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Stress—singularity analysis in space junctions of thin plates
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Abstract. The stress singularity in space junctions of thin linearly elastic isotropic plate elements with zero
bending rigidities is investigated. The problem for an intersection of infinite wedge-shaped elements is considered
first and the solution for each element, being in the plane stress state, is represented in terms of holomorphic
functions (Kolosov—Muskhelishvili complex potentials) in some weighted Hardy-type classes. After application

of the Mellin transform with respect to radius, the problem is reduced to a system of linear algebraic equations.
By use of the residue calculus during the inverse Mellin transform, the stress asymptotics at the wedge apex is
obtained. Then the asymptotic representation is extended to intersections of finite plate elements. Some numerical
results are presented for a dependence of stress singularity powers on the junction geometry and on membrane
rigidities of plate elements.
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1. Introduction

Three-dimensional structure junctions consisting of plane plate elements are generally used
in engineering. The points, where plate intersection lifi€s meet each other and/or free
edges of plates, hereafter being referred to as singular points, are often stress concentrators.
Examples of such points for V-shaped and T-shaped junctions of plates are presented in
Figure 1.
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Figure 1. Schemes of V- and T-shaped junctions
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Numerous studies are devoted to the investigation of elastic theory solution behaviour at
singular points in two-dimensional bodies and at singular lines in three-dimensional bodies.
The solution asymptotics for general elliptic boundary-value problems are studied in [1-3]
(see also [4]). Asymptotics in some problems of solid mechanics with singular points are
considered in [5-15]. In [16, Section 5], the singular behaviour of solutions is investigated
for space junctions of plate elements with infinite membrane rigidities and finite bending
rigidities.

Another limiting case, namely a space junction of plate elements with finite membrane
rigidities and zero bending rigidities will be considered in this paper. Such neglect of the
bending rigidities may be done for sufficiently thin plates and is rather popular in engineering
computations. It delivers seemingly intermediate solution asymptotics valid at large distances
from the singular point in comparison with the plate thicknesses. Under this assumption the
plate elements of a junction will be in the plane stress state and have some special transmission
conditions along the joint lines.

In Section 2 of this study, the problem statement is given for a three-dimensional in-
tersection of infinite wedge-formed plates with zero bending rigidities, where each plate is
in the plane stress state, and corresponding transmission conditions are deduced. (Note that
the transmission conditions for intersecting Kirchhoff or Reissner—Mindlin plates with finite
rigidities is thoroughly analysed in [17].) The stress singularity analysis for such problems can
be executed in different function classes. For example, in [1-4], [16] the solution asymptotics
for some problems are analysed in the weighted or usual Sobolev spaces. We will work in
the Hardy-type weighted classes of holomorphic functions (for the Kolosov—Muskhelishvili
potentials) introduced in [18] and being sufficiently convenient for an application of the in-
tegral Mellin transform. In Section 3, after the application of the Mellin transform to the
representation of a general solution in terms of the Kolosov—Muskhelishvili complex poten-
tials, the problem is reduced to a system of linear algebraic equations with a parameter. The
employment of the residue calculus and some properties of the Hardy-type functions in the
inverse Mellin transform allow us to obtain in Section 4 an asymptotic representation for the
problem solution. By means of the cut-off function techniques, the asymptotic representations
can be extended to intersections of plates of arbitrary form. In Section 5, stress singularity
powers are numerically evaluated at singular points for some standard junction geometries.
Critical junction values (angles, rigidities), separating the parameter zones with and without
the stress singularities, are analysed too.

2. Problem statement, boundary and transmission conditions

Let{x,},« = 1...3, be global Cartesian coordinates. Hereafter, unless otherwise stated, the
summation in repeating subscripts (excluding the subscpiad®) is supposed from 1 to
3; superscript summation is not done unless it is pointed out explicitly. Plate elements are
considered below as two-dimensional plane elastic objects and the term thigknessed
only to calculate plate tractions (per unit lengfty,s from plate stresses,.

Let us consided plates intersecting along a joint lideé Let &, be the unit tangent tD'.
For each platéV™ (m = 1, ..., M) adjoiningT", we denote by the normal ta" lying in
W plane and being external . Let H™ be the plate thickness. Then the sum of the
boundary tractions transmitted from each platé&' tmust be equal to a prescribed logd
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Z H(m) (m) (m) =g J — 1’ e 3. (21)
m=1

Moreover the displacementsﬁ.m) of each plate al” must be equal to one and the same
unknown functionU;

u’ =U;, j=1,....,3, m=1...,M. (2.2)

.I

Taking into account that the plates do not resist the bending moments and, hence, the trans-
verse tractions, we have that only membrane stresses are involved in (2.1). Then these equa-
tions can be rewritten in the form

M
Z H(’")[ao%)kangm)kj + cro%)ng")n/(gm)n;m)] =g, j=1...,3 (2.3)
m=1

From Equations (2.2) we obtain the equations for the membrane displacements

uﬁm)kj = Ujk;, uﬁm) (m) = U, n(m), m=1 ..., M. (2.4)

Let us assume that not all plates lie in one plane (notiﬁilare parallel). Then (2.3) gives

three independent equations with respectAb toundary tractions,; kanyy”, o5 nl"n§"

This can be verified by projection of (2.3) onto the tanggrand onto any two not coincident
normalsn!"", n"?. Excluding three auxiliary function&/; from 2M Equations (2.4), we
get then from (2.3), (2.4) ® independent boundary conditions fa¥4values: the boundary

membrane tractions,; k.n", ouy n{n " and the displacements™k;, u"n{".

If all the plates lie in one plane with a normgl, i.e,, n(m) in&l), m=1,..., M, then
we have from (2.3) only two independent conditions

M M

S H ek =gk D Ha g = @s)

m=1 m=1

The third relation, which can be obtained from (2.3), gives the solvability condition imposed
on the prescribed tractiong;¢; = 0. In this case, ¥ relations (2.4) involve only two
auxiliary functionsU;k; and U; n'd: excluding them, we obtain from (2.5) and (2.4) again
2M independent condltlons forM boundary membrane tractions and displacements.

WhenT is a plate edge not in contact with other plates, we will alsocalljoint line for
M = 1. If some tractiong; are prescribed on it, then we have there two boundary conditions
(2.5) where the sum sign must be dropped, thatMs,= 1 must be substituted. If some
displacementg; are prescribed instead of tractions on this edge, then we have two boundary
conditions (2.4), but for known functiori$; = f; and forM = 1.

Thus, if M plates contact along a joint lineé, M > 1, then there are generally2inde-
pendent transmission/boundary conditions on this line Mr@bundary membrane tractions
and displacements. This means that each plate edge generates two transmission/boundary
conditions orT". Below the transmission conditions will also be called boundary conditions.

Let L joint linesT® (I =1,..., L) of M* wedge-shaped platé8™ m =1, ..., M*,
intersect in the point; = 0. Itis simple to see that £ L < 2M*. Since each wedge-shaped
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plate has two edges, there ard #boundary conditions oh joint linesI"” for 8M* boundary
membrane tractions and displacements.

Let us introduce the local Cartesi@yy}, j = 1, 2, and the pola(p, 0) coordinate systems
in the plane of each plate with the origin in the corner point. Thernttth plate is a wedge
Wi .= W(@0,0™): (p,0) € (0,00) x (0,6"™), whose plane stress state is described by
the plane elasticity equations

o™ — 0, o™ A(m) (’")5 +M(n1)(u(m) +u(’”)) (,a, B=1,2). (2.6)

jo,a jO[
HereA, := 2Au/(A + 2u); A andu are the Lamé constants. The corresponding boundary
conditions are prescribed at both edges of the wedge. For example, if some tragtions
go(p) are prescribed at the edge= 6", then the boundary conditions there have the form

009 (p,0") = go(p),  0e(p,0") = g,(p). (2.7)
If some displacementg,(p), fs(p) are prescribed there, then we have
ug(p,0") = folp),  up(p,6™) = f,(p). (2.8)

If, instead, thenth plate contacts through this edge with the other 1 plates, the local forms
of the corresponding transmission conditions are obtained from (2.3)—(2.5), by expressing the
displacements and the stresses there in local polar coordinate systems.

For example, the boundary conditions for a V-junction (Figure 1) have the form

ro. 00(;)(10’9(1)) — gél)(p)’ (l)(,O 9(1)) _ g;l)(p)
r@: o (p. 0 =P, 0,0(0.0%) =520,
re: o20,0=¢0w, 2,0 =g,

HYo.3 (0,0 + HP0,0(p.0) = g0 (0),  uP(p.0) —uP(p,0) =0. (2.9)

The general solution of system (2.6) can be written in terms of the complex Kolosov—
Muskhelishvili potentials [19]. Particularly, the radial derivatives of the displacements
dul™ /dp, and the stresseg&l’;) for mth plate in polar coordinates have the form

2
8 m m)/ i0; m
%ugm(p, 6) = Zm D 1™ — DI () — ;0" () — €W ()],

j=1
8 m m m
%”9 " (p,0) = e Z( D™ + Do (z)) + 2,01 (z)) + W (2))],

2
1 " b7 i0; n

05 (0, 0) = 5D 12077 (2)) — 2,97 (z)) = U0 )],

~
1
N

NI

2
o5 (p,0) = 5 ) _[20" () + 2,9 (z)) + W[ (z))],
j=1

2
oy (p.0) =5 Z(—l)f'[z, "' (z)) + U W (7). (2.10)
j=1
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Herefy := —6, := 0; z;(p,0) := pexpio;) € W™ = W™, 0"y, 0" = o)) =
6" = 0,07 := -6 := 6y = 6" and the general wedge notatisn6_, 6,) : {(p, 6) €
(0, 00) x (0_,9+)} is used. In additionk™ := (3 — v™)/(1 + v™), wherev™ =
A /[2(A™ 4 )] are the Poisson ratlo@(’")(z ) and\If(’")(z ;) are analytical functions
of the complex arguments;, the prime denote the derlvatlve with respect to

Using expressions (2.10) at the boundaties 6" (9; = 6,") of the wedgesv ™, we
substitute them in boundary conditions (2.3)—(2.5), (2.7)—-(2.8). Thus, we arrive at the boun-
dary-value problem for analytic functionsM4 holomorphic functlonsﬂ)(’")(z,) lIJ(”’)(z,)
(G =212,m = 1,..., M*) must be determined fromM* boundary condltlons When
speaking below about a solution, we mean a solution of this problem for analytic functions.

We define below some weighted Hardy-type function classes (considered in details in [18]),
in which the solution will be looked for. Denote= p exp(i0). Let H,(8o, 8o0; W(0_, 6,)) be
the class of function® (z) holomorphic in a wedg® (6_, 6,) and such that
SUR, g0, Jo |®(p€")2p?Ldp < oo for all § € (8o, 8so).-

Let us consider the following linear combinations of the complex potentials

U2 @)) = 2,007 (2)) + exp(2i6 ) U] (2)).

In fact, only these combinations and the original potent'ragg)(zj) are involved in the
representations (2.10) at the boundaries and, hence, in the boundary conditions (2.3)—(2.5),
(2.7)—(2.8) (after the differentiation of the conditions for displacements with respedt to

We shall write that a pair of function@ﬁ’"), \I/;m) belongs toH,(8o, Suo: W;’")), if <I>§”” €

Hp(80. 8o0; W{™) and W™ € Hy(80, 8-0; W), where

W = wer,6), W = w@,0), foranyde @, 00",

Let the prescribed boundary functions be
gi(p), dfj(p)/dp € La(8,, 1), 8, < 1, (2.11)

where the class (8o, 8.) consists of the functions(p), such thatf,~ [g(p)12p® 1 dp < oo,
forall § € (8o, 8o0)-
We look for, as a solution, the Kolosov—Muskhelishvili potentials

¢§,n)’ qj;m) € H,(3o. 1: W;’")), (2.12)

for somed, < 1. The choice off;, for the generation of a solution is motivated by the following
reasons. First, this class is sufficiently convenient for the application of the Mellin transform
in complex variables and, moreover, the boundary values of the Mellin transforms are repre-
sented in terms of the Mellin transforms of the boundary values, for functions from this class
(Lemma 1.16 in [18]). Second, the Kolosov—Muskhelishvili potentials from this class, and
consequently, the stresses generated by them may have weak singularities at the wedge apex
(Lemma 1.10 in [18]) and are square integrable over any finite two-dimensional pait'of
(including also the singular pointj,e., have a finite elastic energy there. In addition, if the
potentials belong tdz(So. 5o; W|™) C Ha(So, 1; W{™) for §o < 1 < b4, then the elastic
energy over the whole ¥ is bounded (Lemmas 1.17-1.18 in [18]). Third, as will be seen
below, the solution of the problem exists and is uniqueCIf{}S'P, \Ifj(.’") € Hy(5o, 1; W}’")).
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3. Problem solution

We will solve the problem using the Mellin transform of the complex potentials, which reduces
the problem to an algebraic one. This idea seems to have been used first in [20Jidl-é1,)

be the stripSy < RNy < 8 in the complexy -plane. (Hereaftefiiy denotes the real part of

y.) It follows from Theorem 1.15 in [18] that the Mellin transforms with respect to complex
variables exist fom(,.’"), \I/E'") € Hy(So, 1; W}’")) atanyy € S := S(8, 1),

o o
CD;m)V()/) — / Cbﬁ.m)(z)z”_ldz, qj;nz)v(y) — / lIJj(.m)(Z)Zy_l dZ,
0 0

ze W™ TWY(y) = —y oV (y) + exp2i0 )W (p).

. (m)V (m)v 3 (m) (m), i
In addition, ® ™", W™ € Hy'(6,7,0,,"; S), that is

" e Hy (0™, 077 5) and UMY e HY®".0:5), W e Hy@07:S)

forany 6 € (0", 6}).

Here H, (6_, 6+; S(80, 8-)) is the class of function®" () holomorphic inS(8y, 8~,) and
such that the norm syp_,_, [ /" |®Y (8 +i&)€"?|2ds %2 is uniformly bounded with respect
to 6 on any segmerig, 5.1 C (80, 8x0)-

Let us denote by

(g)(y) == /0 g(p)p? tdp

the Mellin transform with respect to a real variable. For a functiofy) from H,(8g, doo;

W (8-, 6,)) there is the following property connecting the Mellin transforms with respect to
the real variable (over a lined = const) and to the complex variable= pe? (Lemma 1.16

in [18]):

(@) (y,0) =DV (y), y €SO0 8x), 0 €lb-,04].

Consequently, under condition (2.12) this property holdgif? (z) in the segments™’ <
6 < 91(.’_’;); for the combinationilf’f) (z,) it holds only in the half intervai)j(.'f) <6 < 91(.'1) and
for &V (z;)in 6" <6 <07
Having this in mind, we apply the Mellin transform with respecptto the relations (2.10)
and obtain the representations, coupling the Mellin transforms of the displacement derivatives

and stresses with the Mellin transform of the complex potentials, which hold also on the
boundarie® = 61"’ (6; = 6)
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ulm 2 . .
J _ (m) —iy0; g (MmV _ d@-poj g mV
< 5 >(y’9)_4u('"> Z;[(K —1+y)e e (y) — e ()],
]:
duy" i< () iy ) gy MV (2=7)0; g, M)V
3| 0 = D ED ™+ 1—y) e (y) + dEWIMY (),
j=1
132 A .
o)y, 0) =5 ) [+ y) eI (y) — U ()],
j=1
132 . .
(05 )y, 0) = 5 )[R =) eI (y) + U ()],
j=1

.2
(055" ) (. 6) = l2 DDy eIl () + €T ()], (3.1)
j=1

Applying the Mellin transform with respect tp to boundary conditions (2.3)—(2.5),
(2.7)—(2.8) (differentiating preliminary ip the conditions for the displacement}¥ and us-
ing (3.1), we get a system ofM* linear algebraic equations to determine th@*4Mellin
transformsd " (), @1 (y)

am*

D BuysNFp(y) = Gur @
p=1

1,...,4M", (3.2)

(Fs()) = (DY (y), DTV (y), WY (), OV ()},
{9} := [(g)) (), (df;/dp) (1)},

where ;. f; are obtained from the corresponding functiogi§, f{” prescribed on the
boundary.

For the V-junction (see boundary conditions (2.9)), for exampdé,= 2, the matrixB,
has the form

m=1 ..., M*,

@2—p etV y)drt?|d@ iV |erieni® g 0 0 0
_yeirt? ydro? d@=)eD | _—i(2—y)eD [ 0 0
0 0 0 0 2—y)e P2 y)drt?[d@1i?]ei@—y)i®
0 0 0 0 —ye 0@ |, dro@ d@710P | _g-i@—y0®@
2= = i i 0 0 0 0
0 0 0 0 = = i i
—HD, HD, HD _HD —H®@y H®y H® _H®
D1ty D1ty -1 -1 _ P —1ty _«P-1l+y |1 1

@D w®D @D @D e el n@ n@
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{\{Efi()/)} — {(D(l)v (D(l)v, \p(l)v \pél)v, <I>(2)v <I>(2)v \IJ(Z)V, \IJ(Z)V},

(3.3)
(a1} = 2{(g5"). i(g™). (857). 1(8P). (85>"). (85°7). i (), O},
The solution of system (3.2) has the form
AM*
Fay) =Y Bt NGs(r), By (v) = Aap(¥)/A(y), (3.4)
p=1

whereA(y) is the determinant of the matnBaﬁ(y) Ayp(y) is the transposed matrix of its
algebraic complements arﬂgjﬁ (y) is the inverse matrix t@,z(y ).

Expressions (3.4) can be rewritten in termsidf’” (), Wi (), 1V (y)

apm* apm*
(m)v (m)v
(Dj ZB4m 4+j/39’/3’ \Ijj ZB4m 2+j/39’/3’

am*

m n)
< >v ZDﬁﬂxg’ﬁ’ (3.5)

yg);(y) VB4m —4+j, /3()/) + EX[XZZG(m))lem 2+j, ﬁ()/)-

One can see from (2.3)—(2.5), (2.7)—(2.8), (3.1) tBai(y) and consequently,z(y) and
A(y) are entire functions. Suppose, in addition, thay ) is not equal to zero identically (in
the opposite case it would lead to the linearly dependent boundary conditions, what seems not
to happen in correctly stated elasticity problems). Hencedspf1, Chapter V, Section 1])
A(y) may have only isolated zergsg of finite multiplicities N in any finite part ofy -plane.
By (3.4), consequentI)B;ﬁl(y) is a meromorphic function with poles of finite multiplicities

in v,. Moreover, according to [22, Theorem 7.1], the maBj;gl(y) has the form

Nk Prn Prn—q
Biwn=)Y Y v—wm Z Sa X T + Dap(y) (3.6)
n=1 g=1

in the neighborhood of,. Here N, is the dimension of the eigenspace of the malix(y),
ool andy” (n=1,...,Ny, p=0,..., P, — 1) are some canonical systems of eigen-
vectors and associated vectors of the maBjx(y) corresponding tg, and, respectively, of
the conjugate matridz, (y,) corresponding t¢7,, Dys(y) is a matrix function holomorphic
aty,. From point 3 of Section 1 in [22], it follows also thEn 1 Pern = Ng; in other words,
the algebraic multiplicity of the eigenvalyg for the matrixB,z(y) aty = y is equal to the
multiplicity of the zeroy; for the functionA(y).

For a stripS’ in they -plane, letS. denote a perforated strip obtained fréfrafter deleting
all circular r—neighborhoods of the zergg € §'. If S’ does not includey, thenS, = §'.
Suppose there is a constat’ for any s, and anyd"” e (8{"'0}) such that

Ba—aij sV < MY €Y (v,0) € S x [0, 0171, (3.7)
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DY) ()l < MY1€7°1 Y (v,0) € 5] x [0, 671, (3.8)
DY ()| < MY1E7°1 Y (,0) € 5] x [0, 6071, (3.9)

If a strip S does not containy, then (3.7)—(3.9) hold ir§” = S’ for any closed stris’ C S.
Particularly, it takes place for ar§/ ¢ S(5., 1), wheres, = maXy,, <1 (Nyk).

For the V-junction, properties (3.7)—(3.9) can be obtained by a direct analysis of the matrix
(3.3); for other junctions that were considered, it holds too.

Let the classH; (S(8o, 8)) consist of functionsb°(y) holomorphic in a stripS (8o, 8x)
and such that the noriirf™>_|®°(8 + i£)|?dé ]2 is uniformly bounded with respect ton
any segmentdy, 8.,1 C (80, 80)-

Let us denotd,, := max(§,, 6;). Owing to (2.11), we get from Theorem 1.7 in [18] that
4, belong toH;(S(3,, 1)). Hence, taking into account properties (3.7)—(3.9), we have from
Lemma 1.14 in [18] that the functions{"", w{™" given by (3.5) belong tdZy (6", 0{";
S(84+,1)). Then it follows from Theorem 1.15 in [18] that after the inverse Mellin transform
we get the solutions

§+ioco
" (z)) = / " (y)z;" dy,
’ §—ioo ’
. 8+ioo - (3.10)
m v —
v ) = / Ty, S e (0 D)
§—ioo
that meet the priori condition (2.12) ford, = 84+ Thus the solution that we looked for is
obtained and it is unique.

4. Stress asymptotics

Let us investigate now the stress asymptoticg as 0. Lets_ := miny,, s, (My). It follows
from the membershig, € H;(S(3,, 1)) together with Lemma 1.6 and Remark 1.5 in [18],
that§, () is uniformly bounded in any closed strf) C S(8,, 1). Then, taking into account
the estimates (3.7)—(3.9), we may shift, as usual é&gd1]), the integration path in (3.10)
to the left into the stripS(3,, 5_), calculating the residues of the integrands at zggoef

the functionA(y) in the stripS(5_, +). Thus, using representations (3.6) for the residue
calculations, we get the asymptotics for the Kolosov—Muskhelishvili potentials

Ni Prn—
(m) - ( ) (m)
o= X DS K bew (2]t s o @

8g<Myr<1 n=1 p=0
Nk Prn—1

w;m) (Z.j) = Z )’A Z Z Kknp Z |qu< ) ¢4(1:;,f£_7_)j k + \If(m)(Z, ), (42)
5g<9iyk<l n=1 p=0

Pr,—p—1 AM*

1
n, Pry,—v—p—1 v v
Kinp = Z Z (. Pen—v—p— >/(Sk), g()._ N vgﬁ(y)b - (4.3)
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The remainder term®" (z;), w"(z;) have the form (3.10) fo8 € (5,, 8_) and belong to
Hy(8,.8_; W{™) (see Theorem 1.15 in [18]). Hence by Lemma 1.10 in [18], for BHycC

W™ and anyls;. 8.,] C (6. ) there is a paramete (9", 67',"; & 8.,) < oo such that
017 @l W @) < Mzl ™0, {2, 8) € W) x [8g, 8,1 (4.4)

Substituting then (4.1)—(4.4) in (2.10), we obtain the stress asymptotics

Ni Pin—1
(m)(p 9) Z 0 Yk Z Z Kknp Zlogq ( ) F;lezn p— q(@) + Gi;nﬂ)(p, 9),

8g <Ny <l n=1 p=0
8. —
09 (0, )] < Myp~®¢,

Ve e (0,86_—38,), {p,0le W C W™, My(e; W) < o0. (4.5)

The parameter®/, and P, in (4.1)—(4.5) were presented above. The stress intensity factors
Ky depend on the right-hand sides of the boundary conditions, and they are explicitly ex-
pressed by (4.3) for a junction of infinite wedge-shaped plates (for a more arbitrary plate
geometry such dependence is more complicated and usually is obtained by solving the com-
plete boundary-value problem). For eagh the number of stress intensity factoks,,, is

equal toZNk P, = Np, i.e, to the multiplicity of the zero of the determinant(y). The

functlonsF;;",zn »—q () are infinitely smooth and can be written explicitly. For example,
F(m) ©) : Ze—lka Z 1 (—if;)P—a—w
primpma (p—q—w!
w=0

X[2+ OB + (L= 80u) P as) s — €1, 5]

for U;Zw, wheredy,, is the Kronecker delta and the functioﬁg(w) were described above.

One can see from (4.5) thatdf < 0, particularly, ifg; (o), dfi(p)/dp = O(p), e > 0, as
o — 0, then the stress singularities are determined by the zg¢rokthe determinantA (y)
of the matrixB,s(y) in the strip 0< %ty < 1. When there are no zeros there, stresses and
strains are bounded (in any wedge internaftt”), and they may be singular in the opposite
case.

So far, we considered the problem for an infinite wedge-shaped plate junction. By means
of the cut-off function technique, one can prove analogous to [1-4], that the asymptotic
representation (4.5) holds also for junctions of arbitrarily shaped plates, having the same
wedge-shaped local geometry near the singular point. The only difference in comparison
with the infinite wedge-shaped plates case is that the stress intensity fagigrsan not
be calculated explicitly by formula (4.3) and depend on loads in a more complicated manner.
Let us give a sketch of the proof.

Let a solution to the problem for an arbitrary junction exists such that the displacements
uf’") belong to the Sobolev spadé? in any finite domaini.e., the solution possesses a finite
elastic energy there. Let us choose a sufficiently small raRlius 0 near the singular point
such that the plate edges are straight and the boundary lgads df;(p)/dp belong to

ﬁz((Sg, 1), 8, < 1, on the interval O< p < R. Letn(p) € C* be a cut-off function such
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Figure 2 Dependence of; on6@ ateD = 9@
for differentG in the V-shaped junction.

Figure 3 Dependence af;, on6@ atoD) = 12¢°
for differentG in the V-shaped junction.

thatn(p) = {1,0 < p < R/2; 0,p > R}. Then the functiongu™ present a solution of
the auxiliary problem for the Lamé system in the corresponding infinite junction: with mass
forces £ being nonzero only aR/2 < p < R; with right-hand sides of the boundary
conditions being nonzero atd p < R, differing from the initial ones only ak /2 < p < R,

and belonging tciz(ch, o). This solution belongs ta¥2 in the whole of the wedge® ™.

We look for a solution of the same problem for the infinite junction in the fofti =
5" 4+ v™ Herev" is the volume potential (fof,"), whose kernel is the Green function
of the problem for the half plane that the boundary is directed along one of the ed@é4 of
with the zero displacements at this boundary. Thl@’ﬁ, m=1 ..., M*, satisfy the homo-
geneous Lamé system and the boundary conditions with right-hand§§i(dﬁsdfj (p)/dp €
L2(840, 2), wheres,o := max(s,, 0). Solving the problem fos"” as described in the previous
sections, we obtain the solution with asymptotics (4.5) and such that its complex potentials
belong not only toH2(8,04., 1; W;’")), but also toH, (8,04, 81 ; W;m)) C Ho(504, L; W;’")),
wheredgo; := max(§,, 0), 14 := ming,,-1(Nyx). The last membership holds, since either
the pointy = 1 is not a zero ofA(y) or it is a zero, butKy,, = 0 for y; = 1 (what
follows from satisfying the solvability conditions for both the original probIemu‘fS’P and
the auxiliary problem fon?i('")). It follows from that membership (see Lemmas 1.17, 1.18 in
[18]) that 3™ belong to the Sobolev spad&? in the whole of the infinite wedge® ™. The
volume potential and, consequentzl))(/f” have the same property.

Since the uniqueness (in stresses) takes place in this space, the sotul,%?newhich
also belong tow?) and vi('") may differ only by a rigid-body displacement. Thus, the stress
asymptotics for an arbitrary and the corresponding infinite junctions coincide at least on the
singular interval O< y; < 1. Considering more carefully the asymptotics of the volume
potential Vi(’") and of its boundary traces @as— 0, it is possible to show that the asymptotics
coincide for the whole intervall, < y; < 1.

The plate bending rigidity will change, generally speaking, the stress asymptotics, but this
change will concern only a small region surrounding the singular point, having a dimension
of the order of the plate thickness. At a distance that is large with respect to the thickness, the
membrane asymptotics presented here holds.

By use of the methods of [11-12], the investigation techniques given in this paper can be
extended to the study of the stress singularities in thin intersecting anisotropic plates. Applying
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the methods of [14-15] one can investigate the stress

elastic (visco-elastic) plate junctions.
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Figure 6 Dependence of;, on6@ atoD = 90° for
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for differentG in the T-shaped junction.

singularities also in thin hereditary-
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for differentG in the T-shaped junction.

5. Numerical examples

The singularity powers,, that is, the zeros of the determinataty ), were evaluated in the
strip S(O, 1) for different plate junctions by the Muller (complex parabola) method, which
calculates real and complex roots of a complex function. The numerical results for the V-
and T-shaped junctions are given in Figures 2-9, representing the dependencenahe
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angled® at some fixed angles™ at different values of the rigidity parametér= G?V =
(HPu@)/(HOu®) for v = @ — 0.3. (The cas®® = 6@, HOL® = @,
v® = 1@ is presented for the T-junction).
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Figure 10 Dependence of® on G for different6® Figure 11 Dependence of@* = §3* on G for

in the V-shaped junction. differentdD in the T-shaped junction.

There exist only real rootg, in the strip O< Ry < 1 for the analysed V-shaped junctions. For
the T-shaped junctions, complex roots occur for some considered parameters; the real parts of
these roots are presented for such cases by dotted lines on the figures.

The caseG = 0-001 coincides with the limiting cas6 — 0 almost at all points. The
singularity powers for this limiting case correspond to the union of the singularity powers for
two separate problems. For the V-shaped junction, the first is the problem foi thelate
with some tractions prescribed on both boundafi€s andI"® (it generates no singulari-
ties for the parameters considered), the second is the problem fé¥ ®helate with some
tractions prescribed on the boundai® and some normal traction and tangent displacement
prescribed on the boundafy® (the singularity powers are independenté¥). For the T-
shaped junction, the first is also the problem for Wi’ plate with some tractions prescribed
on both boundarieE™Y andI"® (it generates no singularities for the parameters considered),
the second is the problem for the join8d? U W plate with some tractions prescribed on
both boundarie§® andI"® and, in addition, with some tangent displacement and with the
continuity conditions for the normal traction and normal displacement prescribed on the line
I'® | i.e.with the conditions of thin inextensible fiber on this line, (the singularity powers are
independent of D).

The caseG = 1000 coincides with the limiting caseé — oo almost at all points. The
singularity powers for this limiting case correspond to the union of the singularity powers for
two separate problems. For the V-shaped junction, the first is the problem foi thelate
with some tractions prescribed on the boundBf and some normal traction and tangent
displacement prescribed on the boundafy (the singularity powers are independent&?),
the second is the problem for thig® plate with some tractions prescribed on both boundaries
'@ andT'® (it generates no singularities for the parameters considered). For the T-shaped
junction, the first is also the problem for thié® plate with some tractions prescribed on the
boundaryl'® and some normal traction and tangent displacement prescribed on the bound-
ary I'® (the singularity powers are independentéé?), the second is the problem for the
joined W® U w® plate with some tractions prescribed on both bounddti@sandI'® (the
singularity powers are independenttd?).

There is also a curve for the T-shaped junction that is independent of the rigidity parameter
G and the anglé®. It corresponds to the singularity powers generated by the antisymmetric



340 S. E. Mikhailov and I. V. Namestnikova

deformation mode for the joine®® U W® plate under the action of some antisymmetric
tractions prescribed on both boundarigd andI"®.

One can see from these pictures that there are critical valdesof the angled® that
are boundaries between the parametric zones with and without the singulgyities0. It
is possible to determine the dependencé@f on G. These dependencies are presented in
Figures 10 and 11 for the V- and T-junctions at some fixed arggtesTo show the half-infinite
interval 0< G < oo in the figures, the mapping = 2G/(1 + G) was used, and thé-axis
is linear with respect t@. If a point {G, 6} lies above the corresponding critical curve for
an angle9, then a singularity;, > 0 arises at these parameters. If this point lies below the
curve, the stress singularity is absent.

Note that for the V-junctiong@* — 6, asG — 0 for all 6V. The angles;,, ~ 1287°
is the solution of the equatior92= tan(26) and is the corresponding critical value for the
plate W ® with some tractions prescribed on the boundafy) and some normal traction and
tangent displacement prescribed on the boundéfy Foro® > 6, the critical angled@*
increases monotonically with growir@, reaching 180atG = oco. Foro® < 6}, the critical
angled@* decreases monotonically with growiidg reaching zero af = oo.

For the T-junction,0@®* — 67, asG — 0 for all V. The angled;, =
arcsiny/(I+ «)/4) ~ 61.3 is the corresponding critical value for the joined pl&at& Uw ©
with some tractions prescribed on both boundafigsandl"® and with the conditions of thin
inextensible fiber prescribed on the lif&. Foro™ > 65, the critical angled®* increases
monotonically with growingG reaching 90atG = oco. Foré™® < 6, the critical angled®*
decreases monotonically with growidg reaching zero at = oo.

Thus, analysing these curves, one can give some recommendations concerning plate junc-
tion optimization to avoid the stress singularities in singular points.

6. Conclusion

Our analysis has shown:

(1) The problem for a space junction of thin elastic wedge-shaped plates can be reduced to a
boundary-value problem for a system of partial differential equations of plane elasticity
with non-traditional transmission conditions. A general solution of this system can be
expressed in terms of the Kolosov—Muskhelishvili complex potentials. This reduces the
problem to a boundary-value/transmission problem for holomorphic functions belonging
to corresponding weighted Hardy-type classes.

(2) Application of the Mellin transforms and the classes properties allows to obtain singular
stress asymptotics near the joint apex. The stress singularity powers (exponents) are the
zeros of an explicitly written determinant, whose order equals twice the number of plates
involved in the junction. It is pointed out that the results of this analysis hold also for
more arbitrary junctions.

(3) The numerical examples of the stress singularity powers dependence on elastic para-
meters and geometry for the V- and T-junctions are given. They show the feasibility of
the analysis and allow to calculate the stress-singularity powers to use them in general
numerical methods.g, by introducing special singular elements in the Finite-Element
or the Boundary-Element Method. Another possible application of the results is a special
choice of the junction elastic and/or geometrical parameters to avoid the stress singularity
in the junction model and the stress concentration in a real plate junction.
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