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ABSTRACT
We obtain well-posedness results in Lp-based weighted Sobolev
spaces for a transmission problem for anisotropic Stokes and
Navier–Stokes systems with L∞ strongly elliptic coefficient tensor, in
complementary Lipschitz domains ofRn, n ≥ 3. The strong ellipticity
allows to explore the associated pseudostress setting. First, we use a
variational approach that reduces the anisotropic Stokes system in
the whole R

n to an equivalent mixed variational formulation with
data in Lp-basedweighted Sobolev spaces.We show that suchmixed
variational formulation iswell-posed in the spaceH1

p(R
n)n × Lp(Rn),

n ≥ 3, for any p in an open interval containing 2. Then similar well-
posedness results are obtained for two linear transmission problems.
These results are used to define the Newtonian and layer potential
operators for the considered anisotropic Stokes systemand to obtain
mapping properties of these operators. The potentials are employed
to show the well-posedness of some linear transmission problems,
which then is combined with a fixed point theorem in order to
show thewell-posedness of a nonlinear transmissionproblem for the
anisotropic Stokes and Navier–Stokes systems in Lp-based weighted
Sobolev spaces, whenever the given data are small enough.
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1. Introduction

A powerful tool in the analysis of boundary value problems for partial differential equa-
tions is played by the layer potential methods. Mitrea and Wright [1] used them to obtain
well-posedness results for the main boundary value problems for the constant-coefficient
Stokes system in Lipschitz domains in Rn in Sobolev, Bessel potential, and Besov spaces
(see also [2, Proposition 4.5] for an unsteady exterior Stokes problem). The authors in
[3] obtained mapping properties of the constant-coefficient Stokes and Brinkman layer
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potential operators in standard and weighted Sobolev spaces by exploiting results of
singular integral operators (see also [4, 5]).

The methods of layer potential theory play also a significant role in the study of ellip-
tic boundary problems with variable coefficients. Mitrea and Taylor [6, Theorem 7.1] used
the technique of layer potentials to prove well-posedness of the Dirichlet problem for the
Stokes system in Lp-spaces on arbitrary Lipschitz domains in a compact Riemannianman-
ifold. Dindos̆ andMitrea [7, Theorems 5.1, 5.6, 7.1, 7.3] used a boundary integral approach
to showwell-posedness results in Sobolev andBesov spaces for Poissonproblems ofDirich-
let type for the Stokes and Navier–Stokes systems with smooth coefficients in Lipschitz
domains on compact Riemannian manifolds. A layer potential analysis of pseudodif-
ferential operators of Agmon-Douglis-Nirenberg type in Lipschitz domains on compact
Riemannian manifolds has been developed in [8]. The authors in [9] used a layer potential
approach and a fixed point theorem to show well-posedness of transmission problems for
the Navier–Stokes and Darcy-Forchheimer-Brinkman systems with smooth coefficients
in Lipschitz domains on compact Riemannian manifolds. Choi and Lee [10] proved the
well-posedness in Sobolev spaces for theDirichlet problem for the Stokes systemwith non-
smooth coefficients in a Lipschitz domain� ⊂ Rn (n ≥ 3) with a small Lipschitz constant
when the coefficients have vanishingmean oscillations (VMO)with respect to all variables.
Choi andYang [11] established existence and pointwise bound of the fundamental solution
for the Stokes system with measurable coefficients in the space Rd, d ≥ 3, when the weak
solutions of the system are locally Hölder continuous.

Alliot and Amrouche [12] developed a variational approach to show the existence of
weak solutions for the exterior Stokes problem in weighted Sobolev spaces (see also [13,
14]). The authors in [15] developed a variational approach in order to analyse Stokes and
Navier–Stokes systems with L∞ coefficients in Lipschitz domains on compact Riemannian
manifolds (see also [16]).

An alternative integral approach, which reduces various boundary value problems for
variable-coefficient elliptic partial differential equations to boundary-domain integral equa-
tions (BDIEs), by means of explicit parametrix-based integral potentials, was explored e.g.
in [17–20]. Equivalence of BDIEs to the boundary problems and invertibility of BDIE oper-
ators in L2 and Lp-based Sobolev spaces have been analysed in these works. Localized
boundary-domain integral equations based on a harmonic parametrix for divergence-form
elliptic PDEs with variable matrix coefficients have been also developed, see [21] and the
references therein.

Brewster et al. in [22] used a variational approach to show well-posedness results for
Dirichlet, Neumann and mixed problems for higher order divergence-form elliptic equa-
tions with L∞ coefficients in locally (ε, δ)-domains in Besov and Bessel potential spaces.
Sayas and Selgas in [23] developed a variational approach for the constant-coefficient
Stokes layer potentials, by using the technique of Nédélec [24]. Băcuţă et al. [2] developed a
variational approach for the constant-coefficient Brinkman single layer potential and anal-
ysed the time-dependent exterior Stokes problem with Dirichlet condition in Rn, n=2,3.
Barton [25] used the Lax-Milgram Lemma to construct layer potentials for strongly elliptic
operators in general settings.

Throughout this paper, we use the Einstein convention on summation in repeated
indices from 1 to n, and the standard notation ∂α for the first order partial derivative with
respect to the variable xα , α = 1, . . . , n. Let Ľ be a second-order differential operator in
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divergence form,

Ľu := ∂α

(
Aαβ∂βu

)
, (1)

whereA = {Aαβ}1≤α,β≤n is the viscosity coefficient tensor of the fourth order, and for fixed
α and β , Aαβ = Aαβ(x) are n × nmatrix-valued functions on Rn, such that

Aαβ =
{
aαβ
ij

}
1≤i,j≤n

, aαβ
ij ∈ L∞(Rn), 1 ≤ i, j,α,β ≤ n. (2)

We will further shorten (2) as A ∈ L∞(Rn)n
4
. We assume that the boundedness condition

|aαβ
ij (x)| ≤ cA

and the strong ellipticity condition

aαβ
ij (x)ξiαξjβ ≥ c−1

A
ξiαξiα = c−1

A
|ξ |2 ∀ ξ = {ξiα}1≤i,α≤n ∈ R

n×n (3)

hold for almost any x ∈ Rn, with a constant cA > 0 (cf. [22, (7.23)], [26, (1.1)]).
Let u be an unknown velocity vector field, π be an unknown pressure scalar field, and

f be a given vector field representing distributed forces, defined on an open set D ⊂ Rn

with the compact boundary ∂D. Then the equations

L(u,π) := ∂α

(
Aαβ∂βu

) − ∇π = f , div u = 0 in D (4)

determine the Stokes system with L∞ tensor viscosity coefficient.
Let λ ∈ L∞(Rn). Then the nonlinear system

∂α

(
Aαβ∂βu

) − λ(u · ∇)u − ∇π = f , div u = 0 in D, (5)

is called the anisotropic Navier–Stokes system with L∞ viscosity tensor A = (Aαβ)1≤α,β≤n.
The systems (4) and (5) can describe flows of viscous incompressible fluids with an

anisotropic viscosity tensor,A, related to the physical properties of such a fluid (see [26–28]).
Our goal is to treat transmission problems for the Stokes and Navier–Stokes systems (4)
and (5) in Rn \ ∂�, where ∂� is a Lipschitz boundary. Then we have to add adequate
conditions at infinity by setting our problems in weighted Sobolev spaces.

Remark 1.1: In the isotropic case

āαβ
ij = μ

(
δαjδβi + δαβδij

)
, 1 ≤ i, j,α,β ≤ n (6)

(see [27]), with μ ∈ L∞(Rn), we assume that there exists a constant cμ > 0, such that
c−1
μ ≤ μ ≤ cμ a.e. in Rn. The tensor āαβ

ij given by (6) satisfies the strong ellipticity con-
dition (3) only for symmetric matrices ξ = {ξ iα}1≤i,α≤n. If μ is constant and divu = 0, the
operator L given by (4) takes the form

L(u,π) = div (μ∇u) − ∇π . (7)

For arbitrary μ ∈ L∞(Rn), the operator L given by (7) can be also represented as

Li(u,π) = ∂α(aαβ
ij ∂βuj) − ∂iπ , aαβ

ij = μδαβδij, 1 ≤ i, j,α,β ≤ n, (8)

where aαβ
ij (x)ξiαξjβ = μ(x)ξiαξiα ≥ 2c−1

μ |ξ |2, for a.e. x ∈ Rn and for any ξ = (ξiα)1≤i,α≤n

∈ Rn×n. Hence the ellipticity condition (3) is satisfied for all matrices, and our analysis is
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also applicable to the isotropic Stokes system. Note that aαβ
ij ∂βuj = μ∂αui can be associated

with the viscous part of the pseudostressμ∂αui − δαiπ , cf., e.g. [29]. The approaches based
on the pseudostress formulation have been intensively used in the study of viscous incom-
pressible fluid flows due to their ability to avoid the symmetry condition that appears in
the approaches based on the standard stress formulation (see, e.g. [29, 30]).

2. Preliminary results

Let further on �+ := � be a bounded Lipschitz domain in Rn (n ≥ 3) with connected
boundary ∂�. Let�− := Rn \ �+. Let

◦
E± denote the operator of extension by zero outside

�±.

2.1. Standard Lp-based Sobolev spaces and related results

For p ∈ (1,∞), Lp(Rn) denotes the Lebesgue space of (equivalence classes of) measurable,
pth integrable functions on Rn, and L∞(Rn) denotes the space of (equivalence classes of)
essentially bounded measurable functions on Rn. For any p ∈ (1,∞), the conjugate expo-
nent p′ is given by 1

p + 1
p′ = 1. Given a Banach space X , its topological dual is denoted by

X ′. The duality pairing of two dual spaces defined on a subsetX ⊆ Rn is denoted by 〈·, ·〉X .
Let H±1

p (Rn) and H±1
p (Rn)n denote the standard Lp-based Sobolev (Bessel potential)

spaces.
For any open set �′ in Rn, let D(�′) := C∞

0 (�′) denote the space of infinitely dif-
ferentiable functions with compact support in �′, equipped with the inductive limit
topology. Let D′(�′) denote the corresponding space of distributions on �′, i.e. the dual
space of D(�′). Let H±1

p (�′) := {f ∈ D′(�′) : ∃F ∈ H±1
p (Rn) such that F|�′ = f }, where

|�′ denotes the restriction operator onto �′. The space H̃1
p(�

′) is the closure of D(�′) in
H1
p(R

n). Also, H1
p(�

′)n and H̃1
p(�

′)n are the spaces of vector-valued functions with com-
ponents in H1

p(�
′) and H̃1

p(�
′), respectively, and similar extensions to the vector-valued

functions or distributions are assumed to all other spaces introduced further. The Sobolev
space H̃1

p(�
′) can be identified with the closure

◦
H

1
p(�

′) ofD(�′) inH1
p(�

′) (see, e.g. [31],
and [32, Theorem 3.33] for p=2). The dual of H̃1

p(�
′) can be, in turn, identified with

the space H−1
p′ (�′), and the dual of H1

p(�
′) with the space H̃−1

p′ (�′). For p ∈ (1,∞) and
s ∈ (0, 1), the boundaryBesov spaceBsp,p(∂�) can be defined by themethod of real interpo-
lation, Bsp,p(∂�) = (Lp(∂�),H1

p(∂�))s,p (cf., e.g. [33, Chapter 1, & 1.3], [1, Section 11.1]).
The dual of Bsp,p(∂�) is the space B−s

p′,p′(∂�). For p=2, we use the standard notation
for the L2-based Sobolev spaces H±1(�′) = H±1

2 (�′), H̃±1(�′) = H̃±1
2 (�′),Hs(∂�) =

Hs
2(∂�) = Bs2,2(∂�). For further properties of standard Sobolev and Besov spaces we refer

the reader to [1, 31–35].
We often use the following result (see [36], [37, Lemma 2.6], [1, Theorem 2.5.2]).

Lemma 2.1: Let �+ be a bounded Lipschitz domain of Rn with connected boundary ∂�,
and let �− := Rn \ �+. If p ∈ (1,∞), then there exists a linear bounded trace operator

γ± : H1
p(�±) → B

1− 1
p

p,p (∂�) such that γ±f = f|∂� for any f ∈ C∞(�±). The operator γ±
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is surjective and has a (non-unique) linear and bounded right inverse γ −1
± : B

1− 1
p

p,p (∂�) →
H1
p(�±). The trace operator γ : H1

p(R
n) → B

1− 1
p

p,p (∂�) is also well defined and bounded,
where γ u = γ+u = γ−u for any u ∈ H1

p(R
n).

2.2. Weighted Sobolev spaces

Given n ∈ N, n ≥ 3, let ρ : Rn → R+ denote the weight function

ρ(x) = (1 + |x|2) 1
2 . (9)

Let p ∈ (1,∞) and λ ∈ R. Then the weighted Lebesgue space Lp(ρλ;Rn) is defined as

f ∈ Lp(ρλ;Rn) ⇐⇒ ρλf ∈ Lp(Rn), (10)

and L2(ρλ;Rn) is a Hilbert space. We also consider the weighted Sobolev space H1
p(R

n)

(cf. [12, Definition 1.1], [38, Theorem I.1]) consisting of functions f, for which the norm

‖f ‖pH1
p(Rn)

:=
⎧⎨⎩

∥∥ρ−1f
∥∥p
Lp(Rn)

+ ‖∇f ‖pLp(Rn)n if p �= n,∥∥ρ−1( ln(1 + ρ2)
)−1f

∥∥p
Lp(Rn)

+ ‖∇f ‖pLp(Rn)n if p = n,
(11)

is finite. This is a reflexive Banach space. The space H−1
p′ (Rn) is defined as the dual of

H1
p(R

n).
For the functions fromH1

p(R
n), the semi-norm

|f |H1
p(Rn) := ‖∇f ‖Lp(Rn)n (12)

is equivalent to the norm ‖ · ‖H1
p(Rn), given by (11), if 1<p<n (cf., e.g. [39, Theorem 1.1]).

Consequently,

H1
p(R

n) = Ĥ1
p;0(R

n) (13)

for 1<p<n, where Ĥ1
p;0(R

n) is the closure of the space D(Rn) with respect to the semi-
norm (12), cf. [40, Proposition 2.4]. Hence, the space D(Rn) is dense inH1

p(R
n) (cf., e.g.

[12, 38]). Moreover, for this range of p,

Ĥ1
p;0(R

n) =
{
u ∈ L np

n−p
(Rn) : ∇u ∈ Lp(Rn)n

}
, (14)

and the divergence operator div : Ĥ1
p;0(R

n)n → Lp(Rn) is surjective (cf. [40, Proposition
2.4 (i), Lemma 2.5]).

The set {H1
p(R

n)}1<p<n is a complex interpolation scale, which means that

[H1
p1(R

n),H1
p2(R

n)]θ = H1
p(R

n), (15)

whenever p1, p2 ∈ (1, n), θ ∈ (0, 1), and 1
p = 1−θ

p1 + θ
p2 (see [41, Theorem 3], [42,

Theorem 2.1, Corollary 2.7]). By [·, ·]θ we denote the space obtained with the complex
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interpolation method, and the equality of spaces in (15) holds with equivalent norms. The
complex interpolation spaces backgrounds can be found, e.g. in [43, Chapter 4] and [33,
Section 1.9].

The spaceH1
p(�−) can be defined in terms of the norm ‖ · ‖H1

p(�−), which has a similar
expression to the norm in (11), but with�− in place ofRn, and is a reflexive Banach space.
The space H̃−1

p′ (�−) is defined as the dual of the spaceH1
p(�−).

Let
◦
H

1
p(�−) ⊂ H1

p(�−) denote the closure of the space D(�−) in H1
p(�−), and let

H̃1
p(�−) ⊂ H1

p(R
n) denote the closure of the spaceD(�−) inH1

p(R
n). The space H̃1

p(�−)

can be also characterized as

H̃1
p(�−) =

{
u ∈ H1

p(R
n) : supp u ⊆ �−

}
, (16)

and identified isomorphically with
◦
H

1
p(�−) via the operator

◦
E− of extension by zero out-

side �− (see, e.g. [22, (2.9)]). The space H−1
p′ (�−) is defined as the dual of the space

H̃1
p(�−). Since D(�−) is dense in

◦
H

1
p(�−), and in H̃1

p(�−), H−1
p′ (�−) is a space of

distributions.
The space

◦
H

1
p(�−) can be characterized as

◦
H

1
p(�−) = {

v ∈ H1
p(�−) : γ−v = 0 on ∂�

}
(17)

(cf., e.g. [44, (1.2)], [22, Theorem 4.2, (4.16)]).
For p ∈ (1, n), the semi-norm

|f |H1
p(�−) := ‖∇f ‖Lp(�−)n (18)

is a norm on the spaceH1
p(�−) that is equivalent to the full norm ‖ · ‖H1

p(�−) given by (11)
with �− in place of Rn. Moreover, the semi-norm (18) is an equivalent norm on the space

◦
H

1
p(�−) for any p ∈ (1,∞) (cf., e.g. [44, Theorem 1.2], [12, Theorem 1.2]). Consequently,

◦
H

1
p(�−) = Ĥ1

p;0(�−), for any p ∈ (1,∞), where Ĥ1
p;0(�−) is the closure ofD(�−) in the

semi-norm (18) (cf., e.g. [12, Remark 1.3]).
In addition, the statement of Lemma 2.1 extends to the spaceH1

p(�−). Hence, there is
a bounded, surjective exterior trace operator

γ− : H1
p(�−) → B

1− 1
p

p,p (∂�) (19)

(see, e.g. [23, p. 69]). Moreover, there exists a (non-unique) linear bounded right inverse

γ −1
− : B

1− 1
p

p,p (∂�) → H1
p(�−) of operator (19) (see [3, Lemma 2.2]). [19, p. 1350006-4]).

The trace operator γ : H1
p(R

n) → B
1− 1

p
p,p (∂�) is also linear, bounded and surjective (cf.,

e.g. [37, Theorem 2.3, Lemma 2.6], [2, Eq. (2.2)] for p=2).
In the case p=2, we employ the notations H±1(Rn) := H±1

2 (Rn), H±1(�−) :=
H±1

2 (�−), Hs(∂�) = Hs
2(∂�) = Bs2,2(∂�), and note that all these spaces are Hilbert

spaces.
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For 1<p<n, let us also introduce the spaceH1
p(R

n \ ∂�) consisting of functions u, for
which the norm

‖u‖H1
p(Rn\∂�) =

(
‖ρ−1u‖pLp(Rn) + ‖∇u‖pLp(�+∪�−)n

) 1
p (20)

is finite. Evidently, if u ∈ H1
p(R

n \ ∂�) then u|�+ ∈ H1
p(�+), u|�− ∈ H1

p(�−), and the

norm (‖u‖pH1
p(�+)

+ ‖u‖pH1
p(�−)

)
1
p is equivalent to the norm (20) in H1

p(R
n \ ∂�). The

jump of u across ∂� is given by [γ (u)] := γ+(u) − γ−(u). If u ∈ H1
p(R

n \ ∂�) and
[γ (u)] = 0 then u ∈ H1

p(R
n), and conversely, if u ∈ H1

p(R
n), then [γ (u)] = 0 (cf., e.g. [22,

Theorem 5.13]).

Remark 2.2: Let BR denote the ball of radius R in Rn and centre at the origin (assumed
to be a point of the bounded Lipschitz domain �). Also, let Sn−1 be the unit sphere in Rn.
Similar arguments to those for [45, Lemma 2.1, Remark 2.4] imply that any function u in
H1

p(R
n) orH1

p(�−), with 1<p<n, vanishes at infinity in the sense of Leray, i.e.

lim
r→∞

∫
Sn−1

|u(ry)|dσy = 0. (21)

2.3. The conormal derivative operator for the L∞ coefficient Stokes system

Recall that Ľ is a second-order elliptic differential operator in divergence formgiven by (1),
where the coefficients Aαβ of A = (Aαβ)1≤α,β≤n are n × nmatrix-valued functions on Rn

with bounded measurable, real-valued entries aαβ
ij , i.e. Aαβ = {aαβ

ij }1≤i,j≤n, and the strong
ellipticity condition (3) is satisfied. Similar to [29, 30] and references therein, we can define
the non-symmetric pseudostress tensor σ (u,π) with components σαi(u,π) = aαβ

ij ∂βuj −
δαiπ .

Let ν = (ν1, . . . , νn)� be the outward unit normal to �+, which is defined a.e. on ∂�.
When (u,π) ∈ C1(�±)n × C0(�±), the classical interior and exterior conormal deriva-
tives (i.e. the boundary pseudotractions) for the Stokes operator L(u,π) = ∂α(Aαβ∂βu) −
∇π are

Tc±(u,π) := γ±σ (u,π) · ν = γ±(Aαβ∂βu)να − γ±πν on ∂�,

cf., e.g. [26]. Here and in the sequel, the indices±mark the trace and conormal derivatives
from �±, respectively. Moreover, the following first Green identity holds,

± 〈
Tc±(u,π),ϕ

〉
∂�

= 〈
Aαβ∂βu, ∂αϕ

〉
�± − 〈π , divϕ〉�±

+ 〈L(u,π),ϕ〉�± , ∀ϕ ∈ D(Rn)n. (22)

Definition 2.3: For p ∈ (1,∞), let us define the space

H1
p(�±,L) :=

{
(u±,π±, f̃±) ∈ H1

p(�±)n

× Lp(�±) × H̃−1
p (�±)n : L(u±,π±) = f̃±|�± in �±

}
.
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Formula (22) suggests the weak definition of the formal and generalized conormal
derivatives for the L∞ coefficient Stokes system in the setting of Lp-basedweighted Sobolev
spaces (cf., e.g. [36, Lemma 3.2], [3, Lemma 2.9], [37, Definition 3.1, Theorem 3.2], [1,
Theorem 10.4.1]).

Definition 2.4: Let p∈ (1,∞). For any (u±,π±, f̃±)∈H1
p(�±)n × Lp(�±)× H̃−1

p (�±)n,

the formal conormal derivatives T±(u±,π±; f̃±) ∈ B
− 1

p
p,p (∂�)n are defined as

±〈
T±(u±,π±; f̃±),�

〉
∂�

:= 〈
Aαβ∂β(u±), ∂α(γ −1

± �)
〉
�± − 〈

π±, div(γ −1
± �)

〉
�±

+ 〈
f̃±, γ −1

± �
〉
�± , ∀� ∈ B

1
p
p′,p′(∂�)n, (23)

where γ −1
± : B

1
p
p′,p′(∂�)n → H1

p′(�±)n is a bounded right inverse of the trace operator γ± :

H1
p′(�±)n → B

1
p
p′,p′(∂�)n.

Moreover, if (u±,π±, f̃±) ∈ H1
p(�±,L), equation (23) defines the generalized conormal

derivatives T±(u±,π±; f̃±) ∈ B
− 1

p
p,p (∂�)n.

In addition, we have the following assertion (see also [36], [46, Theorem 5.3], [3,
Lemma 2.9], [1, Theorem 10.4.1]).

Lemma 2.5: Let p ∈ (1,∞).

(i) The formal conormal derivative operator T± : H1
p(�±)n × Lp(�±) × H̃−1

p (�±)n

→ B
− 1

p
p,p (∂�)n is linear and continuous.

(ii) The generalized conormal derivative operatorT± : H1
p(�±,L) → B

− 1
p

p,p (∂�)n is lin-
ear and continuous, and definition (23) does not depend on the choice of a right inverse

γ −1
± : B

1
p
p′,p′(∂�)n → H1

p′(�±)n of the trace operator γ± : H1
p′(�)n → B

1
p
p′,p′(∂�)n.

In addition, the first Green identity

±〈
T±(u±,π±; f̃±), γ±w±

〉
∂�

= 〈
Aαβ∂β(u±), ∂α(w±)

〉
�± − 〈π±, div w±〉�± + 〈f̃±,w±〉�± , (24)

holds for any w± ∈ H1
p′(�±)n and (u±,π±, f̃±) ∈ H1

p(�±,L).

The proof follows from the arguments similar to those for [5, Lemma 2.2] (see also [37,
Definition 3.1, Theorem 3.2], [46]). We omit the details for the sake of brevity.

For (u±,π±, f̃±) ∈ H1
p(�±)n × Lp(�±) × H̃−1

p (�±)n, let us introduce the couples
u := {u+,u−}, π := {π+,π−}, f̃ := {f̃+, f̃−}, and denote the jump of the corresponding
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conormal derivatives by

[T(u,π ; f̃)] := T+(u+,π+; f̃+) − T−(u−,π−; f̃−). (25)

For (u±,π±) such that (u±,π±, 0) ∈ H1
p(�±,L), we will also use the notations

T±(u±,π±) := T±(u±,π±; 0) and [T(u,π)] := [T(u,π ; 0)].
Lemma 2.5 implies the first Green identity in the following form.

Lemma 2.6: Let p ∈ (1,∞), (u±,π±, f̃±) ∈ H1
p(�±,L), and w ∈ H1

p′(Rn)n. Then〈
[T(u,π ; f̃)], γw

〉
∂�

= 〈
Aαβ∂β(u+), ∂α(w)

〉
�+ + 〈

Aαβ∂β(u−), ∂α(w)
〉
�−

− 〈π+, divw〉�+ − 〈π−, divw〉�− +
〈
f̃+,w

〉
�+

+
〈
f̃−,w

〉
�−

. (26)

Moreover, if (u±,π±, 0) ∈ H1
p(�±,L), then〈

[T(u,π)], γw
〉
∂�

= 〈
Aαβ∂β(u+), ∂α(w)

〉
�+ + 〈

Aαβ∂β(u−), ∂α(w)
〉
�−

− 〈π+, divw〉�+ − 〈π−, divw〉�− . (27)

Proof: It suffices to remark that γ+w = γ−w = γw and apply formula (24). �

2.4. Conormal derivative for the adjoint system

The formally adjoint operator L∗ is defined by

L∗(v, q) := ∂α

(
A∗αβ∂βv

) − ∇q,

where A
∗ = {A∗αβ}1≤α,β≤n,A∗αβ =

{
a∗αβ
ij

}
1≤i,j≤n

, a∗αβ
ij := aβα

ji . (28)

Note that our notation A∗αβ coincides with the notation (Aβα)� in [26]. Evidently, the
coefficients of L∗ also satisfy conditions (3) with the same constant c.

If (v, q) ∈ C1(�±)n × C0(�±), the classical conormal derivative operator T∗c± associ-
ated with L∗ is defined by

T∗c±(v, q) := γ±
(
A∗αβ∂βv

)
να − γ±qν on ∂�.

For more general functions v and q, we can introduce, similar to Definition 2.4, the notion
of formal and generalized conormal derivatives associated with L∗.

Definition 2.7: Let p∈ (1,∞). For any (v±, q±, g̃±)∈H1
p(�±)n × Lp(�±) × H̃−1

p (�±)n,

the formal conormal derivatives T∗±(v±, q±, g̃±) ∈ B
− 1

p
p,p (∂�)n are defined as

± 〈
T∗±(v±, q±; g̃±),�

〉
∂�

:= 〈
A∗αβ∂β(v±), ∂α(γ −1

± �)
〉
�±

− 〈
q±, div(γ −1

± �)
〉
�± + 〈

g̃±, γ −1
± �

〉
�± , ∀� ∈ B

1
p
p′,p′(∂�)n. (29)
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Moreover, if (v±, q±, g̃±) ∈ H1
p(�±,L∗), equation (29) defines the generalized conormal

derivatives T∗±(v±, q±, g̃±) ∈ B
− 1

p
p,p (∂�)n.

Lemma 2.8: Let p ∈ (1,∞).

(i) The formal conormal derivative operator T∗± : H1
p(�±)n × Lp(�±) × H̃−1

p (�±)n

→ B
− 1

p
p,p (∂�)n is linear and continuous.

(ii) The generalized conormal derivative operator T∗± : H1
p(�±,L∗) → B

− 1
p

p,p (∂�)n is
linear and continuous, and definition (29) does not depend on the choice of a

right inverse γ −1
± : B

1
p
p′,p′(∂�)n → H1

p′(�±)n of the trace operator γ± : H1
p′(�)n →

B
1
p
p′,p′(∂�)n. In addition, the following first Green identity holds for any w± ∈

H1
p′(�±)n and (v±, q±, g̃±) ∈ H1

p(�±,L∗)

±〈
T∗±(v±, q±; g̃±), γ±w±

〉
∂�

= 〈
A∗αβ∂β(v±), ∂α(w±)

〉
�± − 〈q±, divw±〉�± + 〈g̃±,w±〉�±

= 〈
Aαβ∂β(w±), ∂α(v±)

〉
�± − 〈q±, divw±〉�± + 〈g̃±,w±〉�± . (30)

Lemma 2.8 implies the following analogue of Lemma 2.6.

Lemma 2.9: Let p ∈ (1,∞), (v±, q±, g̃±) ∈ H1
p(�±,L∗), and w ∈ H1

p′(Rn)n. Let v and q
be the couples {v+, v−} and {q+, q−}. Then
〈
[T∗(v, q; g)], γw

〉
∂�

= 〈
A∗αβ∂β(v+), ∂α(w)

〉
�+ + 〈

A∗αβ∂β(v−), ∂α(w)
〉
�−

− 〈q+, divw〉�+ − 〈q−, divw〉�− + 〈
g̃+,w

〉
�+ + 〈

g̃−,w
〉
�− . (31)

Moreover, if (v±, q±, 0̃±) ∈ H1
p(�±,L∗), then

〈
[T∗(v, q)], γw

〉
∂�

= 〈
A∗αβ∂β(v+), ∂α(w)

〉
�+ + 〈

A∗αβ∂β(v−), ∂α(w)
〉
�−

− 〈q+, divw〉�+ − 〈q−, divw〉�− . (32)

2.5. Abstract mixed variational formulations andwell-posedness results

The main role in our analysis is played by the following well-posedness result from [47],
[48, Theorem 1.1], (cf., also [49, Theorem 2.34], [50] and [51, § 4]).

Theorem2.10: Let X andM be two realHilbert spaces. Let a(·, ·) : X × X → R and b(·, ·) :
X × M → R be bounded bilinear forms. Let f ∈ X′ and g ∈ M′. Let V be the subspace of
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X defined by

V := {
v ∈ X : b(v, q) = 0, ∀ q ∈ M

}
. (33)

Assume that a(·, ·) : V × V → R is coercive, whichmeans that there exists a constant ca > 0
such that

a(w,w) ≥ ca‖w‖2X , ∀w ∈ V , (34)

and that b(·, ·) : X × M → R satisfies the condition

inf
q∈M\{0}

sup
v∈X\{0}

b(v, q)
‖v‖X‖q‖M ≥ β , (35)

with some constant β > 0. Then the mixed variational problem{
a(u, v) + b(v, p) = f (v), ∀ v ∈ X,
b(u, q) = g(q), ∀ q ∈ M,

(36)

for unknown (u, p) ∈ X × M, is well-posed, i.e. (36) has a unique solution (u, p) in X × M
and there exists a constant C>0 depending on β and ca, such that

‖u‖X + ‖p‖M ≤ C
(‖f ‖X′ + ‖g‖M′

)
. (37)

We will also need the following result (see [49, Theorem A.56, Remark 2.7]).

Lemma 2.11: Let X and M be reflexive Banach spaces. Let b(·, ·) : X × M → R be a
bounded bilinear form. Let B : X → M′ and B∗ : M → X′ be the linear bounded operators
given by

〈Bv, q〉 = b(v, q), 〈v,B∗q〉 = 〈Bv, q〉, ∀ v ∈ X, ∀ q ∈ M, (38)

where 〈·, ·〉 :=X′ 〈·, ·〉X denotes the duality pairing of the dual spaces X′ and X. The dual-
ity pairing between M′ and M is also denoted by 〈·, ·〉. Then the following assertions are
equivalent:

(i) There exists a constant β > 0 such that b(·, ·) satisfies the inf-sup condition (35).
(ii) The map B : X/V → M′ is an isomorphism and ‖Bw‖M′ ≥ β‖w‖X/V , for any w ∈

X/V .

3. Volume and layer potential operators for the L∞ coefficient Stokes
system in Lp-based Sobolev and Besov spaces

In the sequel, �+ ⊂ Rn (n ≥ 3) is a bounded Lipschitz domain with connected boundary
∂�, and �− := Rn \ �.
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3.1. Weak solution of the Stokes systemwith L∞ coefficients inRn.

The main role in our analysis is played by the following result (see also [52, Lemma 4.1]
for p=2).

Lemma 3.1: Let A satisfy conditions (2)–(3). Let p ∈ (1,∞), and aRn : H1
p(R

n)n ×
H1

p′(Rn)n → R, bRn : H1
p(R

n)n × Lp′(Rn) → R be the bilinear forms

aRn(u, v) := 〈
Aαβ∂βu, ∂αu

〉
Rn , ∀u ∈ H1

p(R
n)n, v ∈ H1

p′(Rn)n, (39)

bRn(v, q) := −〈divv, q〉Rn , ∀ v ∈ H1
p(R

n)n, ∀ q ∈ Lp′(Rn). (40)

Then there exists p∗ ∈ (2,∞) such that for any p ∈ R(p∗, n), where

R(p∗, n) :=
(

p∗
p∗ − 1

, p∗
)

∩
(

n
n − 1

, n
)

(41)

and for all given data ξ ∈ H−1
p (Rn)n and ζ ∈ Lp(Rn), the mixed variational formulation{

aRn(u, v) + bRn(v,π) = 〈ξ , v〉Rn , ∀ v ∈ H1
p′(Rn)n,

bRn(u, q) = 〈ζ , q〉Rn , ∀ q ∈ Lp′(Rn)
(42)

is well-posed, which means that (42) has a unique solution (u,π) ∈ H1
p(R

n)n × Lp(Rn) and
there exists a constant C = C(cA, p, n) > 0 such that

‖u‖H1
p(Rn)n + ‖π‖Lp(Rn) ≤ C

{
‖ξ‖H−1

p (Rn)n + ‖ζ‖Lp(Rn)

}
. (43)

Proof: The boundedness condition
∣∣aαβ

ij (x)
∣∣ ≤ cA combined with the Hölder inequality

imply that there exists a constant C = C(p, n, cA) > 0 such that

|aRn(u, v)| ≤ C‖u‖H1
p(Rn)n‖v‖H1

p′ (R
n)n , ∀u ∈ H1

p(R
n)n, v ∈ H1

p′(Rn)n. (44)

Thus, the bilinear form aRn : H1
p(R

n)n × H1
p′(Rn)n → R is bounded for any p ∈ (1,∞).

The bilinear form bRn : H1
p(R

n)n × Lp′(Rn) → R is also bounded for any p ∈ (1,∞).
Let us first prove the lemma for p=2. To do so, we intend to use Theorem 2.10,

which requires the coercivity of the bilinear form aRn(·, ·) fromH1(Rn)n × H1(Rn)n toR.
Indeed, the strong ellipticity condition (3) and the property that the semi-norm is a norm
onH1(Rn)n equivalent to the norm ‖ · ‖H1(Rn)n (see (11) and (12) with p=2), imply that
there exists a constant c1 = c1(n) > 0 such that

aRn(v, v) ≥ c−1
A

‖∇v‖2L2(Rn)n×n ≥ c−1
A

c1‖v‖2H1(Rn)n ,∀v ∈ H1(Rn)n. (45)

Inequalities (44) and (45) show that the bilinear form aRn : H1(Rn)n × H1(Rn)n → R is
bounded and coercive.
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Moreover, the boundedness of the operator div : H1(Rn)n → L2(Rn) implies that the
bilinear form bRn : H1(Rn)n × L2(Rn) → R is bounded as well. In addition, the subspace
H1

div(R
n)n ofH1(Rn)n-divergence-free vector fields has the following characterization

H1
div(R

n)n = {
w ∈ H1(Rn)n : bRn(w, q) = 0, ∀ q ∈ L2(Rn)

}
.

In view of the isomorphism property of the operator

− div : H1(Rn)n/H1
div(R

n)n → L2(Rn) (46)

(cf. [39, Proposition 2.1], [40, Lemma 2.5]), there exists a constant c2 > 0 such that for any
q ∈ L2(Rn) there exists v ∈ H1(Rn)n satisfying the equation−divv = q and the inequality
‖v‖H1(Rn)n ≤ c2‖q‖L2(Rn), and hence

bRn(v, q) = − 〈
divv, q

〉
Rn = 〈q, q〉Rn = ‖q‖2L2(Rn) ≥ c−1

2 ‖v‖H1(Rn)n‖q‖L2(Rn).

Consequently, the bilinear form bRn(·, ·) : H1(Rn)n × L2(Rn) → R satisfies the inf-sup
condition

inf
q∈L2(Rn)\{0}

sup
w∈H1(Rn)n\{0}

bRn(w, q)
‖w‖H1(Rn)n‖q‖L2(Rn)

≥ inf
q∈L2(Rn)\{0}

c−1
2 ‖v‖H1(Rn)n‖q‖L2(Rn)

‖v‖H1(Rn)n‖q‖L2(Rn)
= c−1

2

(see also Lemma 2.11(ii), and [23, Proposition 2.4] for n=2,3). Then Theorem 2.10, with
X = H1(Rn)n,M = L2(Rn), V = H1

div(R
n)n, implies that problem (42) is well-posed for

p=2.
Let

Xp(R
n) := H1

p(R
n)n × Lp(Rn), X ′

p′(Rn) := H−1
p (Rn)n × Lp(Rn). (47)

and note that X ′
p′(Rn) is the dual of the space Xp′(Rn). Let TRn = (T1;Rn ,T2;Rn) :

Xp(R
n) → X ′

p′(Rn) be the operator defined on any (u,π) ∈ Xp(R
n) in the weak

form by

〈T1;Rn(u,π), v〉Rn = aRn(u, v) + bRn(v,π),

〈T2;Rn(u,π), q〉Rn = bRn(u, q), ∀ (v, q) ∈ Xp′(Rn).

Hence, establishing the existence of a solution to the variational problem (42) is equiva-
lent to showing that the operator TRn : Xp(R

n) → X ′
p′(Rn) is an isomorphism (see also

[22, Proposition 7.2], [53, Theorem 5.6], and [54, Theorem 3.1] for the standard isotropic
Stokes system).

The linear operator TRn : Xp(R
n) → X ′

p′(Rn) is continuous for any p ∈ (1,∞) due
to (44). We already shown the operator TRn : Xp(R

n) → X ′
p′(Rn) is an isomorphism for

p=2. To show that it is also an isomorphism for p in an open interval containing 2, we
proceed as follows.

Let us note that the sets {Xp(R
n)}p∈I and {X ′

p′(Rn)}p∈I are both complex interpola-
tion scales whenever I = ( n

n−1 , n). To show this, we note that the sets {H1
p(R

n)}1<p<n
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and {Lp(Rn)}p∈(1,∞) are complex interpolation scales (see (15), [41, Theorem 3], [1,
Theorem 2.4.2]). Moreover, duality theorems for the complex method of interpolation
imply that the dual of an interpolation scale is an interpolation scale itself (cf., e.g. [43,
Theorem 3.7.1, Corollary 4.5.2], [22, p. 4391]). Thus, starting with the complex inter-
polation scale {H1

p′(Rn)}1<p′<n, we deduce by duality that the set {H−1
p (Rn)}p∈( n

n−1 ,∞)

is a complex interpolation scale as well. Therefore, the range I of p for which both sets
{H1

p(R
n)}p∈I and {H−1

p (Rn)}p∈I are complex interpolation scales is the interval ( n
n−1 , n).

Consequently, the sets {Xp(R
n)} n

n−1<p<n and {X ′
p′(Rn)} n

n−1<p<n are complex interpolation
scales.

Then the continuity of the operators TRn : Xp(R
n) → X ′

p′(Rn) for all p ∈ (1,∞),
the isomorphism property of the operator TRn : X2(R

n) → X ′
2(R

n), and the stability
of the isomorphism property on complex interpolation scales (cf., e.g. [55, Proposition
4.1], [1, Theorem 11.9.24], imply that there exists p∗ ∈ (2,∞) such that for any p ∈
(

p∗
p∗−1 , p∗) ∩ ( n

n−1 , n) the operator TRn : Xp(R
n) → X ′

p′(Rn) is an isomorphism (see also
[22, Theorem 7.3], [53, Theorem 5.6], [54, Theorem 3.1]).

Consequently, whenever condition (41) holds and for all given data (ξ , ζ ) ∈
H−1

p (Rn)n × Lp(Rn), there exists a unique solution (u,π) ∈ H1
p(R

n)n × Lp(Rn) of the
equation TRn(u,π) = (ξ , ζ ) or, equivalently, of the variational problem (42), satisfying
inequality (43). �

Next we use Lemma 3.1 and show the well-posedness of the L∞-coefficient Stokes
system in the space H1

p(R
n)n × Lp(Rn) for any p ∈ R(p∗, n) (cf. [52, Theorem 4.2] for

p=2 with A(x) = μ(x)I, [40, Proposition 2.9] and [39, Theorem 3] for p ∈ (1, n) in the
constant-coefficient case).

Theorem 3.2: LetA satisfy conditions (2) – (3). Then there exists p∗ ∈ (2,∞), such that for
any p ∈ R(p∗, n), cf. (41), and for each f ∈ H−1

p (Rn)n, the L∞-coefficient Stokes system{
∂α

(
Aαβ∂βu

) − ∇π = f in Rn,
divu = 0 in Rn,

(48)

has a unique solution (uf ,πf) ∈ H1
p(R

n)n × Lp(Rn) and there is a constant C =
C(cA, p, n) > 0 such that ‖uf‖H1

p(Rn)n + ‖πf‖Lp(Rn) ≤ C‖f‖H−1
p (Rn)n .

Proof: Let p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈ R(p∗, n). Then the dense embedding
of the space D(Rn)n in H1

p′(Rn)n shows that system (48) has the equivalent variational
form (42) (with ζ = 0, ξ = −f), and the well-posedness of system (48) follows from
Lemma 3.1. �

Theorem 3.2 allows us to define the Newtonian potential operators and show their
continuity.

Definition 3.3: Let A satisfy conditions (2)–(3). Let p∗ ∈ (2,∞) be as in Lemma 3.1 and
p ∈ R(p∗, n), cf. (41). For f ∈ H−1

p (Rn)n, we define the Newtonian velocity and pressure
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potentials for the L∞-coefficient Stokes system, by setting

NRnf := uf , QRnf := πf ,

where (uf ,πf) ∈ H1
p(R

n)n × Lp(Rn) is the unique solution of problem (48) with the given
datum f .

Lemma 3.4: Let A satisfy conditions (2)–(3). Let p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41). Then the following operators are linear and continuous

NRn : H−1
p (Rn)n → H1

p(R
n)n, QRn : H−1

p (Rn)n → Lp(Rn). (49)

3.2. The single layer potential operator for the Stokes systemwith L∞ coefficients

Next we show a well-posedness result for a transmission problem and use it to define L∞-

coefficient Stokes single layer potentials in Besov spaces B
− 1

p
p,p (∂�)n with p ∈ R(p∗, n) (cf.

also [23, Propositions 5.1, 7.1], [5, Theorem 4.5] for p=2, [2, Propositions 2.3, 2.7] for
p=2, for the Stokes and Brinkman systems with constant coefficients in Rn, n ∈ {2, 3}.)

Recall that in this paper we assume that �+ ⊂ Rn (n ≥ 3) is a bounded Lipschitz
domain with connected boundary ∂�, and �− := Rn \ �+.

Theorem 3.5: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41). Then for any ψ ∈ B

− 1
p

p,p (∂�)n, the transmission problem⎧⎪⎨⎪⎩
∂α

(
Aαβ∂βu

) − ∇π = 0 in Rn \ ∂�,
divu = 0 in Rn \ ∂�,
[γ (u)] = 0, [T(u,π)] = ψ on ∂�,

(50)

has a unique solution (uψ ,πψ ) ∈ H1
p(R

n \ ∂�)n × Lp(Rn), and there exists a constant C =
C(∂�, cA, p, n) > 0 such that

‖uψ‖H1
p(Rn\∂�)n + ‖πψ‖Lp(Rn) ≤ C‖ψ‖

B
− 1
p

p,p (∂�)n
.

Proof: First, we note that the last condition in (50) is understood in the weak sense, as
in Definition 2.4. Next, we show that the transmission problem (50) has the following
equivalent mixed variational formulation:

Find (uψ ,πψ ) ∈ H1
p(R

n)n × Lp(Rn) such that{
aRn(uψ , v) + bRn(v,πψ ) = 〈ψ , γ v〉∂�, ∀ v ∈ H1

p′(Rn)n,
bRn(uψ , q) = 0, ∀ q ∈ Lp′(Rn),

(51)

where aRn and bRn are the bilinear forms given by (39) and (40).
First, assume that the pair (uψ ,πψ ) ∈ H1

p(R
n \ ∂�)n × Lp(Rn) satisfies the transmis-

sion problem (50). Then the inclusion uψ ∈ H1
p(R

n)n is implied by the first transmission
condition in (50). Formula (26) shows that the same pair satisfies also the first equation
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in (51). The second equation of the mixed variational formulation (51) follows from the
fact that uψ ∈ H1

p(R
n)n satisfies the second equation in (50).

Conversely, assume that the pair (uψ ,πψ ) ∈ H1
p(R

n)n × Lp(Rn) is a solution of the
mixed variational formulation (51). In view of the density of the space D(Rn)n in
H1

p′(Rn)n, and by choosing in the first equation of the system (51) any v ∈ C∞(Rn)n

with compact support in �± (and, thus, γ v = 0), we obtain the variational equation
〈∂α(Aαβ∂β(uψ )) − ∇πψ ,w〉�± = 0,∀w ∈ C∞

0 (�±)n, which yields the first equation in
(50). The second equation in (50) follows immediately from the second equation in (51),
the property that the operator div : H1

p(R
n)n → Lp(Rn) is continuous, and the duality

between the spaces Lp(Rn) and Lp′(Rn). The assumption uψ ∈ H1
p(R

n)n implies the first
transmission condition in (50). Using again formula (26), the first equation in (51), and

Lemma 2.1, we obtain the relation 〈[T(uψ ,πψ )] − ψ ,�〉∂� = 0, for any � ∈ B
1
p
p′,p′(∂�)n

and hence the second transmission condition in (50).

In addition, the continuity of the trace operator γ : H1
p′(Rn)n → B

1
p
p′,p′(∂�)n and of its

adjoint γ ∗ : B
− 1

p
p,p (∂�)n → H−1

p (Rn)n implies the continuity of the linear form

� : H1
p′(Rn)n → R, �(v) := 〈ψ , γ v〉∂� = 〈γ ∗ψ , v〉Rn , ∀ v ∈ H1

p′(Rn)n. (52)

According to Lemma 3.1 there exists p∗ ∈ (2,∞), such that for any p as in (41) and for

any ψ ∈ B
− 1

p
p,p (Rn)n, problem (51) has a unique solution (uψ ,πψ ) ∈ H1

p(R
n)n × Lp(Rn),

which depends continuously on ψ . Moreover, the equivalence between problems (50)
and (51) shows that (uψ ,πψ ) ∈ H1

p(R
n)n × Lp(Rn) is the unique solution of the trans-

mission problem (50). �

The next result can be proved by the arguments similar to those in the proof of
Theorem 3.5, and is mainly based on the Green formula (30).

Theorem 3.6: Let A satisfy conditions (2)–(3). Then there exists p∗ ∈ (2,∞), such that for

any p′ ∈ R(p∗, n), cf. (41), and for any ψ∗ ∈ B
− 1

p′
p′,p′(∂�)n, the transmission problem for the

adjoint Stokes system ⎧⎪⎨⎪⎩
∂α

(
A∗αβ∂βv

) − ∇q = 0 in Rn \ ∂�,
divv = 0 in Rn \ ∂�,
[γ (v)] = 0,

[
T∗(v, q)

] = ψ∗ on ∂�,
(53)

has a unique solution (vψ∗ , qψ∗) ∈ H1
p′(Rn \ ∂�)n × Lp′(Rn), and there exists C∗ =

C∗(∂�, cA, p′, n) > 0 such that ‖vψ∗‖H1
p′ (R

n\∂�)n + ‖qψ∗‖Lp′ (Rn) ≤ C∗‖ψ∗‖
B

− 1
p′

p′ ,p′ (∂�)n
.

Theorem 3.5 plays a key role in the following definition (cf. [23, p. 75] and [2,
Corollary 2.5] for the isotropic constant-coefficient case and p=2, and [25, formula (4.2),
Lemma 4.6] for strongly elliptic operators).
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Definition 3.7: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and

p ∈ R(p∗, n), cf. (41). Then for any ψ ∈ B
− 1

p
p,p (∂�)n we define the single layer velocity and

pressure potentials with the density ψ for the Stokes operator L with coefficients A, as

V∂�ψ := uψ , Qs
∂�ψ := πψ , (54)

and the boundary operators V∂� : B
− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n and K∂� : B
− 1

p
p,p (∂�)n →

B
− 1

p
p,p (∂�)n as

V∂�ψ := γuψ , K∂�ψ := 1
2

(
T+(uψ ,πψ ) + T−(uψ ,πψ )

)
, (55)

where (uψ ,πψ ) is the unique solution of the transmission problem (50) in H1
p(R

n \
∂�)n × Lp(Rn).

The well-posedness of the transmission problem (50) proved in Theorem 3.5, defini-
tions (55) and the transmission conditions in (50) imply the following assertion (cf. [23,
Propositions 5.2 and 5.3], [3, Lemma A.4, (A.10), (A.12)] and [1, Theorem 10.5.3] for
A = I).

Lemma 3.8: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41). Then the following operators are linear and continuous

V∂� : B
− 1

p
p,p (∂�)n → H1

p(R
n)n, Qs

∂� : B
− 1

p
p,p (∂�)n → Lp(Rn), (56)

V∂� : B
− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n, K∂� : B
− 1

p
p,p (∂�)n → B

− 1
p

p,p (∂�)n. (57)

For any ψ ∈ B
− 1

p
p,p (∂�)n, the following jump relations hold on ∂�

γ±V∂�ψ = V∂�ψ , T± (
V∂�ψ ,Qs

∂�ψ
) = ±1

2
ψ + K∂�ψ . (58)

By using Theorem 3.6 we can also define the single layer potential operators, V∗
∂� and

Qs∗
∂�, of the adjoint Stokes system (53).

Definition 3.9: LetA satisfy conditions (2)–(3). Let p∗ ∈ (2,∞) be as in Theorem 3.6 and

p′ ∈ R(p∗, n), cf. (41). Then for anyψ∗ ∈ B
− 1

p′
p′,p′(∂�)n, we define the single layer velocity and

pressure potentials with the density ψ∗ for the adjoint Stokes operator L∗ defined in (28),
with coefficients A, by setting

V∗
∂�ψ

∗ := vψ∗ , Qs∗
∂�ψ

∗ := πψ∗ ,

and the operators V∗
∂� : B

− 1
p′

p′,p′(∂�)n → B
1− 1

p′
p′,p′ (∂�)n andK∗

∂� : B
− 1

p′
p′,p′(∂�)n → B

− 1
p′

p′,p′(∂�)n

as

V∗
∂�ψ

∗ := γ vψ∗ , K∗
∂�ψ

∗ := 1
2
(
T∗+(vψ∗ ,πψ∗) + T∗−(vψ∗ ,πψ∗)

)
, (59)

where (vψ∗ ,πψ∗) is the unique solution of the transmission problem (53) in H1
p′(Rn \

∂�)n × Lp′(Rn).



126 M. KOHR ET AL.

Lemma 3.10: Let A satisfy conditions (2)–(3). Let p∗ ∈ (2,∞) be as in Theorem 3.5 and

p ∈ R(p∗, n), cf. (41), ψ ∈ B
− 1

p
p,p (∂�)n, ψ∗ ∈ B

− 1
p′

p′,p′(∂�)n. Then

[
γV∗

∂�ψ
∗] = 0, T∗± (

V∗
∂�ψ

∗,Qs∗
∂�ψ

∗) = ±1
2
ψ∗ + K∗

∂�ψ
∗, (60)〈

ψ ,V∗
∂�ψ

∗〉
∂�

= 〈
V∂�ψ ,ψ∗〉

∂�
. (61)

Proof: Formulas (60) follow with arguments similar to those for (58). By definition, the
couple (V∂�ψ ,Qs

∂�ψ) is the unique solution in H1
p(R

n \ ∂�)n × Lp(Rn) of the trans-

mission problem (50) with the given datumψ ∈ B
− 1

p
p,p (∂�)n. Also (V∗

∂�ψ
∗,Qs∗

∂�ψ
∗) is the

unique solution inH1
p′(Rn \ ∂�)n × Lp′(Rn) of the transmission problem for the adjoint

Stokes system (53) with the given datum ψ∗ ∈ B
− 1

p′
p′,p′(∂�)n. Then the Green formulas (27)

and (32) along with relations (28) imply〈[
T
(
V∂�ψ ,Qs

∂�ψ
)]
,V∗

∂�ψ
∗〉

∂�
= 〈

Aαβ∂β

(
V∂�ψ

)
, ∂α

(
V∗

∂�ψ
∗)〉

Rn (62)〈[
T∗(V∗

∂�ψ
∗,Qs∗

∂�ψ
∗)],V∂�ψ

〉
∂�

= 〈
A∗αβ∂β

(
V∗

∂�ψ
∗), ∂α

(
V∂�ψ

)〉
Rn

= 〈
aαβ
ij ∂β

(
V∂�ψ

)
j, ∂α

(
V∗

∂�ψ
∗)

i
〉
Rn = 〈

Aαβ∂β

(
V∂�ψ

)
, ∂α

(
V∗

∂�ψ
∗)〉

Rn . (63)

Moreover, the second formulas in (58) and (60) imply that[
T
(
V∂�ψ ,Qs

∂�ψ
)] = ψ ,

[
T∗ (

V∗
∂�ψ

∗,Qs∗
∂�ψ

∗)] = ψ∗. (64)

Then equality (61) follows from (62), (63) and (64) (see also [23, Proposition 5.4] for the
constant-coefficient Stokes system and p=2). �

Remark 3.11: In the isotropic case (8), Definition 3.9 reduces to Definition 3.7, and

the single layer operator V∂� : B
− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n is formally self-adjoint, i.e.
formula (61) becomes〈

ψ ,V∂�ψ
∗〉

∂�
= 〈

V∂�ψ ,ψ∗〉
∂�

, ∀ψ ∈ B
− 1

p
p,p (∂�)n, ψ∗ ∈ B

− 1
p′

p′,p′(∂�)n. (65)

For a given operator T : X → Y , we denote by Ker{T : X → Y} := {x ∈ X : T(x) = 0}
the null space of T. Let ν denote the outward unit normal to �+, which exists a.e. on ∂�,
and let span{ν} := {cν : c ∈ R}. For p ∈ (1,∞), consider the space

B
1
p′
p,p;ν(∂�)n := {

� ∈ B
1
p′
p,p(∂�)n : 〈�, ν〉∂� = 0

}
. (66)

Next we show main properties of the single layer operator (see also [52, Lemma 4.9] for
p=2, [1, Theorem 10.5.3], and [2, Proposition 3.3(c)], [23, Proposition 5.4] in the constant
case).

Let us denote

χ�+ =
{
1 in �+
0 in �−.
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Lemma 3.12: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41). Then

V∂�ν = 0 in R
n, Qs

∂�ν = −χ�+ , (67)

V∂�ν = 0 a.e. on ∂�, (68)

V∂�ψ ∈ B
1− 1

p
p,p;ν(∂�)n, ∀ψ ∈ B

− 1
p

p,p (∂�)n. (69)

In addition, for any p ∈ [2, p∗) ∩ [2, n),

Ker
{
V∂� : B

− 1
p

p,p (∂�)n → B
1− 1

p
p,p (∂�)n

} = span{ν}. (70)

Proof: First, note that Theorem 3.5 implies that the transmission problem (50) with

the datum ψ = ν ∈ B
− 1

p
p,p (∂�)n is well-posed. Moreover, the pair (uν ,πν) = (0,−χ�+ ) ∈

H1
p(R

n)n × Lp(Rn) is the unique solution of this transmission problem. Then rela-
tions (67) and (68) follow from Definition 3.7. Thus,

span{ν} ⊆ Ker
{
V∂� : B

− 1
p

p,p (∂�)n → B
1− 1

p
p,p (∂�)n

} ∀ p ∈ R(p∗, n). (71)

Similarly,

V∗
∂�ν = 0 in R

n, V∗
∂�ν = 0 a.e. on ∂�, (72)

where V∗
∂� : B

− 1
p′

p′,p′(∂�)n → B
1− 1

p′
p′,p′ (∂�)n is the single layer operator for the adjoint Stokes

system (53) (see Definition 3.9). By using formula (61) for the densities ψ ∈ B
− 1

p
p,p (∂�)n

and ψ∗ = ν ∈ B
− 1

p′
p′,p′(∂�)n, and the second relation in (72), we obtain relation (69).

Next we determine the kernel of the single layer operator in case p=2. To
do so, we assume that ψ0 ∈ Ker{V∂� : H− 1

2 (∂�)n → H
1
2 (∂�)n}. Let (uψ0 ,πψ0) =

(V∂�ψ0,Qs
∂�ψ0) be the unique solution inH1(Rn)n × L2(Rn) of the transmission prob-

lem (50) with given datumψ0. According to formula (27) and the assumption that γuψ0 =
V∂�ψ0 = 0 a.e. on ∂�, we obtain that

aRn
(
uψ0 ,uψ0

) = 〈
[T(uψ0 ,πψ0)], γuψ0

〉
∂�

= 0. (73)

In addition, assumption (3) yields that aRn(uψ0 ,uψ0) ≥ c−1
A

‖∇(uψ0)‖2L2(Rn)n . Therefore,
uψ0 is a constant field, but the membership of uψ0 in H1(Rn)n ↪→ L 2n

n−2
(Rn)n shows

that uψ0 = 0 in Rn. Moreover, the Stokes equation satisfied by uψ0 and πψ0 in Rn \
∂� and the membership of πψ0 in L2(Rn) show that πψ0 = c0χ�+ in Rn, where c0 ∈
R. Then formula (27) and the divergence theorem yield that 〈[T(uψ0 ,πψ0)], γw〉∂� =
−〈πψ0 , divw〉Rn = −c0〈ν, γw〉∂�, for any w ∈ D(Rn)n, and accordingly that ψ0 =
[T(uψ0 ,πψ0)] = −c0ν. Hence, taking into account (71) as well, (70) follows for p=2.
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Moreover, for any p ∈ [2, p∗) ∩ [2, n) by the inclusion B
− 1

p
p,p (∂�)n ↪→ H− 1

2 (∂�)n we
have

Ker
{
V∂� : B

− 1
p

p,p (∂�)n → B
1− 1

p
p,p (∂�)n

}
⊆ Ker

{
V∂� : H− 1

2 (∂�)n → H
1
2 (∂�)n

} = span{ν}.
Then by (71) we conclude that (70) holds also for any p ∈ [2, p∗) ∩ [2, n). �

Next we show the following property (see also [1, Theorem 10.5.3], [2, Proposition
3.3(d)], [23, Proposition 5.5] in the constant case).

Lemma 3.13: Let A satisfy conditions (2)–(3). Then the following operator is an isomor-
phism,

V∂� : H− 1
2 (∂�)n/span{ν} → H

1
2
ν (∂�)n. (74)

Proof: Let [[·]] denote the classes inH− 1
2 (∂�)n/span{ν}, [[ψ]] = ψ + span{ν}, withψ ∈

H− 1
2 (∂�)n. The invertibility is based on the coercivity inequality

〈[[ψ]] ,V∂� [[ψ]]〉∂� ≥ c ‖[[ψ]]‖2
H− 1

2 (∂�)n/span{ν}
, ∀ [[ψ]] ∈ H− 1

2 (∂�)n/span{ν},
(75)

which follows by the arguments similar to those in [52, Lemma 4.10] and [23, Propo-
sition 5.5]. Indeed, according to formula (27), Definition 3.7, relations (69), (70), and
inequality (45), we obtain that

〈[[ψ]] ,V∂� [[ψ]]〉∂� = 〈ψ ,V∂�ψ〉∂� = 〈[T(uψ ,πψ )], γuψ 〉∂�

= aRn(uψ ,uψ ) ≥ c−1
A

c1‖uψ‖2H1(Rn)n , (76)

where uψ = V∂�ψ , πψ = Qs
∂�ψ . Since the trace operator γ : H1

div(R
n)n → H

1
2
ν (∂�)n is

surjective with a bounded right inverse γ −1 : H
1
2
ν (∂�)n → H1

div(R
n)n (cf., e.g. [23, Propo-

sition 4.4]), for any � ∈ H
1
2
ν (∂�)n we have the inclusion w := γ −1� ∈ H1

div(R
n)n. Then

there exists a constant c′ = c′(∂�, n) > 0 such that

|〈[[ψ]] ,�〉∂�| = |〈ψ ,�〉∂�| = |〈[T(uψ ,πψ )], γw〉∂�| = |aRn(uψ ,w)|
≤ cA‖uψ‖H1(Rn)n‖γ −1�‖H1(Rn)n ≤ cAc′‖uψ‖H1(Rn)n‖�‖

H
1
2 (∂�)n

. (77)

Then formula (77) and the duality of the spaces H
1
2
ν (∂�)n and H− 1

2 (∂�)n/span{ν} imply
that

‖ [[ψ]] ‖
H− 1

2 (∂�)n/span{ν} ≤ cAc′‖uψ‖H1(Rn)n . (78)

Then inequality (75) follows from inequalities (76) and (78). Finally, the Lax-Milgram
lemma implies that the single layer potential operator (74) is an isomorphism, as
asserted. �
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3.3. The double layer potential operator for the Stokes systemwith L∞ coefficients

Next we present the well-posedness results for a transmission problem used for the

definition of L∞-coefficient Stokes double layer potentials in the space B
1− 1

p
p,p (∂�)n with p

in some open set containing 2 and n ≥ 3 (cf. [23, Propositions 6.1, 7.1] in the case n=2,3,
p=2 and A = I). Recall that if u ∈ Lp,loc(Rn)n is such that u|�+ ∈ H1

p(�+)n, u|�− ∈
H1

p(�−)n, we will denote this as u ∈ H1
p(R

n \ ∂�) and employ the norm ‖u‖pH1
p(Rn\∂�)

:=
‖u‖pH1

p(�+)
+ ‖u‖pH1

p(�−)
.

Theorem 3.14: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41). Then for any ϕ ∈ B

1− 1
p

p,p (∂�)n, the transmission problem

⎧⎪⎨⎪⎩
∂α

(
Aαβ∂β(u)

) − ∇π = 0 in Rn \ ∂�,
divu = 0 in Rn \ ∂�,
[γ (u)] = −ϕ, [T(u,π)] = 0 on ∂�,

(79)

has a unique solution (uϕ ,πϕ) ∈ H1
p(R

n \ ∂�)n × Lp(Rn), and there exists a constant C =
C(∂�, cA, p, n) > 0 such that

‖uϕ‖H1
p(Rn\∂�)n + ‖πϕ‖Lp(Rn) ≤ C‖ϕ‖

B
1− 1

p
p,p (∂�)n

.

Proof: Let p ∈ R(p∗, n) and ϕ ∈ B
1− 1

p
p,p (∂�)n. First we show uniqueness. Let (u0,π0) ∈

H1
p(R

n \ ∂�)n × Lp(Rn) be a solution of the homogeneous version of problem (79). Then
the first transmission condition implies that u0 ∈ H1

p(R
n)n. Hence, (u0,π0) ∈ H1

p(R
n)n ×

Lp(Rn) is a solution of the homogeneous version of the transmission problem (50), which,
in view of Theorem 3.5, has only the trivial solution.

The arguments similar to the ones for Theorem 3.5 imply that problem (79) has the
following equivalent variational formulation:

Find (uϕ ,πϕ) ∈ H1
p(R

n \ ∂�)n × Lp(Rn) such that

⎧⎪⎨⎪⎩
〈
Aαβ∂βuϕ , ∂αv

〉
�+∪�− − 〈πϕ , divv〉Rn = 0, ∀ v ∈ H1

p′(Rn)n,
〈div uϕ , q〉�+∪�− = 0, ∀ q ∈ Lp′(Rn),[
γ (uϕ)

] = −ϕ on ∂�.
(80)

The existence of the bounded right inverses γ −1
± : B

1− 1
p

p,p (∂�) → H1
p(�±) to the trace

operators γ± : H1
p(�±) → B

1− 1
p

p,p (∂�) implies that for ϕ ∈ B
1− 1

p
p,p (∂�)n given, there is

wϕ ∈ H1
p(�±)n, such that [γwϕ] = −ϕ on ∂�. Thus, vϕ := uϕ − wϕ has no jump across

∂�, and hence vϕ ∈ H1
p(R

n)n (see also [22, Theorem 5.13]). Moreover, problem (80)
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reduces to the variational problem{
aRn(vϕ , v) + bRn(v,πϕ) = ξϕ(v), ∀ v ∈ H1

p′(Rn)n,
bRn(vϕ , q) = ζϕ(q), ∀ q ∈ Lp′(Rn),

(81)

with the unknown (vϕ ,πϕ) ∈ H1
p(R

n)n × Lp(Rn), where aRn : H1
p(R

n)n × H1
p′(Rn)n →

R and bRn : H1
p(R

n)n × Lp′(Rn) → R are the bounded bilinear forms given by (39) and
(40), respectively. In addition, conditions (2) show the boundedness of the linear forms

ξϕ : H1
p′(Rn)n → R, ξϕ(v) := −〈

Aαβ∂βwϕ , ∂αv
〉
�+ − 〈

Aαβ∂βwϕ , ∂αv
〉
�− , (82)

ζϕ : Lp′(Rn)n → R, ζϕ(q) := −〈divwϕ , q〉�+ − 〈divwϕ , q〉�− , ∀ q ∈ Lp′(Rn). (83)

Therefore, Lemma 3.1 shows that the variational problem (81) has a unique solution
(vϕ ,πϕ) ∈ H1

p(R
n)n × Lp(Rn). Then the pair (uϕ ,πϕ) = (wϕ + vϕ ,πϕ) is a solution of

the variational problem (80) in H1
p(R

n \ ∂�)n × Lp(Rn), and due to the equivalence
between problems (79) and (80), it is also the unique solution of the problem (79) in
H1

p(R
n \ ∂�)n × Lp(Rn). �

Theorem 3.14 leads to the following definition of the double layer operator for the
nonsmooth-coefficient Stokes system (4) (cf. [23, p. 77] for the constant-coefficient Stokes
system in R3, and [25, formula (4.5) and Lemma 4.6] for general strongly elliptic differen-
tial operators).

Definition 3.15: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and

p ∈ R(p∗, n), cf. (41). For any ϕ ∈ B
1− 1

p
p,p (∂�)n, we define the double layer potentials with

the density ϕ for the Stokes operator L with coefficients A as

W∂�ϕ := uϕ , Qd
∂�ϕ := πϕ ,

and the boundary operators K∂� : B
1− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n and D∂� : B
1− 1

p
p,p (∂�)n →

B
− 1

p
p,p (∂�)n as

K∂�ϕ := 1
2

(
γ+uϕ + γ−uϕ

)
, D∂�ϕ := T+

(
W∂�ϕ,Qd

∂�ϕ
)

= T−
(
W∂�ϕ,Qd

∂�ϕ
)
,

(84)
where (uϕ ,πϕ) is the unique solution of the transmission problem (79) in H1

p(R
n \

∂�)n × Lp(Rn).

Theorem 3.14 and Definition 3.15 lead to the next result (see also [1, (10.81), (10.82)]
and [23, Propositions 6.2, 6.3] for the constant-coefficient Stokes system in R3, and [25,
Lemma 5.8]).

Lemma 3.16: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and p ∈
R(p∗, n), cf. (41).
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(i) The following operators are linear and continuous,

W∂� : B
1− 1

p
p,p (∂�)n → H1

p(R
n \ ∂�)n, Qd

∂� : B
1− 1

p
p,p (∂�)n → Lp(Rn), (85)

K∂� : B
1− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n, D∂� : B
1− 1

p
p,p (∂�)n → B

− 1
p

p,p (∂�)n. (86)

(ii) For any ϕ ∈ B
1− 1

p
p,p (∂�)n, the following jump relations hold on ∂�

γ±W∂�ϕ = ∓1
2
ϕ + K∂�ϕ, T±

(
W∂�ϕ,Qd

∂�ϕ
)

= D∂�ϕ. (87)

(iii) The operator K∗
∂� : B

− 1
p′

p′,p′(∂�)n → B
− 1

p′
p′,p′(∂�)n defined in (59) is transpose to the

operator K∂� : B
1− 1

p
p,p (∂�)n → B

1− 1
p

p,p (∂�)n defined in (84), i.e.

〈
ψ∗,K∂�ϕ

〉
∂�

= 〈
K∗

∂�ψ
∗,ϕ

〉
∂�

,∀ϕ ∈ B
1− 1

p
p,p (∂�)n,ψ∗ ∈ B

− 1
p′

p′,p′(∂�)n. (88)

Proof: The continuity of operators (85) and (86) follows fromwell-posedness of the trans-
mission problem (79) and Definition 3.15. Moreover, the transmission conditions in (79)
and again Definition 3.15 lead to the jump formulas (87).

Next we show equality (88) using an argument similar to that in the proof of [23,

Proposition 6.7] for the constant-coefficient Stokes system and p=2. Let ϕ ∈ B
1− 1

p
p,p (∂�)n

be given, and let (uϕ ,πϕ) = (W∂�ϕ,Qd
∂�ϕ) ∈ H1

p(R
n \ ∂�)n × Lp(Rn) be the unique

solution of problem (79). Let also ψ∗ ∈ B
− 1

p′
p′,p′(∂�)n. According to formulas (32) and (87),

0 = 〈[T(W∂�ϕ,Qd
∂�ϕ)], γV∗

∂�ψ
∗〉∂� = 〈

Aαβ∂β

(
W∂�ϕ

)
, ∂α

(
V∗

∂�ψ
∗)〉

�+∪�− . (89)

Then the Green identities (30) and equality (89) yield that〈
T∗+ (

V∗
∂�ψ

∗,Qs∗
∂�ψ

∗) , γ+(W∂�ϕ)
〉
∂�

= 〈
T∗− (

V∗
∂�ψ

∗,Q∗
∂�ψ

∗) , γ− (W∂�ϕ)
〉
∂�

.
(90)

The second formula in (60), the first formula in (87), and relation (90) lead to equality (88).
�

We now show the following invertibility property of the operator D∂� defined in (86)
(see [23, Propositions 6.4 and 6.5] in the constant-coefficient case).

For s ∈ [−1, 1], let us define the subspaces Hs∗∗(∂�)n :={	 ∈Hs(∂�)n : 〈	 , c〉∂� = 0,
c ∈ Rn}.

Lemma 3.17: Let A satisfy conditions (2)–(3). Then

Ker{D∂� : H
1
2 (∂�)n → H− 1

2 (∂�)n} = R
n, (91)

D∂�ϕ ∈ H− 1
2∗∗ (∂�)n ∀ϕ ∈ H

1
2 (∂�)n, (92)
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and the following operator is an isomorphism,

D∂� : H
1
2∗∗(∂�)n → H− 1

2∗∗ (∂�)n. (93)

Proof: (i) First, we determine the kernel of the operator D∂� : H− 1
2 (∂�)n → H

1
2 (∂�)n.

Thus, assume thatϕ ∈ H
1
2 (∂�)n satisfies the equationD∂�ϕ = 0 on ∂�, and use the nota-

tion uϕ := W∂�ϕ andπϕ := Qd
∂�ϕ. Then jump relations (87), the first Green identity (24)

in Lemma 2.5, and assumption (3) imply that ∇(uϕ) = 0 in �±. Then there exists a con-
stant b ∈ Rn such that uϕ = b in �+ and the inclusion uϕ ∈ H1(�−)n ↪→ L 2n

n−2
(�−)n

implies that uϕ = 0 in �−. Then by using again the jump relations (87) we deduce that
ϕ = −b.

Let c ∈ Rn and let uc := −cχ�+ , πc := 0 in Rn. Then the pair (uc,πc) belongs
to H1(�±)n × L2(Rn) and satisfies transmission problem (79) with ϕ = c. Then
Definition 3.15 yields thatW∂�(c) = uc andQd

∂�(c) = 0 inRn, and by the second formula
in (84) we obtainD∂�(c) = 0 on ∂�. Therefore, KerD∂� = Rn.

Now let ϕ ∈ H
1
2 (∂�)n. By applying the first Green identity (24) to the pair (u,π) =

(W∂�ϕ,Qd
∂�ϕ) and w = −cχ�+ , c ∈ Rn, and by using the second jump relation in (87),

we obtain that 〈D∂�ϕ, c〉∂� = 0, and hence the membership ofD∂�ϕ in H− 1
2∗∗ (∂�)n.

(ii) Next, we show the invertibility of operator (93). First, we note that relations

(91) and (92) imply that this operator is injective on the closed subspace H
1
2∗∗(∂�)n of

H
1
2 (∂�)n, and that its range is a subset of H− 1

2∗∗ (∂�)n. Moreover, we assert that there is
C = C(∂�, cA, n) > 0 such that

〈−D∂�ϕ,ϕ〉∂� ≥ C‖ϕ‖2
H

1
2 (∂�)n

, ∀ϕ ∈ H
1
2∗∗(∂�)n (94)

(see also [23, Proposition 6.5] in the constant-coefficient case). To this end, let

ϕ ∈ H
1
2∗∗(∂�)n and we apply the first Green identity (24) to the pair (uϕ ,πϕ) :=

(W∂�ϕ,Qd
∂�ϕ) andw = uϕ = W∂�ϕ, and use the jump relations (87) and conditions (3)

to obtain the inequality

〈−D∂�ϕ,ϕ〉∂� ≥ c−1
A

‖∇(uϕ)‖2L2(�+∪�−)n×n . (95)

On the other hand, the continuity of the trace operators γ± : H1(�±)n → H
1
2 (∂�)n and

the first in jump relations (87) imply that there exists a constant C1 = C1(∂�, cA, n) > 0
such that

‖ϕ‖2
H

1
2 (∂�)n

= ∥∥[γuϕ]∥∥2H 1
2 (∂�)n

≤ C1‖uϕ‖2H1(Rn\∂�)n . (96)

Note that the formula

|||v|||2 := ‖∇v‖2L2(�+∪�−)n×n +
∣∣∣∣∫

∂�

[γ v]dσ
∣∣∣∣2 , ∀ v ∈ H1(Rn \ ∂�)n (97)

defines a norm onH1(Rn \ ∂�)n equivalent to the norm ‖ · ‖H1(Rn\∂�)n (see Lemma 5.2).
Thus,

‖v‖H1(Rn\∂�)n ≤ C2|||v|||, ∀ v ∈ H1(Rn \ ∂�)n, (98)



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 133

with some constant C2 > 0. On the other hand, by choosing v = uϕ in (97) and using

again the jump formulas (87) and the assumption that ϕ ∈ H
1
2∗∗(∂�)n and inequality (98),

we obtain

‖∇(uϕ)‖2L2(�+∪�−)n×n = |||uϕ|||2 ≥ C−2
2 ‖uϕ‖2H1(Rn\∂�)n . (99)

Finally, inequalities (95), (96) and (99) yield the coercivity inequality (94) with C =
c−1
A
C−1
1 C−2

2 . Then the Lax-Milgram lemma implies that operator (93) is an isomor-
phism. �

4. Transmission problems for the anisotropic Stokes and Navier–Stokes
systems with L∞ coefficients: Well-posedness in weighted Sobolev spaces

The potentials introduced in the previous sections make the analysis of more general
transmission problems for Stokes and Navier–Stokes systems rather elementary.

Let us consider the spaces

Ap := (H1
p(�+)n × Lp(�+)) × (H1

p(�−)n × Lp(�−)), (100)

Fp := H̃−1
p (�+)n × H̃−1

p (�−)n × B
1− 1

p
p,p (∂�)n × B

− 1
p

p,p (∂�)n. (101)

4.1. Poisson problem of transmission type for the anisotropic Stokes system

First, for the given data (f̃+, f̃−, h, g) in Fp, we consider the Poisson problem of transmis-
sion type for the anisotropic Stokes system⎧⎪⎨⎪⎩

∂α

(
Aαβ∂βu±

) − ∇π± = f̃±|�± , divu± = 0 in �±,
γ+u+ − γ−u− = h on ∂�,
T+(u+,π+; f̃+) − T−(u−,π−; f̃−) = g on ∂�.

(102)

The left-hand side in the last transmission condition in (102) is to be understood in the
sense of formal conormal derivatives, cf. Definition 2.4.

Theorem 4.1: Let A satisfy conditions (2)–(3), p∗ ∈ (2,∞) be as in Lemma 3.1 and
p ∈ R(p∗, n), cf. (41). Then for all given data (f̃+, f̃−, h, g) in Fp, the transmission prob-
lem (102) has a unique solution ((u+,π+), (u−,π−)) ∈ Ap.Moreover, there exists a constant
C = C(∂�, cA, p, n) > 0 such that

‖((u+,π+), (u−,π−))‖Ap ≤ C‖(f̃+, f̃−, h, g)‖Fp . (103)

Proof: Theorem 3.5 yields uniqueness. Now we show existence, by considering the poten-
tials

u± = (
NRn f̃±

)|�± + V∂�g0 − W∂�h0, π± = (
QRn f̃±

)|�± + Qs
∂�g0 − Qd

∂�h0 in �±,

h0 := h − {
γ+

((
NRn f̃+

)|�+
) − γ−

((
NRn f̃−

)|�−
)}
,

g0 := g − {
T+((

NRn f̃+
)|�+ ,

(
QRn f̃+

)|�+ ; f̃+
) − T−((

NRn f̃−
)|�− ,

(
QRn f̃−

)|�− ; f̃−
)}
,



134 M. KOHR ET AL.

where h0 ∈ B
1− 1

p
p,p (∂�)n and g0 ∈ B

− 1
p

p,p (∂�)n. According to Definitions 3.3, 3.7 and 3.15,
and Lemmas 3.8 and 3.16 (ii), we deduce that ((u+,π+), (u−,π−)) given above is the
unique solution of the transmission problem (102) in the spaceAp. Moreover, the operator

T (p) : Fp → Ap, (104)

which associates to the given data (f̃+, f̃−, h, g) ∈ Fp the unique solution ((u+,π+), (u−,
π−)) ∈ Ap of the transmission problem (102), is bounded and linear, implying also
inequality (103). �

4.2. Poisson problemwith transmission conditions for the anisotropic Stokes and
Navier–Stokes systems in Lp-basedweighted Sobolev spaces

In this subsection we restrict our analysis to the cases n=3 and n=4, for which some
necessary embedding results hold. Next, we consider the following Poisson problem of
transmission type for the Stokes and Navier–Stokes systems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂α

(
Aαβ∂βu+

) − ∇π+ = ˜f+|�+ + λ(u+ · ∇)u+, divu+ = 0 in �+,
∂α

(
Aαβ∂βu−

) − ∇π− = ˜f−|�− , divu− = 0 in �−,
γ+u+ − γ−u− = h on ∂�,
T+(u+,π+; f̃+ + ◦

E+ (λ(u+ · ∇)u+)) − T−(u−,π−; f̃−) = g on ∂�,

(105)

where
◦
E+ is the operator of extension by zero outside �+, λ ∈ L∞(�+), and the left-

hand side in the last transmission condition in (105) is to be understood in the sense of
formal conormal derivatives, cf. Definition 2.4. We will show the following result (see
[3, Theorem 5.2] for the Stokes and Navier–Stokes systems in the isotropic constant-
coefficient case, A = I.

Theorem4.2: Let n ∈ {3, 4},A satisfy conditions (2)–(3),λ ∈ L∞(�+), and p∗ ∈ (2,∞) be
as in Lemma 3.1. Then for any p ∈ R(p∗, n) ∩ [n2 , n) there exist two constants, ζp, ηp > 0,
depending on�+,�−, λ, cA, n, and p, with the property that for all given data (f̃+, f̃−, h, g) ∈
Fp satisfying the condition ‖(f̃+, f̃−, h, g)‖Fp ≤ ζp, the transmission problem (105) has a
unique solution ((u+,π+), (u−,π−)) ∈ Ap, such that ‖u+‖H1(�+)n ≤ ηp.

Proof: Let

Ĩλ;�+(v) := ◦
E+ (λ(v · ∇)v) , ∀ v ∈ H1

p(�+)n. (106)

The Sobolev embeddingTheorem (cf. Theorem4.12 in [56]) implies that for any p ∈ [n2 , n),
the embeddings

H1
p(�+) ↪→ L np

n−p
(�+) ↪→ Ln(�+), H1

p′(�+) ↪→ L np′
n−p′

(�+) (107)

are continuous, and by duality the last embedding implies that the embedding

L np
n+p

(�+) ↪→ H̃−1
p (�+) (108)
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is also continuous. Applying the Hölder inequality we then deduce

‖ ◦
E+ (λvw) ‖H̃−1

p (�+)
≤ c0‖λ‖L∞(�+)‖vw‖L np

n+p
(�+)

≤ c0‖λ‖L∞(�+)‖v‖Ln(�+)‖w‖Lp(�+) ≤ c1‖v‖H1
p(�+)‖w‖Lp(�+) (109)

(see also [3, Lemma 5.1] for p=2, and [57, Lemma 11.3]).
Therefore, for any v ∈ H1

p(�+)n (and accordingly ∇v ∈ Lp(�+)n×n), we obtain that
Ĩλ;�+(v) ∈ H̃−1

p (�+)n and

‖Ĩλ;�+(v)‖H̃−1
p (�+)n ≤ c1‖v‖H1

p(�+)n‖∇v‖Lp(�+)n×n ≤ c1‖v‖2H1
p(�+)n

, (110)

‖Ĩλ;�+(v) − Ĩλ;�+(w)‖H̃−1
p (�+)n ≤ c1

(
‖v‖H1

p(�+)n + ‖w‖H1
p(�+)n

)
‖v − w‖H1

p(�+)n .

(111)

Thus, the nonlinear operator Ĩλ;�+ : H1
p(�+)n → H̃−1

p (�+) is continuous and bounded
in the sense of (110).

We now construct a nonlinear operator U(p);+ that maps a closed ball Bηp of the space
H1
p;div(�+)n (of divergence-free vector fields in H1

p(�+)n) to Bηp and is a contraction
on Bηp . Then the unique fixed point of U(p):+ will determine a solution of nonlinear
problem (105).

For a fixed u+ ∈ H1
p;div(�+)n, we consider the following linear Poisson problem of

transmission type for the Stokes system in the unknown (v+, q+), (v−, q−)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂α

(
Aαβ∂βv+

) − ∇q+ = ˜f+|�+ + (
Ĩλ;�+(u+)

) |�+ , divv+ = 0 in �+,
∂α

(
Aαβ∂βv−

) − ∇q− = ˜f−|�− , divv− = 0 in �−,
γ+v+ − γ−v− = h on ∂�,
T+(v+, q+; f̃+ + Ĩλ;�+(u+)) − T−(v−, q−; f̃−) = g on ∂�.

(112)

Since (f̃+ + Ĩλ;�+(u+)) ∈ H̃−1
p (�+)n, Theorem 4.1 implies that problem (112) has a

unique solution expressed in terms of the linear continuous operatorT (p) : Fp → Ap given
by (104), as(

v+, q+, v−, q−
)
:= (

U(p);+(u+),P(p);+(u+),U(p);−(u+),P(p);−(u+)
)

= T (p)
(
f̃+|�+ + Ĩλ;�+(u+)|�+ , f̃−|�− , h, g

) ∈ Ap. (113)

The nonlinear operator Ĩλ;�+ : H1
p(�+)n → (H1

p′(�+)n)′ is continuous and bounded as
well. Then by (110) there exists a constant c∗ = c∗(�+,�−, n, p, cA) > 0 such that∥∥(

U(p);+(u+),P(p);+(u+),U(p);−(u+),P(p);−(u+)
)∥∥

Ap

≤ c∗
∥∥(
f̃+, f̃−, h, g

)∥∥
Fp

+ c∗c1‖u+‖2H1
p(�+)n

, ∀u+ ∈ H1
p;div(�+)n. (114)
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Next we show that the nonlinear operator U(p);+ has a fixed point u+ ∈ H1
p;div(�+)n. Let

ηp := (4c1c∗)−1, ζp := 3ηp/(4c∗), (115)

and Bηp := {v+ ∈ H1
p;div(�+)n : ‖v+‖H1(�+)n ≤ ηp}. In addition, assuming that∥∥(

f̃+, f̃−, h, g
)∥∥

Fp
≤ ζp, (116)

and using (114), (116), we obtain that U(p);+ maps the closed ball Bηp to itself.
By using expression (113) of U(p);+ and inequality (111), we obtain the estimate

‖U(p);+(v+) − U(p);+(w+)‖H1
p(�+)n ≤ 1

2
‖v+ − w+‖H1

p(�+)n , (117)

for all v+,w+ ∈ Bηp . Hence, U(p);+ : Bηp → Bηp is a contraction. Then the Banach fixed
point Theorem yields that U(p);+ has a unique fixed point u+ ∈ Bηp , i.e. U(p);+(u+) = u+,
and in view of (113), ((u+,P(p);+(u+)), (U(p);−(u+),P(p);−(u+))) determines a solution of
the nonlinear problem (105) in the space Ap, which is unique, due to an argument similar
to that in the proof of [3, Theorem 5.2]. �

5. Auxiliary results: equivalent norms in Banach spaces

The next result plays a major role in establishing the equivalence of norms on Banach
spaces, in particular, on some Sobolev spaces that appear in our arguments (cf. [58,
Lemma 11.1]).

Lemma 5.1: Let (X, ‖ · ‖X) be a Banach space, and let (Y , ‖ · ‖Y), (Z, ‖ · ‖Z), (ϒ , ‖ · ‖ϒ)

be normed spaces. Let P : X → Y ,C : X → Z and T : X → ϒ be linear and continuous
operators, such that

(i) The operator C : X → Z is compact.
(ii) ‖P(·)‖Y + ‖C(·)‖Z is a norm on X equivalent to the norm ‖ · ‖X.
(iii) The operator T : X → ϒ satisfies the condition T (u) �= 0 whenever P(u) = 0 and

u �= 0.

Then the mapping ||| · ||| : X → R+ given by

|||u||| := ‖P(u)‖Y + ‖T (u)‖ϒ , u ∈ X, (118)

is a norm on X equivalent to the given norm ‖ · ‖X.

Lemma 5.2: The formula

|||v|||2 := ‖∇(v)‖2L2(�+∪�−)n×n +
∣∣∣∣∫

∂�

[γ v]dσ
∣∣∣∣2 , ∀ v ∈ H1(Rn \ ∂�)n (119)

defines a norm on the weighted Sobolev spaceH1(Rn \ ∂�)n,which is equivalent to the norm

‖v‖2H1(Rn\∂�)n = ‖ρ−1v‖2L2(Rn)n + ‖∇v‖2L2(�+∪�−)n×n . (120)



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 137

Proof: First, we note that ‖∇(·)‖L2(�−)n×n is a norm onH1(�−)n, equivalent to the norm
‖ · ‖H1(�−)n , defined as in (120) with �− in place of Rn and �+ ∪ �− (see, e.g. [23,
Proposition 2.7] in the case n=3). Therefore,

‖∇(v)‖L2(�−)n×n + ‖∇(v)‖L2(�+)n×n + ‖v‖L2(�+)n = ‖∇(v)‖L2(�+∪�−)n×n + ‖v‖L2(�+)n

(121)
is a norm on the spaceH1(Rn \ ∂�)n, equivalent to the norm (120) of this space.

Now, we consider the Banach spaces X := H1(Rn \ ∂�)n, Y = L2(�+ ∪ �−)n×n, Z =
L2(�+)n and ϒ := Rn. Also let us consider the operators

P : H1(Rn \ ∂�)n → L2(�+ ∪ �−)n×n, P(v) := ∇v, (122)

C : H1(Rn \ ∂�)n → L2(�+)n, C(v) := v|�+ , (123)

T : H1(Rn \ ∂�)n → R
n, T (v) :=

∫
∂�

[γ v]dσ , (124)

all of them being linear and continuous. Moreover, the operator C is compact due to the
compact embedding of the space H1(�+)n in L2(�+)n, and the norm in (121) can be
written as

‖∇v‖L2(�+∪�−)n×n + ‖v‖L2(�+)n = ‖P(v)‖L2(�+∪�−)n×n + ‖C(v)‖L2(�+)n . (125)

In addition, the operatorT satisfies the conditionT (v) �= 0whenever P(v) = 0 and v �= 0.
Indeed, the condition P(v) = 0 and v �= 0 is equivalent to v|�− = 0, v|�+ = c ∈ Rn with
c �= 0. Assume that T (v) = 0. Then ∫

∂�

[γ v]dσ = 0. (126)

Since [γ v] = c on ∂�, condition (126) implies that c = 0, which contradicts the assump-
tion v �= 0. Thus, T (v) �= 0 whenever P(v) = 0 and v �= 0, as asserted.

Consequently, the conditions in Lemma 5.1 are satisfied, and hence

‖P(v)‖Y + ‖T (v)‖ϒ = ‖∇v‖L2(Rn\∂�)n×n +
∣∣∣∣∫

∂�

[γ v]dσ
∣∣∣∣ (127)

is a norm on H1(Rn \ ∂�)n equivalent to the norm ‖ · ‖H1(Rn\∂�)n . This result and the
equivalence of the norms (119) and (127) show that (119) is also a norm inH1(Rn \ ∂�)n

equivalent to the norm (120). �
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