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Abstract The direct segregated Boundary-Domain Integral Equations (BDIEs) for
the mixed boundary value problem for a second order elliptic partial differential
equation with variable coefficient in 2D is considered in this paper. An appropri-
ate parametrix (Levi function) is used to reduce this BVP to the BDIEs. Although
the theory of BDIEs in 3D is well developed, the BDIEs in 2D need a special con-
sideration due to their different equivalence properties. As a result, we need to set
conditions on the domain or on the associated Sobolev spaces to insure the invert-
ibility of corresponding parametrix-based integral layer potentials and hence the
unique solvability of BDIEs. The properties of corresponding potential operators
are investigated. The equivalence of the original BVP and the obtained BDIEs is
analysed.

1 Preliminaries

The direct segregated Boundary-Domain Integral Equations (BDIEs) for the mixed
boundary value problem for a second order elliptic partial differential equation with
variable coefficient in 2D is considered in this paper. An appropriate parametrix
(Levi function) is used to reduce this BVP to the BDIEs. Although the theory of
BDIEs in 3D is well developed, cf. [8, 9, 2, 3], the BDIEs in 2D need a special
consideration due to their different equivalence properties. As a result, we need
to set conditions on the domain or on the associated Sobolev spaces to insure the
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invertibility of corresponding parametrix-based integral layer potentials and hence
the unique solvability of BDIEs. The properties of corresponding potential operators
are investigated. The equivalence of the original BVP and the obtained BDIEs is
analysed.

Let Ω be a domain in R2 bounded by a smooth curve ∂Ω , and let n(x) be the ex-
terior unit normal vector defined on ∂Ω . The set of all infinitely differentiable func-
tions on Ω with compact support is denoted by D(Ω). The function space D ′(Ω)
consists of all continuous linear functionals over D(Ω). The space Hs(R2), s ∈ R,
denotes the Bessel potential space, and H−s(R2) is the dual space to Hs(R2). We
define Hs(Ω) = {u ∈ D ′(Ω) : u = U |Ω for some U ∈ Hs(R2)}. The space H̃s(Ω)
is the closure of D(Ω) with respect to the norm of Hs(R2), and for s ∈ (− 1

2 ,
1
2 ), the

space Hs(Ω) can be identified with H̃(Ω), see, e.g., [7].
We shall consider the scalar elliptic differential equation

Au(x) =
2

∑
i=1

∂

∂xi

[
a(x)

∂u(x)
∂xi

]
= f (x) in Ω ,

where u is unknown function and f is a given function in Ω . We assume that

a ∈C∞(R2), 0 < amin ≤ a(x)≤ amax < ∞, ∀x ∈ R2. (1)

For u ∈ H2(Ω) and v ∈ H1(Ω) if we put h(x) = a(x) ∂u(x)
∂x j

v(x) and apply the
Gauss-Ostrogradski Theorem, we obtain the following Green’s first identity:

E (u,v) =−
∫
Ω

(Au)(x)v(x)dx+
∫

∂Ω

T c+u(x)γ+v(x)dsx, (2)

where E (u,v) :=
2

∑
i=1

∫
Ω

a(x)
∂u(x)

∂xi

∂v(x)
∂xi

dx is the symmetric bilinear form, γ+ is the

trace operator and

T c+u(x) :=
2

∑
i=1

ni(x)γ+
[

a(x)
∂

∂xi
u(x)

]
for x ∈ ∂Ω , (3)

is the classical co-normal derivative.

Remark 1.1 For v ∈ D(Ω), γ+v = 0. If u ∈ H1(Ω), then we can define Au as a
distribution on Ω by, (Au,v) =−E (u,v) for v ∈D(Ω).

The subspace H1,0(Ω ;A) is defined as in [5] (see also, [10])

H1,0(Ω ;A) := {g ∈ H1(Ω) : Ag ∈ L2(Ω)},

with the norm ‖g‖2
H1,0(Ω ;A) := ‖g‖2

H1(Ω)
+‖Ag‖2

L2(Ω).
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For u ∈ H1(Ω) the classical co-normal derivative (3) is not well defined, but for
u ∈ H1,0(Ω ;A), there exists the following continuous extension of this definition
hinted by the first Green identity (2) (see, e.g., [5, 10] and the references therein).

Definition 1.2 For u ∈ H1,0(Ω ;A) the (canonical) co-normal derivative T+u ∈
H−

1
2 (∂Ω) is defined in the following weak form,

〈T+u,w〉∂Ω := E (u,γ+−1w)+
∫

Ω

(Au)γ+−1wdx for all w ∈ H
1
2 (∂Ω) (4)

where γ
+
−1 : H

1
2 (∂Ω)→ H1(Ω) is a continuous right inverse of the trace operator

γ+, which maps H1(Ω)→ H
1
2 (∂Ω), while 〈·, ·〉∂Ω denote the duality brackets be-

tween the spaces H−
1
2 (∂Ω) and H

1
2 (∂Ω), which extend the usual L2(∂Ω) inner

product.

Remark 1.3 The first Green identity (2) also holds for u ∈ H1,0(Ω ;A) and v ∈
H1(Ω) if we replace there T c+ by T+, cf. [5, 10].

By interchanging the roles of u and v in the first Green identity and subtracting the
result, we obtain the second Green identity for u,v ∈ H1,0(Ω ;A),∫

Ω

(vAu−uAv)dx = 〈T+u,γ+v〉∂Ω −〈T+v,γ+u〉∂Ω . (5)

Let ∂Ω = ∂Ω D∪∂Ω N where ∂ΩD and ∂ΩN are nonempty and nonintersecting
parts of ∂Ω . We shall derive and investigate BDIEs for the following mixed BVP:
Find a function u ∈ H1(Ω) satisfying conditions

Au = f in Ω , (6)
γ
+u = ϕ0 on ∂ΩD, (7)

T+u = ψ0 on ∂ΩN , (8)

where ϕ0 ∈H
1
2 (∂ΩD), ψ0 ∈H−

1
2 (∂ΩN) and f ∈ L2(Ω) are given functions. Equa-

tion (6) is understood in distributional sense as in Remark 1.1, equation (7) is un-
derstood in trace sense and equation (8) is understood in functional sense (4).

Theorem 1.4 The homogeneous version of BVP (6) – (8), i.e., with f = 0, ϕ0 =
0, ψ0 = 0 has only the trivial solution. Hence the nonhomogeneous problem (6) –
(8) may posses at most one solution.

Proof. The proof follows from Green’s formula (2) with v = u as a solution of the
homogeneous mixed BVP (cf. [2, Theorem 2.1]). ut
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2 Parametrix-Based Potential Operators

Definition 2.1 A function P(x,y) is a parametrix (Levi function) for the operator A
if

AxP(x,y) = δ (x− y)+R(x,y)

where δ is the Dirac-delta distribution, while R(x,y) is a remainder possessing at
most a weak singularity at x = y.

For 2D, the parametrix and hence the corresponding remainder can be chosen as
in [8],

P(x,y) =
ln |x− y|
2πa(y)

, R(x,y) =
2

∑
i=1

xi− yi

2πa(y)|x− y|2
∂a(x)

∂xi
, x,y ∈ R2.

Similar to [8, 2], we define the parametrix-based Newtonian and remaineder po-
tential operators as

Pg(y) :=
∫
Ω

P(x,y)g(x)dx, Rg(y) :=
∫
Ω

R(x,y)g(x)dx. (9)

The single and double layer potential operators corresponding to the parametrix
P(x,y), are defined for y /∈ ∂Ω as

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, Wg(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx, (10)

where g is some scalar density function. The following boundary integral (pseudo-
differential) operators are also defined for y ∈ ∂Ω ,

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, W g(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx, (11)

W ′g(y) :=−
∫

∂Ω

T+
y P(x,y)g(x)dsx. (12)

Let V∆ ,W∆ ,V∆ ,W∆ denote the potentials and the boundary operators correspond-
ing to the Laplace operator A = ∆ . Then the relations similar to [1, Eq. (3.9)–(3.12)]
hold (cf.[2] for the 3D case),
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V g =
1
a

V∆ g, Wg =
1
a

W∆ (ag) (13)

V g =
1
a
V∆ g, W g =

1
a
W∆ (ag), (14)

W ′g = W ′
∆ g+

[
a

∂

∂n

(
1
a

)]
V∆ g, (15)

T+Wg = T+
∆

W∆ (ag)+
[

a
∂

∂n

(
1
a

)]
W+

∆
(ag). (16)

The mapping and jump properties of the operators (9)-(12) follow from relations
(13)-(16) and are described in details in [6, Theorems 1-3]. Particularly, we have the
following jump relations.

Theorem 2.2 Let g1 ∈ H−
1
2 (∂Ω), g2 ∈ H

1
2 (∂Ω) and y ∈ ∂Ω . Then

γ
±V g1(y) = V g1(y) (17)

γ
±Wg2(y) =∓

1
2

g2(y)+W g2(y). (18)

T±V g1(y) =±
1
2

g1(y)+W ′g1(y), (19)

T±Wg2(y) = L̂ g2(y)−
∂a
∂n

(
∓1

2
I +W

)
g2(y), (20)

where
L̂ g2 := T+

∆
W∆ (ag2) = T−

∆
W∆ (ag2) =: L̂∆ (ag2) on ∂Ω . (21)

If u ∈ H1,0(Ω ;A), then substituting v(x) by P(x,y) in the second Green identity
(5) for Ω \B(y,ε), where B(y,ε) is a disc of radius ε centered at y, and taking the
limit ε → 0, we arrive at the following parametrix-based third Green identity (cf.
e.g. [11, 8, 2] ),

u+Ru−V T+u+Wγ
+u = PAu in Ω . (22)

Applying the trace operator to equation (22) and using the jump relations (17) and
(18), we have

1
2

γ
+u+ γ

+Ru−V T+u+W γ
+u = γ

+PAu on ∂Ω . (23)

Similarly, applying co-normal derivative operator to equation (22), and using the
jump relation (19), we obtain

1
2

T+u+T+Ru−W ′T+u+T+Wγ
+u = T+PAu on ∂Ω . (24)

For some functions f ,Ψ and Φ let us consider a more general indirect integral
relation associated with equation (22),
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u+Ru−VΨ +WΦ = P f in Ω . (25)

Lemma 2.3 Let u∈H1(Ω), f ∈ L2(Ω),Ψ ∈H−
1
2 (∂Ω),Φ ∈H

1
2 (∂Ω) satisfy equa-

tion (25). Then u belongs to H1,0(Ω ;A) and is a solution of PDE (6), i.e., Au = f in
Ω , and V (Ψ −T+u)(y)−W (Φ− γ+u)(y) = 0, y ∈Ω .

Proof. The proof is similar to the one in 3D case in [2, Lemma 4.1]. ut

For s ∈ R and Γ1 ⊂ ∂Ω , let us define the subspaces (cf., e.g., [12, p. 147])

Hs
∗∗(∂Ω) := {g ∈ Hs(∂Ω) : 〈g,1〉∂Ω = 0}, H̃s

∗∗(Γ1) := {g ∈ H̃s(Γ1) : 〈g,1〉Γ1 = 0}.

The following result is proved in [6, Theorem 4].

Theorem 2.4 If ψ ∈ H
− 1

2∗∗ (∂Ω) satisfies V ψ = 0 on ∂Ω , then ψ = 0.

Proof. The theorem holds for the operator V∆ (see, e.g., [7, Corollary 8.11(ii)]),
which due to (14) implies it for the operator V as well. ut

The following theorem is proved in [7, Theorem 8.16].

Theorem 2.5 (i) The operator V∆ : H−
1
2 (∂Ω)→ H

1
2 (∂Ω), is H−

1
2 (∂Ω)- elliptic,

i.e., 〈V∆ ψ,ψ〉∂Ω ≥ c‖ψ‖
H−

1
2 (∂Ω)

for all ψ ∈H−
1
2 (∂Ω), if and only if Cap

∂Ω
<

1.
(ii) The operator V∆ : H−

1
2 (∂Ω)→ H

1
2 (∂Ω), has a bounded inverse if and only if

Cap
∂Ω
6= 1.

The following result is proved in [6, Theorem 5].

Theorem 2.6 Let Ω ⊂ R2 have diam(Ω) < 1. Then the single layer potential V :
H−

1
2 (∂Ω)→ H

1
2 (∂Ω) is invertible.

Proof. Since Cap
∂Ω
≤ diam(Ω), (see, [13, p.553, properties 1 and 3]), then diam(Ω)<

1 implies Cap
∂Ω

< 1. The result follows from Theorem 2.5(ii) and the first relation
in (14). ut

Corollary 2.7 Let Γ1 be a non-empty part of the boundary curve ∂Ω .

(i) The operator
r

Γ1
V : H̃−

1
2 (Γ1)→ H

1
2 (Γ1) (26)

is bounded and Fredholm of index zero.

(ii) If ψ̃ ∈ H̃
− 1

2∗∗ (Γ1) satisfies r
Γ1

V ψ̃ = 0 on Γ1, then ψ̃ = 0.

Proof. (i) The operator V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω) is bounded, which implies that

operator (26) is bounded as well.
The operator V∆ : H−

1
2 (∂Ω)→ H

1
2 (∂Ω) admits the decomposition V∆ = V0 +

K, where the operators V0 is positive and bounded below and K is a compact linear
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operator from H−
1
2 (∂Ω) to H

1
2 (∂Ω) (cf. [7, Theorm 7.6], and [5, Theorem 2]). If

ψ̃ ∈ H̃−
1
2 (Γ1), then suppψ̃ ⊂ Γ 1 and

〈r
Γ1

V0ψ̃, ψ̃〉Γ1 = 〈V0ψ̃, ψ̃〉∂Ω ≥ c‖ψ̃‖
H−

1
2 (∂Ω)

= c‖ψ̃‖
H̃−

1
2 (Γ1)

,

which means, the operator r
Γ1

V0 : H̃−
1
2 (Γ1) → H

1
2 (Γ1) is positive and bounded

below. Also, the operator r
Γ1

K : H̃−
1
2 (Γ1)→ H

1
2 (Γ1) is compact. Since r

Γ1
V∆ =

r
Γ1

V0 + r
Γ1

K, the operator r
Γ1

V ∆ : H̃−
1
2 (Γ1)→ H

1
2 (Γ1) is Fredholm of index zero,

(cf. [7, Theorem 2.33]). Since V = 1
aV∆ and the multiplication by 1

a is an isomor-

phism in H
1
2 (Γ1) under condition (1), we obtain (cf. e.g. [7, Theorem 2.21]) that

operator (26) is Fredholm of index zero as well.

To prove item (ii), suppose ψ̃ ∈ H̃
− 1

2∗∗ (Γ1), i.e., 〈ψ̃,1〉Γ1 = 〈ψ̃,1〉∂Ω = 0, which

implies ψ̃ ∈ H
− 1

2∗∗ (∂Ω). For ψ̃ ∈ H
− 1

2∗∗ (∂Ω), we have 〈V∆ ψ̃, ψ̃〉∂Ω ≥ 0, moreover,
if 〈V∆ ψ̃, ψ̃〉∂Ω = 0, then ψ̃ = 0 on ∂Ω (cf. [7, Theorm 8.12]. Hence, if r

Γ1
V ψ̃ = 0,

then r
Γ1

V∆ ψ̃ = 0 and 〈V∆ ψ̃, ψ̃〉∂Ω = 〈r
Γ1

V∆ ψ̃, ψ̃〉
Γ1
= 0, which implies ψ̃ = 0. ut

The following assertion can be proved similar to [7, Theorem 8.16].

Theorem 2.8 Let Γ1 be a non-empty part of the boundary curve ∂Ω .

(i) The operator r
Γ1

V∆ : H̃−
1
2 (Γ1) → H

1
2 (Γ1), is H̃−

1
2 (Γ1)−elliptic if and only if

Cap
Γ1
< 1.

(ii) The operators r
Γ1

V∆ : H̃−
1
2 (Γ1)→ H

1
2 (Γ1) and r

Γ1
V : H̃−

1
2 (Γ1)→ H

1
2 (Γ1) are

continuously invertible if and only if Cap
Γ1
6= 1.

Corollary 2.9 Let Γ1 be a non-empty part of the boundary curve and diam(Γ1)< 1.
Then the operator r

Γ1
V : H̃−

1
2 (Γ1)→ H

1
2 (Γ1) has a bounded inverse.

Proof. Since Cap
Γ1
≤ diam(Γ1), (see, [13, p.553, properties 1 and 3]), then diam(Γ1)<

1 implies Cap
Γ1
< 1. The result follows from Theorem 2.8(ii). ut

Theorem 2.10 Let Γ2 be a non-empty open part of the boundary curve ∂Ω . The
operator

rΓ2L̂∆ := rΓ2T±
∆

W∆ : H̃
1
2 (Γ2)→ H−

1
2 (Γ2) (27)

is H̃
1
2 (Γ2)−elliptic. Operator (27) and the operator

rΓ2L̂ : H̃
1
2 (Γ2)→ H−

1
2 (Γ2) (28)

are continuously invertible.

Proof. The ellipticity of operator (27) follows from inequality (6.39) in [12]. The
continuity of this operator and the Lax-Milgram Lemma then imply its invertibility.
Together with relation (21) this implies the invertibility of operator (28).
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The following result is proved in [6, Lemma 2].

Lemma 2.11

(i) Let either Ψ ∗ ∈H−
1
2 (∂Ω) and diam(Ω)< 1, or Ψ ∗ ∈H

− 1
2∗∗ (∂Ω). If VΨ ∗(y) = 0

in Ω , then Ψ ∗ = 0 on ∂Ω .
(ii) Let Φ∗ ∈ H

1
2 (∂Ω). If WΦ∗(y) = 0 in Ω , then Φ∗ = 0 on ∂Ω .

Lemma 2.12 Let ∂Ω = Γ 1∪Γ 2, where Γ1 and Γ2 are non-empty non-intersecting

parts of the boundary curve ∂Ω . Let Φ∗ ∈ H̃
1
2 (Γ2) and either Ψ ∗ ∈ H̃

− 1
2∗∗ (Γ1) or

Ψ ∗ ∈ H̃−
1
2 (Γ1) but diam(Γ1)< 1. If

VΨ
∗(y)−WΦ

∗(y) = 0, y ∈Ω , (29)

then Ψ ∗ = 0 and Φ∗ = 0.

Proof. The proof follows from Theorem 2.8 (i) and Theorem 2.10 similar to [2,
Lemma 4.2(iii)]. ut

3 BDIEs for Mixed BVP

We shall use the following notations for product spaces.

X0 := H1,0(Ω ;A)× H̃−
1
2 (∂ΩD)× H̃

1
2 (∂ΩN),

Y11,0 := H1,0(Ω ;A)×H
1
2 (∂ΩD)×H−

1
2 (∂ΩN),

Y22,0 := H1,0(Ω ;A)×H−
1
2 (∂ΩD)×H

1
2 (∂ΩN),

Y12,0 := H1,0(Ω ;A)×H
1
2 (∂Ω),

Y21,0 := H1,0(Ω ;A)×H−
1
2 (∂Ω).

Let further in this Section u ∈ H1,0(Ω ;A) be a solution of BVP (6)-(8) with
ϕ0 ∈ H

1
2 (∂ΩD), ψ0 ∈ H−

1
2 (∂ΩN) and f ∈ L2(Ω).

Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω) be some extensions of the given data

ϕ0 ∈ H
1
2 (∂ΩD) from ∂ΩD to ∂Ω and ψ0 ∈ H−

1
2 (∂ΩN) from ∂ΩN to ∂Ω , respec-

tively. Similar to [2], to reduce BVP (6)-(8) to one or another BDIE system, we shall
use equation (22) in Ω , and restrictions of equation (23) or (24) to appropriate parts
of the boundary. We shall substitute f for Au, Φ0 +ϕ for γ+u and Ψ0 +ψ for T+u,
where Φ0 ∈ H

1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω) are considered as known, while ψ be-

longs to H̃−
1
2 (∂ΩD) and ϕ to H̃

1
2 (∂ΩN) due to the boundary conditions (7) – (8) and

are to be found along with u ∈ H1,0(Ω ;A). This will lead us to four different segre-
gated BDIE systems with respect to the unknown triplet [u,ψ,ϕ]> =: U ∈X0 ⊂X.

BDIE System (M11) is obtained from equation (22) in Ω , the restriction of
equation (23) on ∂ΩD and the restriction of equation (24) on ∂ΩN . Then we arrive
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at the following segregated system of BDIEs:

u+Ru−V ψ +Wϕ = F0 in Ω , (30)

γ
+Ru−V ψ +W ϕ = γ

+F0−ϕ0 on ∂ΩD, (31)

T+Ru−W ′
ψ +T+Wϕ = T+F0−ψ0 on ∂ΩN , (32)

where F0 := P f +VΨ0−WΦ0.

System (30) – (32) can be written in the form M
11

U = F
11

, where

M
11

:=

 I +R −V W
r

∂ΩD
γ+R −r

∂ΩD
V r

∂ΩD
W

r
∂ΩN

T+R −r
∂ΩN

W ′ r
∂ΩN

T+W

 , F
11

:=

 F0
r

∂ΩD
γ+F0−ϕ0

r
∂ΩN

T+F0−ψ0

 .
Due to the mapping properties of participating operators, F

11 ∈Y11,0 and the oper-
ator M

11
: X0→ Y11,0 is bounded.

Remark 3.1 F
11
= 0 if and only if ( f ,Φ0,Ψ0) = 0.

Proof. The proof follows in the similar way as in the corresponding proof in 3D
case in [2, Remark 5.1]. ut

BDIE system (M12), obtained using equation (22) in Ω and equation (23) on
the whole boundary ∂Ω , is:

u+Ru−V ψ +Wϕ = F0 in Ω , (33)
1
2

ϕ + γ
+Ru−V ψ +W ϕ = γ

+F0−Φ0 on ∂Ω . (34)

System (33) – (34) can be written in the form M
12

U = F
12

, where

M
12

:=
[

I +R −V W
γ+R −V 1

2 I +W

]
, F

12
:=
[

F0
γ+F0−Φ0

]
.

Note that F
12

belongs to Y12,0 and due to the mapping properties of operators in-
volved in M

12
, the operator M

12
: X0→ Y12,0 is bounded.

Remark 3.2 Let Ψ0 ∈H
− 1

2∗∗ (∂Ω) or Ψ0 ∈H−
1
2 (∂Ω) but diam(Ω)< 1. Then F

12
=

0 if and only if ( f ,Φ0,Ψ0) = 0.

Proof. Indeed, the latter equality evidently implies the former. Conversely, let
F

12
= (F0,γ

+F0−Φ0) = 0. This implies−VΨ0+WΦ0 =P f in Ω . Due to Lemma
2.3, f = 0 and VΨ0−WΦ0 = 0 in Ω . The equality γ+F0−Φ0 = 0 implies Φ0 = 0
on ∂Ω . Thus VΨ0 = 0, hence by Theorem 2.4 it follows Ψ0 = 0. ut

BDIE system (M21) is another system obtained using equation (22) in Ω and
equation (24) on ∂Ω , i.e.,
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u+Ru−V ψ +Wϕ = F0 in Ω , (35)
1
2

ψ +T+Ru−W ′
ψ +T+Wϕ = T+F0−Ψ0 on ∂Ω . (36)

System (35)–(36) can be written in the form M
21

U = F
21

, where

M
21

:=
[

I +R −V W
T+R 1

2 I−W ′ T+W

]
, F

21
:=
[

F0
T+F0−Ψ0

]
.

Note that F
21

belongs to Y21,0 and due to the mapping properties of operators
involved in M

21
, the operator M

21
: X0→ Y21,0 is bounded.

Remark 3.3 F
21
= 0 if and only if ( f ,Φ0,Ψ0) = 0.

Proof. The proof follows in the similar way as in Remark 3.2.

BDIE system (M22), a system of almost second kind (up to the spaces) obtained
using equation (22) in Ω , the restriction of equation (24) to ∂ΩD and the restriction
of equation (23) to ∂ΩN is:

u+Ru−V ψ +Wϕ = F0 in Ω , (37)
1
2

ψ +T+Ru−W ′
ψ +T+Wϕ = T+

a F0−Ψ0 on ∂ΩD, (38)

1
2

ϕ + γ
+Rbu−Vaψ +Waϕ = F+

0 −Φ0 on ∂ΩN . (39)

System (37) – (39) can be rewritten in the form M
22

U = F
22
, where

M
22

:=

 I +R −V W
r

∂ΩD
T+R r

∂ΩD
( 1

2 I−W ′) r
∂ΩD

T+W
r

∂ΩN
γ+R −r

∂ΩN
V r

∂ΩN
( 1

2 I +W )

 , F
22

:=

 F0
r

∂ΩD
{T+F0−Ψ0}

r
∂ΩN
{γ+F0−Φ0}

 .
Note that F

22
belongs to Y22,0 and due to the mapping properties of operators

involved in M
22

, the operator M
22

: X0→ Y22,0 is bounded.

Remark 3.4 F
22
= 0 if and only if ( f ,Φ0,Ψ0) = 0.

Proof. The proof follows in the similar way as in the corresponding proof in 3D
case in [2, Remark 5.11]. ut

4 Equivalence

In what follows, we shall prove the equivalence of the mixed BVP (6) – (8) to BDIE
systems (M11), (M12), (M21) and (M22).
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Theorem 4.1 Let ϕ0 ∈ H
1
2 (∂ΩD), ψ0 ∈ H−

1
2 (∂ΩN), f ∈ L2(Ω) and let Φ0 ∈

H
1
2 (∂Ω) and Ψ0 ∈ H−

1
2 (∂Ω) be some extensions of ϕ0 and ψ0, respectively.

(i) If some u ∈ H1,0(Ω ;A) solves the mixed BVP (6)-(8) in Ω , then the solution is
unique and the triplet (u,ψ,ϕ)T ∈ X0, where

ψ = T+u−Ψ0, ϕ = γ
+u−Φ0, on ∂Ω (40)

solves the BDIE systems (M11), (M12), (M21) and (M22).
(ii) If diam(Ω) < 1 and a triplet (u,ψ,ϕ)T ∈ X0 solves one of the BDIE systems

(M11) or (M21) or (M12) or (M22), then this solution is unique and solves all
the BDIE systems, while u solves BVP (6) - (8) and relations (40) hold.

Proof. (i) Let u ∈ H1,0(Ω ;A) be a solution to BVP (6) - (8). Due to Theorem 1.4
it is unique. Set ψ := T+u−Ψ0 and ϕ := γ+u−Φ0. Then ψ ∈ H̃−

1
2 (∂ΩD), ϕ ∈

H̃
1
2 (∂ΩN) and recalling how BDIE systems (M11), (M12), (M21) and (M22) were

constructed, we obtain that the triplet (u,ψ,ϕ)T solves systems (M11), (M12),
(M21) and (M22).

(ii) Let a triplet (u,ψ,ϕ)T ∈ X0 solve BDIE system (M11) or (M12) or (M21)
or (M22). The hypotheses of Lemma 2.3 are satisfied for the first equation in BDIE
system, implying that u solves PDE (6) in Ω , while the following equation holds,

VΨ
∗−WΦ

∗ = 0 in Ω , (41)

where Ψ ∗ =Ψ0 +ψ−T+u and Φ∗ = Φ0 +ϕ− γ+u.
Suppose first that the triplet (u,ψ,ϕ)T ∈ X0 solves BDIE system (M11). Taking

trace of equation (30) on ∂ΩD using the jump relations (17)-(18), and subtracting
equation (31) from it, we obtain,

γ
+u = ϕ0 on ∂ΩD, (42)

i.e., u satisfies the Dirichlet condition (7). Taking the co-normal derivative of equa-
tion (30) on ∂ΩN , using the jump relations (19)-(20) and subtracting equation (32)
from it, we obtain

T+u = ψ0 on ∂ΩN , (43)

i.e., u satisfies the Neumann condition (8). Hence u solves the mixed BVP (6)-(8).
Taking into account ϕ = 0, Φ0 = ϕ0 on ∂ΩD and ψ = 0, Ψ0 = ψ0 on ∂ΩN ,

equation (42) and (43) imply that the first equation in (40) is satisfied on ∂ΩN and
the second equation in (40) is satisfied on ∂ΩD. Thus we have Ψ ∗ ∈ H̃−

1
2 (∂ΩD) and

Φ∗ ∈ H̃
1
2 (∂ΩN) in (41). Let Γ1 = ∂ΩD, Γ2 = ∂ΩN . Then diam(Γ1)≤ diam(Ω)< 1

and Lemma 2.12 implies Ψ ∗ = Φ∗ = 0, which completes the proof of conditions in
(40). Uniqueness of the solution to BDIE systems (M11) follows from (40) along
with Remark 3.1 and Theorem 1.4.

Finally, item (i) implies that triplet (u,ψ,ϕ)T ∈ X0 solves also BDIE systems
(M12), (M21) and (M22).
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Similar arguments work if we suppose that instead of the BDIE systems (M11),
the triplet (u,ψ,ϕ)T ∈ X0 solves BDIE systems (M21) or (M12) or (M22).

ut

5 Conclusion

In this paper, we considered the mixed BVP problem for variable coefficient PDE
in a two-dimensional bounded domain, where the right hand side function is from
L2(Ω) and the Dirichlet data from the space H

1
2 (∂ΩD) and the Neumann data from

the space H−
1
2 (∂ΩN). The BVP was reduced to four systems of Boundary-Domain

Integral Equations and their equivalence to the original BVP was shown. The invert-
ibility of the associated operators in the corresponding Sobolev spaces can be also
proved. In a similar way one can consider also the 2D versions of the BDIEs for
mixed problem in exterior domains, united BDIEs as well as the localised BDIEs,
which were analysied for 3D case in [2, 4, 9, 3].
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