ω−u

−)|Σ = ϕ
Σ

on Σ ,(
tΩ+(u+, π+; f̃+)

)|Σ + (
tΩ−(u−, π−; f̃−)

)|Σ = ψ
Σ

on Σ ,

(γ
Ω+u

+)|Γ + = ϕ+ on Γ + ,

(γ
Ω−u

−)|Γ − = ϕ− on Γ − ,

(5.51)

with more general data (̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ+,ϕ−) ∈ Y, where Y consists of

(̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ+,ϕ−) ∈ (

H1
Γ +(Ω+)n

)′ × (
H1

Γ −(Ω−)n
)′

×L2(Ω+) × L2(Ω−) × H
1
2 (Σ)n × H− 1

2 (Σ)n × H
1
2 (Γ +)n × H

1
2 (Γ −)n,

such that g+, g−,ϕ
Σ
,ϕ+,ϕ− satisfy the compatibility condition

∫

Ω+
g+dx +

∫

Ω−
g−dx =

∫

Γ +
ϕ+ · νdσ +

∫

Γ −
ϕ− · νdσ +

∫

Σ

ϕ
Σ

· νΣ dσ, (5.52)

and the condition

ϕ
Σ

− rΣ Φ+ + rΣ Φ− ∈ H
1
2• (Σ)n (5.53)

for some extensions Φ± ∈ H
1
2 (∂Ω±)n such that r

Γ ± Φ± = ϕ±.

Remark 5.9 (i) Condition (5.53) is particularly satisfied if ϕ
Σ

∈ H
1
2• (Σ)n and ϕ± = r

Γ ± ϕ

for some ϕ ∈ H
1
2 (∂Ω)n , as in the case considered in Sect. 5.4. Indeed, we can choose

Φ± = γ
Ω± γ −1

Ω
ϕ and obtain that Φ± ∈ H

1
2 (∂Ω±)n and

r
Γ ± Φ± = r

Γ ± γ
Ω± γ −1

Ω
ϕ = r

Γ ± γΩ γ −1
Ω

ϕ = r
Γ ± ϕ = ϕ± ,

which implies that Φ± are extensions of ϕ± from Γ ± to ∂Ω±. Moreover, the property
γ −1

Ω
ϕ ∈ H1(Ω)n implies that

rΣ Φ+ − rΣ Φ− = rΣ γ
Ω+ γ −1

Ω
ϕ − rΣ γ

Ω− γ −1
Ω

ϕ = 0 .

(i i) If condition (5.53) is satisfied for some functions Φ± ∈ H
1
2 (∂Ω±)n such that ϕ± =

r
Γ ± Φ± then it is also satisfied for all functions Φ±∗ ∈ H

1
2 (∂Ω±)n such that ϕ± = r

Γ ± Φ±∗
because Φ± − Φ±∗ = 0 on Γ ± and hence rΣ (Φ± − Φ±∗ ) ∈ H

1
2• (Σ)n .

In order to analyze the non-homogeneous Dirichlet-transmission problem, we need the
following generalized Bogoskii-type transmission result.

Lemma 5.10 Let Assumption 5.1 hold and let

(g+, g−,ϕ
Σ
,ϕ+,ϕ−) ∈ L2(Ω+) × L2(Ω−) × H

1
2 (Σ)n × H

1
2 (Γ +)n × H

1
2 (Γ −)n
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satisfy conditions (5.52) and (5.53). Then there exist v± ∈ H1(Ω±)n such that

div v+ = g+ in Ω+, (5.54)

div v− = g− in Ω−, (5.55)

(γ
Ω+ v

+)|Σ − (γ
Ω− v

−)|Σ = ϕ
Σ

on Σ , (5.56)

(γ
Ω+ v

+)|Γ + = ϕ+ on Γ + , (5.57)

(γ
Ω− v

−)|Γ − = ϕ− on Γ − , (5.58)

and, moreover,

‖v+‖H1(Ω+)n + ‖v−‖H1(Ω−)n ≤ CΣ

(
‖g+‖L2(Ω+) + ‖g−‖L2(Ω−)

+ ‖ϕ
Σ
‖
H

1
2 (Σ)n

+ ‖ϕ+‖
H

1
2 (Γ +)n

+ ‖ϕ−‖
H

1
2 (Γ −)n

)
(5.59)

with some constant CΣ = CΣ(Ω+,Ω−, n) > 0.

Proof We will prove this lemma by modifying the proof of Lemma 5.7 appropriately. Let

γ −1
Ω± : H

1
2 (∂Ω±)n → H1(Ω±)n be some continuous right inverses to the corresponding

trace operators.

Let Φ± ∈ H
1
2 (∂Ω±)n denote some extensions of the functions ϕ± from Γ ± to ∂Ω±,

that is, r
Γ ± Φ± = ϕ±. Let us introduce the functions

ΦΣ : = ϕ
Σ

− rΣ Φ+ + rΣ Φ−, (5.60)

v+
1 : = γ −1

Ω+(Φ+ + 1

2
E̊

Σ→∂Ω+ ΦΣ ), (5.61)

v−
1 : = γ −1

Ω−(Φ− − 1

2
E̊

Σ→∂Ω− ΦΣ ). (5.62)

Due to condition (5.53) and Remark 5.9(ii), ΦΣ ∈ H
1
2• (Σ)n and hence E̊

Σ→∂Ω± ΦΣ ∈
H

1
2 (∂Ω±)n . Then v±

1 ∈ H1(Ω±)n and satisfy transmission and boundary conditions (5.56)–
(5.58). Let us now define

g±
1 := div v±

1 ∈ L2(Ω±) (5.63)

Then by the divergence Theorem and condition (5.52) we obtain
∫

Ω+
g+
1 dx +

∫

Ω−
g−
1 dx =

∫

Ω+
g+dx +

∫

Ω−
g−dx . (5.64)

Let g2 ∈ L2(Ω) be such that g2|Ω± = g± − g±
1 . Hence g2 belongs to the space L2

0(Ω)

defined in (3.1). Then by Proposition 3.1 there exists v2 ∈ H̊1(Ω) such that

div v2 = g2 in Ω , ‖v2‖H1(Ω)n ≤ C‖g2‖L2(Ω) . (5.65)

Finally, choosing v± := v±
1 + r

Ω± v2 and using the inequality in (5.65) and the continuity
of the operators involved in (5.60)–(5.63), we get the assertion. ��

Theorem 5.11 LetAssumption 5.1 and conditions (2.2)–(2.4) hold. Then for all (̃f+, f̃−, g+,

g−,ϕ
Σ
,ψ

Σ
,ϕ+,ϕ−) ∈ Y the Dirichlet-transmission problem (5.51) has a unique solution
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(u+, π+,u−, π−) in the space XΩ+,Ω− defined in (5.27), and there exists a constant C =
C(Ω+,Ω−,CA, ‖A‖, n) > 0 such that

‖(u+, π+,u−, π−)‖XΩ+,Ω− ≤ C‖(̃f+, f̃−, g+, g−,ϕ
Σ
,ψ

Σ
,ϕ+,ϕ−)‖Y.

Proof We use arguments similar to those in the proof of Theorem 5.8. Let v± ∈ H1(Ω±)n

be given by Lemma 5.10. For the velocity-pressure couples (v±, 0), let f̌
± := Ľ

±
v± ∈

H̃−1(Ω±)n , where operators Ľ
±
are defined in (5.49). Hence f̌

± ∈ H̃−1(Ω±)n , f̌
±|Ω± =

L(v±, 0) in Ω±, cf. (2.9), and tΩ±(v±, 0; f̌±) = 0 by Definition A.2.
Then for the new functions w± := u± − v±, the fully non-homogeneous Dirichlet-

transmission problem (5.51) reduces to the following Dirichlet-transmission problem with
homogeneousDirichlet conditions onΓ ± and homogeneous interface condition for the traces
across Σ .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(w+, π+) = (̃f+ − f̌+)|Ω+ , divw+ = 0 in Ω+,

L(w−, π−) = (̃f− − f̌−)|Ω− , divw− = 0 in Ω−,

(γ
Ω+w

+)|Σ = (γ
Ω−w

−)|Σ on Σ,(
tΩ+(w+, π+; f̃+ − f̌+)

)|Σ + (
tΩ−(w−, π−; f̃− − f̌−)

)|Σ = ψ
Σ

on Σ,

(γ
Ω+w

+)|Γ + = 0 on Γ +,

(γ
Ω−w

−)|Γ − = 0 on Γ −.

(5.66)

Theorem 5.6 implies that the Dirichlet-transmission problem (5.66) has a unique solution
(w+, π+,w−, π−) in the space XΩ+,Ω− and depends continuously on the given data of this
problem. Finally, the well-posedness of problem (5.66) implies that the functions (u± =
w± + v±, π±) determine a solution of the fully non-homogeneous Dirichlet-transmission
problem (5.51) in the space XΩ+,Ω− , and the solution depends continuously on the given
data (̃f+, f̃−, g+, g−,ϕ

Σ
,ψ

Σ
,ϕ+,ϕ−) ∈ Y. This solution is unique by the uniqueness

statement in Theorem 5.6. ��

6 Dirichlet problem for the incompressible anisotropic Navier-Stokes
systemwith general data in a bounded Lipschitz domain

In this section, we show the existence of a weak solution of a fully non-homogeneous
Dirichlet problem for the anisotropic Navier-Stokes system in the incompressible case with
general data in L2-based Sobolev spaces in a bounded Lipschitz domain inRn , n = 2, 3. We
use the well-posedness result established in Theorem 4.1 for the Dirichlet problem for the
Stokes system and the following variant of the Leray-Schauder fixed point theorem (see [29,
Theorem 11.3]).

Theorem 6.1 Let X denote a Banach space and T : X → X be a continuous and compact
operator. If there exists a constant M0 > 0 such that ‖x‖X ≤ M0 for every pair (x, λ) ∈
X ×[0, 1] satisfying x = λT x, then the operator T has a fixed point x0 (with ‖x0‖X ≤ M0).

Recall that Ω ⊂ R
n is a bounded Lipschitz domain and denote

H
1
2

ν (∂Ω)n :=
{
ϕ ∈ H

1
2 (∂Ω)n : 〈ϕ, ν〉∂Ω = 0

}
. (6.1)
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Restricting our analysis to the case n ∈ {2, 3} will allow to use some compact embedding
results. Consider the following Dirichlet problem,

{L(u, π) = −F + (u · ∇)u , div u = 0 in Ω,

γΩu = ϕ on ∂Ω.
(6.2)

for the couple of unknowns (u, π) ∈ H1(Ω)n × L2(Ω)/R and the given data (F,ϕ) ∈
H−1(Ω)n × H

1
2

ν (∂Ω)n .
Themain tool for our next arguments is the following assertion (see, e.g., [39, (1.4)], [41]).

Lemma 6.2 Let ϕ ∈ H
1
2

ν (∂Ω)n. Then for any ε > 0 there exists vε = vε(ϕ;Ω) ∈ H1
div(Ω)n

such that

γΩvε = ϕ on ∂Ω (6.3)

and the following Leray-Hopf inequality holds
∣
∣〈(v · ∇)vε, v

〉
Ω

∣
∣ ≤ ε‖∇v‖2L2(Ω)n×n , ∀ v ∈ H̊1

div(Ω)n . (6.4)

Next we show the following existence result (see also [56, Proposition 1.1] in the isotropic
incompressible case (2.12) with μ = 1).

Theorem 6.3 Let Ω ⊂ R
n, n ∈ {2, 3}, be a bounded Lipschitz domain. Let conditions (2.2)–

(2.4) hold. Then for all given data (F,ϕ) ∈ H−1(Ω)n × H
1
2

ν (∂Ω)n, the Dirichlet problem
for the anisotropic Navier-Stokes system (6.2) has a solution (u, π) ∈ H1(Ω)n × L2(Ω)/R.

Proof We reduce the analysis of the nonlinear problem (6.2) to the analysis of a nonlinear
operator in the Hilbert space H̊1

div(Ω)n and show that this operator has a fixed-point due to
the Leray-Schauder Theorem (cf. [41], see also [39]).

To this end, we represent a solution of problem (6.2) in the form

u = u0 + vε , (6.5)

where vε ∈ H1
div(Ω)n satisfies relations (6.3) and (6.4) with an ε that will be specified later,

while u0 ∈ H̊1
div(Ω)n .

Then the Dirichlet problem (6.2) reduces to the nonlinear equation

L(u0, π) = Fεu0 (6.6)

for the couple of unknowns (u0, π) ∈ H̊1
div(Ω)n × L2(Ω)/R, where

Fεw : = −F − Lvε + ((w + vε) · ∇)(w + vε), ∀w ∈ H̊1
div(Ω)n (6.7)

(cf. notations in (2.7), (2.1) and (2.8)).
For a fixed vε ∈ H1

div(Ω)n , formula (6.7) defines a nonlinear mappingw �→ Fεw, and the
nonlinear operatorFε acts from H̊1

div(Ω)n to H−1(Ω)n due to the inclusionLvε ∈ H−1(Ω)n

(provided by (2.5)) and estimate (C.6).
By Theorem 4.1, the linear operator

L : H̊1
div(Ω)n × L2(Ω)/R → H−1(Ω)n (6.8)

is an isomorphism. Its inverse operator can be split into two operator components,

L−1 = (U,P),
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where U : H−1(Ω)n → H̊1
div(Ω)n and P : H−1(Ω)n → L2(Ω)/R are linear continuous

operators such that L(UF,PF) = F for any F ∈ H−1(Ω)n . By applying the operator L−1

to equation (6.6) we obtain the equivalent nonlinear system

u0 = Uεu0, (6.9)

π = Pεu0, (6.10)

where Uε : H̊1
div(Ω)n → H̊1

div(Ω)n and Pε : H̊1
div(Ω)n → L2(Ω)/R are the nonlinear

operators defined as

Uεw := U Fεw, (6.11)

Pεw := P Fεw (6.12)

(cf. also [41] for μ = 1 in the isotropic incompressible case (2.12)).
Since π is not involved in (6.9), we will first prove the existence of a solution u0 ∈

H̊1
div(Ω)n to this equation and then use (6.10) as a representation formula. This formula

provides the existence of the pressure field π ∈ L2(Ω)/R.
In order to show the existence of a fixed point of the operator Uε and, thus, the existence

of a solution of equation (6.9), we employ Theorem 6.1.
We show first thatUε is continuous. Letw,w′ ∈ H̊1

div(Ω)n . Then by (6.7) and (C.6) there
exists a constant c1 > 0 such that

∥∥Fεw − Fεw′∥∥
H−1(Ω)n

≤ ∥∥(w · ∇)w − (w′ · ∇)w′∥∥
H−1(Ω)n

+ ∥∥(vε · ∇)(w − w′) + ((w − w′) · ∇)vε

∥∥
H−1(Ω)n

≤ ∥∥((w − w′) · ∇)w + (w′ · ∇)(w − w′)
∥∥
H−1(Ω)n

+ 2c21
∥∥w − w′∥∥

H1(Ω)n
‖vε‖H1(Ω)n

≤ c21
∥∥w − w′∥∥

H1(Ω)n

(‖w‖H1(Ω)n + ‖w′‖H1(Ω)n + 2‖vε‖H1(Ω)n
)
. (6.13)

This estimate shows that the operator Fε : H̊1
div(Ω)n → H−1(Ω)n is continuous. Conse-

quently, the operator Uε = U Fε : H̊1
div(Ω)n → H̊1

div(Ω)n is also continuous, as asserted.
Next we show that the operator Uε is compact. To this end, we assume that {wk}k∈N is

a bounded sequence in the space H̊1
div(Ω)n endowed with the norm, coinciding with semi-

norm (4.1), and prove that the sequence {Fεwk}k∈N contains a convergent subsequence in
H−1(Ω)n .

Let M > 0 be such that ‖wk‖H̊1
div(Ω)n

≤ M for all k ∈ N. Since the embedding of the

space H̊1
div(Ω)n into the space L4(Ω)n is compact (see, e.g., [1, Theorem 6.3]), there exists

a subsequence of {wk}k∈N, labeled as the sequence for the sake of brevity, which converges
in L4(Ω)n , and, hence, is a Cauchy sequence in L4(Ω)n . From (6.7), (C.6) and (C.15), we
obtain

∥∥Fεwk − Fεw�

∥∥
H−1(Ω)n

≤ ‖((wk − w�) · ∇)wk + (w� · ∇)(wk − w�)‖H−1(Ω)n

+ ‖(vε · ∇)(wk − w�) + ((wk − w�) · ∇)vε‖H−1(Ω)n

≤ c1
(‖wk‖H1(Ω)n + ‖w�‖H1(Ω)n + 2‖vε‖H1(Ω)n

) ‖wk − w�‖L4(Ω)n

≤ 2c1
(
M + ‖vε‖H1(Ω)n

) ‖wk − w�‖L4(Ω)n . (6.14)

This inequality, combined with the property that {wk}k∈N is a Cauchy sequence in the space
L4(Ω)n , implies that {Fεwk}k∈N is a Cauchy sequence in the space H−1(Ω)n . Therefore,
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Fε : H̊1
div(Ω)n → H−1(Ω)n is a compact operator. Hence, the operator Uε = U Fε :

H̊1
div(Ω)n → H̊1

div(Ω)n is also compact, as asserted.
Next, we show that there exists a constant M0 > 0 such that ifw ∈ H̊1

div(Ω)n satisfies the
equation

w = λUεw (6.15)

for some λ ∈ [0, 1], then ‖w‖H1(Ω)n ≤ M0. Let us also introduce the function

q := λPεw. (6.16)

By applying the operator L to equations (6.15)–(6.16) and by using relations (6.11) and
(6.12), we deduce that whenever the pair (w, λ) ∈ H̊1

div(Ω)n × R satisfies equation (6.15),
then the equation

L(w, q) = λFεw, (6.17)

is also satisfied. (Recall the isomorphism property of operator (6.8).) Then the first Green
identity (A.1) implies the equation

〈
aαβ
i j E jβ(w), Eiα(w)

〉

Ω
= −〈λFεw,w〉Ω , (6.18)

which, in view of relation (6.7), takes the form
〈
aαβ
i j E jβ(w), Eiα(w)

〉
Ω

= λ〈F,w〉Ω − λ
〈
aαβ
i j E jβ(vε), Eiα(w)

〉
Ω

− λ
〈
((w + vε) · ∇)w,w

〉
Ω

− λ
〈
(vε · ∇)vε,w

〉
Ω

− λ
〈
(w · ∇)vε,w

〉
Ω

. (6.19)

Relation (C.13) implies that
〈
((w+vε)·∇)w,w

〉
Ω

= 0. Then by using theKornfirst inequality
(4.9), the ellipticity condition (2.4), equation (6.19), the Hölder inequality, relation (C.14),
and the Leray-Hopf inequality (6.4), we obtain for λ ≥ 0 that

1

2
C−1
A

‖∇w‖2L2(Ω)n×n ≤ C−1
A

‖E(w)‖2L2(Ω)n×n ≤
〈
aαβ
i j E jβ(w), Eiα(w)

〉

Ω

≤ λ|||F|||H−1(Ω)n‖∇w‖L2(Ω)n×n + λ‖A‖ ‖∇w‖L2(Ω)n×n‖∇vε‖L2(Ω)n×n

+ λ‖vε‖2L4(Ω)n
‖∇w‖L2(Ω)n×n + λε‖∇w‖2L2(Ω)n×n , (6.20)

where the norm ||| · |||H−1(Ω)n is defined in (4.4) and ‖A‖ is the norm of the viscosity tensor
coefficient given by (2.5). Hence, for λ ∈ [0, 1],

(1
2
C−1
A

− ε
)
‖∇w‖L2(Ω)n×n ≤ |||F|||H−1(Ω)n + ‖A‖ ‖∇vε‖L2(Ω)n×n + ‖vε‖2L4(Ω)n

.

Choosing ε < 1
2C

−1
A

in the Leray-Hopf’s inequality (6.4), we obtain the estimate

‖∇w‖L2(Ω)n×n ≤ 2

C−1
A

− 2ε

(
|||F|||H−1(Ω)n + ‖A‖ ‖∇vε‖L2(Ω)n×n + ‖vε‖2L4(Ω)n

)
, (6.21)

that is, ‖w‖H1(Ω)n ≤ M0, where M0 is given by the right hand side of (6.21) multiplied by

the equivalence constant between the norm and semi-norm in H̊1(Ω)n .
Therefore, the operator Uε : H̊1

div(Ω)n → H̊1
div(Ω)n satisfies the hypothesis of Theorem

6.1 (with X = H̊1
div(Ω)n), and hence it has a fixed point u0 ∈ H̊1

div(Ω)n , that is, u0 = Uεu0.
Then with π ∈ L2(Ω)/R as in (6.10), we obtain that the couple (u0, π) ∈ H̊1

div(Ω)n ×
L2(Ω)/R satisfies the nonlinear equation (6.6). Consequently, the couple (u, π) = (vε +
u0, π) ∈ H1(Ω)n × L2(Ω)/R is a solution of the nonlinear Dirichlet problem (6.2). (Recall
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that vε is an extension to H1
div(Ω)n of the function ϕ ∈ H

1
2

ν (∂Ω)n , and, thus, it satisfies the
Dirichlet condition (6.3).) ��

7 Dirichlet-transmission problem for the anisotropic Navier-Stokes
system in a bounded Lipschitz domain with a transversal Lipschitz
interface

In this section we show the existence of weak solutions of Dirichlet-transmission problems
for the anisotropic Navier-Stokes system with data in L2-based Sobolev spaces in a bounded
Lipschitz domain in R

n , n = 2, 3, satisfying Assumption 5.1. First, we analyze a Dirichlet-
transmission problem for the incompressible Navier-Stokes system with general PDE right
hand sides and a jump of conormal derivatives on the transversal Lipschitz interface. We
reduce this nonlinear problem to a Dirichlet problem for the Navier-Stokes system whose
analysis is based on the Leray-Hopf inequality and the Leray-Schauder fixed point theorem.
Then, we study a Dirichlet-transmission problem for the anisotropic Navier-Stokes system in
a compressible framework with non-homogeneous Dirichlet condition and trace and conor-
mal derivative jumps across the internal Lipschitz interface. We use a Bogovskii-type result
established in Lemma 5.7, some useful estimates and the Leray-Schauder fixed point theorem
to show the existence of a weak solution to this nonlinear problem. In the case of small data,
the uniqueness of the weak solution is also established.

7.1 Dirichlet-transmission problem in a bounded Lipschitz domain with conormal
derivative jump on the transversal Lipschitz interface

Let us consider the following Dirichlet-transmission problem for the incompressible
anisotropic Navier-Stokes system with a prescribed conormal derivative jump but without
velocity jump on the interface,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ + (u+ · ∇)u+ , div u+ = 0 in Ω+,

L(u−, π−) = f̃−|Ω− + (u− · ∇)u− , div u− = 0 in Ω−,

(γ
Ω+u

+)|Σ = (γ
Ω−u

−)|Σ on Σ ,(
tΩ+

(
u+, π+; f̃+ + E̊Ω+→Ω(u+ · ∇)u+))∣∣

Σ

+ (
tΩ−

(
u−, π−; f̃− + E̊Ω−→Ω(u− · ∇)u−))∣∣

Σ
= ψ

Σ
on Σ ,

(γ
Ω+u

+)|Γ + = ϕ|Γ + on Γ + ,

(γ
Ω−u

−)|Γ − = ϕ|Γ − on Γ −

(7.1)

with the unknown (u+, π+,u−, π−) ∈ XΩ+,Ω− and the given data (̃f+, f̃−,ψ
Σ
,ϕ) ∈

(
H1

Γ +(Ω+)n
)′ × (

H1
Γ −(Ω−)n

)′×H− 1
2 (Σ)n×H

1
2

ν (∂Ω)n . HereXΩ+,Ω− is the space defined

in (5.27), and E̊Ω±→Ω are the zero extension operators from Ω± to Ω .

Existence of a weak solution

Let (u+, π+,u−, π−) ∈ XΩ+,Ω− . Assume thatu+ andu− satisfy the homogeneous interface
condition (γ

Ω+u
+)|Σ − (γ

Ω−u
−)|Σ = 0 on Σ . Then by Lemma B.1, there exists a unique
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pair (u, π) ∈ H1(Ω)n × L2(Ω)/R such that

u|Ω+ = u+, u|Ω− = u−, π |Ω+ = π+, π |Ω− = π−. (7.2)

Let also F ∈ H−1(Ω)n = (
H̊1(Ω)n

)′ ⊂ (
H̊1
div(Ω)n

)′ be such that

〈F, v〉Ω := −〈
f̃+ + f̃−, v

〉
Ω

+ 〈ψ
Σ
, γΣ v〉Σ , ∀ v ∈ H̊1(Ω)n , (7.3)

that is, F = −(f̃+ + f̃−) + γ ∗
Σ
ψ

Σ
. Here γ ∗

Σ
: H− 1

2 (Σ)n → H−1(Ω)n denotes the adjoint

of the trace operator γΣ : H̊1(Ω)n → H̃
1
2 (Σ)n defined by (5.16), and the support of γ ∗

Σ
ψ

Σ

is a subset of Σ .
An argument similar to that for problem (5.25) implies the following result.

Lemma 7.1 The nonlinear Dirichlet-transmission problem (7.1) is equivalent, in the sense
of relations (7.2), to the nonlinear Dirichlet problem (6.2) with F = −(f̃+ + f̃−) + γ ∗

Σ
ψ

Σ
.

Proof Assume that
(
u+, π+,u−, π−) ∈ XΩ+,Ω− satisfy thenonlinearDirichlet-transmission

problem (7.1). Then the Green identity (5.24) and the divergence theorem give the following
weak equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
aαβ
i j E jβ(u+), Eiα(w)

〉
Ω+ − 〈

π+, divw
〉
Ω+ − 〈

(u+ · ∇)u+,w
〉
Ω+

+〈
aαβ
i j E jβ(u−), Eiα(w−)

〉
Ω− − 〈

π−, divw−〉
Ω− − 〈

(u− · ∇)u−,w−〉
Ω−

−〈
f̃+,w

〉
Ω+ − 〈

f̃−,w
〉
Ω− + 〈ψ

Σ
, γΣw〉Σ = 0 , ∀w ∈ H̊1(Ω)n ,

〈div u+, q〉Ω+ + 〈div u−, q〉Ω− = 0, ∀ q ∈ L2(Ω)/R.

(7.4)

Let us also complement these variational equations by the equations for traces from (7.1),
⎧
⎨

⎩

(γ
Ω+u

+)|Σ = (γ
Ω−u

−)|Σ on Σ ,

(γ
Ω+u

+)|Γ + = ϕ|Γ + on Γ + ,

(γ
Ω−u

−)|Γ − = ϕ|Γ − on Γ − .

(7.5)

Hence if
(
u+, π+,u−, π−) ∈ XΩ+,Ω− satisfy the Dirichlet-transmission problem (7.1),

they satisfy equations (7.4)–(7.5).
Conversely, assume that

(
u+, π+,u−, π−) ∈ XΩ+,Ω− satisfy equations (7.4)–(7.5).

Since the spaces D(Ω±)n are subspaces of H̊1(Ω)n , the (distributional form of the)
anisotropic Navier-Stokes equations in (7.1), in each of the domains Ω+ and Ω−, follows
from the first equation in (7.4) written for all w ∈ D(Ω+)n and w ∈ D(Ω−)n , respec-
tively. Similarly, the second equation in (7.4) implies the equations div u± = 0 in Ω±. Thus,(
u+, π+,u−, π−) satisfies the anisotropic Navier-Stokes system in Ω+ ∪ Ω− and the trace
conditions (7.5). Then substituting the first equation in (7.4) into the Green identity (5.24),
we obtain the equation

〈(
tΩ+

(
u+, π+; f̃+ + E̊Ω+→Ω(u+ · ∇)u+))∣∣

Σ

+(
tΩ−

(
u−, π−; f̃− + E̊Ω−→Ω(u− · ∇)u−))∣∣

Σ
, (γΩw)|Σ

〉
Σ

= 〈
ψ

Σ
, γΣw

〉
Σ

.

In view of Lemma 5.3, this formula can be written in the equivalent form
〈(
tΩ+

(
u+, π+; f̃+ + E̊Ω+→Ω(u+ · ∇)u+)∣∣

Σ

+ tΩ−
(
u−, π−; f̃− + E̊Ω−→Ω(u− · ∇)u−))∣∣

Σ
,φ

〉
Σ

= 〈
ψ

Σ
,φ

〉
Σ

, ∀ φ∈H
1
2• (Σ)n .

Therefore,
(
tΩ+(u+, π+; f̃+)+tΩ−(u−, π−; f̃−)

)∣∣
Σ

= ψ
Σ
onΣ .Hence if

(
u+, π+,u−, π−) ∈

XΩ+,Ω− satisfy equations (7.4)–(7.5), they solve the Dirichlet-transmission problem (7.1).
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Consequently, problems (7.1) and the variational formulation (7.4)–(7.5) are equivalent.
Let again

(
u+, π+,u−, π−) ∈ XΩ+,Ω− and the homogeneous interface condition in

(7.5) be satisfied. Then there exists a unique pair (u, π) ∈ H̊1(Ω)n × L2(Ω)/R defined
by relations (7.2) (cf. Lemma B.1). Then taking into account relation (7.3), the variational
formulation (7.4)–(7.5) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
aαβ
i j E jβ(u), Eiα(w)

〉

Ω
+〈(u · ∇)u,w〉Ω − 〈π, divw〉Ω

= 〈
F,w

〉
Ω

, ∀w ∈ H̊1(Ω)n ,

〈div u, q〉Ω = 0, ∀ q ∈ L2(Ω)/R,

γΩu = ϕ on ∂Ω .

(7.6)

Repeating the arguments similar the above in this proof, one can see that the variational
formulation (7.6) is also equivalent to the nonlinear Dirichlet problem (6.2).

Consequently, problems (7.1) and (6.2) are equivalent, as asserted. ��
Theorem 7.2 Let Ω ⊂ R

n, n ∈ {2, 3}, be a bounded Lipschitz domain satisfying Assump-
tion 5.1. Let conditions (2.2)–(2.4) hold. Then for all given data (f̃+, f̃−,ψ

Σ
,ϕ) in the space

(
H1

Γ +(Ω+)n
)′ × (

H1
Γ −(Ω−)n

)′ × H− 1
2 (Σ)n × H

1
2

ν (∂Ω)n, the Dirichlet-transmission prob-
lem (7.1) for the anisotropic Navier-Stokes system has a weak solution (u+, π+,u−, π−) ∈
XΩ+,Ω− defined by relations (7.2) in terms of the solution (u, π) of the nonlinear Dirichlet
problem (6.2) with F = −(f̃+ + f̃−) + γ ∗

Σ
ψ

Σ
.

Proof By Theorem 6.3, the Dirichlet problem (6.2) has a solution (u, π) ∈ H1
div(Ω)n ×

L2(Ω)/R and then, in view of Lemma 7.1, the functions (u+, π+,u−, π−) ∈ XΩ+,Ω−
defined by (7.2) satisfy the nonlinear problem (7.1) in the distribution sense. ��

Uniqueness result for the Dirichlet-transmission problem (7.1)

Next we show that an additional constraint to the given data of the nonlinear Dirichlet-
transmission problem (7.1) leads to the uniqueness of the weak solution of this problem.

Recall that γ ∗
Σ

: H− 1
2 (Σ)n → H−1(Ω)n is the adjoint of the trace operator γΣ :

H̊1(Ω)n → H
1
2• (Σ)n defined by (5.16), and that CA is the ellipticity constant in (2.4).

On the other hand, in view of Lemma 4.2, there exists an extension vϕ of ϕ ∈ H
1
2

ν (∂Ω)n to
H1
div(Ω), that is, γΩ vϕ = ϕ on ∂Ω , and

‖∇vϕ‖L2(Ω)n×n≤ ‖vϕ‖H1(Ω)n ≤ C‖ϕ‖
H

1
2 (∂Ω)n

(7.7)

with some constant C = C(Ω, n) > 0.
Then we prove the following uniqueness result (see also [56, Lemma 3.1] in the isotropic

case (2.12) with μ = 1 and homogeneous Dirichlet condition, and [34, Theorem 4.2] for a
nonlinear transmission problem in a pseudostress approach).

Theorem 7.3 Let n = 2, 3 and Ω ⊂ R
n be a bounded Lipschitz domain satisfying Assump-

tion 5.1. Let conditions (2.2)–(2.4) be satisfied. Let (f̃+, f̃−,ϕ,ψ
Σ
) be given in the space

(
H1

Γ +(Ω+)n
)′ × (

H1
Γ −(Ω−)n

)′ × H
1
2

ν (∂Ω)n × H− 1
2 (Σ)n. Let

c20|||F|||H−1(Ω)n + (c20C‖A‖ + C−1
A

Cc0c1)‖ϕ‖
H

1
2 (∂Ω)n

<
1

4
C−2
A

, (7.8)
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where CA, C, c0, and c1 are the constants in (2.4), (7.7), (C.2), and (C.1), respectively,
while F = −(f̃+ + f̃−) + γ ∗

Σ
(ψ

Σ
). Then the nonlinear problem (7.1) has only one solution

(u+, π+,u−, π−) ∈ XΩ+,Ω− .

Proof The solution existence is implied by Theorem 7.2. To prove that it is unique under
the theorem conditions, let us assume that u(1),u(2) ∈ H1

div(Ω)n are the velocities in two
solutions of the nonlinear problem (7.1) in the sense of (7.2). Let us write them in the form

u(i) = vϕ + u(i)
0 , i = 1, 2, (7.9)

where vϕ ∈ H1
div(Ω)n satisfies the relation γΩ vϕ = ϕ on ∂Ω and estimate (7.7), while

u(1)
0 ,u(2)

0 ∈ H̊1
div(Ω)n satisfy equations (6.6)–(6.7) with vϕ instead of vε .

Let us denote u := u(1) −u(2) = u(1)
0 −u(2)

0 , π := π(1) −π(2), where π(i) is the pressure
term corresponding to u(i), i = 1, 2. Using the first equations in the two upper lines of (7.1),
we obtain

L(u, π) =(u(1) · ∇)u(1) − (u(2) · ∇)u(2). (7.10)

This implies that

〈
aαβ
i j E jβ(u), Eiα(u)

〉
Ω

= −〈(
u · ∇)

u(1),u
〉
Ω

− 〈
(u(2) · ∇)u,u

〉
Ω

. (7.11)

Moreover, identity (C.13) and the inclusion u ∈ H̊1
div(Ω)n show that the last term in the

right-hand side of (7.11) equals zero. Therefore, equation (7.11) reduces to

〈
aαβ
i j E jβ(u), Eiα(u)

〉
Ω

= −〈(
u · ∇)

u(1),u
〉
Ω

. (7.12)

On the other hand, estimate (4.10) implies that

‖∇u‖2L2(Ω)n×n ≤ 2CA

〈
aαβ
i j E jβ(u), Eiα(u)

〉
Ω

, (7.13)

and by the Hölder inequality and inequalities (C.2) and (7.7) together with (C.12) and (C.1),
we obtain

∣∣〈(u · ∇)
u(1),u

〉
Ω

∣∣ = ∣∣〈(u · ∇)
u,u(1)〉

Ω

∣∣ ≤ ‖u‖L4(Ω)n‖∇u‖L2(Ω)n×n‖u(1)‖L4(Ω)n

≤ ‖u‖L4(Ω)n‖∇u‖L2(Ω)n×n (‖u(1)
0 ‖L4(Ω)n + ‖vϕ‖L4(Ω)n )

≤ c0‖∇u‖2L2(Ω)n×n

(
c0‖∇u(1)

0 ‖L2(Ω)n×n + Cc1‖ϕ‖
H

1
2 (∂Ω)n

)
. (7.14)

Hence

‖∇u‖2L2(Ω)n×n ≤ 2CAc0‖∇u‖2L2(Ω)n×n

(
c0‖∇u(1)

0 ‖L2(Ω)n×n + Cc1‖ϕ‖
H

1
2 (∂Ω)n

)
. (7.15)
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Moreover, an estimate similar to (6.20) with λ = 1, combined with estimates (C.2), (C.1),
(C.12) and (7.7) together with relation (6.19) imply that

1

2
C−1
A

‖∇u(1)
0 ‖2L2(Ω)n×n ≤ C−1

A
‖E(u(1)

0 )‖2L2(Ω)n×n ≤
〈
aαβ
i j E jβ(u(1)

0 ), Eiα(u(1)
0 )

〉

Ω

≤ |||F|||H−1(Ω)n‖∇u(1)
0 ‖L2(Ω)n×n + ‖A‖ ‖∇u(1)

0 ‖L2(Ω)n×n‖∇vϕ‖L2(Ω)n×n

+ ‖vϕ‖2L4(Ω)n
‖∇u(1)

0 ‖L2(Ω)n×n + ‖∇u(1)
0 ‖L2(Ω)n×n‖u(1)

0 ‖L4(Ω)n‖vϕ‖L4(Ω)n

≤ |||F|||H−1(Ω)n‖∇u(1)
0 ‖L2(Ω)n×n + C‖A‖ ‖∇u(1)

0 ‖L2(Ω)n×n‖ϕ‖
H

1
2 (∂Ω)n

+ C2c21‖ϕ‖2
H

1
2 (∂Ω)n

‖∇u(1)
0 ‖L2(Ω)n×n + Cc1c0‖ϕ‖

H
1
2 (∂Ω)n

‖∇u(1)
0 ‖2L2(Ω)n×n .

Thus, we obtain the estimate
(
1

2
C−1
A

− Cc1c0‖ϕ‖
H

1
2 (∂Ω)n

)
‖∇u(1)

0 ‖L2(Ω)n×n

≤ |||F|||H−1(Ω)n + C‖A‖ ‖ϕ‖
H

1
2 (∂Ω)n

+ C2c21‖ϕ‖2
H

1
2 (∂Ω)n

. (7.16)

From (7.8) we have that

C−1
A

Cc0c1‖ϕ‖
H

1
2 (∂Ω)n

<
1

4
C−2
A

− c20|||F|||H−1(Ω)n − c20C‖A‖‖ϕ‖
H

1
2 (∂Ω)n

≤ 1

2
C−2
A

.

This implies that the term

(
1
2C

−1
A

− Cc1c0‖ϕ‖
H

1
2 (∂Ω)n

)
is positive. Dividing (7.16) by this

term and combining the resulting inequality with (7.15), we obtain

‖∇u‖2L2(Ω)n×n ≤ 2CAc0‖∇u‖2L2(Ω)n×n

×
⎡

⎣c0

|||F|||H−1(Ω)n + C‖A‖ ‖ϕ‖
H

1
2 (∂Ω)n

+ C2c21‖ϕ‖2
H

1
2 (∂Ω)n

1
2C

−1
A

− Cc1c0‖ϕ‖
H

1
2 (∂Ω)n

+ Cc1‖ϕ‖
H

1
2 (∂Ω)n

⎤

⎦ .

This finally reduces to the estimate

1

4
C−2
A

‖∇u‖2L2(Ω)n×n

≤
[
c20|||F|||H−1(Ω)n + c20C‖A‖ ‖ϕ‖

H
1
2 (∂Ω)n

+ C−1
A

Cc0c1‖ϕ‖
H

1
2 (∂Ω)n

]
‖∇u‖2L2(Ω)n×n .

In view of assumption (7.8), this is possible only if ∇u = 0, and since u ∈ H̊1(Ω)n , we
obtain that u(1) = u(2) in Ω . Moreover, equation (7.10) reduces to the equation ∇π = 0,
that is, π(1) = π(2) in L2(Ω)/R. ��

In the special case of zero Dirichlet datum on ∂Ω , we obtain the following result.

Corollary 7.4 Let n = 2, 3 and Ω ⊂ R
n be a bounded Lipschitz domain satisfying Assump-

tion 5.1. Let A satisfy conditions (2.2)–(2.4). Let
(̃
f,ψ

Σ

) ∈ H−1(Ω)n × H− 1
2 (Σ)n and

F ∈ H−1(Ω)n be given by F = −(f̃+ + f̃−) + γ ∗
Σ
(ψ

Σ
). If

c20|||F|||H−1(Ω)n <
1

4
C−2
A

, (7.17)

where c0 is the constant given in (C.2), then the nonlinear problem (7.1) with ϕ = 0 has a
unique weak solution u ∈ H̊1

div(Ω)n.
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Note that for the isotropic case (2.12) with a constant parameter μ > 0, it is easy to see
that CA = 1/(2μ). Then the uniqueness condition (7.17) reduces to the known uniqueness
condition

c20|||F|||H−1(Ω)n < μ2.

for the isotropic Navier-Stokes equation, cf. [56, Lemma 3.1].

7.2 Dirichlet-transmission problem for the compressible anisotropic Navier-Stokes
systemwith trace and conormal derivative jumps on a transversal Lipschitz
interface in a bounded Lipschitz domain

Let us consider the Dirichlet-transmission problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(u+, π+) = f̃+|Ω+ + (u+ · ∇)u+ , div u+ = g+ in Ω+,

L(u−, π−) = f̃−|Ω− + (u− · ∇)u− , div u− = g− in Ω−,

(γ
Ω+u

+)|Σ − (γ
Ω−u

−)|Σ = ϕ
Σ

on Σ ,(
tΩ+

(
u+, π+; f̃+ + E̊Ω+→Ω(u+ · ∇)u+))∣∣

Σ

+ (
tΩ−

(
u−, π−; f̃− + E̊Ω−→Ω(u− · ∇)u−))∣∣

Σ
= ψ

Σ
on Σ ,

(γ
Ω+u

+)|Γ + = ϕ|Γ + on Γ + ,

(γ
Ω−u

−)|Γ − = ϕ|Γ − on Γ −

(7.18)

with the unknowns (u+, π+,u−, π−) ∈ XΩ+,Ω− and the given data
(̃f+, f̃−, g+, g−,ϕ

Σ
,ψ

Σ
,ϕ) ∈ Y•. Recall that XΩ+,Ω− is the space defined in (5.27), and

Y• is the space defined in the beginning of Sect. 5.4.
Note that by Lemma 5.7 there exist some functions v±

ϕ ∈ H1(Ω±)n such that
⎧
⎨

⎩

div v±
ϕ = g± in Ω± ,(

γ
Ω+ v

+
ϕ

)|Σ − (
γ

Ω− v
−
ϕ

)|Σ = ϕ
Σ

on Σ ,(
γ

Ω± v
±
ϕ

)|Γ ± = ϕ|Γ ± on Γ ± ,

(7.19)

and some constant CΣ = CΣ(Ω+,Ω−, n) > 0 such that

‖v±
ϕ ‖H1(Ω±)n ≤ CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M• , (7.20)

where ‖(g+, g−,ϕ
Σ
,ϕ)‖M• is defined by (5.35).

By estimate (C.1) there exist some constants c±
1 = c±

1 (Ω±, n) > 0, such that

‖v‖L4(Ω±)n ≤ c±
1 ‖v‖H1(Ω±)n ≤ c∗

1‖v‖H1(Ω±)n , ∀ v ∈ H1(Ω±)n , (7.21)

where c∗
1 = max(c+

1 , c−
1 ). In addition, inequality (C.2) holds on Ω .

Let us prove the existence of a solution to problem (7.18) by employing arguments similar
to those in the proof of Theorem 6.3.

Theorem 7.5 Let Assumption 5.1 and conditions (2.2)–(2.4) hold with n ∈ {2, 3}. Let
(̃f+, f̃−, g+, g−,ϕ

Σ
,ψ

Σ
,ϕ) ∈ Y•.

(i) If

‖(g+, g−,ϕ
Σ
,ϕ)‖M• <

1

4
C−1
A

c−1
0 (c∗

1 + c0)
−1C−1

Σ , (7.22)

where CA, CΣ , c∗
1 and c0, are the constants in (2.4), (7.20), (7.21) and (C.2), respec-

tively, then the Dirichlet-transmission problem (7.18) for the Navier-Stokes system has
a solution (u+, π+,u−, π−) ∈ XΩ+,Ω− .
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(ii) If

c20|||F|||H−1(Ω)n +
(
c20CΣ‖A‖ + 2C−1

A
CΣc0(c

∗
1 + c0)

)
‖(g+, g−,ϕ

Σ
,ϕ)‖M•

<
1

4
C−2
A

, (7.23)

where F := (̃f+ + f̃−) − γ ∗
Σ
ψ

Σ
, then the nonlinear Dirichlet-transmission problem

(7.18) has a unique solution (u+, π+,u−, π−) ∈ XΩ+,Ω− .

Proof (i) Let us represent the unknowns u± of problem (7.18) in the form

u± = u±
0 + v±

ϕ , (7.24)

where (v+
ϕ , v−

ϕ ) ∈ H1(Ω+)n × H1(Ω−)n satisfy relations (7.19) and estimate (7.20). Then
the nonlinear Dirichlet-transmission problem (7.18) reduces to the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(u+
0 , π+) = (̃F+

ϕ u
+
0 )|Ω+ , div u+

0 = 0 in Ω+,

L(u−
0 , π−

0 ) = (̃F−
ϕ u

−
0 )|Ω− , div u−

0 = 0 in Ω−,

(γ
Ω+u

+
0 )|Σ = (γ

Ω−u
−
0 )|Σ on Σ,(

tΩ+(u+
0 , π+; F̃+

ϕ u
+
0 )
)|Σ + (

tΩ−(u−
0 , π−; F̃−

ϕ u
−
0 )
)|Σ = ψ

Σ
on Σ,

(γ
Ω+u

+
0 )|Γ + = 0 on Γ +,

(γ
Ω−u

−
0 )|Γ − = 0 on Γ − ,

(7.25)

for the unknowns (u+
0 , π+,u−

0 , π−) ∈ XΩ+,Ω− , where

F̃±
ϕw

± : = f̃±−Ľ
±
v±
ϕ + E̊Ω±

[
((w± + v±

ϕ ) · ∇)(w± + v±
ϕ )
]

(7.26)

and E̊Ω± is used here as a shorter notation for E̊Ω±→Ω . Recall that Ľ
± : H1(Ω±)n →

H̃−1(Ω±)n are the operators defined in (5.49) and
(
Ľ

±
v±)|Ω± = L(v±, 0) inΩ±. For fixed

v±
ϕ ∈ H1(Ω)n , formula (7.26) defines nonlinear operators w± �→ F̃±

ϕw
± from the space

H1(Ω±)n to the space
(
H1

Γ ±(Ω±)n
)′
due to estimate (C.17), Lemma B.6, and the inclusion

Ľ
±
v±
ϕ ∈ H̃−1(Ω±)n ↪→ (

H1
Γ ±(Ω±)n

)′
.

In addition, the inclusion (u+
0 , π+,u−

0 , π−) ∈ XΩ+,Ω− , the homogeneous interface con-
dition (γ

Ω+u
+
0 )|Σ − (γ

Ω−u
−
0 )|Σ = 0 in (7.25), and Lemma B.1 imply that there exists a

unique pair (u0, π) ∈ H1(Ω)n × L2(Ω)/R such that

u0|Ω+ = u+
0 , u0|Ω− = u−

0 , π |Ω+ = π+, π |Ω− = π− . (7.27)

Since u+
0 and u−

0 also satisfy the homogeneous Dirichlet condition in (7.25) and are
divergence-free, we have that u0 ∈ H̊1

div(Ω)n . Hence, (u0, π) ∈ H̊1
div(Ω)n × L2(Ω)/R.

For any w ∈ H̊1
div(Ω)n let Fϕw be defined by

Fϕw = F̃+
ϕ rΩ+w + F̃−

ϕ rΩ−w − γ ∗
Σ
ψ

Σ

= F−(
Ľ

+
v+
ϕ + Ľ

−
v−
ϕ

) + E̊Ω+
[
(v+

ϕ · ∇)v+
ϕ

] + E̊Ω−
[
(v−

ϕ · ∇)v−
ϕ

] + (w · ∇)w

+ ((E̊Ω+v+
ϕ + E̊Ω−v−

ϕ ) · ∇)w + w · (E̊Ω+∇v+
ϕ + E̊Ω−∇v−

ϕ ) , (7.28)

where F := (̃f+ + f̃−) − γ ∗
Σ
ψ

Σ
, γ ∗

Σ
: H− 1

2 (Σ)n → H−1(Ω)n is the adjoint of the trace

operator γΣ : H̊1(Ω)n → H
1
2• (Σ)n defined by (5.16), and hence F ∈ H−1(Ω)n due
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to Lemma B.6. For fixed v±
ϕ ∈ H1(Ω±)n , formula (7.28) defines a nonlinear operator

w �→ Fϕw from H̊1
div(Ω)n to H−1(Ω)n due to Lemma B.6 and estimates (C.5) and (C.6).

Now, arguing as in the proof of Lemma 7.1 (cf. also Theorem 5.6), we obtain that the
nonlinear Dirichlet-transmission problem (7.25) with the unknowns

(
u+
0 , π+,u−

0 , π−) ∈
XΩ+,Ω− is equivalent to the nonlinear equation

L(u0, π) = Fϕu0 in Ω (7.29)

for the unknowns (u0, π) ∈ H̊1
div(Ω)n × L2(Ω)/R, with Fϕ given by (7.28).

The following arguments are similar to those in the proof of Theorem 6.3. ByTheorem 4.1,
the linear operator

L : H̊1
div(Ω)n × L2(Ω)/R → H−1(Ω)n (7.30)

is an isomorphism. Its inverse operator can be split into two operator components,

L−1 = (U,P),

where U : H−1(Ω)n → H̊1
div(Ω)n and P : H−1(Ω)n → L2(Ω)/R are linear continuous

operators such that L(UF,PF) = F for any F ∈ H−1(Ω)n . Applying the operator L−1 to
equation (7.29) we obtain the equivalent nonlinear system

u0 = Uu0, (7.31)

π = Pu0, (7.32)

where U : H̊1
div(Ω)n → H̊1

div(Ω)n and P : H̊1
div(Ω)n → L2(Ω)/R are the nonlinear

operators defined as

Uw := U Fϕw, (7.33)

Pw := P Fϕw. (7.34)

Since π is not involved in (7.31), we will first prove the existence of a solution u0 ∈
H̊1
div(Ω)n to this equation and then use (7.32) as a representation formula. This provides the

existence of a pressure field π ∈ L2(Ω)/R.
In order to show the existence of a fixed point of the operator U and, thus, the existence

of a weak solution of nonlinear problem (7.25), we employ Theorem 6.1.
Let us show first that U is continuous. Let w,w′ ∈ H̊1

div(Ω)n . Then by (7.28), (C.6),
(C.17) and (C.18) we obtain that
∥∥Fϕw − Fϕw′∥∥

H−1(Ω)n
≤ ∥∥(w · ∇)w − (w′ · ∇)w′∥∥

H−1(Ω)n

+ ∥∥((E̊Ω+v+
ϕ + E̊Ω−v−

ϕ ) · ∇)(w − w′) + (w − w′) · (E̊Ω+∇v+
ϕ + E̊Ω−∇v−

ϕ )
∥∥
H−1(Ω)n

≤ ∥∥((w − w′) · ∇)w + (w′ · ∇)(w − w′)
∥∥
H−1(Ω)n

+ 2(c∗
1)

2
∥∥w − w′∥∥

H1(Ω)n
(‖v+

ϕ ‖H1(Ω+)n + ‖v−
ϕ ‖H1(Ω−)n )

≤ ∥∥w − w′∥∥
H1(Ω)n

(
c21‖w‖H1(Ω)n + c21‖w′‖H1(Ω)n

+ 2(c∗
1)

2‖v+
ϕ ‖H1(Ω+)n + 2(c∗

1)
2|v−

ϕ ‖H1(Ω−)n
)
.

This estimate shows that the operator Fϕ : H̊1
div(Ω)n → H−1(Ω)n is continuous. The

operator U = U Fϕ : H̊1
div(Ω)n → H̊1

div(Ω)n is also continuous, as asserted.
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Next we show that the operator U is compact. To this end, we assume that {wk}k∈N is a
bounded sequence in the space H̊1

div(Ω)n and prove that the sequence {Fϕwk}k∈N contains a
convergent subsequence in H−1(Ω)n .

Let M > 0 be such that ‖wk‖H1(Ω)n ≤ M for all k ∈ N. By (7.28),
∥
∥Fϕwk − Fϕw�

∥
∥
H−1(Ω)n

≤ ‖((wk − w�) · ∇)wk + (w� · ∇)(wk − w�)‖H−1(Ω)n

+ ∥
∥((E̊Ω+v+

ϕ + E̊Ω−v−
ϕ ) · ∇)(wk − w�)

∥
∥
H−1(Ω)n

+ ∥
∥(wk − w�) · (E̊Ω+∇v+

ϕ + E̊Ω−∇v−
ϕ )
∥
∥
H−1(Ω)n

.

Employing estimates (C.6) and (C.15) to the first norm in the right hand side, (C.20) for the
second norm, and estimate (C.18) for the third norm, we obtain
∥
∥Fϕwk − Fϕw�

∥
∥
H−1(Ω)n

≤
(
c1‖wk‖H1(Ω)n + c1‖w�‖H1(Ω)n

+ 3c∗
1‖v+

ϕ ‖H1(Ω+)n + 3c∗
1‖v−

ϕ ‖H1(Ω−)n

)
‖wk − w�‖L4(Ω)n

+
(
(c+

2 )2‖γΩ+‖2‖v+
ϕ ‖H1(Ω+)n + (c−

2 )2‖γΩ−‖2‖v−
ϕ ‖H1(Ω−)n

)
‖γΣ (wk − w�)‖L3(Σ)n

≤
(
2c1M + 3c∗

1‖v+
ϕ ‖H1(Ω+)n + 3c∗

1‖v−
ϕ ‖H1(Ω−)n

)
‖wk − w�‖L4(Ω)n

+
(
(c+

2 )2‖γΩ+‖2‖v+
ϕ ‖H1(Ω+)n + (c−

2 )2‖γΩ−‖2‖v−
ϕ ‖H1(Ω−)n

)
‖γΣ (wk − w�)‖L3(Σ)n ,

(7.35)

where we denoted γΣ (wk − w�) := rΣ γΩ+(wk − w�) = rΣ γΩ−(wk − w�) and took into
account that r

Γ + γΩ+(wk − w�) = 0 and r
Γ − γΩ−(wk − w�) = 0.

Since ‖wk‖H1(Ω)n ≤ M and the embedding of the space H1(Ω)n into the space L4(Ω)n

is compact (see, e.g., [1, Theorem 6.3]), there exists a subsequence of {wk}k∈N, labelled as
the sequence, which converges in L4(Ω)n , and, hence, is a Cauchy sequence in L4(Ω)n .

Since ‖wk‖H1(Ω)n ≤ M , the sequence {γΣwk}k∈N is bounded in H1/2(Σ)n . Further, for
n = 2, 3 the space H1/2(Σ)n is compactly embedded in L3(Σ)n . For bounded Lipschitz
domains in Rn−1, this follows by the Rellich-Kondrachev compactness theorems, e.g., from
the embedding results in [54, Section 2.2.4, Corollary 2(i)] for Rn−1 and can be extended to
(n − 1)-dimensional bounded Lipschitz manifolds by standard arguments (cf. also a more
general statement in [50, Proposition 3.8]). Then there exists a subsequence of {wk}k∈N,
labelled as the sequence, such that {γΣwk}k∈N converges in L3(Σ)n , and, hence, is a Cauchy
sequence in L3(Σ)n .

Inequality (7.35) combined with this Cauchy property implies that the operator Fϕ :
H̊1
div(Ω)n → H−1(Ω)n is compact. Hence, the operator U = U Fϕ : H̊1

div(Ω)n →
H̊1
div(Ω)n is also compact, as asserted.
It remains to show that there is a constant M0 > 0 such that if w ∈ H̊1

div(Ω)n satisfies the
equation

w = λUw (7.36)

for some λ ∈ [0, 1], then ‖w‖H1(Ω)n ≤ M0. Let us introduce the function

q := λPw. (7.37)

By applying the operator L to equations (7.36)–(7.37), and by using relations (7.33) and
(7.34), we deduce that whenever the pair (w, λ) ∈ H̊1

div(Ω)n × R satisfies equation (7.36),
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the equationL(w, q) = λFϕw is also satisfied. (Recall the isomorphism property of operator
(7.30).) Then the first Green identity (A.1) implies

aA;Ω(w, v) :=
〈
aαβ
i j E jβ(w), Eiα(v)

〉

Ω
= −〈λFϕw, v〉Ω ∀ v ∈ H̊1

div(Ω)n, (7.38)

which, in view of relation (7.28), takes the form

aA;Ω(w, v) = − λ〈F, v〉Ω − λ
(〈
aαβ
i j E jβ(v+

ϕ ), Eiα(v)
〉
Ω+ + 〈

aαβ
i j E jβ(v−

ϕ ), Eiα(v)
〉
Ω−

)

− λ
〈
E̊Ω+

[
(v+

ϕ · ∇)v+
ϕ

] + E̊Ω−
[
(v−

ϕ · ∇)v−
ϕ

]

+ ((E̊Ω+v+
ϕ + E̊Ω−v−

ϕ ) · ∇)w

+ w · (E̊Ω+∇v+
ϕ + E̊Ω−∇v−

ϕ ) + (w · ∇)w, v
〉

Ω
, ∀ v ∈ H̊1

div(Ω)n . (7.39)

Moreover, formula (C.13) and the inclusion w ∈ H̊1
div(Ω)n imply the relation

〈
(w ·

∇)w,w
〉
Ω

= 0 . Then by (7.39) we obtain the formula

aA;Ω(w,w) = −λ〈F,w〉Ω − λ
(〈
aαβ
i j E jβ(v+

ϕ ), Eiα(w)
〉
Ω+ + 〈

aαβ
i j E jβ(v−

ϕ ), Eiα(w)
〉
Ω−

)

− λ
〈
E̊Ω+

[
(v+

ϕ · ∇)v+
ϕ

] + E̊Ω−
[
(v−

ϕ · ∇)v−
ϕ

]
,w

〉

Ω

− λ
〈 ((

E̊Ω+v+
ϕ + E̊Ω−v−

ϕ

)
· ∇

)
w,w

〉

Ω

− λ
〈
w ·

(
E̊Ω+∇v+

ϕ + E̊Ω−∇v−
ϕ

)
,w

〉

Ω
, (7.40)

Arguments similar to those for estimate (6.20) combined with formula (7.40), the inclusion
λ ∈ [0, 1] and inequalities (C.2), (7.20), and (7.21) imply that

1

2
C−1
A

‖∇w‖2L2(Ω)n×n ≤ C−1
A

‖E(w)‖2L2(Ω)n×n ≤ aA;Ω(w,w)

≤ |||F||H−1(Ω)n‖∇w‖L2(Ω)n×n +‖A‖
(
‖∇v+

ϕ ‖L2(Ω+)n×n +‖∇v−
ϕ ‖L2(Ω−)n×n

)
‖∇w‖L2(Ω)n×n

+
(
‖v+

ϕ ‖L4(Ω+)n‖∇v+
ϕ ‖L2(Ω+)n×n + ‖v−

ϕ ‖L4(Ω−)n‖∇v−
ϕ ‖L2(Ω−)n×n

)
‖w‖L4(Ω)n

+
(
‖v+

ϕ ‖L4(Ω+)n + ‖v−
ϕ ‖L4(Ω+)n

)
‖∇w‖L2(Ω)n×n‖w‖L4(Ω)n

+
(
‖∇v+

ϕ ‖L2(Ω+)n×n + ‖∇v−
ϕ ‖L2(Ω−)n×n

)
‖w‖2L4(Ω)n

≤ |||F|||H−1(Ω)n‖∇w‖L2(Ω)n×n + ‖A‖
(
‖v+

ϕ ‖H1(Ω+)n + ‖v−
ϕ ‖H1(Ω−)n

)
‖∇w‖L2(Ω)n×n

+ c0c
∗
1

(
‖v+

ϕ ‖2H1(Ω+)n
+ ‖v−

ϕ ‖2H1(Ω−)n

)
‖∇w‖L2(Ω)n×n

+ c0c
∗
1

(
‖v+

ϕ ‖H1(Ω+)n + ‖v−
ϕ ‖H1(Ω+)n

)
‖∇w‖2L2(Ω)n×n

+ c20

(
‖v+

ϕ ‖H1(Ω+)n + ‖v−
ϕ ‖H1(Ω+)n

)
‖∇w‖2L2(Ω)n×n

≤ |||F|||H−1(Ω)n‖∇w‖L2(Ω)n×n + ‖A‖CΣ ‖(g+, g−,ϕ
Σ
,ϕ)‖M•‖∇w‖L2(Ω)n×n

2c0c
∗
1C

2
Σ‖(g+, g−,ϕ

Σ
,ϕ)‖2M•‖∇w‖L2(Ω)n×n

+ 2(c0c
∗
1 + c20)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•‖∇w‖2L2(Ω)n×n . (7.41)
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Therefore, we obtain the estimate
(
1

2
C−1
A

− 2c0(c
∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

)
‖∇w‖L2(Ω)n×n

≤ |||F|||H−1(Ω)n + CΣ‖A‖‖(g+, g−,ϕ
Σ
,ϕ)‖M• + 2c0c

∗
1C

2
Σ‖(g+, g−,ϕ

Σ
,ϕ)‖2M• .

(7.42)

In view of assumption (7.22), estimate (7.42) can be written in the form

‖∇w‖L2(Ω)n×n

≤ |||F|||H−1(Ω)n + CΣ‖A‖‖(g+, g−,ϕ
Σ
,ϕ)‖M• + 2c0c∗

1C
2
Σ‖(g+, g−,ϕ

Σ
,ϕ)‖2M•

1
2C

−1
A

− 2c0(c∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

,

(7.43)

that is, ‖w‖H1(Ω)n ≤ M0, where M0 is given by the right hand side of (7.43) multiplied by

the equivalence constant C̊ from (4.3).
Therefore, the operator U : H̊1

div(Ω)n → H̊1
div(Ω)n given by (7.33) satisfies the hypothe-

sis of Theorem 6.1 (for X = H̊1
div(Ω)n), and hence it has a fixed point u0 ∈ H̊1

div(Ω)n ,
that is, u0 = Uu0. Then with π ∈ L2(Ω)/R as in (7.32), the couple (u0, π) ∈
H̊1
div(Ω)n × L2(Ω)/R satisfies the nonlinear equation (7.29). Consequently, the couples

(u+
0 + v+

ϕ , π+,u−
0 + v−

ϕ , π−) ∈ XΩ+,Ω− provide a solution of the nonlinear Dirichlet-
transmission (7.18) in the sense of relations (7.24). ( Recall the equivalence between the
nonlinear Dirichlet-transmission problem (7.25) and the nonlinear equation (7.29).)

(ii) Let us assume that condition (7.23) holds. Then it is immediate that condition (7.22)
holds as well, and, thus, the nonlinear Dirichlet-transmission problem (7.18) has at least one
solution in the space XΩ+,Ω− .

Now, assume that the nonlinear problem (7.18) has two solutions, (u(1)+, π(1)+,u(1)−,

π(1)−) and (u(2)+, π(2)+,u(2)−, π(2)−) in the space XΩ+,Ω− . Let us represent the velocities
in Ω± in the form

u(i)± = v±
ϕ + u(i)±

0 , i = 1, 2, (7.44)

where (v+
ϕ , v−

ϕ ) ∈ H1(Ω+)n × H1(Ω−)n satisfy relations (7.19) and (7.20), while

u(i)
0 |Ω+ = u(i)+

0 , u(i)
0 |Ω− = u(i)−

0 , π(i)|Ω+ = π(i)+, π(i)|Ω− = π(i)− . (7.45)

corresponds to the pairs (u(i)
0 , π(i)) ∈ H̊1(Ω)n × L2(Ω)/R.

Let us also introduce the notations u0 := u(1)
0 − u(2)

0 , π := π(1) − π(2),

u± := u(1)± − u(2)± = u0|Ω± , π± := π(1)± − π(2)± = π |Ω± .

Using (7.28) and (7.29), we obtain

L(u0, π) = E̊Ω+[(u(1)+ · ∇)u(1)+ − (u(2)+ · ∇)u(2)+]
+ E̊Ω−[(u(1)− · ∇)u(1)− − (u(2)− · ∇)u(2)−]

= u0 · (∇u(1)
0 + E̊Ω+∇v+

ϕ + E̊Ω−∇v−
ϕ )

+ (
(u(2)

0 + E̊Ω+v+
ϕ + E̊Ω−v−

ϕ ) · ∇)
u0 in Ω . (7.46)
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This implies that

〈
aαβ
i j E jβ(u0), Eiα(u0)

〉
Ω

= −〈(
u0 · ∇)

u(1)
0 ,u0

〉
Ω

− 〈(
u0 · (E̊Ω+∇v+

ϕ + E̊Ω−∇v−
ϕ ),u0

〉
Ω

−〈(
(E̊Ω+v+

ϕ + E̊Ω−v−
ϕ ) · ∇)

u0,u0
〉
Ω

− 〈
(u(2)

0 · ∇)u0,u0
〉
Ω

. (7.47)

Moreover, identity (C.13) and the inclusion u0 ∈ H̊1
div(Ω)n show that the last term in the

right-hand side of (7.47) equals zero. Then inequality (4.10) and arguments similar to those
for (7.14) imply that

1

2
C−1
A

‖∇u0‖2L2(Ω)n×n ≤ 〈
aαβ
i j E jβ(u0), Eiα(u0)

〉
Ω

≤ c20‖∇u(1)
0 ‖L2(Ω)n×n‖∇u0‖2L2(Ω)n×n

+ 2c0(c
∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•‖∇u0‖2L2(Ω)n×n . (7.48)

Using in (7.48) estimate (7.43) for w = u(1)
0 , after some simplifications, we obtain

(
1

2
C−1
A

− 2c0(c
∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

)2

‖∇u0‖2L2(Ω)n×n

≤ c20

(
|||F|||H−1(Ω)n + CΣ‖A‖‖(g+, g−,ϕ

Σ
,ϕ)‖M•

+2c0c
∗
1C

2
Σ‖(g+, g−,ϕ

Σ
,ϕ)‖2M•

)
‖∇u0‖2L2(Ω)n×n , (7.49)

and hence

1

4
C−2
A

‖∇u0‖2L2(Ω)n×n ≤
(
c20|||F|||H−1(Ω)n + c20CΣ‖A‖ ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

+ 2C−1
A

c0(c
∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

− c20
(
4(c∗

1 + c0)
2 − 2c0c

∗
1

)
C2

Σ‖(g+, g−,ϕ
Σ
,ϕ)‖2M•

)
‖∇u0‖2L2(Ω)n×n

≤
(
c20|||F|||H−1(Ω)n + c20CΣ‖A‖ ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

+ 2C−1
A

c0(c
∗
1 + c0)CΣ‖(g+, g−,ϕ

Σ
,ϕ)‖M•

)
‖∇u0‖2L2(Ω)n×n .

In view of condition (7.23), this is possible only if

‖∇u0‖2L2(Ω)n×n = ‖∇(u(1)
0 − u(2)

0 )‖L2(Ω)n×n = 0.

Hence, u(1)
0 = u(2)

0 in Ω and relations (7.44) imply that u(1)± = u(2)± in Ω±. Finally,
equation (7.46) leads to ∇π = 0, that is, π(1) = π(2) in L2(Ω)/R. ��
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partially supported by the Babeş-Bolyai University research grant AGC35124/31.10.2018. W.L. Wendland
has been partially supported by “Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy-EXC 2075-390740016”.

Declarations

Data availability statement Our paper has no associated data.

123



Non-homogeneous Dirichlet-transmission problems Page 37 of 47   198 

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

APPENDIX

A Generalized conormal derivative for the anisotropic Stokes system

Understanding the Stokes equation in (2.8) in the sense of distributions and taking into
account that the Schwartz test function space D(Ω)n is dense in H̊1(Ω)n , we obtain the
following assertion that is essentially used in the main text of the paper.

Lemma A.1 Let Ω be a bounded Lipschitz domain in R
n, n ≥ 2, and let conditions (2.2),

(2.3) be satisfied. Then the following first Green identity holds
〈
aαβ
i j E jβ(u), Eiα(w)

〉
Ω

− 〈π, divw〉Ω + 〈f,w〉Ω = 0 , ∀w ∈ H̊1(Ω)n , (A.1)

for all (u, π) ∈ H1(Ω)n × L2(Ω) and f ∈ H−1(Ω)n such that L(u, π) = f in Ω .

As in [35, Definition 2.2] and [36, Definition 1], we introduce the generalized conormal
derivatives as follows (see also [45, Lemma 4.3], [46, Definition 3.1, Theorem 3.2], [34,
Definition 2.4], [51, Theorem 10.4.1]).

Definition A.2 Let conditions (2.2) and (2.3) be satisfied and

HHH1(Ω,L) :=
{
(u, π, f̃) ∈ H1(Ω)n × L2(Ω) × H̃−1(Ω)n : L(u, π) = f̃|Ω in Ω

}
.

If (u, π, f̃) ∈ HHH1(Ω,L), then the generalized conormal derivative tΩ(u, π; f̃) ∈ H− 1
2 (∂Ω)n

is defined in the weak form as
〈
tΩ(u, π; f̃),Φ〉

∂Ω
:= 〈

aαβ
i j E jβ(u), Eiα(γ −1

Ω
Φ)

〉
Ω

− 〈
π, div(γ −1

Ω
Φ)

〉
Ω

+ 〈
f̃, γ −1

Ω
Φ
〉
Ω

, ∀ Φ ∈ H
1
2 (∂Ω)n (A.2)

where γ −1
Ω

: H
1
2 (∂Ω)n → H1(Ω)n is a bounded right inverse of the trace operator γΩ :

H1(Ω)n → H
1
2 (∂Ω)n . We use the simplified notation tΩ(u, π) for tΩ(u, π; 0).

B Extension results for Sobolev spaces on Lipschitz domains with Lipschitz
interfaces

Let Ω ⊂ R
n , n ≥ 2, be a bounded Lipschitz domain satisfying Assumption 5.1. Thus,

Ω = Ω+ ∪ Σ∪Ω−, where Σ is the (n − 1)-dimensional Lipschitz interface between the
disjoint Lipschitz sub-domains Ω+ and Ω−, and Σ meets transversally ∂Ω . The boundary
∂Ω± of Ω± is partitioned into two relatively open subsets Γ ± and Σ , while Γ + and Γ −

are not empty. Let γ
Ω± be the trace operator from H1(Ω±) to H

1
2 (∂Ω±).

The proof of the following extension property is based on similar arguments to those for
Theorem 5.13 in [9] (see also Lemma C.1 in [36]). We omit the details for the shortness.
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Lemma B.1 The following assertions hold.

(i) Let u+ ∈ H1(Ω+) and u− ∈ H1(Ω−) be such that γ
Ω+ u

+ = γ
Ω− u

− on Σ . Then
there exists a unique function u ∈ H1(Ω) such that u|Ω± = u±. Moreover, there exists
C = C(n,Ω±) > 0 such that ‖u‖H1(Ω) ≤ C

(‖u+‖H1(Ω+) + ‖u−‖H1(Ω−)

)
.

(ii) If u ∈ H1(Ω) then γ
Ω+ (u|Ω+) = γ

Ω− (u|Ω−) on Σ .

Lemma B.2 LetΓ1 andΓ2 be two (n−1)-dimensional Lipschitz hyper-surfaces inRn, n ≥ 2,
that coincide on a relatively open (n−1)-dimensional subsetΓ0 (having a Lipschitz boundary
if n ≥ 2). Assume that either one of the following conditions holds:

(1) Γ1 and Γ2 are the graphs of two Lipschitz functions;
(2) Γ1 and Γ2 can be mapped by rigid rotations into two Lipschitz graphs;
(3) Γ1 and Γ2 are two bounded Lipschitz hyper-surfaces in R

n.

Let 0 ≤ s ≤ 1 and functions fi ∈ L2(Γi ), fi = 0 on Γi \ Γ 0, i = 1, 2, and f2 = f1 on Γ0.
Then f1 ∈ Hs(Γ1) if and only if f2 ∈ Hs(Γ2).

Proof (1) Let Γ1 and Γ2 be graphs of two Lipschitz functions xn = ζ1(x ′) and xn = ζ2(x ′),
x ′ ∈ R

n−1, and Γ0 be the image of a domain S0 ⊂ R
n−1, i.e., xn = ζ1(x ′) = ζ2(x ′) for

x ′ ∈ S0 ⊂ R
n−1.

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [45, p. 98]), f1 ∈
Hs(Γ1), 0 ≤ s ≤ 1,means that fζ1 ∈ Hs(Rn−1), where fζ1(x

′) = f1(x ′, ζ1(x ′)), x ′ ∈ R
n−1.

On the other hand, fζ2(x
′) = f2(x ′, ζ2(x ′)) = f1(x ′, ζ1(x ′)) for x ′ ∈ S0, and fζ2(x

′) =
f2(x ′, ζ2(x ′)) = 0 = f1(x ′, ζ1(x ′)) for x ′ ∈ R

n−1 \ S0. Hence fζ2(x
′) = fζ1(x

′) for almost
any x ′ ∈ R

n−1 which implies f1 ∈ Hs(Γ1) if and only if f2 ∈ Hs(Γ2).
(2) Let further i = 1, 2. By the assumption of item (2), there exist constant invertible

rotation matrices Φi ∈ R
n×n such that Γ ∗

i = {x = Φi y, y ∈ Γi }, i = 1, 2, are Lipschitz
graphs, i.e., they are represented by twoLipschitz functions, x1,n = ζ1(x ′

1) and x2,n = ζ2(x ′
2),

where x1,n, x2,n ∈ R and x ′
1, x

′
2 ∈ R

n−1. By the definition of Sobolev spaces on Lipschitz
hyper-surfaces, the inclusion fi ∈ Hs(Γi ) implies that fζi ∈ Hs(Rn−1), where fζi (x

′) =
fi (Φ

−1
i (x ′

i , ζi (x
′
i )), x

′
i ∈ R

n−1.
Let Γ ∗

0i ⊂ Γ ∗
i be the images of Γ0 through the above mapping, i.e., Γ ∗

0i � xi = Φi y,
y ∈ Γ0, and, on the other hand, Γ ∗

0i � xi = (x ′
i , ζi (x

′
i )), x

′
i ∈ S0i , where S0i are Lipschitz

domains in Rn−1. Then

Φ−1
2 x2=Φ−1

2 (x ′
2, ζ2(x

′
2))= y=Φ−1

1 (x ′
1, ζ1(x

′
1))=Φ−1

1 x1, ∀ y∈Γ0, x ′
1 ∈ S01, x ′

2 ∈ S02,

and

fζ2(x
′
2) = f2(Φ

−1
2 (x ′

2, ζ2(x
′
2)) = f2(y) = f1(y) = f1(Φ

−1
1 (x ′

1, ζ1(x
′
1)) = fζ1(x

′
1),

∀ y ∈ Γ0, x ′
1 ∈ S01, x ′

2 ∈ S02. (B.1)

By definition of the rigid rotation matrices and graph functions, we have,

(x ′
1, ζ1(x

′
1)) = Φ1y = (Φ ′

1y, Φ1,n y), (x ′
2, ζ2(x

′
2)) = Φ2y = (Φ ′

2y, Φ2,n y), y ∈ Γ0,

where the matrices Φ ′
i ∈ R

(n−1)×n and Φi,n ∈ R
1×n are parts of the corresponding matrices

Φi . Then

x ′
1 = Φ ′

1y = Φ ′
1Φ

−1
2

(
x ′
2, ζ2(x

′
2)
)
, x ′

2 = Φ ′
2y = Φ ′

2Φ
−1
1

(
x ′
1, ζ1(x

′
1)
)
, x ′

1 ∈ S̄01, x ′
2 ∈ S̄02.

(B.2)
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Since ζ1 and ζ2 are Lipschitz functions, relations (B.2) imply that x ′
1 = x ′

1(x
′
2) and x ′

2 =
x ′
2(x

′
1) are mutually inverse bi-Lipschitz mappings for x ′

1 ∈ S̄01, x ′
2 ∈ S̄02.

Assume now that f1 ∈ Hs(Γ1) and f1 = 0 on Γ1 \ Γ 0. Then fζ1 ∈ Hs(Rn−1) and
fζ1 = 0 on Rn−1 \ S01. Assume also that a function f2 ∈ L2(Γ2) is such that f2 = f1 on Γ0

and f2 = 0 on Γ2 \ Γ 0. From (B.1) we have for any x ′
2 ∈ S02 that

fζ2(x
′
2) = fζ1(x

′
1(x

′
2)), (B.3)

where the Lipschitz map x ′
1(x

′
2) is defined for x

′
2 ∈ S02 by (B.2). By the Kirszbraun theorem

(cf., Lemma 1.29 and Theorem 1.31 in [57]) the map x ′
1(x

′
2) can be extended to all x ′

2 ∈
R
n−1 with the same Lipschitz constant. Hence, taking into account that fζ1(x

′
1) = 0 for

x ′
1 ∈ R

n−1 \ S01 and fζ2(x
′
2) = 0 for x ′

2 ∈ R
n−1 \ S02, we obtain that for such extension,

relation (B.3) holds for almost any x ′
2 ∈ R

n−1. Then, cf., e.g., Theorem 3.23 in [45], the
inclusion fζ1 ∈ Hs(Rn−1) implies that fζ2 ∈ Hs(Rn−1) and thus f2 ∈ Hs(Γ2).

(3) Assume now that Γ1 and Γ2 are bounded Lipschitz hyper-surfaces in R
n and arrange

finite covers of both of them by open balls such that the intersections of each ball with
the corresponding surface can be extended (possibly after some rigid rotations) to Lipschitz
graphs. Moreover we choose the covers in such a way that the balls covering the closure of
Γ0 coincide for both surfaces. Arranging the subordinate partition of unity (see, e.g., [45, p.
98]) and employing item (2) for the balls intersecting the boundary of Γ0 yield the asserted
result. ��

Let us show that the space Hs• (·) can be characterized as the weighted space Hs
00(·), whose

counterpart on smooth domains in R
n was given in [42, Chapter 1, Theorem 11.7], see also

Corollary 1.4.4.10 in [30] for Lipschitz domains.

Theorem B.3 Let Γ be a (n−1)-dimensional Lipschitz graph or a bounded Lipschitz hyper-
surface in R

n, n ≥ 2, and let Γ0 be its relatively open (n − 1)-dimensional subset with
a (n − 2)-dimensional Lipschitz boundary ∂Γ0 if n>2; if n=2 ∂Γ0 consists of two distinct
points. Let 0 < s < 1.

Let Hs
00(Γ0) denote the space of all functions φ ∈ H̊ s(Γ0), such that δ−sφ ∈ L2(Γ0),

where δ(x) is the distance in R
n from x to the boundary ∂Γ0.

Then the space Hs
00(Γ0) coincides with the space Hs• (Γ0), i.e., with the space of all

functions from Hs(Γ0) such that their extensions by zero to Γ belong to Hs(Γ ).

Proof Let first Γ be graph of a Lipschitz function xn = ζ(x ′) ∈ R, x ′ ∈ R
n−1, and Γ0 be

the image of a domain S0 ⊂ R
n−1, i.e., xn = ζ(x ′) for x ′ ∈ S0 ⊂ R

n−1. For all x, x̃ ∈ Γ 0,
we have

|x ′ − x̃ ′| ≤ |x − x̃ | =
√

|x ′ − x̃ ′|2 + |ζ(x ′) − ζ(x̃ ′)|2 ≤
√
1 + A2 |x ′ − x̃ ′|. (B.4)

where A is a finite Lipschitz constant of the function ζ on the domain S0. The distance to the
boundary is defined as

δ(x) = inf
x̃∈∂Γ0

|x − x̃ | = inf
x̃ ′∈∂S0

√
|x ′ − x̃ ′|2 + |ζ(x ′) − ζ(x̃ ′)|2, (B.5)

Denoting δ′(x ′) = inf x̃ ′∈∂S0 |x ′ − x̃ ′|, we obtain from (B.5) and (B.4) that

δ′(x ′) ≤ δ(x) ≤
√
1 + A2 δ′(x ′). (B.6)

By the definition of the Sobolev spaces on Lipschitz graphs (see, e.g., [45, p. 98]), f̃ ∈
Hs(Γ ), 0 < s < 1, means that f̃ζ ∈ Hs(Rn−1), where fζ (x ′) = f (x ′, ζ(x ′)), x ′ ∈ R

n−1

and φ ∈ H̊ s(Γ0), 0 < s < 1, means that φζ ∈ H̊ s(S0).
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Let φ ∈ Hs
00(Γ0). Then φ ∈ H̊ s(Γ0), δ−sφ ∈ L2(Γ0). The surface measure formula

dσ(x) =
√
1 + |grad ζ(x ′)|2dx ′ (B.7)

(see, e.g. [45, Eq. (3.28)]) together with (B.6) implies that φζ ∈ H̊ s(S0) and (δ′)−sφζ ∈
L2(S0), where φζ (x ′) = φ(x ′, ζ(x ′)), x ′ ∈ S0. Then by Corollary 1.4.4.10 in [30] we obtain
that the extension ofφζ by zero from S0 toRn−1 belongs to Hs(Rn−1) and hence the extension
of φ by zero from Γ0 to Γ belongs to Hs(Γ ).

Conversely, let φ ∈ Hs(Γ0) be such that its extension by zero from Γ0 to Γ belongs
to Hs(Γ ). Then φζ (x ′) = φ(x ′, ζ(x ′)) belongs to Hs(S0) and its extension by zero from
to S0 to R

n−1 belongs to Hs(Rn−1). Hence by Corollary 1.4.4.10 in [30] we obtain that
φζ ∈ H̊ s(S0) and (δ′)−sφζ ∈ L2(S0), which by (B.6) and (B.7) implies that δ−sφ ∈ L2(Γ0)

and thus φ ∈ Hs
00(Γ0).

Let now Γ be a (n − 1)-dimensional bounded Lipschitz hyper-surface. Let us arrange a
finite cover of the hyper-surface by open balls such that, as usual, the intersections of each
ball with the hyper-surface can be extended (maybe after corresponding rigid rotations) to
a Lipschitz graph. Arranging the subordinate partition of unity (see, e.g., [45, p. 98]) and
employing the above arguments to each of these graphs we obtain the asserted result. ��

In addition, the following extension result holds (see also [55, p. 373]).

Lemma B.4 Let n ≥ 2 and Ω ⊂ R
n be a bounded Lipschitz domain satisfying Assump-

tion 5.1. Then there exists a linear bounded extension operator EΩ+→Ω from the space
H1

Γ +(Ω+)n to H̊1(Ω)n.

Proof Let u+ ∈ H1
Γ +(Ω+)n . Let uΩ ∈ H1

Γ +(Ω)n be the function defined by uΩ :=
EΩ+→Ωu+ , where EΩ+→Ω := rΩ ◦ EΩ+→Rn , and EΩ+→Rn is the Rychkov extension
operator from H1(Ω+)n to H1(Rn)n (cf., e.g., [51, Theorem 2.4.1]). Thus, rΩ+(uΩ ) = u+,
where rΩ+ denotes the restriction to Ω+.

In addition, (γΩuΩ ) ∈ H̃
1
2 (Γ −; ∂Ω)n and (γΩuΩ )|

Γ − ∈ H
1
2 (Γ −)n . Let E̊Γ −→Σ((

γΩuΩ

) |Γ −
)
be the extension of (γΩuΩ )|Γ − by zero onΣ . Then Lemma B.2 (3) (applied to

the functions f1 = γΩuΩ and f2 = E̊Γ −→Σ

(
(γΩuΩ )|Γ −

)
, which are equal onΓ − and vanish

onΓ + andΣ , respectively) implies that E̊Γ −→Σ

(
(γΩu)|Γ −

) ∈ H̃
1
2 (Γ −; ∂Ω−)n .Moreover,

since the trace operator γ
Ω− : H1(Ω−) → H

1
2 (∂Ω−) is onto, there exists u− ∈ H1

Σ
(Ω−)n

such that

u− = γ −1
Ω−

(
E̊Γ −→Σ

(
(γΩuΩ )|

Γ −
))

, (B.8)

where γ −1
Ω− : H 1

2 (∂Ω−)n → H1(Ω−)n is a bounded linear right inverse of the trace operator

γ
Ω− : H1(Ω−)n → H

1
2 (∂Ω−)n (see [17], [46, Lemma 2.6], [51, Theorem 2.5.2]).

Thus, u− ∈ H1(Ω−)n , (γ
Ω−u

−)|Σ = 0,
(
γ

Ω−u
−)∣∣

Γ − = (γΩuΩ )|
Γ − . Let u0 be the

extension by zero of u− in Ω+, u0 := E̊Ω−→Ω+u− . Therefore, u0 ∈ H1(Ω)n and u0 = 0
in Ω+. In addition, (γΩu0)|Γ − = (γΩuΩ )|

Γ − . Moreover,

u := uΩ − u0 = EΩ+→Ωu+ − E̊Ω−→Ω+u−

= EΩ+→Ωu+ − E̊Ω−→Ω+
(
γ −1

Ω−

(
E̊Γ −→Σ

(
(γΩuΩ )|

Γ −
)))

. (B.9)
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satisfies u ∈ H1(Ω)n and, by construction, (γΩu)|
Γ ± = 0, i.e., γΩu = 0 (a.e.) on Γ .

Moreover, u|
Ω+ = u+ in Ω+. Consequently, u is an extension of u+ from H1

Γ +(Ω+)n to

H̊1(Ω)n .
Finally, we define the extension operator EΩ+→Ω : H1

Γ +(Ω+)n → H̊1(Ω)n , such that
EΩ+→Ω(u+) := u, where u has been constructed above. Consequently,

EΩ+→Ωu+ := EΩ+→Ωu+ − E̊Ω−→Ω+
(
γ −1

Ω−

(
E̊Γ −→Σ

(
γΩ

(EΩ+→Ωu+) |
Γ −

)))
.

(B.10)

An alternative construction of such an extension map can be consulted in [55, pp. 373, 374].
��

Let us introduce the space (cf., e.g., [45, p. 76]),

H−1

Γ + (Rn)n = {Φ ∈ H−1(Rn)n : suppΦ ⊆ Γ +}. (B.11)

Note that, Φ ∈ H−1
Γ + (Rn)n if and only if Φ = γ ∗

Ωφ, i.e.,

〈v,Φ〉Ω = 〈γΩv,φ〉∂Ω ∀ v ∈ H1(Ω)n (B.12)

for some φ ∈ H̃− 1
2 (Γ +)n , which is uniquely defined by Φ, cf. [46, Theorem 2.10(ii)].

Lemma B.5 The dual
(
H1

Γ +(Ω)n
)′
of the space H1

Γ +(Ω)n can be identified with the space
H̃−1(Ω)n/H−1

Γ + (Rn)n .

Proof First, we remark that due to (B.12), the space H1
Γ +(Ω+)n defined as in (5.2) can be

also equivalently defined as

H1
Γ +(Ω)n = {

v ∈ H1(Ω)n : γΩv = 0 on Γ +}

=
{
v ∈ H1(Ω)n : 〈γΩv,φ〉∂Ω = 0 , ∀ φ ∈ H̃− 1

2 (Γ +)n
}

=
{
v∈H1(Ω)n : 〈v,Φ〉Ω =0 , ∀ Φ ∈H−1

Γ + (Rn)n
}
=:H1(Ω)n ⊥ H−1

Γ + (Rn)n .

Then a duality argument (see, e.g., [53, Sections 4.8, 4.9]) yields the required identification.
��

Two more identifications are proved in the following assertion.

Lemma B.6 The dual
(
H1

Γ +(Ω+)n
)′
of the space H1

Γ +(Ω+)n can be identified with the space
H̃−1(Ω+)n/H−1

Γ + (Rn)n and also with the space

{
ϕ ∈ H−1(Ω)n : ϕ = 0 on Ω−} . (B.13)

Proof The identification with H̃−1(Ω+)n/H−1
Γ + (Rn)n follows from Lemma B.5 applied to

Ω+.
To prove the identification with the space in (B.13), assume first that ϕ belongs to the

space defined in (B.13). Thus,

ϕ ∈ H−1(Ω)n = (
H̊1(Ω)n

)′ and 〈ϕ,ψ−〉Ω = 〈ϕ,ψ−〉Ω− = 0, ∀ ψ− ∈ D(Ω−)n ,

(B.14)
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i.e., ϕ has the support in Ω+ (ϕ = 0 on Ω−). We have used the equivalent description of the
space H̊1(Ω)n given in formula (3.7) and the identification of H̊1(Ω)n and H̃1(Ω)n .

Note that the functional ϕ : H̊1(Ω)n → R is linear and bounded. Let EΩ+→Ω be a linear
bounded extension operator from H1

Γ +(Ω+)n to H̊1(Ω)n , which exists in view of Lemma
B.4. Therefore, the functional

φ :=ϕ ◦ EΩ+→Ω : H1
Γ +(Ω+)n → R , φ(ψ+) :=ϕ

(
EΩ+→Ωψ+) , ∀ ψ+ ∈H1

Γ +(Ω+)n

is linear and bounded as well. Hence, we have that

φ(ψ+) = ϕ (ψ), ∀ ψ+ ∈ H1
Γ +(Ω+)n, where ψ = EΩ+→Ω(ψ+) ∈ H̊1(Ω)n .

This definition agrees well with the condition that ϕ(ψ−) = 0 for any ψ− ∈ D(Ω−)n , and
shows that for a fixed EΩ+→Ω , any functional ϕ from the space (B.13) can be identified with
a functional φ ∈ (

H1
Γ +(Ω+)n

)′.
To prove that the functional φ does not depend on the extension operator EΩ+→Ω , let us

consider two such extension operators, E ′
Ω+→Ω

and E ′′
Ω+→Ω

from H1
Γ +(Ω+)n to H̊1(Ω)n ,

generating for a fixed ϕ two functionals, φ′ := ϕ ◦ E ′
Ω+→Ω

and φ′′ := ϕ ◦ E ′′
Ω+→Ω

. Then

φ′(ψ+) − φ′′(ψ+) = ϕ
(
E ′

Ω+→Ω
ψ+) − ϕ

(
E ′′

Ω+→Ω
ψ+)

= ϕ
(
E ′

Ω+→Ω
ψ+ − E ′′

Ω+→Ω
ψ+) , ∀ ψ+ ∈ H1

Γ +(Ω+)n .

Denoting ψ0 := E ′
Ω+→Ω

ψ+ − E ′′
Ω+→Ω

ψ+, we obtain that ψ0 ∈ H̊1(Ω)n and ψ0 = 0

in Ω+, implying that r
Ω− ψ0 ∈ H̊1(Ω−)n and hence γ

Ω− ψ0 = 0. Thus, there exist
Ψ 0 ∈ H̃1(Ω−)n ⊂ H̃1(Ω)n ⊂ H1(Rn)n such that ψ0 = rΩ Ψ 0 and a sequence
{Ψ i }i∈N ⊆ D(Ω−)n converging to Ψ 0 in H̃1(Ω−)n . By (B.14) then ϕ(ψ0) = ϕ(rΩ Ψ 0) =
limi→∞ ϕ(rΩ Ψ i ) = limi→∞ ϕ(Ψ i ) = 0 , and, hence, the asserted independence property
follows.

Conversely, assume that φ ∈ (
H1

Γ +(Ω+)n
)′
and let rΩ→Ω+ be the restriction operator

from the space H̊1(Ω)n to H1
Γ +(Ω+)n . Then the functionalϕ := φ◦rΩ→Ω+ : H̊1(Ω)n → R

is linear and bounded, i.e., ϕ ∈ H−1(Ω)n . In addition, for any ψ− ∈ D(Ω−)n , we have
that ψ− ∈ H̊1(Ω)n , and accordingly that ϕ

(
ψ−) = φ(0) = 0 , where the last equality is

provided by the linearity of the functional φ : H1
Γ +(Ω+)n → R. Consequently, ϕ belongs

to the space defined in (B.13).

For any ψ ∈ H̊1(Ω)n,ϕ from the space (B.13), and φ = ϕ ◦ EΩ+→Ω , we have,

ϕ(ψ) − φ ◦ rΩ→Ω+(ψ) = ϕ(ψ) − ϕ(EΩ+→Ω ◦ rΩ→Ω+ψ)

= ϕ(ψ − EΩ+→Ω ◦ rΩ→Ω+ψ) = 0,

because ψ̃ := ψ − Eω+→Ω ◦ rΩ→Ω+ = 0 in Ω+. Hence rΩ− ψ̃ ∈ H̊1(Ω−)n and thus this
function can be approximated by functions from D(Ω−)n .

On the other hand, for anyψ+ ∈ H1
Γ +(Ω+)n,φ ∈ (H1

Γ +(Ω+)n)′, and ϕ := φ ◦rΩ→Ω+ ,

we have,

φ(ψ+) − ϕ(E
Ω+→Ωψ+ ) = φ(ψ+) − φ ◦ rΩ+→Ω+(EΩ+→Ωψ+) = φ(ψ+) − φ(ψ+) = 0.

This implies that φ can be identified with ϕ through the relations ϕ := φ ◦ rΩ→Ω+ :
H̊1(Ω)n → R and φ = ϕ ◦ EΩ+→Ω : H1

Ω+(Ω+)n → R. �
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C Useful norm estimates

In this appendix we provide several estimates, embeddings, and identities (some of them
well known), used in the analysis of the Navier-Stokes problems. Let Ω denote a bounded
Lipschitz domain in Rn , n ∈ {2, 3}. Let E̊Ω be the extension by zero operator from Ω to Rn .

• By the Sobolev embedding theorem (see, e.g., [1, Theorem 6.3]), the space H1(Ω)n is
compactly embedded in L4(Ω)n and there exists a constant c1 = c1(Ω, n) > 0 such that

‖v‖L4(Ω)n ≤ c1‖v‖H1(Ω)n , ∀ v ∈ H1(Ω)n . (C.1)

Due to the equivalence in H̊1(Ω)n of the semi-norm ‖∇(·)‖L2(Ω)n×n with the norm ‖·‖H1(Ω)n

given by (3.3), estimate (C.1) also implies

‖v‖L4(Ω)n ≤ c0‖∇v‖L2(Ω)n×n , ∀ v ∈ H̊1(Ω)n, (C.2)

with some constant c0 = c0(Ω, n) > 0.
• By the Hölder inequality, we obtain for all v1, v2, v3 ∈ H1(Ω)n ,

|〈(v1 · ∇)v2, v3〉Ω | ≤ ‖v1‖L4(Ω)n‖v3‖L4(Ω)n‖∇v2‖L2(Ω)n×n

≤ c1‖v1‖L4(Ω)n‖v3‖H1(Ω)n‖∇v2‖L2(Ω)n×n . (C.3)

This also means that for all v1, v2, v3 ∈ H1(Ω)n ,
∣∣∣
〈
E̊Ω [(v1 · ∇)v2], v3

〉

Ω

∣∣∣ ≤ ‖ |E̊Ωv1| |V3| ‖L2(Rn)‖E̊Ω∇v2‖L2(Rn)n×n

≤ ‖v1‖L4(Ω)n‖v3‖L4(Ω)n‖∇v2‖L2(Ω)n×n

≤ c1‖v1‖L4(Ω)n‖v3‖H1(Ω)n‖∇v2‖L2(Ω)n×n , (C.4)

where V3 ∈ H1(Rn)n is such that rΩV3 = v3. This implies that E̊Ω [(v1 · ∇)v2] belongs to
the space H̃−1(Ω)n = (

H1(Ω)n
)′. Moreover, in view of (C.1), for all v1, v2 ∈ H1(Ω)n ,

∥∥∥E̊Ω [(v1 · ∇)v2]
∥∥∥
H̃−1(Ω)n

≤ c21‖v1‖H1(Ω)n‖v2‖H1(Ω)n . (C.5)

Taking v3 ∈ H̊1(Ω)n in (C.3), it follows that the term (v1 · ∇)v2 belongs to the dual of
the space H̊1(Ω)n , that is, to the space H−1(Ω)n and for all v1, v2 ∈ H1(Ω)n ,

‖(v1 · ∇)v2‖H−1(Ω)n ≤ c1‖v1‖L4(Ω)n‖∇v2‖L2(Ω)n×n

≤ c1‖v1‖L4(Ω)n‖v2‖H1(Ω)n ≤ c21‖v1‖H1(Ω)n‖v2‖H1(Ω)n . (C.6)

• The dense embedding of the space D(Ω)n into H1(Ω)n , the divergence theorem and
estimate (C.6) imply the following identity for any v1, v2, v3 ∈ H1(Ω)n

〈(v1 · ∇)v2, v3〉Ω =
∫

Ω

∇ · (v1(v2 · v3)) dx − 〈(∇ · v1)v3 + (v1 · ∇)v3, v2〉Ω
= 〈γΩv1 · ν, γΩv2 · γΩv3〉∂Ω − 〈(∇ · v1)v3 + (v1 · ∇)v3, v2〉Ω , (C.7)

where ν is the normal vector on ∂Ω directed outward Ω .
To obtain an alternative versions of estimate (C.4), which does not involve ‖∇v2‖L2(Ω)n×n ,

let use (C.7) and take into account that γΩv1, γΩv2, γΩv3 ∈ H1/2(∂Ω)n . Further, we employ
that for the Lipschitz domain Ω ∈ R

n , n = 2, 3, the space H1/2(∂Ω)n is continuously
embedded in L3(∂Ω)n (e.g., by the embeddings in [54, Section 2.2.4, Corollary 2(i)] for
R
n−1 that can be extended to Lipschitz surfaces by standard arguments, cf. also a more
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general statement in [50, Proposition 3.8]). Thus, there exists a constant c2 = c2(∂Ω, n),
such that

‖φ‖L3(∂Ω)n ≤ c2‖φ‖H1/2(∂Ω)n , ∀ φ ∈ H1/2(∂Ω)n . (C.8)

Hence by the Hölder inequality we have for all v1, v2, v3 ∈ H1(Ω)n ,
∣
∣〈γΩv1 · ν, γΩv2 · γΩv3〉∂Ω

∣
∣ ≤ ‖ |γΩv1| |γΩv2| ‖L3/2(∂Ω)‖γΩv3‖L3(∂Ω)n

≤ c22‖γΩv1‖H1/2(∂Ω)n‖γΩv2‖L3(∂Ω)n‖γΩv3‖H1/2(∂Ω)n . (C.9)

Then from (C.7) and (C.9) we obtain for any v1, v2, v3 ∈ H1(Ω)n

|〈(v1 · ∇)v2, v3〉Ω | ≤ c22‖γΩ‖2‖v1‖H1(Ω)n‖γΩv2‖L3(∂Ω)n‖v3‖H1(Ω)n

+ 2c1‖v1‖H1(Ω)n‖v2‖L4(Ω)n‖v3‖H1(Ω)n

= ‖v1‖H1(Ω)n (c
2
2‖γΩ‖2‖γΩv2‖L3(∂Ω)n + 2c1‖v2‖L4(Ω)n )‖v3‖H1(Ω)n , (C.10)

where ‖γΩ‖ := ‖γΩ‖H1(Ω)n→H1/2(∂Ω)n is the norm of the trace operator.

• For v3 ∈ H̊1(Ω)n , (C.7) simplifies to

〈(v1 · ∇)v2, v3〉Ω =−〈(∇ · v1)v3+(v1 · ∇)v3, v2〉Ω , ∀ v1, v2∈H1(Ω)n, v3∈ H̊1(Ω)n,

(C.11)

In view of (C.11) we also obtain the identity

〈(v1 · ∇)v2, v3〉Ω =−〈(v1 · ∇)v3, v2〉Ω , ∀ v1∈H1
div(Ω)n, v2∈H1(Ω)n, v3∈ H̊1(Ω)n ,

(C.12)

and hence the well known formula

〈(v1 · ∇)v2, v2〉Ω = 0 , ∀ v1 ∈ H1
div(Ω)n, v2 ∈ H̊1(Ω)n . (C.13)

Arguments similar to those for (C.3) and identity (C.12) imply the estimate

|〈(v1 · ∇)v2, v3〉Ω | = |〈(v1 · ∇)v3, v2〉Ω | ≤ ‖v1‖L4(Ω)n‖v2‖L4(Ω)n‖∇v3‖L2(Ω)n×n (C.14)

for all v1 ∈ H1
div(Ω)n , v2 ∈ H1(Ω)n , v3 ∈ H̊1(Ω)n . Therefore,

‖(v1 · ∇)v2‖H−1(Ω)n ≤ |||(v1 · ∇)v2|||H−1(Ω)n ≤ ‖v1‖L4(Ω)n‖v2‖L4(Ω)n

≤ c1‖v1‖H1(Ω)n‖v2‖L4(Ω)n∀ v1 ∈ H1
div(Ω)n, v2 ∈ H1(Ω)n . (C.15)

• Let now Assumption 5.1 hold and Ω ′ be either Ω+ or Ω−. Similar to (C.4) we have for
all v1, v2 ∈ H1(Ω ′)n and v3 ∈ H1(Ω)n that

∣∣∣
〈
E̊Ω ′ [(v1 · ∇)v2], v3

〉

Ω

∣∣∣ = |〈(v1 · ∇)v2, v3〉Ω ′ |
≤ c′

1‖v1‖L4(Ω ′)n‖v3‖H1(Ω)n‖∇v2‖L2(Ω ′)n×n , (C.16)

where c′
1 = c′

1(Ω
′, n), cf. (C.1). Taking v3 ∈ H̊1(Ω)n in (C.16), we find that rΩ E̊Ω ′ [(v1 ·

∇)v2] belongs to H−1(Ω)n and
∥∥∥E̊Ω ′ [(v1 · ∇)v2]

∥∥∥
H−1(Ω)n

≤ c′
1‖v1‖L4(Ω ′)n‖v2‖H1(Ω ′)n

≤ (c′
1)

2‖v1‖H1(Ω ′)n‖v2‖H1(Ω ′)n , ∀ v1, v2 ∈ H1(Ω ′)n .

(C.17)
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If, moreover, v1 ∈ H1(Ω)n , then (C.17) implies
∥
∥
∥E̊Ω ′ [(r

Ω′ v1 · ∇)v2]
∥
∥
∥
H−1(Ω)n

≤ c′
1‖v1‖L4(Ω ′)n‖v2‖H1(Ω ′)n

≤ (c′
1)

2‖v1‖H1(Ω)n‖v2‖H1(Ω ′)n , ∀ v1 ∈ H1(Ω)n, v2 ∈ H1(Ω ′)n . (C.18)

• Let again Assumption 5.1 hold. In order to obtain some alternative versions of estimates
(C.16) and (C.17), which do not involve ‖∇v2‖L2(Ω ′)n×n , we implement (C.10) for Ω ′ and
find that for all v1, v2 ∈ H1(Ω ′)n and v3 ∈ H1(Ω)n

∣
∣
∣
〈
E̊Ω ′ [(v1 · ∇)v2], v3

〉

Ω

∣
∣
∣ = |〈(v1 · ∇)v2, v3〉Ω ′ |

≤ ‖v1‖H1(Ω ′)n (c
′2
2 ‖γΩ ′ ‖2‖γΩ ′v2‖L3(∂Ω ′)n + 2c′

1‖v2‖L4(Ω ′)n )‖v3‖H1(Ω)n , (C.19)

where c′
2 = c2(∂Ω ′, n). If we take v3 ∈ H̊1(Ω)n , then (C.19) implies

∥
∥
∥E̊Ω ′ [(v1 · ∇)v2]

∥
∥
∥
H−1(Ω)n

≤ ‖v1‖H1(Ω ′)n
(
c′2
2 ‖γΩ ′ ‖2‖γΩ ′v2‖L3(∂Ω ′)n

+2c′
1‖v2‖L4(Ω ′)n

)
, ∀ v1, v2 ∈ H1(Ω ′)n . (C.20)
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