
Chapter 18
On United Boundary-Domain
Integro-Differential Equations
for Variable Coefficient Dirichlet
Problem with General Right-Hand Side

Sergey E. Mikhailov and Zenebe W. Woldemicheal

18.1 Introduction

In this paper, the Dirichlet boundary value problem (BVP) for the linear stationary
diffusion partial differential equation with a variable coefficient is considered.
The PDE right-hand side belongs to the Sobolev spaces H−1(Ω), when nei-
ther classical nor canonical co-normal derivatives are well defined. Using an
appropriate parametrix (Levi function) the problem is reduced to a direct boundary-
domain integro-differential equation (BDIDE) or to a domain integral equation
supplemented by the original boundary condition thus constituting a boundary-
domain integro-differential problem (BDIDP). Solvability, solution uniqueness, and
equivalence of the BDIDE/BDIDP to the original BVP are analysed in Sobolev
(Bessel potential) spaces.

Let Ω be a bounded open three-dimensional region of R
3. For simplicity, we

assume that the boundary ∂Ω is a simply connected, closed, infinitely smooth
surface. Let a ∈ C∞(Ω), a(x) > 0 for x ∈ Ω.

We consider the scalar elliptic differential equation, which for sufficiently smooth
u has the following strong form

Au(x) := A(x, ∂x)u(x) :=
3∑

i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f (x), x ∈ Ω (18.1)

where u is an unknown function and f is a given function in Ω.
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In what follows D(Ω) := C∞
comp(Ω) denotes the space of Schwartz test

functions, Hs(Ω) = Hs
2 (Ω), Hs(∂Ω) = Hs

2 (∂Ω) are the Bessel potential spaces,
where s ∈ R (see, e.g., [LiMa72, Mc00]). We recall that Hs coincide with the
Sobolev-Slobodetski spaces Ws

2 for any non-negative s. We denote by H̃ s(Ω) the
subspace of Hs(R3),

H̃ s(Ω) := {g : g ∈ Hs(R3), supp g ⊂ Ω}.

And the space Hs(Ω) denotes the space of restriction on Ω of distributions from
Hs(R3),

Hs(Ω) = {rΩ g : g ∈ Hs(R3)}

where rΩ denotes the restriction operator on Ω.

18.2 Co-normal Derivatives and the Boundary Value
Problem

For u ∈ H 1(Ω), the partial differential operator A is understood in the sense of
distributions,

〈Au, v〉Ω := −E (u, v) ∀v ∈ D(Ω) (18.2)

where

E (u, v) :=
∫
Ω

a(x)∇u(x) · ∇v(x)dx

and the duality brackets 〈g, ·〉Ω denote the value of a linear functional (distribution)
g, extending the usual L2 dual product.

Since the set D(Ω) is dense in H̃ 1(Ω), formula (18.2) defines (cf. e.g. [Mi11,
Section 3.1]) the continuous linear operator A : H 1(Ω) → H−1(Ω) = [H̃ 1(Ω)]∗,
where

〈Au, v〉Ω := −E (u, v) ∀v ∈ H̃ 1(Ω).

Let us also consider the different operator, Ǎ : H 1(Ω) → H̃−1(Ω) = [H 1(Ω)]∗

〈Ǎu, v〉Ω = −E (u, v) = −
∫
Ω

a(x)∇u(x) · ∇v(x)dx

= −
∫
R3

E̊[a∇u](x) · ∇V (x)dx

sergey.mikhailov@brunel.ac.uk



18 On Unified BDIDEs 227

= 〈∇ · E̊[a∇u], V 〉R3

= 〈∇ · E̊[a∇u], v〉Ω, ∀u ∈ H 1(Ω), v ∈ H 1(Ω),

(18.3)

which is evidently continuous and can be written as

Ǎu := ∇ · E̊[a∇u].

Here V ∈ H 1(R3) is such that rΩV = v and E̊ denotes the operator of extension
of functions, defined in Ω, by zero outside Ω in R

3. For any u ∈ H 1(Ω), the
functional Ǎu belongs to H̃−1(Ω) and is an extension of the functional Au ∈
H−1(Ω) which domain is thus extended from H̃ 1(Ω) to the domain H 1(Ω) for
Ǎu.

From the trace theorem (see, e.g., [LiMa72, DaLi90, Mc00]) for u ∈ H 1(Ω),

it follows that γ+u ∈ H
1
2 (∂Ω), where γ+ := γ+∂Ω is the trace operator on ∂Ω

from Ω . Let also γ−1 : H 1
2 (∂Ω) −→ H 1(Ω) denote a (non-unique) continuous

right inverse to the trace operator γ+, i.e., γ+γ−1w = w for any w ∈ H
1
2 (∂Ω),

and (γ−1)∗ : H̃−1(Ω) −→ H− 1
2 (∂Ω) is the continuous operator dual to γ−1 :

H
1
2 (∂Ω) −→ H 1(Ω), i.e., 〈(γ−1)∗f̃ , w〉∂Ω := 〈f̃ , γ−1w〉Ω for any f̃ ∈ H̃−1(Ω)

and w ∈ H
1
2 (∂Ω).

For u ∈ H 2(Ω), we can denote by T c+ the corresponding classical (strong)
co-normal derivative operator on ∂Ω in the sense of traces,

T c+u(x) :=
3∑

i=1

a(x)n+i (x)γ
+
(
∂u(x)

∂xi

)
= a(x)γ+

(
∂u(x)

∂n(x)

)
,

where n+(x) is the outward (to Ω) unit normal vectors at the point x ∈ ∂Ω.

However the classical co-normal derivative operator is generally not well defined
if u ∈ H 1(Ω) (cf. an example in [Mi15, Appendix A]).

Definition 1 Let u ∈ H 1(Ω) and f̃ ∈ H̃−1(Ω). Then the formal co-normal

derivative T +(f̃ , u) ∈ H− 1
2 (∂Ω) is defined as

〈T +(f̃ , u), w〉
∂Ω

:= 〈f̃ , γ−1w〉Ω + E (u, γ−1w)

= 〈f̃ − Ǎu, γ−1w〉Ω ∀w ∈ H
1
2 (∂Ω).

that is,

T +(f̃ , u) := (γ−1)∗(f̃ − Ǎu) = (γ−1)∗f̃ + T +(0, u). (18.4)

If, in addition, Au = rΩ f̃ in Ω , then T +(f̃ , u) becomes the generalised co-
normal derivative, cf. Definition 3.1 in [Mi11] and Definition 5.2 in [Mi13]. Note
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228 S. E. Mikhailov and Z. W. Woldemicheal

that the formal co-normal derivative generally depends on the chosen right inverse,
γ−1, of the trace operator; however, the generalised co-normal derivative does not.
Some other properties of the generalised conormal derivative also hold true for the
formal conormal derivative. In particular, similarly to [Mc00, Lemma 4.3], [Mi11,
Theorem 5.3], we have the estimate

∥∥∥T +(f̃ , u)
∥∥∥
H
− 1

2 (∂Ω)
� C1

∥∥∥u
∥∥∥
H 1(Ω)

+ C2

∥∥∥f̃
∥∥∥
H̃−1(Ω)

.

The first Green identity holds in the following form for u ∈ H 1(Ω) such that Au =
rΩf̃ in Ω for some f̃ ∈ H̃−1(Ω),

〈T +(f̃ , u), γ+v〉
∂Ω

= 〈f̃ , v〉Ω + E (u, v) = 〈f̃ − Ǎu, v〉Ω ∀v ∈ H 1(Ω).

(18.5)

As follows from Definition 1, the formal and generalised co-normal derivatives are
non-linear with respect to u for a fixed f̃ , but still linear with respect to the couple
(f̃ , u).

We will consider the following Dirichlet boundary value problem:
Find a function u ∈ H 1(Ω) satisfying the conditions

Au = f in Ω, (18.6)

γ+u = ϕ0 on ∂Ω, (18.7)

where f ∈ H−1(Ω) and ϕ0 ∈ H
1
2 (∂Ω).

Equation (18.6) is understood in the distributional sense (18.2) and the Dirichlet
boundary condition (18.7) in the trace sense.

The following assertion is well-known and can be proved, e.g., using variational
settings and the Lax-Milgram lemma.

Theorem 1 The Dirichlet problem (18.6)–(18.7) is uniquely solvable in H 1(Ω).

The solution is u = (AD)−1(f, ϕ0)
T where the inverse operator (AD)−1 :

H
1
2 (∂Ω)×H−1(Ω) −→ H 1(Ω) to the left-hand side operator, AD : H 1(Ω) −→

H
1
2 (∂Ω)×H−1(Ω), of the Dirichlet problem (18.6)–(18.7) is continuous.

18.3 Parametrix and Potential Type Operators

We will say, a function P(x, y) of two variables x, y ∈ Ω is a parametrix (the Levi
function) for the operator A(x, ∂x) in R

3 if (see, e.g., [Mi02, Mi70, Po98a, Po98b])

A(x, ∂x)P (x, y) = δ(x − y)+ R(x, y), (18.8)
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where δ(.) is the Dirac distribution and R(x, y) possesses a weak (integrable)
singularity at x = y, i.e.,

R(x, y) = O(|x − y|−�) with � < 3. (18.9)

It is easy to see that for the operator A(x, ∂x) given by the left-hand side in (18.1),
the function

P(x, y) = −1

4πa(y)|x − y| , x, y ∈ R
3, (18.10)

is a parametrix and the corresponding remainder function is

R(x, y) =
3∑

i=1

xi − yi

4πa(y)|x − y|3
∂a(x)

∂xi
, x, y ∈ R

3, (18.11)

and satisfies estimate (18.9) with � = 2, due to smoothness of the function a(x).
Evidently, the parametrix P(x, y) given by (18.10) is related with the fundamental
solution to the operator A(y, ∂x) := a(y)Δ(∂x) with the “frozen” coefficient a(x) =
a(y) and A(y, ∂x)P (x, y) = δ(x − y).

Let a ∈ C∞(R3) and a > 0 a.e. in R
3. For scalar functions g, for which

the integrals have sense, the parametrix-based volume potential operator and the
remainder potential operator, corresponding to parametrix (18.10) and remainder
(18.11) are defined as

Pg(y) :=
∫
R3

P(x, y)g(x)dx, y ∈ R
3

Pg(y) :=
∫
Ω

P(x, y)g(x)dx, y ∈ Ω

Rg(y) :=
∫
Ω

R(x, y)g(x)dx, y ∈ Ω

The single and double layer surface potential operators are defined as

Vg(y) := −
∫
∂Ω

P (x, y)g(x)dSx, y /∈ ∂Ω (18.12)

Wg(y) := −
∫
∂Ω

[T (x, n(x), ∂x)P (x, y)]g(x)dSx, y /∈ ∂Ω (18.13)

where the integrals are understood in the distributional sense if g is not integrable.
The corresponding boundary integral (pseudodifferential) operators of direct

surface values of the single layer potential V and of the double layer potential W ,
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and the co-normal derivatives of the single layer potential W
′

and of the double
layer potential L +, for y ∈ ∂Ω are

V g(y) := −
∫
∂Ω

P (x, y)g(x)dSx, (18.14)

W g(y) := −
∫
∂Ω

[T +
x P (x, y)]g(x)dSx (18.15)

W
′
g(y) := −

∫
∂Ω

[T +
y P (x, y)]g(x)dSx, (18.16)

L +g(y) := T +Wg(y). (18.17)

When integrals in (18.12)–(18.16) are not well defined, they can be understood,
e.g., as pseudo-differential operators or dual forms.

From definitions (18.10), (18.12), (18.13) one can obtain representations of the
parametrix-based potential operators in terms of their counterparts for a = 1
(i.e. associated with the Laplace operator Δ), which we equip with the subscript
Δ, cf. [CMN09],

Pg = 1

a
P(g, Pg = 1

a
P(g, Rg = −1

a

3∑
i=1

∂iP([g(∂ia)], (18.18)

Vg = 1

a
V(g, Wg = 1

a
W((ag), (18.19)

V g = 1

a
V(g, W g = 1

a
W((ag), (18.20)

W
′
g = W

′
(g +

[
a
∂

∂n

(
1

a

)]
V(g, (18.21)

L ±g = L((ag)+
[
a
∂

∂n

(
1

a

)]
W ±
( (ag). (18.22)

Hence

Δ(aVg) = 0, Δ(aWg) = 0 in Ω, ∀g ∈ Hs(∂Ω) ∀s ∈ R,

Δ(aPg) = g in Ω, ∀g ∈ H̃ s(Ω) ∀s ∈ R

The jump relations as well as mapping properties of potentials and operators are
well known for the case a = const. They were extended to the case of variable
coefficient a(x) in [CMN09].
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18.4 The Third Green Identity and Integral Relations

For u ∈ H 1(Ω) and v(x) = P(x, y), where the parametrix P(x, y) is given by
(18.10), the following generalised third Green identity can be obtained from (18.5),
(18.3), (18.8), see [Mi15, Theorem 4.1], [Mi18, Theorem 4.1],

u+Ru+Wγ+u =PǍu in Ω,

where

PǍu(y) := 〈Ǎu, P (., y)〉Ω = −E (u, P (., y)) = −
∫

Ω

a(x)∇u(x) · ∇xP (x, y)dx.

If rΩAu = f̃ in Ω , where f̃ ∈ H̃−1(Ω), then the generalised third Green identity
takes the following form,

u+Ru− V T +(f̃ , u)+Wγ+u =Pf̃ in Ω, (18.23)

For some functions f̃ , Ψ and Φ, let us consider a more general “indirect” integral
relation associated with Eq. (18.23),

u+Ru− VΨ +WΦ =Pf̃ in Ω (18.24)

The following statement proved in [Mi15, Lemma 4.2] (see also [Mi18, Lemma 4.2]
for Lipschitz domains and more general spaces and coefficients) extends Lemma 4.1
from [CMN09], where the corresponding assertion was proved for f̃ ∈ L2(Ω).

Lemma 1 Let u ∈ H 1(Ω), Ψ ∈ H− 1
2 (∂Ω),Φ ∈ H

1
2 (∂Ω), and f̃ ∈ H̃−1(Ω)

satisfy Eq. (18.24). Then

Au = rΩf̃ in Ω, (18.25)

rΩV (Ψ − T +(f̃ , u))− rΩW(Φ − γ+u) = 0 in Ω. (18.26)

The following statement was proved in [CMN09, Lemma 4.2].

Lemma 2

(i) If Ψ ∗ ∈ H− 1
2 (∂Ω) and rΩVΨ ∗ = 0 in Ω, then Ψ ∗ = 0.

(ii) If Φ∗ ∈ H
1
2 (∂Ω) and rΩWΦ∗ = 0 in Ω, then Φ∗ = 0.

Let us now generalise Theorem 5.1 from [Mi06] to the right-hand side f̃ ∈
H̃−1(Ω).
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Theorem 2 Let f̃ ∈ H̃−1(Ω). A function u ∈ H 1(Ω) is a solution of PDE Au =
rΩf̃ in Ω if and only if it is a solution of boundary-domain integro-differential
equation (18.23).

Proof If u ∈ H 1(Ω) solves PDE Au = rΩf̃ in Ω , then it satisfies (18.23). On the
other hand, if u ∈ H 1(Ω) solves boundary-domain integro-differential Eq. (18.23),
then using Lemma 1 with Ψ = T +(f̃ , u) and Φ = γ+u, we obtain that u satisfies
(18.25), which completes the proof.  !

18.5 United Boundary-Domain Integro-Differential
Equations

Let us consider reduction of the Dirichlet problem (18.6)–(18.7) with f ∈ H−1(Ω),

for u ∈ H 1(Ω), to a united boundary-domain integro-differential problem or to a
united boundary-domain integro-differential equation. Formulations for the mixed
problem for u ∈ H 1,0(Ω;Δ) with f ∈ L2(Ω) were introduced and analysed in
[Mi06]. Let f̃ ∈ H̃−1(Ω) be an extension of f ∈ H−1(Ω) (i.e., f = rΩf̃ ), which
always exists, see [Mi11, Lemma 2.15 and Theorem 2.16].

18.5.1 United Boundary-Domain Integro-Differential Problem

Supplementing BDIDE (18.23) in the domain Ω , where we take into account (18.4),
with the original Dirichlet condition (18.7) on the boundary ∂Ω , we arrive at the
following united boundary-domain integro-differential problem, BDIDP, for u in Ω ,

GDu = FD (18.27)

where

GDu =
[
u+Ru− V T +(0, u)+Wγ+u

γ+u

]
, FD =

[
Pf̃ + V (γ−1)∗f̃

ϕ0

]

(18.28)

and we invoked representation (18.4). Note also that by (18.12),

V (γ−1)∗f̃ (y) = −〈γP (·, y), (γ−1)∗f̃ 〉∂Ω = −〈γ−1γP (·, y), f̃ 〉Ω
= −〈P(·, y), γ ∗(γ−1)∗f̃ 〉∂Ω = −Pγ ∗(γ−1)∗f̃ .

BDIDP (18.27) is equivalent to the Dirichlet boundary value problem (18.6)–
(18.7) in Ω, in the following sense.
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Theorem 3 Let f ∈ H−1(Ω), ϕ0 ∈ H
1
2 (∂Ω), and f̃ ∈ H̃−1(Ω) be such that

rΩf̃ = f . A function u ∈ H 1(Ω) solves the Dirichlet BVP (18.6)–(18.7) in Ω if
and only if u solves BDIDP (18.27). Such solution does exist and is unique.

Proof A solution of BVP (18.6)–(18.7) does exist and is unique due to Theorem 1
and provides a solution to BDIDP (18.27) due to Theorem 2. On the other hand, due
to the same Theorem 2, any solution of BDIDP (18.27) satisfies also BVP (18.6)–
(18.7), which is unique.  !

Due to the mapping properties of operators V , W , P and R, cf. [CMN09], we

have FD ∈ H 1(Ω) × H
1
2 (∂Ω) and the operator GD : H 1(Ω) → H 1(Ω) ×

H
1
2 (∂Ω) is continuous. It is also injective due to Theorem 3.

18.5.2 United Boundary-Domain Integro-Differential
Equation

Substituting the Dirichlet boundary condition (18.7) and relation (18.4) into (18.23),
we arrive at the following boundary-domain integro-differential equation, BDIDE,
for u ∈ H 1(Ω) :

G 2u := u+Ru− V T +(0, u) = F 2 in Ω (18.29)

where

F 2 =Pf̃ + V (γ−1)∗f̃ −Wϕ0 (18.30)

Let us prove the equivalence of BDIDE (18.29) to BVP (18.6)–(18.7).

Theorem 4 Let f ∈ H−1(Ω), ϕ0 ∈ H
1
2 (∂Ω), and f̃ ∈ H̃−1(Ω) be such that

rΩf̃ = f. A function u ∈ H 1(Ω) solves the Dirichlet BVP (18.6)–(18.7) in Ω if
and only if u solves BDIDE (18.29) with right-hand side (18.30). Such solution does
exist and is unique.

Proof Any solution of BVP (18.6)–(18.7) solves BDIDE (18.29) due to the third
Green formula (18.23). On the other hand, if u is a solution of BDIDE (18.29) then
Lemma 1 implies that u satisfies Eq. (18.6) and rΩW(ϕ0−γ+u) = 0 in Ω. Lemma 2
(ii) then implies that ϕ0 − γ+u = 0, i.e., the Dirichlet boundary condition (18.7)
is satisfied. Thus any solution of BDIDE (18.29) satisfies BVP (18.6)–(18.7). The
unique solvability of BVP (18.6)–(18.7) and hence of BDIDE (18.29) is implied by
Theorem 1.  !
The mapping properties of operators V , W , P and R imply the membership F 2 ∈
H 1(Ω) and continuity of the operator G 2 in H 1(Ω), while Theorem 4 implies its
injectivity.
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Note that Theorems 3 and 4 imply that the non-uniqueness of extension of
f ∈ H−1(Ω) to f̃ ∈ H̃−1(Ω) and the non-uniqueness of the right inverse to the
trace operator, γ−1, involved in the definition of T +(f̃ , u), do not compromise the
uniqueness of solutions u of BDIDP (18.27) and BDIDE (18.29).

18.6 Conclusion

A Dirichlet BVP for a variable-coefficient second order PDE with general right-
hand side function from H−1(Ω) and with the Dirichlet data from the space

H
1
2 (∂Ω) was considered in this paper. It was shown that the BVP can be

equivalently reduced to a united boundary-domain integro-differential problem, or
to a united boundary-domain integro-differential equation of the second kind.

Similarly one can also consider the united BDIEs for the Neumann and mixed
problems in interior and exterior domains for the general right-hand side as well as
the united versions of other BDIEs formulated and analysed in [AyMi11, ADM17,
Mi02, Mi06].
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