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The article considers stress singularity in the neighborhood of the line of in-
tersection of the free surface of a compound elastic arbitrarily anisotropic
.body and the junctilon surface of its' different parts. A solution is constructed
for the model problem for a two-dimensional compound wedge, the result being an
analytic function whose zeros are equal to the degree of stress singularity of
the initial three-dimensional body. The degree of singularity is determined for
some- composites consisting of layers with different fiber directions, and for
composites bonded to aluminum.

On the basis of the results of [2-4], it was shown in [1] that the degree of stress
singularity in the neighborhood of an edge is determined by the solution of some model
rroblem in a two-dimensional composite wedge. When in the viecinity of the edge the body
has a plane of symmetry of the elastic properties that is perpendicular to the edge, the
zodel problem breaks down into one of plane strain and one of torsion (or antiplane strain).
The first was considered in [5], the second in [6]. On the basis of [5,6], the author in
[1] computed the degrees of singularity for composites with a plane of symmetry of the
slastic properties perpendicular to the edge. In the present paper, the case of arbitrary
znisotropy is analyzed. S

1. TLet us first consider the problem of generalized plane strain of a composite rec-
t1linear-anisotropic wedge with anisotropy of general form, i.e., the problem for an infin-
ite dihedral wedge in which the stresses do not vary along the edge, the lateral loads are
self-equilibrated, and there 1s no tension, torsion, or bending. Assume that stresses are
specified on *he lateral faces, while there is rigid adhesion on the junction surface. In
the cylindrical nro, 2 coordinate system with origin at the apex of the wedge and X3 axis
directed along the edge, the boundary conditions have the form

o) (r, ) =t,(r), '.rvv,(r’ 1) =1:(r), Tav'(r, )=t (T)
6 (ry ) =He(r), " (ry @) =t(r), T, @) =ter) (1.1)
Uw,(rv 0) =°v”(ry 0), Trvl(ra 0)=1"(r, 0), Tsv,(rv 0) =Tsw”(h 0)
ul‘, (T, 0) =uf”(ra O) ) u@'(r, 0) ‘=uv” (I', 0) + lla, (ri 0) "-—‘-ll;” (T, 0)
vhere one prime denotes quantities in one part of the wédge, while two primes denote quan-
tities in the other part. ‘ : '

Here ¢: and g,. are the angles of the free surfaces of the first and second part with the
Junetion surface, where ¢=0 @h<0<¢u(m—me2ﬂL ti are specified functions. The stressed

state of each part of the compound wedge is defined by Eﬁe solutions of the equation [T7]
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(LL =0, Limbugor = ey ™
gt gt 8t

—2b + by
oridz: 0,0z “,ah‘ s (1.2)

ALY i bytb S b
. L:=—bz‘-5;;+(bzs+bxa)m“‘( 1" u)m e

+ (2bystbee)

a* a* G*
Lz=bu —— Qbu-“'——" + bbb
dx?

32,0 -5-;; f bu=au"auasaau—’
Iy 0Ly 2

©1879 by Allerton Press, Inc.
27



where a;y are the elastic constants of the material in the geheralized Hooke's law (see

(7]). The general solution of (1.2) can be written using the roots of the characterisgy,
equation

L)l (p) -1 () =0 (1.3)
where the polynomilals Zi are obtained from Ly by replacihg #/0z! by 1 and @&/dz} by-uJ:

Assume that vy are the roots of (1.3):

ag==cos pFysin@, b=y cos p—sing
z=xytpira=ra; (@), Dy=d / dz;
A=—b(p) L(w) ™, L(w)70; A=1, bL(w)=0
8;=1, L(p;) #0; 8;=0, L (p;) =0
Ps=0; (bya 1t +bya—buepy) +A;(byspy—byi)
85=0¢( braptytbaapty™ ~bas) +s (bos—bauts™)
1=08; (byptytbait,™ i) s (besbuepts™)
c=p;cos @+¢;sin @,  dy=g;cos g~ p;sing
hx=bs:"'l’-:l-lzbm hzzhx_bn(}»’-x_llz)z

A material for which the roots “j of (1.3) do not include any equal ones will be
assigned to type A. For this materlal (see [T71])
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Let us also consider a material for which L(p)=0, while the equation L(u)= 0 has pair-
wise equal roots; we assign this material to type B. In particular, type B includes iso-
tropic materials and transversely isotropic materials with isotropy axis perpendicular to
the plane of the wedge. Assume that Hq and u, are two different roots of the equation
L(p)=0, while &sMe are the roots of the equation IL(p)=0;m=3—].
we obtain the following from [5,7]:

Then for the given materia
2 . R
o= Y (b7 (DFfit2nD}g;) +2b;buDig]
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Here and henceforth, if there 1s no summation sign, summation l1s not performed over
repeating indexes. The quantities fi(z), &(z) in (1.4) and (1.5) are analytic functions of

their arguments, which are the solution of (1.2) and are to be determined from the bound-
ary conditions.



We can write expressions for the stresses and displacements in terms of certain anal-
.ic functions for other relationships among .the roots uj of (1.3), L(w)=0and L(p)=0, but

are evidently of no practical significance, and therefore we will confilne ourselves
he above two cases. :

hey
o ©

consider the Mellin transformatlon of complex function v(z)=v(z,+pz.), where 1 is some
~omplex constant, while Xy and x, are Cartesian coordinates on the plane.

Assume that <> is the Mellin transform of v(z); then

.
w

= [v(actpz) -t dr=a (@) V (5)

a(@=cosgtusing,  V(s)= [v()z-rdz

o

If v(z) is analytic in the sector Hi<¢<. 0<r<w and v(z)=0 () {r—0), v(z)=0(") (r—~=), n<§
+hen V(s) exists in the strip —E<Res<-n and is independent of'¢.

‘We define the inverse transformation in the customary fashion:

et
v(2) = mon -1
(&) =—— j -t ds

gweioo
We will seek a solution satisfying the following conditions:
05=0(r=14%), r=-0; 0,=0 (%), roro; >0, §0 (1.6)
We will assume that u; ., also satisfies (1.6) (this eliminates rotation of the wedge
>
zs. a rigid whole). In this case the Melling transformation can be applied torom Uur.

Let us consider two possible cases: A-A: both parts of the wedge consist of materials
of type A; A-B: one part consists of type A material, the other of type B. The third
. possible case, B-B, reduces to plane strain and torsion and was considered in [1,5,6].

As in [5], we substitute the stresses and displacements from (1.4) and (1.5) into
(1.1), we differentiate the last three of the resultant equations with respect to r, and
we apply the Mellin transformation with respect to r to all 12 expressions. As a result,
we obtain a system of equations in Uy for both cases (A-A and A-B):

12
Z BijUr_‘“—T( (te21,2,..,82) ( 1. 7 )

Je=t

qy*==“<h>,<_3h>.<—-u>.<h>.<-—g>.<—-n>.0.0.0,0.0,0ﬂ
In case A-A

Uj*= “}1" }2" }3', }4'v 15’! Fslv }1"» ]2”1 ]3", 1‘.’. 15', I'g" [l

In case A-B
U]'* =HF111 F FS, FY, Fblv I:‘ol; f)". Fa*, G;”, G.", fb', }e"ﬂ
Fy= ijf;(Z:) 7' dz, G;='j Digs(z)z " dzy
L] / 0
¥here the asterisk denotes transposition.
Matrix Bij for case A-B is given on page 30.
Here it is assumed that the indexes in the first part of the wedge (A) range from 1

EO 6, while in the second (B), they run from 7 to 12. Also (and only here) it was assumed
bhat a;==a;(qh), b:=b:(q3.). 1f j=A, 2einen 6, while a,-=a,(q>z), bj=bi(q)2); if ,j = 7, 8,. ey 12; (01,=-(1*—s) a,b(+a¢b,. .

et
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For case A-A, matrix BiJ

left—naturally, with its oun g, by, o Dy O30 P G0 Toe

Assume that A=det (By), 44 are the algebraic complements oflhtméaA¢Llw=bA§L Solving
) and substituting the resultant values of Fj and Gj into the formulas for the
splacements, we obtain a solution in Mellin transforms.

he transform of the stress (s,yFfor case A-B. 1In type A

(é,’)= i T, .Z, a* b A

iesd Jemt

system (1.7
transforms of the stresses and di
As an example, let us write out t
material,

(1.8)

In type B material (m=15—j):
Z" Z’ (1.9)
(Ur”>= ! T‘ ajn'bjz[A{j’!‘ (Zb,"’bm—-sa,”’am)A,-;H] A—l '

fo=t J=

For case A-A, the transforms of the stresses in both parts of the wedge will be anal-
ogous to (1.8). Applying the inverse Mellin transformation to the expressions for the
transforms of the voltages and displacements, using residue theory, and assuming that for
large and for small r the ti can be represented as sums (possibily infinite) of different

powers of r, we obtain (see [5] for more detail) in type A material

o/ = Zres {i T Z:x"af'b,‘A gA—r }=“Z<£ r;‘*z ¥ (‘P? (}n r)" (1.10)

<t 'k [ 3

while in type B material

i 3

o= Z res { ZT. 2 a,""bf[A.,—)- (2B~ bm—

n<t X Tomi St (l 11)
’ Nyt '
—sa e Aguala=tr b= Y ) Wia(e) ()"
Tt nmb

- satisfaction of conditions (1.6) requires that the path of integration in the invers

Mellin transformation lie in the strip

max (Re sy) <¢< min (Re s.)

Re sy <t Re sy 1
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This implies the constraint s<i in (1.10).and (1.11). Here s, are the poles of €ay) ;

., are their multiplicity; and ¥ are smooth functions of the angle¢. If t—~+0 as r>0,
.;aqthere are no pOIESTiillthestrip 0<Res<1 , and all the s, in this strlp are among
we ZErOS of A(s)- In other words, in this case the singular terms in (1.10) and (1.11)
,pe determined only by the zeros of A(s) in the strip O<Res<i.

2. It was established in [1] that in the neighborhood of the line of intersection of
ne free surface of a three-dimensional anisotropic elastic solid, and the junction surface
fits different parts (which we will call the edge), the stresses have the form

’
1
A
-

Nyt

[ 7] 2 i Z ‘Pﬂhn ((p) (111 r) "+U(’v

a<Re sx<i Naml

(2.1)

"Here 1 @ are local polar coordinates introduced in the plane perpendicular to the
zdge, with origin at the point of the edge under investigation; 8y are the zeros of some

znalytic function A(s); Nk are their multiplicity; and Y. are smooth functions. If in the

reighborhood of the point of the edge under consideration there are specified stresses ti

on the free surface, and t—>0 as r—0, then a<0, while 04 is a bounded function. In this

case the stress singularity is determined only by the form of A(s), which, as noted in [i1,
coincides with a function whose zeros are present in the analogous representation of the
stress field in the plane model problem for a compound wedge. The equations of the model
sroblem can be obtained from the initial ones by discarding terms with derivatives with

¥
respect to X3 (the coordinate X3 is directed along the tangent to the edge at the point

in question), as well as the lower derivatives, and by "freezing" the coefficlents at the
soint in question. The right sides of the fundamental system of equations and boundary
conditions of the model problem are integrable and nonzero in finite regions that do not
contain the coordinate origin. Thus, -the problem solved in §1 for a compound anisotropic
vedge will be a model problem if in the initial problem the stresses are specified on the
free surfaces near the point in guestion, and there is rigid adhesion (possibly with in-
terference) on the junction surface, while the function A(s) as found there will determine

the singular terms 1in expansion (2.1).

3. The edge effect in laminar composites was considered in [8-10]. For layers at
different angles, the equations of anisotropic elasticity were solved by the Tinite-
element or finite-difference method. It was noted that the stresses can be large or even
infinite near the edge (the numerical methods employed could not pin down this infinity
in pure form), but their asymptotic form was not investigated. Paper [1] examined the
‘degree of stress singularity as a function of the elastic and geometrical parameters of
the layers for composites for which the directions of fiber packing were parallel or per-

pendicular to the edge.
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Using the form of A(s), obtained above, let us consider the degree of singularity of
the stpesses arlsing in carbon plastic made up of layers at different angles, and in car-

bon plastic bonded to an aluminum plate.

A carbon-plastic specimen 1is shown schematically in Fig. 1. The packing plane coin-
¢idec with the plane of the figure. The dashed lines indicate the direction of packing,
while the dot-dash line indicates the bisectrix of the angle between the directlons of
packing in adjacent layers. The coordinate origin is located at the point of the edge

under investigation between adjacent layers.
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As in [8-10], we will consider a layer of carbon plastic with the followin
teristics: Young's modulus in the direction of reinforcement £,=146- 10° kg.mm~2
kg-mm~2%, shear moduli Grr=Grz=Gr.= 0.598-10° kg.-mm~%, Poisson's ratios Ver=viz=vr;=021, The 7
axis is perpendicular to the plane of the layer. The relationships of [7] were used ¢,
obtain the elastic characteristics Qe of the layer under rotation in its plané. The

layers under consideration are not transversely isotroplc, and hence they constity
A material for all angles «, 6,y (see Fig. 1). Thus, A=det (By), where Bij
The free surface is perpendicular to the junction surface (=== 90°),

128 Ohardl
sl z=F =t

te t:
refers to case |

Figure 2 depicts the degree of stress singularity s as a function of the angle vy ;

‘fixed angle oq betweeri one of the directions of reinforcement and the normal to the ed;

In the general case, there is one absolute maximum of the degree of singularity as the
difference in orientation in adjacent layers varies from 0 to £90°. When the edge is pe
pendicular or parallel to one of the directions of reinforcement, the maximum occurs wj
the reinforcement becomes orthogonal, and the graph is symmetrical relative to this po!
In the remaining cases, symmetry disappears and the maximum shifts, while remaining in
the neighborhood of orthogonal reinforcement. Near the position in which the second

direction of reinforcement becomes parallel to the edge, a slight local minimum may ars

"Figure 3 shows s as a function of the angle 8 of inclination of the axis of symmet
of the packings to the edge for three fixed values of <45 1In effect, this represents
t?e change in degree of singularity in going around the contour of the specimen (see Fj
1).

R e 704
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Fig. 3 Fig. &4

Figure 4 shows s as a function of the angle of orientation difference for three fi
angles 6. It follows from Fig. 1 that s(y, 8)=s(y, —0)=s(90°—y, 90°~B). For constant 8, the deg
of singularity increases -almost monotonically on the interval 0<<y<45°,

It follows from Figs. 2-U that in the carbon plastic under consideration a stress
singularity can occur for any a. ¥, 8, with the exception of v=0, when the degree of singul
ity vanishes, since in this case the jump in the elastic parameters on the Junction sur
disappears. The degree of singularity is at a maximum when the edge is parallel to one
the directions of reinforcement and perpendicular to the other.

Let us investigate the degree of singularity of the stresses that arise when a lay
of carbon plastic is bonded to a layer of aluminum. Calculations were made for a layer
high-elastic-modulus composite with characteristics E,=20-10° kg -mm~2, Ey=Er=2.1-10° kg .mm™?
Grr=Gr2=G1;=085-10" kg.mm~2, wir=viz=vr;= = (.2] (see, e.g., [11]) and aluminum with paramet
E=12-10kg.mm~%, v=03. Now we have case A-B and the corresponding matrix Bij and functi
4 (s).

Figure 5 shows the degree of stress singularity s as a function of the angle o bety
the direction of reinforcement of the carbon~plastic layer and the normal to the edge, !
three fixed values of the angles of inclination of the surface of the carbon plastic ()
and aluminum (g.)to the junction surface (@=90°, ¢:=—090°, solid line; ¢:=180°, ,=—90° dashed
line; ¢=90° ¢.=—180°, dot-dash line). We should note that, for sufficiently large angle:
% |9:] up to three singular roots appear. In the general case, s is not a monotonic fur
tion of a, but if ¢=—0:=90°, the degree of singularity increases monotonically when the ¢
is rotated from a position parallel to the direction of reinforcement to a position perr
dicular to it.

Assume that §=180°-(g;—¢:) is the loecal deviation of the free surface around the edge
from the compound half-plane. Figure 6 shows the critical value &%, for which the maxin
root of A(s) in the strip 0<Res<! becomes zero, as a function of @ for five fixed a value
(@=0, thin solid line; 30°, dashed line; 60°, dot-dash line; 75°, open circles; 90°, he:
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solid 1ine). For a continuous (noncompound) body, §*=0. For §<b*, there will be no singu-
1zrity, while for &6>6% it may appear.

The curves for =90° and O corresponding to the position of the edge parallel and per-
endicular to the degree of reinforcement are taken from [1].- As a varies, the variation
of 6% 1s fairly complex. This 1is evidently to be explained by the fact that the Young's
podulus of aluminum lies between the minimum and maximum Young's modulus of carbon plastic,
shile the tangential modulus of aluminum is always greater than that of carbon plastic.

For specified materials, the availability of graphs of the type shown in Fig. 6 makes
1t possible to choose the local geometry near the edge in such a way that there 1s no
stress singularity in the junction. .

The proposed method can be readily used to construct matrices Bij’ i.e., the corre-

sponding functions A(s), and to determine the degrees of singularity for other types of
poundary conditions as well as for a larger number of parts; in. particular, it can be used
to examine a crack that goes beyond the interface of a composite arbitrarily anisotropilc
body. . o :

The author is deeply grateful to Yu. N. Rabotnov for his attention and for discus-
sions of the results.
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