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Abstract A numerical implementation of the direct bound-
ary-domain integral and integro-differential equations,
BDIDEs, for treatment of the Dirichlet problem for a scalar
elliptic PDE with variable coefficient in a three-dimensional
domain is discussed. The mesh-based discretisation of the
BDIEs with tetrahedron domain elements in conjunction with
collocation method leads to a system of linear algebraic equa-
tions (discretised BDIE). The involved fully populated matri-
ces are approximated by means of the H-Matrix/adaptive
cross approximation technique. Convergence of the method
is investigated.

Keywords Elliptic PDE · Variable coefficients ·
Boundary-domain integral equation · H-matrices

1 Introduction

A number of profound positive developments in the area of
boundary element technique have occurred in the last decade.
Despite of that, an efficient numerical treatment of bound-
ary value problems (BVPs) with variable coefficients is often
a challenge, because the fundamental solution for the corre-
sponding operator is not available in this case. To remedy this
difficulty we follow Hilbert [7] and Levi [8] and replace the
fundamental solution with a parametrix (Levi function). This
yields a boundary-domain integral or integro-differential
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formulation of the problem, cf. [9]. Equivalence of these for-
mulations to the original BVP, as well as invertibility of the
associated operators can be proved similar to [4,5,10].

In this study, we consider a collocation discretisation
of boundary-domain integral and integro-differential equa-
tions, BDIDEs, equivalent to the Dirichlet BVP for the
partial differential equations of the stationary diffusion
(e.g. heat transfer) with scalar variable coefficient. Dis-
cretisation of the resulting layer potentials, the volume
Newton-type and remainders potential operators produces
fully populated matrices. Moreover, in contrast to boundary
integral formulations of BVPs with constant coefficients, for
the boundary-domain formulations it is necessary to perform
volume discretisation even when the right hand side is zero.
To avoid prohibitively expensive second order complexity
and storage requirements for the fully populated matrices,
we implemented the hierarchical matrix compression tech-
nique in conjunction with the adaptive cross approximation
(ACA) procedure [3]. We comment on the implementation
details and report the results of numerical experiments solv-
ing BDIDEs for the Dirichlet problem in three-dimensional
(3D) domains.

Note that numerical solution of BDIEs for 2D problems
is available in [11]. Note also that another way of reducing
the matrix size is to introduce localised parametrix, which
makes all matrices sparse, cf. [9], and numerical implemen-
tation of the latter approach to some 2D BVPs is available in
[12,14,15,17–19] and references therein.

2 Boundary domain integral and integro-differential
equations

Let us consider the Dirichlet problem for the linear second-
order elliptic PDE in a bounded domain Ω ⊂ R

3 with a
Lipschitz boundary Γ = ∂Ω
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Au (x) :=
3∑

i, j=1

∂

∂xi

[

a(x)
∂

∂x j
u(x)

]

= f (x), x ∈ Ω,
γ u(x) = ū(x), x ∈ Γ,

(1)

where γ is the trace operator, u is the unknown function,
while f , ū and a are prescribed functions and a(x) ≥
amin > 0, x ∈ Ω . We will look for a solution of the BVP in
the space

H1,0(Ω; A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)},

where H1(Ω) is the usual Sobolev space of square integrable
functions with square integrable first derivatives.

A parametrix for PDE (1) with variable coefficient,
obtained from the fundamental solution for the same equa-
tion but with ‘frozen’ coefficient a(y) is

P(x, y) = −1

4πa(y)|x − y| , x, y ∈ R
3. (2)

It satisfies equation

(AP (·, y)) (x) = δ(x − y)+ R(x, y),

where δ is the Dirac delta-distribution, while the remainder,
having only a weak singularity at x = y, is

R(x, y) = 1

4πa(y)|x − y|3 (x − y) · ∇a(x), x, y ∈ R
3.

(3)

Let T u(x) = a(x)n(x) · ∇u(x), x ∈ � be the co-normal
derivative operator.

As shown in [4,5,9,10], for any function u the parametrix-
based third Green identity holds in the form

u(y)+
∫

Ω

R(x, y)u(x)dx +
∫

Γ

P(x, y)T u(x)dΓ (x)

−
∫

Γ

u(x)Tx P(x, y)dΓ (x)

=
∫

Ω

P (x, y) f (x) dx, y ∈ Ω.

Then the BVP (1) can be reduced to the following direct
united BDIDE at each y ∈ Ω

u(y)+
∫

Γ

P(x, y)T u(x)dΓ (x)

+
∫

Ω

R(x, y)u(x)dx = F(y), (4)

where

F(y) =
∫

Γ

ū(x)Tx P(x, y)dΓ (x)+
∫

Ω

P(x, y) f (x)dx .

(5)

This equation is integro-differential because of the differen-
tial operator T in the left hand side.

On the other hand, similar to [4,9], replacing in equation
(4) the co-normal derivative T u by a new unknown bound-
ary function t and employing the equation in the domain and
its trace on the boundary, we arrive at the direct segregated
BDIE system with respect to the unknown functions u in Ω
and t on Γ ,

u(y) +
∫

Γ

P(x, y)t (x)dΓ (x)+
∫

Ω

R(x, y)u(x)dx

= F(y), y ∈ Ω, (6)
∫

Γ

P(x, y)t (x)dΓ (x)+
∫

Ω

R(x, y)u(x)dx

= −c(y)ū(y)+ F(y), y ∈ Γ. (7)

The same expression (5), where the direct value of the first
integral is understood in the Cauchy sense, is to be taken
for F in (7), c(y) = 1/2 at the smooth boundary point y,
while c(y) = α(y)/4π at the corner points, where α(y)
is the interior solid angle. BDIE system (6), (7) is called
segregated since the function t is considered to be indepen-
dent of u.

Similar to [4,10] one can show that BDIDE (4) and BDIE
system (6), (7) are equivalent to BVP (1) and uniquely solv-
able, while their left hand side operators are continuous
and continuously invertible in appropriate Sobolev spaces.
BDIDEs (4) and (6), (7) contain not only the usual sur-
face integrals over the boundary Γ as in the case when the
parametrix is a fundamental solution, but also integrals over
the entire domain Ω with the unknown function u in the
integrand.

3 Discretisation of the segregated and united
formulations

We assume, that the domain Ω is given as a union of NΩ
tetrahedral elements, which constitute a conformal 3D mesh
with M nodes

{
x j

}M
j=1 and NΓ boundary triangles. In par-

ticular, we have

Ω =
NΩ⋃

i=1

T i , Γ =
NΓ⋃

k=1

τ k .
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We employ the continuous, piecewise linear Ansatz for
the unknown function

uh (x) =
M∑

j=1

u jϕ j (x) , x ∈ Ω ∪ Γ,

where ϕ j is linear on any Ti ,

ϕ j (xk) = δ jk and u j = uh(x j ).

If we denote by MΩ the number of interior nodes of the mesh,
then the number of boundary nodes is

MΓ = M − MΩ.

Assuming that the numbering of nodes starts from the interior
ones and taking into account the Dirichlet boundary condi-
tion in (1), we can also write uh as a sum of known and
unknown parts

uh (x) =
MΩ∑

j=1

u jϕ j (x)+
M∑

j=MΩ+1

ū jϕ j (x) , (8)

where the values ū j = ū(x j ), j = MΩ + 1, . . . ,M are
known.

The gradient of u is approximated by the piecewise con-
stant function ∇uh . Thus, the discretized co-normal deriva-
tive is constant on each boundary triangle τk . Its value reads

n (x) · ∇uh (x) = nk · ∇uh |τk =
∑

{
j :x j ∈Tτk

}
(nk · ∇ϕ j )u j

=
M∑

j=1

TΔk j u j , x ∈ τk, (9)

where nk is the outer normal unit vector to the triangle τk and
Tτk denotes the unique volume element, which possesses the
triangle τk as one of its faces,

TΔk j =
{

nk · ∇ϕ j , if x j ∈ Tτk

0, if x j �∈ Tτk

is the sparse matrix approximating the normal derivative
operator on the boundary triangle τk .

Substituting (8) and (9) into the united BDIDE (4), collo-
cating at the interior nodes xi , i = 1, . . . ,MΩ and shifting
the known function values on the boundary Γ in to the right
hand side, we arrive at the discrete system of MΩ equations
for MΩ unknowns ui , i = 1, . . . ,MΩ

ui +
MΩ∑

j=1

(
NΓ∑

k=1

Va
ikTΔk j + Ri j

)

u j

=
M∑

j=MΩ+1

(

Ki j −
NΓ∑

k=1

Va
ikTΔk j − Ri j

)

ū j + fi . (10)

The matrices Va ∈ R
M×NΓ , R ∈ R

M×M , K ∈ R
M×MΓ

in (10) are the discrete versions of the corresponding integral
operators, namely

Va
ik =

∫

τk

P (x, xi ) a (x) dΓ (x), (11)

Ki j =
∫

Γ

Tx P (x, xi ) ϕ j (x) dΓ (x), (12)

Ri j =
∫

Ω

R (x, xi ) ϕ j (x) dx, (13)

and the vector f ∈ R
M can be computed ether as

fi =
NΩ∑

k=1

∫

Tk

P (x, xi ) f (x) dx, (14)

when the function f is given analytically, or as

fi =
M∑

j=1

f j

∫

Ω

P (x, xi ) ϕ j (x) dx (15)

in the case, when the function f is given in the form f (x) =
∑M

j=1 f jϕ j (x).
In the case of the segregated formulation (6), the NΓ

co-normal derivatives aTΔu are not computed from uh but
are considered as NΓ auxiliary unknowns tk , k = 1, . . . , NΓ .
This corresponds to the piecewise constant approximation of
the Neumann data

t (x) =
NΓ∑

k=1

tkψk (x) , ψk (x) =
{

1, when x ∈ τk,

0, otherwise.

Therefore, additional collocation points

x̃k, k = 1, . . . , NΓ

are added in the centers of the boundary triangles τk . Thus,
the discrete version of the segregated formulation (6) is given
by the following system of MΩ + NΓ linear algebraic equa-
tions for MΩ + NΓ unknowns u j , j = MΓ + 1, . . . ,M , and
tk , k = 1, . . . , NΓ ,
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ui +
MΩ∑

j=1

Ri j u j +
NΓ∑

k=1

Vik tk

=
M∑

j=MΩ+1

(
Ki j − Ri j

)
ū j +fi , i = 1, . . . ,MΩ, (16)

MΩ∑

j=1

R̃nj u j +
NΓ∑

k=1

Ṽnktk = −1

2
ũn

+
M∑

j=MΩ+1

(
K̃nj − R̃nj

)
ū j + f̃n, n = 1, . . . , NΓ .

(17)

where the matrix Vik is given by (11) with a dropped, while
elements of the matrix Ṽnk are given by the same formula
(11) (with a dropped) and R̃nj , K̃nj , f̃n by (12)–(15) with x j

replaced by x̃k , and ũn = ū(x̃n).
When the united formulation is employed, all collocation

nodes lie inside the domain. Therefore, expressions under
the surface integrals are smooth. Singularities in the domain
integrals are weak and can be handled by means of the Duffy
transform. In the case of segregated formulation, values of
the weakly singular integrals for entries of Ṽ and Cauchy
integrals for entries of K̃ can be obtained by means of a com-
bination of Gauss integration and analytical formulae found
in [13, Chap. C2], see Appendix for more details.

Because of the non-local nature of the parametrix (2) and
the remainder (3), the matrices V, Ṽ, K, K̃, R and R̃ are
fully populated. It is, however, easy to check, that the inte-
gration kernels in (11)–(15) are asymptotically smooth [13].
Therefore, after an appropriate reorderings of rows and col-
umns (clustering) the matrices can be efficiently approxi-
mated by block-wise low rank matrices by means of the
H-matrix/ACA technique [3,13]. This approximation leads
to reduction of computational complexity and storage require-
ments from quadratic to almost linear in terms of M .

4 Compression of matrices by means
of the H-Matrix/ACA technique

In this section, we briefly describe the construction of a block-
wise low-rank approximant of a matrix

� ∈ R
M×N , �i j =

∫

�

G (x, xi ) ψ̃ j (x) d� (x) ,

where N is NΓ , M or MΓ , and the kernel function G is a pro-
duct of the parametrix (2) or its derivatives with a smooth
function (coefficient a or its derivatives). The integration
domain � is either the domain Ω or its boundary Γ . The
functions ψ̃ j are either piecewise linear or piecewise con-
stant basis functions (ϕ j or ψ j respectively). We consider
two subsets of R

3,

M⋃

i=1

{xi } and Ω =
NΩ⋃

j=1

suppψ̃ j .

4.1 Low-rank approximation

Suppose that we have found two sets of indices I ⊆ {i}M
i=1

and J ⊆ { j}N
j=1 such that the corresponding subsets

η =
⋃

i∈I

{xi } and ν =
⋃

j∈J

suppψ̃ j

are well separated; that is,

max (diam η, diam ν) ≤ θdist (η, ν) , (18)

for some θ ∈ (0, 1). The diameter of a set is the maximal dis-
tance between any pair of points in it. The distance between
two sets of points is defined as

dist (η, ν) = min
x∈η, y∈ν |x − y|. (19)

The idea of the matrix compression is based on the observa-
tion, that the corresponding sub-block
{
�i j , i ∈ I, j ∈ J

}

of the matrix � has a low-rank approximant provided that
the partial derivatives of the kernel function G decay suffi-
ciently fast [1,2]. More precisely, G must be asymptotically
smooth, i.e. one must be able to find positive constants C1

and C2 and an integer α0 ≥ 0 such that for all multi-indices
α with |α| ≥ α0 and any R = |x − y| > 0 it must hold
∣
∣
∣∂αy G (x, y)

∣
∣
∣ ≤ C1 |α|!C |α|

2 R−|α| sup
|y−z|<R

|G (x, z) |. (20)

Moreover, the rank of the approximant depends only on the
separation θ and the desired accuracy of the approximation,
but not on the number of entries in clusters I and J . It is
easy to check, that the integration kernels in (12)–(15) sat-
isfy (20). Several methods of finding the approximant are
available. Although the truncated singular value decompo-
sition produces the approximant with the smallest rank, this
procedure is too computationally expensive. An inexpensive
alternative uses the interpolation of G as in panel cluster-
ing [6], or the algebraic approach as in the ACA algorithm
[1–3]. The idea of ACA method consists in finding the ap-
proximant as a sum of certain tensor products. The first term
in this sum can be taken to be the result of multiplying the
first column with the first row of �. The subsequent terms
are the products of the m-th column with the k-th row of the
difference between � and already accumulated approximant.
The essence of the procedure is in the adaptive choice of the
pivot indices m and k. We refer to [3] or [13] for details and
analysis of the method.
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4.2 Clustering of the index sets

To partition the matrix � into admissible blocks we employ
a hierarchical clustering method similar to that formulated in
[1] for a set of boundary elements in R

3. For a given set of
indices {i}M

1 , we construct a cluster tree T1 as follows:

(1) Let the set of all indices be the root cluster of the tree.
(2) Compute the mass center, and axes of inertia of the cor-

responding geometric set.
(3) Split the set into two parts by a plane that passes through

the center of mass and is orthogonal to the longest axis
of inertia.

(4) Assign the indices of the obtained groups of geometric
entities as cluster offsprings.

(5) Recursively apply the subdivision procedure to the off-
springs so long as the cluster consists of more than one
index.

A cluster tree T2 is then constructed for the second index
set { j}N

j=1. Having computed T1 and T2, we can recursively
generate a list of disjoint admissible blocks BA that, together
with the additional sparse part BS , cover the whole matrix
�. This can be accomplished by the following recursive pro-
cedure:

(1) Set η = T1, ν = T2, BA = ∅, and BS = ∅.
(2) If η or ν has only one element (no offsprings), add η×ν

to BS and end the procedure.
(3) If (η, ν) satisfy (18), add η× ν to BA and end the pro-

cedure.
(4) Denote by η1 and η2 the offsprings of η, and by ν1 and

ν2 the offsprings of ν. Proceed to Step 2 with (η, ν)
being (η1, ν1), (η1, ν2), (η2, ν1), or (η2, ν2).

On completion, the algorithm produces a list of admissible
blocks BA, satisfying (18), and a list BS of small blocks.
We compute all small blocks directly and approximate each
admissible block using the ACA procedure.

4.3 Complexity

The overall computational costs of finding the block-wise
low-rank approximation to the matrix � ∈ R

M×N is

O
(

Ñ log Ñ | log ε|4
)
, Ñ = max (M, N ) ,

where ε is the desired accuracy. Once the approximant has

been generated, it occupies O
(

Ñ log Ñ | log ε|2
)

units of

storage and the numerical cost of multiplying it with a vector
is of the same order (see [2]).

5 Numerical results

In this section we report the results of numerical experiments
in 3D and analyze (a) the accuracy of the proposed numeri-
cal scheme, (b) efficiency of solving the linear systems (10)
and (16)–(17) by an iterative method (generalised minimal
residual [GMRES]), (c) effects of the ACA compression of
matrices V, K, and R. The function

uex (x) =
(
(x1 − x̂1)

2 + (x2 − x̂2)
2
)1/2

solves the BVP (1) provided that

a(x) =
(
(x1 − x̂1)

2 + (x2 − x̂2)
2
)−1/2

,

(x̂1, x̂2, x̂3) /∈ Ω for any x̂3; f = 0 and ū(x) = γ uex (x) on
Γ . We choose the domain to be the cube

Ω = (−0.5, 0.5)3

or the ball

Ω = {x ∈ R
3 : |x | < 0.5}

and fix the parameters
(
x̂1, x̂2

) = (3, 3). To investigate the
convergence of the method, a sequence of quasi-uniform vol-
ume meshes is employed. In this sequence, the spatial dis-
cretisation parameter (average element diameter)

h = (Vol (Ω) /(NΩ))
1/3

varies between 0.16 for the coarsest mesh and 0.016 for
the finest one. The convergence results are summarised in
Fig. 1, where the relative L2 error

ε = ‖uh − uex‖L2(Ω)/‖uex‖L2(Ω)

is plotted for numerical experiments with the ball-shaped
(circular markers) and the cube-shaped (square markers)
domain. We observe the convergence of order two for both
domains and both united (filled markers) and segregated

0.20.10.040.02

Fig. 1 Convergence of the united (full markers) and segregated (empty
markers) formulations of the BDIDEs for the cases of ball-shaped
(round markers) and cube-shaped (square markers) domains
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Fig. 2 Distribution of the error inside the ball discretised with
M = 8, 967 nodes

(empty markers) formulations. The distribution of the abso-
lute point-wise error

r (x) = |uh (x)− uex (x)|
inside the ball-shaped domain for the discretisation with
M = 8, 967 nodes is illustrated in Fig. 2. The error appears
to have an almost uniform distribution inside the volume
with a maximum of about 0.25 %. Approximate solutions to
systems (10) and (16)–(17) were obtained by the GMRES
iterative procedure. The number of unknowns is MΩ in the
case of the united formulation and MΩ + NΓ in the case
of the segregated formulation. The dependence of number of
GMRES iterations necessary to achieve the residuum of 10−9

on the number of unknowns is shown in Fig. 3 (top). In the
case of the segregated formulation the Jacobi precondition-
ing was applied. We see, that for both domains the number
of iterations is proportional to the logarithm of the number
of the unknowns. The proportionality coefficient, however, is
considerably higher in the case of the segregated formulation
(empty markers).

The effects of the H-matrix/ACA compression on the
matrix R for the ball-shaped domain are shown in Fig. 3
(bottom). We observe, that practical benefits of the com-
pression technique first appear when the number of nodes
is greater than 5,000. For these values of M the size of the
compressed matrix grows almost linearly.

6 Conclusions

The collocation discretisation of BDIDEs for the Dirich-
let problem of the stationary diffusion (e.g. heat transfer)
partial differential equation with variable coefficient yields
a numerical method with second order accuracy for the
unknown function. The number of GMRES iterations for the
approximate solution of the resulting linear system grows
logarithmically as the number of unknowns increases. The
H-matrix/ACA compression technique makes it possible to
efficiently approximate the fully populated matrices of the
integral operators.
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.5103.

Fig. 3 Performance of the H-matrix/ACA accelerated collocation
solver. Dependence of the number of GMRES iterations on the problem
size (top). The size and the compression ratio of the matrix R for the
ball-shaped geometry (bottom)

The method can be further developed to include the mesh-
less discretisation of the domain and the use of localised
parametrix as well as application to more general domains
and equations, e.g. of elasticity and elasto-plasticity.

Acknowledgments The partial support from the EPSRC Grant
EP/H020497/1: “Mathematical Analysis of Localised Boundary-
Domain Integral Equations for Variable-Coefficients Boundary Value
Problems” is gratefully acknowledged.

Appendix: Matrix entries calculation

We present here in more details the algorithms used for cal-
culation of matrices (11)–(15) in the considered examples.
Coefficients for 2D and 3D quadrature rules are taken from
[16].

Matrix R

We consider the entries of the matrix R
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R jm =
∫

suppϕm

R
(
x, x j

)
ϕm (x) dx =

Nm∑

k=1

Rk
jm,

where

Rk
jm :=

∫

Tmk

R
(
x, x j

)
ϕm (x) dx

= 1

4πa
(
x j

)

∫

Tmk

(
x − x j

) · ∇a (x)

|x − x j |3 ϕm (x) dx . (21)

Here tetrahedrons Tmk , k = 1, . . . , Nm constitute the sup-
port of ϕm (i.e. comprise all tetrahedrons, which have xm as
a node).

Since x j is a node, we distinguish the following three
cases.

(1) Let x j lie outside of Tmk . Then the integrand in (21) in
smooth and Rk

jm was approximated by the fifth order
Gauss quadrature formula with 17 points.

(2) Let x j be among vertices of Tmk , but x j �= xm .
We denote the vertices of the tetrahedron Tmk as
{x j , xm, xα, xβ}. Since the integrand in (21) has the
weak singularity of the order 1/r , we used the Duffy
transform, introducing the new integration variables u,
v, and w through

x (u, v, w) = x j + uv1 + uvv2 + uvwv3,

where v1 = xm − x j , v2 = xα − xm , v3 = xβ − xα . In
these new variables the integral becomes

Rk
jm = 3|Tmk |

2πa
(
x j

)

1∫

0

1∫

0

v(1 − v)

|v1 + vv2 + vwv3|3

×
1∫

0

u
∂a

∂u
du dv dw, (22)

where |Tmk | is the volume of the tetrahedron Tmk . Partial
integration over u yields

1∫

0

u
∂a

∂u
du = a (x (1, v, w))−

1∫

0

a (x (u, v, w)) du,

which makes the computation of integrand in (22)
free from derivatives of the coefficient function a. The
resulting expression becomes

Rk
jm = 6|Tmk |

4πa
(
x j

)

×
⎡

⎣

1∫

0

1∫

0

v(1 − v)a (x (1, v, w))

|v1 + vv2 + vwv3|3 dv dw

−
1∫

0

1∫

0

1∫

0

v(1 − v)a (x (u, v, w))

|v1 + vv2 + vwv3|3 du dv dw

⎤

⎦

which is approximated by a product Gauss–Kronrod
quadrature formula, where the approximate integration
of order 31 (21 points) is used for each 1D integral.

(3) Let x j = xm . We denote the vertices of the tetrahe-
dron Tmk are

{
x j , xα, xβ, xγ

}
. Since the integrand in

(21) has for this case the weak singularity of the order
1/r2, we used the Duffy transform, introducing the new
integration variables through

x (u, v, w) = xm + uv1 + uvv2 + uvwv3,

where v1 = xm − xα , v2 = xβ − xα , v3 = xγ − xβ . In
these new variables the integral becomes

Rk
jm = 3|Tmk |

2πa
(
x j

)

1∫

0

1∫

0

v

|v1 + vv2 + vwv3|3

×
1∫

0

(1 − u)
∂a

∂u
du dv dw. (23)

Partial integration over u yields

1∫

0

(1 − u)
∂a

∂u
du =

1∫

0

a (x (u, v, w)) du − a (xm) ,

which makes the computation of integrand in (23)
free from derivatives of the coefficient function a. The
resulting expression becomes

Rk
jm = 3|Tmk |

2πa
(
x j

)

×
⎡

⎣

1∫

0

1∫

0

1∫

0

v(1 − v)a (x (u, v, w))

|v1 + vv2 + vwv3|3 du dv dw

− a (xm)

1∫

0

1∫

0

v

|v1 + vv2 + vwv3|3 dv dw

⎤

⎦ ,
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which is approximated by a product Gauss–Kronrod
quadrature formula, where the approximate integration
of order 31 (21 points) is used for each 1D integral.

Matrix Va

We consider the entries of the matrix Va

Va
jk =

∫

τk

P
(
x, x j

)
a (x) dΓ (x)

= − 1

4πa
(
x j

)

∫

τk

a (x)

|x − x j | dΓ (x) ,

where τk is a boundary triangle. We distinguish the following
two cases.

(1) Let x j be outside of τk . We decompose the integral into
two parts,

Va
jk = − 1

4πa
(
x j

)

⎡

⎣a
(
x j

)
∫

τk

1

|x − x j | dΓ (x)

+
∫

τk

a (x)− a
(
x j

)

|x − x j | dΓ (x)

⎤

⎦ . (24)

The first integral is computed by an exact analytical
formula, see [13, Chap. C2.2], while the second one is
approximated by the 13th order Gauss quadrature for-
mula with 37 points.

(2) Let x j be among the vertices of τk . We denote the verti-
ces of the triangle τk as

{
x j , xα, xβ

}
and use the Duffy

transform introducing the new integration variables
u and v through

x (u, v) = x j + uv1 + uvv2,

where v1 = xα − x j , v2 = xβ − xα . Then the integral
becomes

Va
jk = − 2|τk |

4πa
(
x j

)

1∫

0

1∫

0

a (x (u, v))

|v1 + vv2| du dv,

where |τk | is the area of the triangle. The integral is
approximated by a product Gauss–Kronrod quadrature
formula, where the approximate integration of order 31
(21 points) is used for each 1D integral.

Matrix K

We consider the entries of the matrix K

K jm =
∫

Γ

Tx P
(
x, x j

)
ϕm (x) dΓ (x) =

NΓm∑

k=1

Kk
jm,

where

Kk
jm := − 1

4πa
(
x j

)

×
∫

τkm

(
x − x j

) · nτkm

|x − x j |3 a (x) ϕm (x) dΓ (x) .

Here the boundary triangles τkm , k = 1, . . . , NΓm have
the node xm as a vertex. We distinguish the following two
cases.

(1) Let x j be outside of τkm . We decompose the integral
into two parts

Kk
jm = 1

4πa
(
x j

)

×
⎡

⎣a
(
x j

)
∫

τkm

(
x − x j

) · nτkm

|x − x j |3 ϕm (x) d� (x)

+
∫

τkm

(
x − x j

) · nτkm

|x − x j |3
(
a (x)− a

(
x j

))
ϕm (x) d� (x)

⎤

⎦ .

The first integral is computed by an exact analytical
formula, see [13, Chap. C2.2], while the second one
is approximated by the 13th order Gauss quadrature
formula with 37 points.

(2) Let x j be among vertices vertices of τkm . In this case
the vector

(
x j − x

)
is orthogonal to nτkm and, thus,

Kk
jm = 0.
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