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Stress–singularity analysis in space junctions of thin plates
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Abstract. The stress singularity in space junctions of thin linearly elastic isotropic plate elements with zero
bending rigidities is investigated. The problem for an intersection of infinite wedge-shaped elements is considered
first and the solution for each element, being in the plane stress state, is represented in terms of holomorphic
functions (Kolosov–Muskhelishvili complex potentials) in some weighted Hardy-type classes. After application
of the Mellin transform with respect to radius, the problem is reduced to a system of linear algebraic equations.
By use of the residue calculus during the inverse Mellin transform, the stress asymptotics at the wedge apex is
obtained. Then the asymptotic representation is extended to intersections of finite plate elements. Some numerical
results are presented for a dependence of stress singularity powers on the junction geometry and on membrane
rigidities of plate elements.
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1. Introduction

Three-dimensional structure junctions consisting of plane plate elements are generally used
in engineering. The points, where plate intersection lines0(l) meet each other and/or free
edges of plates, hereafter being referred to as singular points, are often stress concentrators.
Examples of such points for V-shaped and T-shaped junctions of plates are presented in
Figure 1.

Figure 1. Schemes of V- and T-shaped junctions
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Numerous studies are devoted to the investigation of elastic theory solution behaviour at
singular points in two-dimensional bodies and at singular lines in three-dimensional bodies.
The solution asymptotics for general elliptic boundary-value problems are studied in [1–3]
(see also [4]). Asymptotics in some problems of solid mechanics with singular points are
considered in [5–15]. In [16, Section 5], the singular behaviour of solutions is investigated
for space junctions of plate elements with infinite membrane rigidities and finite bending
rigidities.

Another limiting case, namely a space junction of plate elements with finite membrane
rigidities and zero bending rigidities will be considered in this paper. Such neglect of the
bending rigidities may be done for sufficiently thin plates and is rather popular in engineering
computations. It delivers seemingly intermediate solution asymptotics valid at large distances
from the singular point in comparison with the plate thicknesses. Under this assumption the
plate elements of a junction will be in the plane stress state and have some special transmission
conditions along the joint lines.

In Section 2 of this study, the problem statement is given for a three-dimensional in-
tersection of infinite wedge-formed plates with zero bending rigidities, where each plate is
in the plane stress state, and corresponding transmission conditions are deduced. (Note that
the transmission conditions for intersecting Kirchhoff or Reissner–Mindlin plates with finite
rigidities is thoroughly analysed in [17].) The stress singularity analysis for such problems can
be executed in different function classes. For example, in [1–4], [16] the solution asymptotics
for some problems are analysed in the weighted or usual Sobolev spaces. We will work in
the Hardy-type weighted classes of holomorphic functions (for the Kolosov–Muskhelishvili
potentials) introduced in [18] and being sufficiently convenient for an application of the in-
tegral Mellin transform. In Section 3, after the application of the Mellin transform to the
representation of a general solution in terms of the Kolosov–Muskhelishvili complex poten-
tials, the problem is reduced to a system of linear algebraic equations with a parameter. The
employment of the residue calculus and some properties of the Hardy-type functions in the
inverse Mellin transform allow us to obtain in Section 4 an asymptotic representation for the
problem solution. By means of the cut-off function techniques, the asymptotic representations
can be extended to intersections of plates of arbitrary form. In Section 5, stress singularity
powers are numerically evaluated at singular points for some standard junction geometries.
Critical junction values (angles, rigidities), separating the parameter zones with and without
the stress singularities, are analysed too.

2. Problem statement, boundary and transmission conditions

Let {xα}, α = 1 . . . 3, be global Cartesian coordinates. Hereafter, unless otherwise stated, the
summation in repeating subscripts (excluding the subscriptsρ andθ) is supposed from 1 to
3; superscript summation is not done unless it is pointed out explicitly. Plate elements are
considered below as two-dimensional plane elastic objects and the term thicknessH is used
only to calculate plate tractions (per unit length)Hσαβ from plate stressesσαβ.

Let us considerM plates intersecting along a joint line0. Let kα be the unit tangent to0.
For each plateW(m) (m = 1, . . . ,M) adjoining0, we denote byn(m)α the normal to0 lying in
W(m) plane and being external toW(m). LetH(m) be the plate thickness. Then the sum of the
boundary tractions transmitted from each plate to0 must be equal to a prescribed loadgj
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M∑
m=1

H(m)σ
(m)
jβ n

(m)
β = gj , j = 1, . . . ,3. (2.1)

Moreover the displacementsu(m)j of each plate at0 must be equal to one and the same
unknown functionUj

u
(m)
j = Uj, j = 1, . . . ,3, m = 1, . . . ,M. (2.2)

Taking into account that the plates do not resist the bending moments and, hence, the trans-
verse tractions, we have that only membrane stresses are involved in (2.1). Then these equa-
tions can be rewritten in the form

M∑
m=1

H(m)[σ (m)αβ kαn
(m)
β kj + σ (m)αβ n

(m)
α n

(m)
β n

(m)
j ] = gj , j = 1, . . . ,3. (2.3)

From Equations (2.2) we obtain the equations for the membrane displacements

u
(m)
j kj = Ujkj , u

(m)
j n

(m)
j = Ujn(m)j , m = 1, . . . ,M. (2.4)

Let us assume that not all plates lie in one plane (not alln
(m)
j are parallel). Then (2.3) gives

three independent equations with respect to 2M boundary tractionsσ (m)αβ kαn
(m)
β , σ (m)αβ n

(m)
α n

(m)
β .

This can be verified by projection of (2.3) onto the tangentkj and onto any two not coincident
normalsn(m1)

j , n(m2)
j . Excluding three auxiliary functionsUj from 2M Equations (2.4), we

get then from (2.3), (2.4) 2M independent boundary conditions for 4M values: the boundary
membrane tractionsσ (m)αβ kαn

(m)
β , σ (m)αβ n

(m)
α n

(m)
β and the displacementsu(m)j kj , u

(m)
j n

(m)
j .

If all the plates lie in one plane with a normalζj , i.e., n(m)j = ±n(1)j , m = 1, . . . ,M, then
we have from (2.3) only two independent conditions

M∑
m=1

H(m)σ
(m)
αβ kαn

(m)
β = gjkj ,

M∑
m=1

H(m)σ
(m)
αβ n

(1)
α n

(m)
β = gjn(1)j . (2.5)

The third relation, which can be obtained from (2.3), gives the solvability condition imposed
on the prescribed tractions:gj ζj = 0. In this case, 2M relations (2.4) involve only two
auxiliary functionsUjkj andUjn

(1)
j ; excluding them, we obtain from (2.5) and (2.4) again

2M independent conditions for 4M boundary membrane tractions and displacements.
When0 is a plate edge not in contact with other plates, we will also call0 a joint line for

M = 1. If some tractionsgj are prescribed on it, then we have there two boundary conditions
(2.5) where the sum sign must be dropped, that is,M = 1 must be substituted. If some
displacementsfi are prescribed instead of tractions on this edge, then we have two boundary
conditions (2.4), but for known functionsUj = fj and forM = 1.

Thus, ifM plates contact along a joint line0, M > 1, then there are generally 2M inde-
pendent transmission/boundary conditions on this line for 4M boundary membrane tractions
and displacements. This means that each plate edge generates two transmission/boundary
conditions on0. Below the transmission conditions will also be called boundary conditions.

LetL joint lines0(l) (l = 1, . . . , L) of M∗ wedge-shaped platesW(m),m = 1, . . . ,M∗,
intersect in the pointxj = 0. It is simple to see that 16 L 6 2M∗. Since each wedge-shaped
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plate has two edges, there are 4M∗ boundary conditions onL joint lines0(l) for 8M∗ boundary
membrane tractions and displacements.

Let us introduce the local Cartesian{yj }, j = 1,2, and the polar(ρ, θ) coordinate systems
in the plane of each plate with the origin in the corner point. Then them-th plate is a wedge
W(m) := W(0, θ (m)) : (ρ, θ) ∈ (0,∞)× (0, θ (m)), whose plane stress state is described by
the plane elasticity equations

σ
(m)
jα,α = 0, σ

(m)
jα = 3(m)

∗ u
(m)
β,βδjα + µ(m)(u(m)j,α + u(m)α,j ), (j, α, β = 1,2). (2.6)

Here3∗ := 23µ/(3 + 2µ); 3 andµ are the Lamé constants. The corresponding boundary
conditions are prescribed at both edges of the wedge. For example, if some tractionsgρ(ρ),
gθ(ρ) are prescribed at the edgeθ = θ(m), then the boundary conditions there have the form

σθθ (ρ, θ
(m)) = gθ (ρ), σρθ (ρ, θ

(m)) = gρ(ρ). (2.7)

If some displacementsfρ(ρ), fθ(ρ) are prescribed there, then we have

uθ(ρ, θ
(m)) = fθ(ρ), uρ(ρ, θ

(m)) = fρ(ρ). (2.8)

If, instead, themth plate contacts through this edge with the otherM−1 plates, the local forms
of the corresponding transmission conditions are obtained from (2.3)–(2.5), by expressing the
displacements and the stresses there in local polar coordinate systems.

For example, the boundary conditions for a V-junction (Figure 1) have the form

0(1) : σ
(1)
θθ (ρ, θ

(1)) = g(1)θ (ρ), σ
(1)
ρθ (ρ, θ

(1)) = g(1)ρ (ρ),
0(2) : σ

(2)
θθ (ρ, θ

(2)) = g(2)θ (ρ), σ
(2)
ρθ (ρ, θ

(2)) = g(2)ρ (ρ),
0(3) : σ

(1)
θθ (ρ,0) = g(31)

θ (ρ), σ
(2)
θθ (ρ,0) = g(32)

θ (ρ),

H (1)σ
(1)
ρθ (ρ,0)+H(2)σ

(2)
ρθ (ρ,0) = g(3)ρ (ρ), u(1)ρ (ρ,0)− u(2)ρ (ρ,0) = 0. (2.9)

The general solution of system (2.6) can be written in terms of the complex Kolosov–
Muskhelishvili potentials [19]. Particularly, the radial derivatives of the displacements
∂u(m)α /∂ρ, and the stressesσ (m)αβ for mth plate in polar coordinates have the form

∂

∂ρ
u(m)ρ (ρ, θ) = 1

4µ(m)

2∑
j=1

[(κ(m) − 1)8(m)
j (zj )− zj8(m)′

j (zj )− e2iθj9
(m)
j (zj )],

∂

∂ρ
u
(m)
θ (ρ, θ) = i

4µ(m)

2∑
j=1

(−1)j [(κ(m) + 1)8(m)
j (zj )+ zj8(m)′

j (zj )+ e2iθj9
(m)
j (zj )],

σ (m)ρρ (ρ, θ) =
1

2

2∑
j=1

[28(m)
j (zj )− zj8(m)′

j (zj )− e2iθj9
(m)
j (zj )],

σ
(m)
θθ (ρ, θ) =

1

2

2∑
j=1

[28(m)
j (zj )+ zj8(m)′

j (zj )+ e2iθj9
(m)
j (zj )],

σ
(m)
ρθ (ρ, θ) =

i

2

2∑
j=1

(−1)j [zj8(m)′
j (zj )+ e2iθj9

(m)
j (zj )]. (2.10)
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Hereθ1 := −θ2 := θ ; zj (ρ, θ) := ρ exp(iθj ) ∈ W(m)
j := W(θ

(m)
j− , θ

(m)
j+ ); θ

(m)
1− := θ

(m)
2+ :=

θ
(m)
− = 0, θ(m)1+ := −θ(m)2− := θ(m)+ = θ(m) and the general wedge notationW(θ−, θ+) : {(ρ, θ) ∈
(0,∞) × (θ−, θ+)} is used. In addition,κ(m) := (3 − ν(m))/(1 + ν(m)), whereν(m) :=
3(m)/[2(3(m) + µ(m))] are the Poisson ratios;8(m)

j (zj ) and9(m)
j (zj) are analytical functions

of the complex argumentszj , the prime denote the derivative with respect tozj .
Using expressions (2.10) at the boundariesθ = θ(m)∓ (θj = θ(m)j∓ ) of the wedgesW(m), we

substitute them in boundary conditions (2.3)–(2.5), (2.7)–(2.8). Thus, we arrive at the boun-
dary-value problem for analytic functions: 4M∗ holomorphic functions8(m)

j (zj ), 9
(m)
j (zj )

(j = 1,2; m = 1, . . . ,M∗) must be determined from 4M∗ boundary conditions. When
speaking below about a solution, we mean a solution of this problem for analytic functions.

We define below some weighted Hardy-type function classes (considered in details in [18]),
in which the solution will be looked for. Denotez = ρ exp(iθ). LetH2(δ0, δ∞;W(θ−, θ+)) be
the class of functions8(z) holomorphic in a wedgeW(θ−, θ+) and such that
supθ−<θ<θ+

∫∞
0 |8(ρeiθ )|2ρ2δ−1 dρ <∞ for all δ ∈ (δ0, δ∞).

Let us consider the following linear combinations of the complex potentials

9̃
(m)
j∓ (zj) := zj8(m)′

j (zj )+ exp(2iθ(m)j∓ )9
(m)
j (zj ).

In fact, only these combinations and the original potentials8
(m)
j (zj ) are involved in the

representations (2.10) at the boundaries and, hence, in the boundary conditions (2.3)–(2.5),
(2.7)–(2.8) (after the differentiation of the conditions for displacements with respect toρ).
We shall write that a pair of functions8(m)

j ,9
(m)
j belongs toH̃2(δ0, δ∞;W(m)

j ), if 8(m)
j ∈

H2(δ0, δ∞;W(m)
j ) and9̃(m)

j∓ ∈H2(δ0, δ∞; W̃ (m)
j∓ ), where

W̃
(m)
j− := W(θ(m)j− , θ̃ ), W̃

(m)
j+ := W(θ̃, θ(m)j+ ), for any θ̃ ∈ (θ(m)j− , θ

(m)
j+ ).

Let the prescribed boundary functions be

gj (ρ), dfj (ρ)/dρ ∈ L̂2(δg,1), δg < 1, (2.11)

where the clasŝL2(δ0, δ∞) consists of the functionsg(ρ), such that
∫∞

0 |g(ρ)|2ρ2δ−1 dρ <∞,
for all δ ∈ (δ0, δ∞).

We look for, as a solution, the Kolosov–Muskhelishvili potentials

8
(m)
j ,9

(m)
j ∈ H̃2(δ̃0,1;W(m)

j ), (2.12)

for someδ̃0<1. The choice ofH̃2 for the generation of a solution is motivated by the following
reasons. First, this class is sufficiently convenient for the application of the Mellin transform
in complex variables and, moreover, the boundary values of the Mellin transforms are repre-
sented in terms of the Mellin transforms of the boundary values, for functions from this class
(Lemma 1.16 in [18]). Second, the Kolosov–Muskhelishvili potentials from this class, and
consequently, the stresses generated by them may have weak singularities at the wedge apex
(Lemma 1.10 in [18]) and are square integrable over any finite two-dimensional part ofW(m)

(including also the singular point),i.e., have a finite elastic energy there. In addition, if the
potentials belong toH̃2(δ̃0, δ̃∞;W(m)

j ) ⊂ H̃2(δ̃0,1;W(m)
j ) for δ̃0 < 1 < δ̃∞, then the elastic

energy over the whole ofW(m) is bounded (Lemmas 1.17–1.18 in [18]). Third, as will be seen
below, the solution of the problem exists and is unique for8

(m)
j ,9

(m)
j ∈ H̃2(δ̃0,1;W(m)

j ).



332 S. E. Mikhailov and I. V. Namestnikova

3. Problem solution

We will solve the problem using the Mellin transform of the complex potentials, which reduces
the problem to an algebraic one. This idea seems to have been used first in [20]. LetS(δ0, δ∞)
be the stripδ0 < <γ < δ∞ in the complexγ -plane. (Hereafter,<γ denotes the real part of
γ .) It follows from Theorem 1.15 in [18] that the Mellin transforms with respect to complex
variables exist for8(m)

j ,9
(m)
j ∈ H̃2(δ̃0,1;W(m)

j ) at anyγ ∈ S := S(δ̃0,1),

8
(m)∨
j (γ ) :=

∫ ∞
0
8
(m)
j (z)zγ−1dz, 9

(m)∨
j (γ ) :=

∫ ∞
0
9
(m)
j (z)zγ−1 dz,

z ∈ W(m)
j ; 9̃

(m)∨
j∓ (γ ) = −γ8(m)∨

j (γ )+ exp(2iθ(m)j∓ )9
(m)∨
j (γ ).

In addition,8(m)∨
j , 9

(m)∨
j ∈ H̃∨2 (θ(m)j− , θ

(m)
j+ ;S), that is

8
(m)∨
j ∈ H∨2 (θ(m)j− , θ

(m)
j+ ;S) and 9̃

(m)∨
j− ∈ H∨2 (θ(m)j− , θ̃;S), 9̃

(m)∨
j+ ∈ H∨2 (θ̃ , θ (m)j+ ;S)

for any θ̃ ∈ (θ(m)j− , θ
(m)
j+ ).

HereH∨2 (θ−, θ+;S(δ0, δ∞)) is the class of functions8∨(γ ) holomorphic inS(δ0, δ∞) and
such that the norm supθ−<θ<θ+[

∫∞
−∞ |8∨(δ+ iξ)eξθ |2dξ ]1/2 is uniformly bounded with respect

to δ on any segment[δ′0, δ′∞] ⊂ (δ0, δ∞).
Let us denote by

〈g〉(γ ) :=
∫ ∞

0
g(ρ)ργ−1 dρ

the Mellin transform with respect to a real variable. For a function8(z) from H2(δ0, δ∞;
W(θ−, θ+)) there is the following property connecting the Mellin transforms with respect to
the real variableρ (over a lineθ = const.) and to the complex variablez = ρeiθ (Lemma 1.16
in [18]):

〈8〉(γ, θ) = e−iγ θ8∨(γ ), γ ∈ S(δ0, δ∞), θ ∈ [θ−, θ+].

Consequently, under condition (2.12) this property holds for8
(m)
j (z) in the segmentsθ(m)j− 6

θ 6 θ(m)j+ ; for the combination9̃(m)
j− (zj ) it holds only in the half intervalθ(m)j− 6 θ < θ

(m)
j+ and

for 9̃(m)
j+ (zj ) in θ(m)j− < θ 6 θ(m)j+ .

Having this in mind, we apply the Mellin transform with respect toρ to the relations (2.10)
and obtain the representations, coupling the Mellin transforms of the displacement derivatives
and stresses with the Mellin transform of the complex potentials, which hold also on the
boundariesθ = θ(m)1∓ (θj = θ(m)j∓ )
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〈
∂u(m)ρ

∂ρ

〉
(γ, θ) = 1

4µ(m)

2∑
j=1

[(κ(m) − 1+ γ )e−iγ θj8
(m)∨
j (γ )− ei(2−γ )θj9(m)∨

j (γ )],

〈
∂u

(m)
θ

∂ρ

〉
(γ, θ) = i

4µ(m)

2∑
j=1

(−1)j [(κ(m) + 1− γ )e−iγ θj8
(m)∨
j (γ )+ ei(2−γ )θj9(m)∨

j (γ )],

〈σ (m)ρρ 〉(γ, θ) =
1

2

2∑
j=1

[(2+ γ )e−iγ θj8
(m)∨
j (γ )− ei(2−γ )θj9(m)∨

j (γ )],

〈σ (m)θθ 〉(γ, θ) =
1

2

2∑
j=1

[(2− γ )e−iγ θj8
(m)∨
j (γ )+ ei(2−γ )θj9(m)∨

j (γ )],

〈σ (m)ρθ 〉(γ, θ) =
i

2

2∑
j=1

(−1)j [−γ e−iγ θj8
(m)∨
j (γ )+ ei(2−γ )θj9(m)∨

j (γ )]. (3.1)

Applying the Mellin transform with respect toρ to boundary conditions (2.3)–(2.5),
(2.7)–(2.8) (differentiating preliminary inρ the conditions for the displacementsu) and us-
ing (3.1), we get a system of 4M∗ linear algebraic equations to determine the 4M∗ Mellin
transforms8(m)∨

j (γ ),8(m)∨
j (γ )

4M∗∑
β=1

Bαβ(γ )Fβ(γ ) = Gα, α = 1, . . . ,4M∗, (3.2)

{Fβ(γ )} := {8(m)∨
1 (γ ),8

(m)∨
2 (γ ),9

(m)∨
1 (γ ),9

(m)∨
2 (γ )}, m = 1, . . . ,M∗,

{Gα(γ )} := {〈ĝj 〉(γ ), 〈df̂j /dρ〉(γ )},
where ĝj , f̂j are obtained from the corresponding functionsg(l)j , f

(l)
j prescribed on the

boundary.
For the V-junction (see boundary conditions (2.9)), for example,M∗ = 2, the matrixBαβ

has the form

(2− γ )e−iγ θ(1) (2− γ )eiγ θ(1) ei(2−γ )θ(1) e−i(2−γ )θ(1) 0 0 0 0
−γ e−iγ θ(1) γ eiγ θ(1) ei(2−γ )θ(1) −e−i(2−γ )θ(1) 0 0 0 0
0 0 0 0 (2− γ )e−iγ θ(2) (2− γ )eiγ θ(2) ei(2−γ )θ(2) e−i(2−γ )θ(2)

0 0 0 0 −γ e−iγ θ(2) γ eiγ θ(2) ei(2−γ )θ(2) −e−i(2−γ )θ(2)
(2− γ ) (2− γ ) 1 1 0 0 0 0
0 0 0 0 (2− γ ) (2− γ ) 1 1
−H(1)γ H(1)γ H(1) −H(1) −H(2)γ H(2)γ H(2) −H(2)
κ(1)−1+γ
µ(1)

κ(1)−1+γ
µ(1)

−1
µ(1)

−1
µ(1)

− κ(2)−1+γ
µ(2)

− κ(2)−1+γ
µ(2)

1
µ(2)

1
µ(2)
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{Fβ(γ )} = {8(1)∨
1 ,8

(1)∨
2 ,9

(1)∨
1 ,9

(1)∨
2 ,8

(2)∨
1 ,8

(2)∨
2 ,9

(2)∨
1 ,9

(2)∨
2 },

(3.3)
{Gα(γ )} = 2{〈g(1)θ 〉, i〈g(1)ρ 〉, 〈g(2)θ 〉, i〈g(2)ρ 〉, 〈g(31)

θ 〉, 〈g(32)
θ 〉, i〈g(3)ρ 〉,0}.

The solution of system (3.2) has the form

Fα(γ ) =
4M∗∑
β=1

B−1
αβ (γ )Gβ(γ ), B−1

αβ (γ ) = Aαβ(γ )/1(γ ), (3.4)

where1(γ ) is the determinant of the matrixBαβ(γ ), Aαβ(γ ) is the transposed matrix of its
algebraic complements andB−1

αβ (γ ) is the inverse matrix toBαβ(γ ).

Expressions (3.4) can be rewritten in terms of8
(m)∨
j (γ ),9(m)∨

j (γ ), 9̃(m)∨
j∓ (γ )

8
(m)∨
j =

4M∗∑
β=1

B−1
4m−4+j,βGβ, 9

(m)∨
j =

4M∗∑
β=1

B−1
4m−2+j,βGβ,

9̃
(m)∨
j∓ =

4M∗∑
β=1

D̃
(m)
jβ∓Gβ, (3.5)

D̃
(m)
jβ∓(γ ) := −γB−1

4m−4+j,β(γ )+ exp(2iθ (m)j∓ )B
−1
4m−2+j,β(γ ).

One can see from (2.3)–(2.5), (2.7)–(2.8), (3.1) thatBαβ(γ ) and consequentlyAαβ(γ ) and
1(γ ) are entire functions. Suppose, in addition, that1(γ ) is not equal to zero identically (in
the opposite case it would lead to the linearly dependent boundary conditions, what seems not
to happen in correctly stated elasticity problems). Hence (seee.g.[21, Chapter V, Section 1])
1(γ )may have only isolated zerosγk of finite multiplicitiesN◦k in any finite part ofγ -plane.
By (3.4), consequently,B−1

αβ (γ ) is a meromorphic function with poles of finite multiplicities

in γk. Moreover, according to [22, Theorem 7.1], the matrixB−1
αβ (γ ) has the form

B−1
αβ (γ ) =

Nk∑
n=1

Pkn∑
q=1

(γ − γk)−q
Pkn−q∑
p=0

φ
(np)

αk χ
(n,Pkn−q−p)
βk +Dαβ(γ ) (3.6)

in the neighborhood ofγk. HereNk is the dimension of the eigenspace of the matrixBαβ(γk),
φ
(np)

αk andχ(np)βk (n = 1, . . . , Nk, p = 0, . . . , Pkn − 1) are some canonical systems of eigen-
vectors and associated vectors of the matrixBαβ(γ ) corresponding toγk and, respectively, of
the conjugate matrixBβα(γk) corresponding toγ k,Dαβ(γ ) is a matrix function holomorphic
at γk. From point 3 of Section 1 in [22], it follows also that

∑Nk
n=1Pkn = N◦k ; in other words,

the algebraic multiplicity of the eigenvalueγk for the matrixBαβ(γ ) atγ = γk is equal to the
multiplicity of the zeroγk for the function1(γ ).

For a stripS ′ in theγ -plane, letS ′r denote a perforated strip obtained fromS ′ after deleting
all circular r−neighborhoods of the zerosγk ∈ S ′. If S ′ does not includeγk, thenS ′r = S ′.
Suppose there is a constantM∨ for anyS ′r and anyθ̃ (m)j ∈ (θ(m)j− θ

(m)
j+ ) such that

|B−1
4m−4+j,β(γ )| < M∨|eiγ θ | ∀ (γ, θ) ∈ S ′r × [θ(m)j− , θ

(m)
j+ ], (3.7)
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|D̃(m)
jβ−(γ )| < M∨|eiγ θ | ∀ (γ, θ) ∈ S ′r × [θ(m)j− , θ̃

(m)
j ], (3.8)

|D̃(m)
jβ+(γ )| < M∨|eiγ θ | ∀ (γ, θ) ∈ S ′r × [θ̃ (m)j , θ

(m)
j+ ]. (3.9)

If a strip S does not containγk, then (3.7)–(3.9) hold inS ′r = S ′ for any closed stripS ′ ⊂ S.
Particularly, it takes place for anyS ′ ⊂ S(δ+,1), whereδ+ := max<γk<1(<γk).

For the V-junction, properties (3.7)–(3.9) can be obtained by a direct analysis of the matrix
(3.3); for other junctions that were considered, it holds too.

Let the classH ◦2 (S(δ0, δ∞)) consist of functions8◦(γ ) holomorphic in a stripS(δ0, δ∞)
and such that the norm[∫∞−∞ |8◦(δ + iξ )|2dξ ]1/2 is uniformly bounded with respect toδ on
any segment[δ′0, δ′∞] ⊂ (δ0, δ∞).

Let us denoteδg+ := max(δg, δ+). Owing to (2.11), we get from Theorem 1.7 in [18] that
Gα belong toH ◦2 (S(δg,1)). Hence, taking into account properties (3.7)–(3.9), we have from
Lemma 1.14 in [18] that the functions8(m)∨

j , 9
(m)∨
j given by (3.5) belong toH̃∨2 (θ

(m)
j− , θ

(m)
j+ ;

S(δg+,1)). Then it follows from Theorem 1.15 in [18] that after the inverse Mellin transform
we get the solutions

8
(m)
j (zj) :=

∫ δ+i∞

δ−i∞
8
(m)∨
j (γ )z

−γ
j dγ,

(3.10)

9
(m)
j (zj) :=

∫ δ+i∞

δ−i∞
9
(m)∨
j (γ )z

−γ
j dγ, δ ∈ (δg+,1)

that meet thea priori condition (2.12) forδ̃0 = δg+. Thus the solution that we looked for is
obtained and it is unique.

4. Stress asymptotics

Let us investigate now the stress asymptotics asρ → 0. Letδ− := min<γk>δg (<γk). It follows
from the membershipGα ∈ H ◦2 (S(δg,1)) together with Lemma 1.6 and Remark 1.5 in [18],
thatGα(γ ) is uniformly bounded in any closed stripS ′ ⊂ S(δg,1). Then, taking into account
the estimates (3.7)–(3.9), we may shift, as usual (seee.g. [1]), the integration path in (3.10)
to the left into the stripS(δg, δ−), calculating the residues of the integrands at zerosγk of
the function1(γ ) in the stripS(δ−, δ+). Thus, using representations (3.6) for the residue
calculations, we get the asymptotics for the Kolosov–Muskhelishvili potentials

8
(m)
j (zj) =

∑
δg<<γk<1

z
−γk
j

Nk∑
n=1

Pkn−1∑
p=0

Kknp

p∑
q=0

1

q! logq
(

1

zj

)
φ
(n,p−q)
4m−4+j,k +8(m)

∗j (zj ), (4.1)

9
(m)
j (zj) =

∑
δg<<γk<1

z
−γk
j

Nk∑
n=1

Pkn−1∑
p=0

Kknp

p∑
q=0

1

q! logq
(

1

zj

)
φ
(n,p−q)
4m−2+j,k +9(m)

∗j (zj ), (4.2)

Kknp =
Pkn−p−1∑
v=0

4M∗∑
β=1

χ
(n,Pkn−v−p−1)
βk G(v)βk , G(v)βk :=

1

v!
dv

dγ v
Gβ(γ )|γ=γk . (4.3)
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The remainder terms8(m)
∗j (zj ), 9

(m)
∗j (zj ) have the form (3.10) forδ ∈ (δg, δ−) and belong to

H2(δg, δ−;W(m)
j ) (see Theorem 1.15 in [18]). Hence by Lemma 1.10 in [18], for anyW ′j ⊂

W
(m)
j and any[δ′0, δ′∞] ⊂ (δg, δ−) there is a parameter̃M(θ̃(m)j− , θ̃

(m)
j+ ; δ′0, δ′∞) <∞ such that

|8(m)
∗j (zj )|, |9(m)

∗j (zj )| 6 M̃|zj |−δ, {zj , δ} ∈ W ′j × [δ′0, δ′∞]. (4.4)

Substituting then (4.1)–(4.4) in (2.10), we obtain the stress asymptotics

σ
(m)
αβ (ρ, θ) =

∑
δg<<γk<1

ρ−γk
Nk∑
n=1

Pkn−1∑
p=0

Kknp

p∑
q=0

logq
(

1

ρ

)
F
(m)
αβkn,p−q(θ)+ σ (m)∗αβ(ρ, θ),

|σ (m)∗αβ(ρ, θ)| < M∗ρ−δg−ε,

∀ ε ∈ (0, δ− − δg), {ρ, θ} ∈ W ′ ⊂ W(m), M∗(ε;W ′) <∞. (4.5)

The parametersNk andPkn in (4.1)–(4.5) were presented above. The stress intensity factors
Kknp depend on the right-hand sides of the boundary conditions, and they are explicitly ex-
pressed by (4.3) for a junction of infinite wedge-shaped plates (for a more arbitrary plate
geometry such dependence is more complicated and usually is obtained by solving the com-
plete boundary-value problem). For eachγk, the number of stress intensity factorsKknp is
equal to

∑Nk
n=1Pkn = N◦k , i.e., to the multiplicity of the zero of the determinant1(γ ). The

functionsF (m)αβkn,p−q(θ) are infinitely smooth and can be written explicitly. For example,

F
(m)
ρρkn,p−q(θ) :=

1

2

2∑
j=1

e−iγkθj

p−q∑
w=0

1

(p − q − w)!(−iθj )
p−q−w

×[(2+ γk)φ(nw)4m−4+j,k + (1− δ0w)φ
(n,w−1)
4m−4+j,k − e2iθj φ

(nw)

4m−2+j,k]
for σ (m)ρρ , whereδ0w is the Kronecker delta and the functionsφ(nw)αk were described above.

One can see from (4.5) that ifδg < 0, particularly, ifgi(ρ),dfi(ρ)/dρ = O(ρε), ε > 0, as
ρ → 0, then the stress singularities are determined by the zerosγk of the determinant1(γ )
of the matrixBαβ(γ ) in the strip 06 <γ < 1. When there are no zeros there, stresses and
strains are bounded (in any wedge internal toW(m)), and they may be singular in the opposite
case.

So far, we considered the problem for an infinite wedge-shaped plate junction. By means
of the cut-off function technique, one can prove analogous to [1–4], that the asymptotic
representation (4.5) holds also for junctions of arbitrarily shaped plates, having the same
wedge-shaped local geometry near the singular point. The only difference in comparison
with the infinite wedge-shaped plates case is that the stress intensity factorsKknp can not
be calculated explicitly by formula (4.3) and depend on loads in a more complicated manner.
Let us give a sketch of the proof.

Let a solution to the problem for an arbitrary junction exists such that the displacements
u
(m)
i belong to the Sobolev spaceW2

1 in any finite domain,i.e., the solution possesses a finite
elastic energy there. Let us choose a sufficiently small radiusR > 0 near the singular point
such that the plate edges are straight and the boundary loadsgj (ρ), dfj (ρ)/dρ belong to
L̂2(δg,1), δg < 1, on the interval 0< ρ < R. Let η(ρ) ∈ C∞ be a cut-off function such
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Figure 2. Dependence ofγk on θ(2) atθ(1) = 90◦
for differentG in the V-shaped junction.

Figure 3. Dependence ofγk onθ(2) atθ(1) = 120◦
for differentG in the V-shaped junction.

that η(ρ) = {1,0 6 ρ 6 R/2; 0, ρ > R}. Then the functionsηu(m)i present a solution of
the auxiliary problem for the Lamé system in the corresponding infinite junction: with mass
forcesf (m)i being nonzero only atR/2 6 ρ 6 R; with right-hand sides of the boundary
conditions being nonzero at 0< ρ 6 R, differing from the initial ones only atR/26 ρ 6 R,
and belonging tôL2(δg,∞). This solution belongs toW2

1 in the whole of the wedgesW(m).
We look for a solution of the same problem for the infinite junction in the formv(m)i =

ṽ
(m)
i + V (m)

i . HereV (m)i is the volume potential (forf (m)i ), whose kernel is the Green function
of the problem for the half plane that the boundary is directed along one of the edges ofW(m)

with the zero displacements at this boundary. Thenṽ
(m)
i , m = 1, . . . ,M∗, satisfy the homo-

geneous Lamé system and the boundary conditions with right-hand sidesg̃j (ρ),df̃j (ρ)/dρ ∈
L̂2(δg0,2), whereδg0 := max(δg,0). Solving the problem for̃v(m)i as described in the previous
sections, we obtain the solution with asymptotics (4.5) and such that its complex potentials
belong not only toH̃2(δg0+,1;W(m)

j ), but also toH̃2(δg0+, δ1+;W(m)
j ) ⊂ H̃2(δg0+,1;W(m)

j ),
whereδg0+ := max(δg+,0), δ1+ := min<γk>1(<γk). The last membership holds, since either
the pointγ = 1 is not a zero of1(γ ) or it is a zero, butK1np = 0 for γ1 = 1 (what
follows from satisfying the solvability conditions for both the original problem foru

(m)
i and

the auxiliary problem for̃v(m)i ). It follows from that membership (see Lemmas 1.17, 1.18 in
[18]) that ṽ(m)i belong to the Sobolev spaceW2

1 in the whole of the infinite wedgesW(m). The
volume potential and, consequently,v(m)i have the same property.

Since the uniqueness (in stresses) takes place in this space, the solutionsηu
(m)
i (which

also belong toW2
1 ) andv(m)i may differ only by a rigid-body displacement. Thus, the stress

asymptotics for an arbitrary and the corresponding infinite junctions coincide at least on the
singular interval 0< γk < 1. Considering more carefully the asymptotics of the volume
potentialV (m)

i and of its boundary traces asρ → 0, it is possible to show that the asymptotics
coincide for the whole intervalδg < γk < 1.

The plate bending rigidity will change, generally speaking, the stress asymptotics, but this
change will concern only a small region surrounding the singular point, having a dimension
of the order of the plate thickness. At a distance that is large with respect to the thickness, the
membrane asymptotics presented here holds.

By use of the methods of [11–12], the investigation techniques given in this paper can be
extended to the study of the stress singularities in thin intersecting anisotropic plates. Applying
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the methods of [14–15] one can investigate the stress singularities also in thin hereditary-
elastic (visco-elastic) plate junctions.
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Figure 4. Dependence ofγk on θ(2) at θ(1) = 150◦
for differentG in the V-shaped junction.

Figure 5. Dependence ofγk on θ(2) at θ(1) = 180◦
for differentG in the V-shaped junction.
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Figure 6. Dependence ofγk on θ(2) atθ(1) = 90◦ for
differentG in the T-shaped junction.

Figure 7. Dependence ofγk on θ(2) at θ(1) = 120◦
for differentG in the T-shaped junction.
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Figure 8. Dependence ofγk on θ(2) at θ(1) = 150◦
for differentG in the T-shaped junction.

Figure 9. Dependence ofγk on θ(2) at θ(1) = 180◦
for differentG in the T-shaped junction.

5. Numerical examples

The singularity powersγk, that is, the zeros of the determinant1(γ ), were evaluated in the
strip S(0,1) for different plate junctions by the Müller (complex parabola) method, which
calculates real and complex roots of a complex function. The numerical results for the V-
and T-shaped junctions are given in Figures 2–9, representing the dependence ofγk on the
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angleθ(2) at some fixed anglesθ(1) at different values of the rigidity parameterG = G(21) =
(H (2)µ(2))/(H (1)µ(1)) for ν(1) = ν(2) = 0·3. (The caseθ(3) = θ(2), H(3)µ(3) = H(2)µ(2),
ν(3) = ν(2) is presented for the T-junction).
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Figure 10. Dependence ofθ(2) onG for differentθ1

in the V-shaped junction.
Figure 11. Dependence ofθ(2)? = θ(3)? on G for
differentθ(1) in the T-shaped junction.

There exist only real rootsγk in the strip 0< <γ < 1 for the analysed V-shaped junctions. For
the T-shaped junctions, complex roots occur for some considered parameters; the real parts of
these roots are presented for such cases by dotted lines on the figures.

The caseG = 0·001 coincides with the limiting caseG → 0 almost at all points. The
singularity powers for this limiting case correspond to the union of the singularity powers for
two separate problems. For the V-shaped junction, the first is the problem for theW(1) plate
with some tractions prescribed on both boundaries0(1) and0(3) (it generates no singulari-
ties for the parameters considered), the second is the problem for theW(2) plate with some
tractions prescribed on the boundary0(2) and some normal traction and tangent displacement
prescribed on the boundary0(3) (the singularity powers are independent ofθ(1)). For the T-
shaped junction, the first is also the problem for theW(1) plate with some tractions prescribed
on both boundaries0(1) and0(4) (it generates no singularities for the parameters considered),
the second is the problem for the joinedW(2) ∪W(3) plate with some tractions prescribed on
both boundaries0(2) and0(3) and, in addition, with some tangent displacement and with the
continuity conditions for the normal traction and normal displacement prescribed on the line
0(4), i.e. with the conditions of thin inextensible fiber on this line, (the singularity powers are
independent ofθ(1)).

The caseG = 1000 coincides with the limiting caseG → ∞ almost at all points. The
singularity powers for this limiting case correspond to the union of the singularity powers for
two separate problems. For the V-shaped junction, the first is the problem for theW(1) plate
with some tractions prescribed on the boundary0(1) and some normal traction and tangent
displacement prescribed on the boundary0(3) (the singularity powers are independent ofθ(2)),
the second is the problem for theW(2) plate with some tractions prescribed on both boundaries
0(2) and0(3) (it generates no singularities for the parameters considered). For the T-shaped
junction, the first is also the problem for theW(1) plate with some tractions prescribed on the
boundary0(1) and some normal traction and tangent displacement prescribed on the bound-
ary 0(4) (the singularity powers are independent ofθ(2)), the second is the problem for the
joinedW(2) ∪W(3) plate with some tractions prescribed on both boundaries0(2) and0(3) (the
singularity powers are independent ofθ(1)).

There is also a curve for the T-shaped junction that is independent of the rigidity parameter
G and the angleθ(1). It corresponds to the singularity powers generated by the antisymmetric
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deformation mode for the joinedW(2) ∪ W(3) plate under the action of some antisymmetric
tractions prescribed on both boundaries0(2) and0(3).

One can see from these pictures that there are critical valuesθ(2)? of the angleθ(2) that
are boundaries between the parametric zones with and without the singularitiesγk > 0. It
is possible to determine the dependence ofθ(2)? onG. These dependencies are presented in
Figures 10 and 11 for the V- and T-junctions at some fixed anglesθ(1). To show the half-infinite
interval 0< G <∞ in the figures, the mapping̃G = 2G/(1+G) was used, and theG-axis
is linear with respect tõG. If a point {G, θ(2)} lies above the corresponding critical curve for
an angleθ(1), then a singularityγk > 0 arises at these parameters. If this point lies below the
curve, the stress singularity is absent.

Note that for the V-junction,θ(2)? → θ?V 0 asG → 0 for all θ(1). The angleθ?V0 ≈ 128·7◦
is the solution of the equation 2θ = tan(2θ) and is the corresponding critical value for the
plateW(2) with some tractions prescribed on the boundary0(2) and some normal traction and
tangent displacement prescribed on the boundary0(3). For θ(1) > θ?V 0, the critical angleθ(2)?

increases monotonically with growingG, reaching 180◦ atG = ∞. Forθ(1) < θ?V 0, the critical
angleθ(2)? decreases monotonically with growingG, reaching zero atG = ∞.

For the T-junction, θ(2)? → θ?T 0 as G → 0 for all θ(1). The angle θ?T 0 =
arcsin(

√
(1+ κ)/4) ≈ 61·3◦ is the corresponding critical value for the joined plateW(2)∪W(3)

with some tractions prescribed on both boundaries0(2) and0(3) and with the conditions of thin
inextensible fiber prescribed on the line0(4). Forθ(1) > θ?V0, the critical angleθ(2)? increases
monotonically with growingG reaching 90◦ atG = ∞. Forθ(1) < θ?V 0, the critical angleθ(2)?

decreases monotonically with growingG, reaching zero atG = ∞.
Thus, analysing these curves, one can give some recommendations concerning plate junc-

tion optimization to avoid the stress singularities in singular points.

6. Conclusion

Our analysis has shown:

(1) The problem for a space junction of thin elastic wedge-shaped plates can be reduced to a
boundary-value problem for a system of partial differential equations of plane elasticity
with non-traditional transmission conditions. A general solution of this system can be
expressed in terms of the Kolosov–Muskhelishvili complex potentials. This reduces the
problem to a boundary-value/transmission problem for holomorphic functions belonging
to corresponding weighted Hardy-type classes.

(2) Application of the Mellin transforms and the classes properties allows to obtain singular
stress asymptotics near the joint apex. The stress singularity powers (exponents) are the
zeros of an explicitly written determinant, whose order equals twice the number of plates
involved in the junction. It is pointed out that the results of this analysis hold also for
more arbitrary junctions.

(3) The numerical examples of the stress singularity powers dependence on elastic para-
meters and geometry for the V- and T-junctions are given. They show the feasibility of
the analysis and allow to calculate the stress-singularity powers to use them in general
numerical methods,e.g., by introducing special singular elements in the Finite-Element
or the Boundary-Element Method. Another possible application of the results is a special
choice of the junction elastic and/or geometrical parameters to avoid the stress singularity
in the junction model and the stress concentration in a real plate junction.
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