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PROBLEMS ON THE ANTI-PLANE DEFORMATION OF ELASTIC BODIES 
CORNER POINTS BY THE METHOD OF INTEGRAL EQUATIONS* 

S.E. MIKBAILOV 

The problem of the antiplane deformation of an elastic cylinder with a 
multiconnected finite or infinite section, bounded by a system of closed 
curves that can have corner points, is examined. Forces or displacements 
are given on the whole boundary of the body. The problem is reduced to an 
integral equation whose kernel has strong stationary singularities at the 
corner points. Results of an investigation of the solvability of this 
equation and the smoothness of its solution are presented. A procedure 
for the numerical solution of the integral equation is described. A space 
with a prismatic hole ofrectangular section or a rigid inclusion subjected 
to a uniform tangential force at infinity is considered as an example. 
The generalized stress intensity factors are calculated. 

1. Consider the problem of antiplane deformation of an elastic isotropic cylinder whose 
section D can be multiconnected and bounded by the system I'=r, U r1 U . . . U r,,, of closed 
contours of bounded rotation without reentry points. In particular, the boundaryof thedomain 
D can have corner points, in which the internal angle is not zero or 2n . The contour ra 
encloses all the remaining contours r,. There may be no such contour, in which casethedomain 
under consideration is infinite. Forces (Problem 1) or displacements (Problem 2) are given 
on the whole boundary. It is known /l/ that if solutions with limited energy are sought at 
the corner points in such problems, the stresses can have power-law singularities. 

Let W be the displacement along the cylinder axis. Then the stresses can be expressed 
in terms of W in the form 

Here z is a coordinate parallel to the cylinder axis, x, y are Cartesian coordinates in 
the plane of the section D, and G is the shear modulus. For the equilibrium equation to be 
satisfied, it is necessary that the displacement W satisfy Laplace's equation 

(1.1) 

Problems are considered with the following boundary conditions: 

aw I 
t 

=A anr c =-&T(s) (Problem 1) (1.2) 

w(r=D(s) (Problem 2) (1.3) 

Here s is the length of the arc of the contour r oriented so that the domain D remains 
on the left when passing in the positive direction, n is the external normal to I?, the given 
displacement is D(S)= Wri(r), and the given force is T(s)= L,(r), 1 <r( CU. 

We shall seek the solution of these problems in the class of functions WEC'(D)T)C(b) 
and bounded at infinity if the domain is infinite. 

The solution of Problem 1 will be sought in the form 

’ W(l) (zl, pl) = Im {f CD (z) dz} + C (1.4) 
1. 

The solution of Problem 2 will be sought in the form 

IV(*) (zl, yl) = Re [ 5 [@ (z) + Z (z)] dz) + Aa, Z (z) I 2 & 
II b.1 ’ 

(1.5) 

Here z1 = x1 + iy, is a complex coordinate of a point in D,z,isanarbitrary fixed point 
in D, the function 0(z) is analytic, C is an arbitrary real constant, at are arbitrary points 
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within the contours ri, andA*are real constants for whose determination a method will be 
given below. 

The stresses are expressed in terms of the function 0 as follows: 

T,(l) = G Im Q (z), ~~(1) = G Re Q, (z) 

r,(2) = G Re [a (z) + Z (z)], Q(?) = -G Im [0 (z) + Z (z)] 

We shall seek the function CD(z) in (1.4) and (1.5) in the form of a Cauchy-type integral 
with real density ME Lp(I'), I< p < 00 

O(z)=& ‘LgL I (1.6) 

where t = t(s) is the complex coordinate of a point of the contour, and k=dtl&. Functions 
of the arguments s and t are not distinguished later, i.e., l3 0) = g 0 (4) = B (4. The represent 
ation (1.4) and (1.6) is ordinarily the potential of a simple layer, while the representation 
(1.5) and (1.6) can be expressed in terms of the angular potential used in /2/ for problems in 
simply-connected domains with smooth boundaries. 

After substituting (1.4) and (1.6) into (l-2), and (1.5) and (1.6) into condition (1.3) 
differentiated with respect to s, we obtain an integral equation in p (s)for both problems 

(1.7) 

I - T W/G Problem 1 

m c k (4 A, 
l(S) - (li Problem 2 

(31 

Representation (1.6) allows of integrable power-law singularities of the stresses if 
l<P<W and p is sufficiently small. 
possibly smaller p > 1. 

We hence seek the solution of (1.7) p E L, with a 

Equation (1.7) has been obtained in /3/, Sec.140 for smooth contours. If the contour r 
is a piecewise-Liapunov contour with Hijlder index in the Liapunov condition equal to one, then 
the kernel of (1.6) is bounded everywhere with the exception of corner points where it has a 
first-order singularity as s and s,, tend to the corner point from different sides. Such equa- 
tions were examined in /4, 5/, where formulas were obtained for their index. On the basis of 
these results, it can be shown that (1.7) in the spaces L,, 1 <p<p,, , is a generalized 
Fredholm equation 

p0 = 1 + (max [I - o,/n I)-' (1.8) 
j 

The maximum in (1.8) is taken over all corner points, while 01 is the magnitude of the 
internal angle at these points. It is seen from (1.8) that ~~2-2 in the cases ml# 0 and 
Oj+ 2n. under consideration. 

It can be proved that if the contour r0 exists, i.e., the domain does not include infin- 
ity, then the homogeneous equation (1.7) has a unique non-trivial solution which nevertheless 
generates only a zero function 0(z)in D according to (1.6), meaning the zeroth stress field 
in Problem 1 and the stress field generated just by the addition of z(z)in Problem 2. For 
the inhomogeneous equation (1.7) to be solvable in the case of a finite domain D, it is neces- 
sary that 

i.e., that the principal vector of the forces applied to the body be zero in Problem 1, or the 
displacement U(s) applied to the body boundary be continuous in Problem 2. 'If there is no 
contour r,, i.e., the domain D includes the infinitely distant point, then (1.7) is uniquely 
and absolutely solvable. 

To determine Ai in the solution of Problem 2, we impose the condition W(*)(z(ti), y(gi))= 
u &),(i = 0, . . ., ml, where gi are arbitrary fixed points of the appropriate contours ri, and 
W(2) is given by (1.5). In the case of no lYO we impose the condition A,+A,f..- f Am =O, 
which ensures the boundedness of W at infinity. In both cases, for m + 1 unknowns we obtain 

m+1 linear algebraic equations. 
In fact, letmObe the solution of (1.7) with the right side d(i/&, and let @i(i= l,...,m) 

be the solutions of (1.7) with the right sides Re [k (s)/(t (s) - ai)]. Then the solution of (1.7) 
with the given right side 
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equals 

We obtain the system 

n’ k @)A. 

f=$-ReC& 
i=l 

If there is no TO, then the equation rl,+A:,+...+A,=O is added to this system. The 
system determinant differs from zero because otherwise a solution would be found for the 
Dirichlet problem with zero boundary conditions, that is different from zero. This reasoning 
is similar to that presented earlier (/6/.Sec/63). For a numerical solution it is necessary 
to determine @(I = o,...,m) and then Ai, 

If the domain D is simply-connected, then there is no need to determine Aj, Oi. When it 
is bounded, the single constant A, can be taken in the form A,=U(&J while simultaneously 
letting the point z0 tend to &,. When the domain D is not bounded, we set Al=50 for the 
solution to be bounded at infinity and proceed with the remining constant A, as in the case 
of the bounded domain. In both cases @=m,,. 

The fact that (1.7) lies in the spectrum for the finite domain D can complicate its 
numerical solution. In this case we turn from (1.7) to the equation 

(I - K - KI) P = f~> (Klp) (so) = E s p(s) ds 
r 

(1.10) 

where e is an arbitrary constant different from zero. Using the seneralized Schmidt lemma /7/ 
(see /8/ also), it 
l<p<p,, and if 

can be shown that (1.10) will be absolutely and uniquely solvable in L,, 
condition (1.9) for the solvability of (1.7j.i~ satisfied the solution of 

(1.10) agrees with one of the solutions of (1.7) such that 

5 p(s) ds = 0 
r 

Since, as has been mentioned above, the solution of the homogeneous equation (1.7) does 
not generate a non-zero function a(z) in (1.6), it does not matter which of the solutions of 
(1.7) will be the solution of (1.10). 

The smoothness of the solutions of (1.7) as a function of the smoothness of the boundary 
and the boundary conditions is investigated successfully by methods similar to that described 
earlier /9/. In particular, if s* is a point of smoothness of the curve r, we differentiate 
the angle cp between the tangent to the curve r and the x axis continuously tiith respect to s 
in the neighbourhood of this point, and the function j(s) is continuous (i.e., the force or 
derivative of the given displacement is given continuously), then the solution p will also be 
continuous in this neighbourhood. If the function f(s) has a discontinuty of the first kind 
of magnitude Aj at the point where the curve r is sufficiently smooth, then the solution of 
the integral equation also has a discontinuity of the first kind of this point, and its magni- 
tude is Ap= Af. If s* is a corner point of the curve r , the angle cp in the'left and right 
neighbourhoods of this point is a continuously differentiable function of s, and the function 
f(s) is sufficiently smooth, for instance, it belongs to the space w,l(r) in the left and 
right neighbourhoods of s*, then p has the following form in these neighbourhoods: 

p+ (s) = po+ + A 1 s - s* p, p+ (s) = po+ + A 1 s - (1.11) 

s* 14 sign (n - o), 6 = 1 - (1 + 10 - x I/31)-l 

Here p*and p-are the values of pin the left and right neighbourhoods of the point s*, 
respectively, pp* are sufficiently smooth , say, Hglder functions in the left and right neigh- 
bourhoods of s* that equal zero at the point s*, o is an internal angle at the point s+, and 
A is a certain unknown constant. 

As is seen from (l.ll), the density p in the neighbourhood of corner points has power-law 
singularities, where it is even singular at those points in which the internal angle o is less 
than x and the stresses have no singularities, Using (1.6) and the results obtained in /6/ 
about the .behaviour of a Cauchy-type integral in the neighbourhood of a corner point, weobtain 
from (1.11) that in the neighbourhood of the corner point s*, 
5' is sufficiently smooth, 

if the part of r belonging to 
the stresses in a local polar coordinate system r, 0 with origin 
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at the point s*, will have the following form for o >n : 

t,(l) = (K”/l/Z;;) + sin [f3 (1 - @I + tro + Trl 
~(1) = (K” 6%) r’ cos [O (1 - 6)] + tea + zel 
K” = -ZAG ctg (6~) f% 

q.0 = v-cos (9 + w/2) + f’ co9 (I3 - o/2)]/sin 0 

TW = -G u- sin (13 + o/2) + f+ sin (0 - o/2)] / sin o 

(1.12) 

Here %, YI are continuous functions that tend to zero as Z+ t*, f- and f'are the left 
and right limit values of f(t) as t+ t*, 8 is an angle measured anticlockwise from the inner 
bisectrix at the corner point t*. As o tends to 2n, i.e., as 6+ i/2, formula (1.12) re- 
duces to the usual formula for a longitudinal shear crack. For o(n we should set K”=O 
in (1.12). 

It is seen from the representation (1.12) that the second bounded term of the asymptotic 
form of the stress in the neighbourhood of a corner point is expressed explicitly in terms of 
the boundary values around the corner point , and it can be found without solving the initial 
boundary value problem. In particular, it can be shown that the bounded terms Z,O and %l 
vanish in the problem of pure torsion of a rod in which the tangential forces on the side 
surfaces are zero. If o>n then the stresses are represented as the sum of a singular term 
and a term that is zero at the corner point, and if o< n then the stresses tend to zero as 
one approaches the corner point. 

Let s* be a point of smoothness of r , at which the function f has a discontinuity of 
the first kind (i.e., the force T(S) or the derivative of the displacement &l(s)/&) isgiven) 
equal to Af . Then it follows from /6/ that the stresses have the form 

+‘=__GSf I sin (0) In r + TV, T$) = -G +. cos (e) In r + ‘5e3 (1.13) 

where ‘Frat %a are bounded functions. 
For Problem 2 we have 2 T?(?) ='@, Z@(p) = --r,(l) ,where (1.12) and (1.13) presented above must 

be taken as 7$‘), Te(‘) . 
2. Let US examine the problem of the numerical solution of (1.7) and (1.10). The behav- 

iour of the solutions of these equations in the neighbourhood of singular points, to which 
the corner points of r and the points of the discontinuity f in smooth parts of r belong, is 
known. Hence, the desired function p can be represented in the form p(s)= Wan, where ~~(8) 
is an unknown bounded function, and IUD(S) is a known singular weighting function equal to w(s)= 

(I - '1 l -b* 1 (I** - s) -& on each curvilinear segment between two singular points s,* and se* , where 
61, 4 are the degrees of singularity of p , respectively, at the beginning r,*and end al* of 
the segment. If one of these ends is the point of smoothness of r , then 6=0 there, while 
15 is determined by (1.11) at the rest of the points. 

We turn from (1.7) to the equation 

(2.1) 

We reduce this equation to a system of linear algebraic equations by the method of colloc- 
ation, and we estimate the integral in (2.1) approximately for 
ula of the trapezoid method that takes account of the presence 
use (2.1) at the angular points of the quadrature formula. We 
the Gauss method of elimination. After finding the values of 
its values at the angular points by extrapolation over several 
a Lagrange polynomial. 

The point distribution over the segment 

SJ = s,* + (sZ* - s,*) jl(N + 1) 

The distribution 
sj = sI* + (sa* - Q*) (Zj - 1)&N) 

or the zeros of the Chebyshev polynomials 

this by using a quadrature form- 
of the singular weight, and we 
solve the system obtained by 

FL1 (8 at the nodes, we obtain 
of the nearest points by using 

s, = s** - (sa* - sl*) cos'[(Zj - i) n/(4N)], j = 1, . . ,, N 

were selected as nodal points. 
The greatest accuracy is achieved when using the Chebyshev points since they are consid- 

erably more condensed as one approaches the singular points. 
3. As an illustration, consider the problem of antiplane deformation of a space with an 

infinite prismatic hole of rectangular section or a rigid inclusion. A uniform shear stress 
r is applied to the space at infinity, which is paralleltoone of the sides of the rectangle 
in the plane of the section. By superposition we reduce the problem to a problem in a space 
with forces or displacements applied on the sides of the hole and zero stresses at infinity. 
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The degree of singularity of the stress at right angles is b='f,. 
We introduce two dimensionless intensity coefficients 

K,= -K0;[2ctg(&)~~ra*]= A/@), K,, = A',(+'+' 

Here a is half the length of a side of the rectangle perpendicular to the direction of 
the stresses acting at infinity in the plane of the section, and b is half the length of the 

other side. 

D 
U/b mu 

2 4 d 

Fig.1 Fig.2 

The dependence of the dimensionless stress intensity coefficients on the relative dimen- 
sions of the rectangle is represented in Fig.1. The ratio b/a is laid off on the horizontal 
axis for +he hole, and a/b for the inclusion. Curve 1 is the dependence of &on the ratio 
b/a for the hole and the dependence of K,, on the ratio a/b for the inclusion. Curve 2 is the 
dependence of K.. on the ratio b/a for the hole and the dependence of K, on the ratio a/b for 
the inclusion. 

These graphs show the following. When the problem with a hole is considered, the stress 
intensity coefficient h? drops for fixed a as b increases and emerges on the asymptote cor- 
responding to the intensity coefficient for a slit in the form of a half-strip with the slit 
axis parallel to the direction of the shear stresses in the plane of the section (the y axis), 
in which case K,, = 0.66. If the dimension b decreases for fixed a, the generalized intensity 
coefficient increases without limit since in the limit we obtain a crack along the x axis, in 
which the degree of singularity is, as is known, '1% > 6 and the intensity coefficient for 
this singularity is different from. zero. Nhen b is fixed, and a increases we obtain a slit 
in the form of a half-strip along the x axis in the limit , and the intensity coefficient tends 
to infinity, as might have been expected. For fixed b and a tending to zero, we obtain, in 
the limit, a zero intensity coefficient since in this case we have a crack parallel to the y 
axis at which the intensity coefficient equals zero; hence the intensity coefficient for a 
rectangular hole drops monotonically to zero. Analogous reasoning can be used for the inclus- 
ion also. 

In Fig.2 we show the distribution of the stresses 7, = 7JT and ?e=~& in the local 
polar coordinate system on the continuation of the diagonal of a square in the problem of a 
space with a square hole shifted to infinity by uniform forces r. The distance is measured 
from the vertex of the square. Also shown in Fig.2 is the distribution of the stressia*=re*/r 
given just by the first singular term in the asymptotic form (1.12). In the case under consid- 
eration, the second constant term of the asymptotic form is zero and the graph given for ?a* 
actually represents a two-term asymptotic form of the stress tg . It is seen from the graphs 
presented that the two-term asymptotic agrees with the true stresses Fe at fairly short dist- 
ances from the vertex of the square and approaches Fig with 10% accuracy at distances less than 
a. On approaching the vertex of the square, : tends to zero, as it should do because of 
(1.12). At fairly large distances T~=T~=z Iv?, which corresponds to shear of a space with- 
out a hole, while the dash-dot line in Fig.2 represents this asymptote, As is seen from the 

graphs, at distances greater than 2a, ~7 and re differ from the limit value by not more than 
10%. 

1. 

2. 

3. 
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METHODS OF SOLVING SPATIAL PROBLEMS OF THE MECHANICS 
OF A DEFORMABLE SOLID IN TERMS OF STRESSES* 

T. KHOLMATOV 

The formulation in /l/ of a quasistatic problem of the mechanics of a 
deformable solid in terms of stresses is discussed, including also the 
variational formulation, which consists of solving six equations in six 
symmetric stress tensor components when six boundary conditions are satisfied. 
Methods of successive approximation are proposed for solving this problem 
and theorems on the convergence of these methods, including a "rapidly 
converging" method, whose rate of convergence is substantially higher than 
a geometric progression, are proved. 

Utilization of the Lagrange and Castigliano variational principles in the numerical solu- 
tion of boundary value problems of the mechanics of a deformable solid enables an a priori 
stable difference scheme /l/ to be compiled as well as an effective means for solving it. The 
disadvantages of applying each of these variational principles are well known. Thus, when 
using the Lagrangian, the desired quantities are displacements, and a numerical differentia- 
tion procedure that considerably reduces the accuracy of the solution obtained must be used 
to determine the state of stress. When using the Castiglianian, the problem is to seek the 
conditional extremum (in the class of tensor functions satisfying the equilibrium equations 
and the static boundary conditions), which often turns out to be difficult. 

A new variational principle, based on solving the mechanics problem of a deformable solid 
in terms of stresses /l/ is considered below , and methods of solving the quasistatic problem 
of physically non-linear mechanics of a deformable solid are described. 

1. Consider a physically non-linear medium in which the relation between the strain 
tensor components e and the stress tensor components s is given in the operator form 

eij = Gj (4 (1.1) 

On the boundary of a body z occupying a volume V let a force vector be given and let the 
following equilibrium conditions be satisfied: 

aijnJ (z - Stat 4i 12 = --Xi IT2 (1.2) 

(Xi are components of the volume force vector). 
The quasistatic problem of the mechanics of a deformable body in terms of stresses (Problem 

B /l/) is to solve six equations in six unknown stress tensor components 

EiJk,k f Y~J = 0 (1.3) 

while satisfying boundary conditions (1.2). Here 

Eijt saij,k f Gki('/~ ~mm. j -se,j,m) + ~;:~('IzE,,, i -ami 7,) + (1.4) 

E,j t&k, m - Emm. k ) + Ri (q) + 8, ((I) - Ljf?:; ((I) 

where their expressions in terms of the stresses (1.1) is substituted in place of the strain 

E, 5 is a certain arbitrary symmetric constant tensor, and R is a certain linear vector 
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