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Stress singularity is investigated in a plane problem for a bonded isotropic hereditarily elastic (viscoelastic)
aging infinite wedge. The general solution of the operator Lamé equations, which are partial differential
equations in space co-ordinates and integral equations in time, respectively, is represented in terms of
one-parametric holomorphic functions (the Kolosov—Muskhelishvili complex potentials depending on
time) in weighted Hardy-type classes. After application of the Mellin transform with respect to the radial
variable, the problem is reduced to a system of linear Volterra integral equations in time. By using the
residue theory for the inverse Mellin transform, the stress asymptotics and strain estimates near the singular
point are presented here for non-hereditary Dundurs parameters. The general case of the hereditary
Dundurs operators is considered in Part II (see [21]).

1. Introduction, constitutive equations, and general solution

The stress singularity in bonded elastic bodies has been sufficiently well studied. Bogy
[7—9], Bogy and Wang [10], and other authors investigated this problem for an
infinite wedge by the Mellin transform technique. Aksentyan [1], and Chobanyan and
Gevorkyan [12] analysed this problem by looking for a solution in a special power
form (for homogeneous bodies such techniques was used by Williams [25, 26]).

However, if bonded parts exhibit creep and aging as, for example, reinforced
concrete, plastics or composites, the stress singularity character can essentially
change. The stress singularity in a plane problem for bonded hereditarily-elastic
non-aging body was investigated in [4, 5, 11] using the Laplace transform with
respect to time and the Mellin transform with respect to the radial variable.

The stress singularity in a corner point for a plane problem for a homogeneous
hereditarily elastic aging body (for which the Laplace transform with respect to time is
not effectively applicable) was investigated by using the Mellin transform with respect
to the radial variable in [19]. Note that the stress asymptotics near the crack tip (the
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particular case of a corner point) in a continuously inhomogeneous aging body was
analysed in [3, 27] by expansion of the solution in a Neumann-type series. In the
present paper the technique of [19] is extended to investigate the stress singularity in
a plane problem for a bonded isotropic hereditarily elastic aging body at the point of
intersection of the interface with the external boundary. The consideration is based on
the properties of functions from some Hardy-type classes [20].

Generalized Hooke’s law for body parts considered has the form (see e.g. [23, 2])
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where p
ij

and e
ij

are the stress and strain tensors, "
1

and k
N
are the operator Lamé

parameters different for the different body parts, "0(t ), k0(t), "* (t, q ), k*(t, q) are
known functions, l

6
is the operator Poisson ratio, and the summation is supposed in

repeating subscripts. It is suggested that an action begins at the instant t"0; for this
reason the lower integration limits in these formulas are equal to zero. Underlined
symbols designate hereditary Volterra operators of the first or the second kind;
out-of-integral terms (of the operators of the second kind) are marked by zero
superscript and integral ones by asterisk.

If "*(t, q)""*(t!q ), k* (t, q)"k* (t!q ), "0"const., k0"const., then the ma-
terial is hereditarily elastic but not aging. If "*(t, q )"k* (t, q )"k*(t, q)"0 and
"0(t)Oconst. or k0(t )Oconst., then the material is elastic and aging but not hered-
itary. If "*(t, q)"k*(t, q )"0 and "0(t)"const. and k0(t)"const., then the mater-
ial is classical elastic.

Substituting (1.1) into the equilibrium equations
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between strains and displacements, we come to the system of generalized Lamé
equations, which are partial differential ones in space co-ordinates and integral ones
in time:
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For the plane strain or plane stress state i, j"1%2; for the plane stress case it is
necessary, additionally, to replace "

1
by "

1 *
"2"
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Cartesian co-ordinates in the plane.
The functions "0, k0, "*, k* are independent of the space co-ordinates x

i
in each

body part and we will consider the solution from function classes (see below) such that
it is possible to interchange the order of the time operators "

1
and k

N
with the

differentiation with respect to the space co-ordinates. Then it is possible to repeat
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reasoning given in [22] for the classical elasticity, considering now "
1

and k
6

as
non-commutative hereditary operators. As a result, it is easy to show for the plane
strain or the plane stress state that the representation of the general solution of
hereditary elasticity equations (1.2) for an aging body holds in terms of the complex
Kolosov—Muskhelishvili potentials u

j
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j
, t ), /
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, t) (see [19]). This representation in

polar co-ordinates (o, h ) has form
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real-valued applied loads.

2. Definitions of some classes of holomorphic functions and Volterra operators

We present in this section the definitions of some weighted Hardy-type classes of
one-parametric holomorphic functions and Volterra operators dependent on a para-
meter, which will be used in the next sections. A description of their properties is given
in [20] (see also the Appendix).
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Let us consider a segment [0, ¹], 0(¹)R, and (for ¹"R) a half-infinite
interval [0, R). Unless otherwise stated, all definitions and results formulated in this
section for the segment [0, ¹] hold also for ¹"R after replacing [0, ¹] by [0, R)
and the non-strict inequalities )¹ by the strict ones (R.
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3. A problem for a bonded wedge

We will consider a plane problem for a bonded infinite wedge ¼ (1)X¼ (2):
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Functions and operators given in the regions ¼ (l) are marked below by the corres-
ponding supplementary subscript or superscript. We will consider a problem on
a time segment [0, ¹] for ¹)R. Suppose the hereditary operators
"*, k*3VC(0, ¹ ) (see point 50 of section 2) and the out-of-integral terms
"0(t), k0 (t)3C[0, ¹], "0(t),k0(t)O0 (t3[0, ¹]).
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Here only equations (3.10) and (3.11) include the integral operators and their operator
coefficients are expressed in terms of four hereditary operators k
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(o, 0), · )!1

2
(a
N
!b

N
)

][z
j
(o, 0)'(2)@

j
(z

j
(o, 0), · )#((2)

j
(z

j
(o, 0), · )]N (t)"2gJ (0)h (o, t), (3.13)
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2
+
j/1

(!1)jM(a
N
#1)'(1)

j
(z

j
(o, 0), · )#1

2
(a
N
!b

N
)[z

j
(o, 0)((1)@

j
(z

j
(o, 0), · )

#((1)
j

(z
j
(o, 0) · ,)]N (t)

#

2
+
j/1

(!1)jM(a
N
!1)'

j2
(z

j
(o, 0), · )#1

2
(a
N
!b

N
)[z

j
(o, 0)'(2)@

j
(z

j
(o, 0), · )

#((2)
j

(z
j
(o, 0), · )]N(t)"2igJ (0)o (o, t), (3.14)

gJ (0)h (o, t) :"k
N
J M[(k

N
(1))~1#(k

N
(2))~1]g(0)h (o, t)#4 f (0)@o (o, t)N,

gJ (0)o (o, t) :"k
N
J M[(k

N
(1))~1#(k

N
(2))~1]g(0)o (o, t)!4 f (0)@h (o, t)N,

Suppose henceforth that k
N
J "kJ 0(t)#k

N
J *, (k

N
(l))~1"[1/k(l)0(t)]#k

N
JJ (l)*, where kJ 0(t),

1/k(l)0(t)3C[0, ¹] and k
N
J *, k

N
JJ (l)*3VC(0, ¹ ).

To take into consideration the boundary loads having power singularities with
respect to radial variable, suppose that the prescribed functions g(l)

i
, f (0)@

i
3

CLª
2
(d

g
, 1; 0, ¹ ) for some d

g
(1. Then (see point 80 of the Appendix) also

gJ (0)
i

3CLª
2
(d

g
, 1; 0, ¹).

Thus, we have obtained the system of eight linear boundary value intergo-differen-
tial equations (3.4)—(3.9), (3.13), (3.14) for the eight unknown complex potentials
'(l)

j
(z

j
, t), ((l)

j
(z

j
, t ) ( j, l"1%2), z

j
3¼ (l)

j
"¼(h(l)

j~
, h(l)

j`
), h(l)

jG
:"!(!1)jh(l)

G
(see

(3.1)), t3[0, ¹]. In system (3.4)— (3.9), (3.13), (3.14) only the last two equations are
integral ones in reality and their left-hand sides are expressed in terms of only two
Dundurs operators a

N
and b

N
. The original operators k

N
(l), i

N
(l) will affect the solution only

through the right-hand sides gJ (0)
i

of equations (3.13), (3.14).
Let us consider the following linear combinations of the complex potentials:

(3 (l)
jG

(z
j
, q) :"z

j
'@

j
(z

j
, q)#exp(2ih(l)

jG
)(

j
(z

j
, q ). In fact, only these combinations and

the original potentials '
j
(z

j
, q ) are involved in the boundary equations (3.4)—(3.9),

(3.13), (3.14). We shall write that some functions '(l)
j

, ((l)
j
3CH3

2
(d

0
, d

=
; ¼ (l)

j
; 0, ¹ )

if '(l)
j
3CH

2
(d

0
, d

=
; ¼ (l)

j
; 0,¹) and (3 (l)

jG
3CH

2
(d

0
, d

=
; ¼I (l)

jG
; 0, ¹ ), where ¼I (l)

j~
:"

¼(h(l)
j~

, hI (l)
j

),¼I (l)
j`

:"¼(hI (l)
j
, h(l)

j`
), for any hI (l)

j
3(h(l)

j~
, h(l)

j`
).

We look for a solution of the problem (3.4)— (3.9), (3.13), (3.14) such that the
Kolosov—Muskhelishvili potentials

'(l)
j

(z
j
, q), ((l)

j
(z

j
, q)3CH3

2
(d3

0
, 1; ¼ (l)

j
; 0, ¹ ) (3.15)

for some appropriate dI
0
(1.

Note that this also provides the membership of z
j
'(l)@

j
(z

j
, q), ((l)

j
(z

j
, q) to

CH
2
(dI

0
, 1; ¼ (l)@

j
; 0, ¹ ) for any ¼M (l)@

j
L¼ (l)

j
. Since dI

0
(1, the memberships '(l)

j
(z

j
(o,

h), q)3¸
2
(¼ (l)

j0
), z

j
'(l)@

j
(z

j
(o, h), q)#exp(ih

j
)((l)

j
(z

j
(o, h ), q)3¸

2
(¼ (l)

j0
) for any finite

part ¼ (l)
j0

of the wedge ¼ (l)
j

and for any q3[0, ¹] follow from Lemmas 1.17, 1.18 and
Remark 1.19 in [20]. Consequently, the functions u

i,k
(o, h, q), p

ik
(o, h, q)3¸

2
(¼ (l)

0
) for

any q3[0, ¹] and the stored elastic energy is finite in each finite part of the wedges for
any q3[0, ¹] and dI

0
(1. Moreover, u

i,k
and p

ik
satisfy estimates of type (A.4) for any

d@
=
(1 and d@

0
'dI

0
.
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If (3.15) holds, then (see point 20 of the Appendix) the following Mellin transforms
with respect to the complex variables z

j
exist for any c3S :"S (d3

0
, 1):

'(l)@
2

(c, q) :"P
=

0

'(l)
j

(z
j
, q )zc~1

j
dz

j
,

((l)@
1

(c, q) :"P
=

0

((l)
j

(z
j
, q)zc~1

j
dz

j
, z

j
3¼ (l)

j
,

(I (l)@
jG

(c, q)"!c'(l)@
j

(c, q)#exp(2ih(l)
jG

)((l)@
jG

(c, q);

'(l)@
j

, ((l)@
j

3CH3 [
2
(h(l)

j~
, h(l)

j`
; S; 0, ¹ ).

Here and in the following, we write that functions '(l)@
j

, ((l)@
j

3CH3 @
2

(h(l)
j~

, h(l)
j`

;
S; 0; ¹ ) if '(l)@

j
3CH[

2
(h(l)

j~
, h(l)

j`
; S; 0, ¹ ) and (3 (l)@

j~
3CH[

2
(h(l)

j~
, h3 (l)

j
; S; 0, ¹ ),

(3 (1)@
j`

3CH[
2
(h3 (l)

j
, h(l)

j`
; S; 0, ¹ ) for any hI (l)

j
3(h(l)

j~
, h(l)

j`
). Let us also introduce the

notations

F(c, t) :"M'(1)@
1

, '(1)@
2

, ((1)@
1

, ((1)@
2

, '(2)@
1

, '(2)@
2

, ((2)@
1

, ((2)@
2

N, (3.16)

#
G

:"Mh(1)
1G

, h(1)
2G

, h(1)
1G

, h(1)
2G

, h(2)
1G

, h(2)
2G

, h(2)
1G

, h(2)
2G

N.

Then the membership F3CH3 [
2
(#

~
, #

`
; S; 0, ¹ ) means that '(l)@

j
, ((l)@

j
3

CH3 [
2
(h(l)

j~
, h(l)

j`
; S; 0, ¹ ) (l, j"1%2).

From (3.15) it also follows (see point 30 of the Appendix) that the Mellin transforms
of the potentials with respect to the complex variables are expressed in terms of the
Mellin transforms of their boundary values with respect to the radial variable:

'(l)@
j

(c, q)"exp(ich(l)
jG

)S'(o exp(ih(l)
jG

), q)T(c),

(3 (l)@
jG

(c, q)"!c'(l)@
j

(c, q)#exp(2ih(l)
jG

)((l)@
j

(c, q)"

exp(ich(l)
jG

)S(3 (l)@
jG

(o exp(ih(l)
jG

), q)T(c),

where SgT (c, t) denotes the Mellin transform of a function g (o, t ) with respect to the
radial variable o (see (A.1)).

Taking this into account, we apply the Mellin transform with respect to radial
variable to equations (3.4)— (3.9), (3.13), (3.14) and obtain the system of 8 Volterra
integral equations (from which only the last two are integral ones in fact) with
a parameter c for the 8 unknown transforms of the complex potentials '(l)@

j
(c, t),

((l)@
j

(c, t). After denoting 8-dimensional vectors and (8]8) matrices by bold or gothic
letters, the system can be written in the form:

[B
1
(c)F(c, · )](t)"G(c, t ), (3.17)

[B
1
(c)F(c, · )](t) :"GB0(c, t )F(c, t )#P

t

0

B*(c, t, q )F(c, q) dqH,
The unknown vector F (c, t) is given by (3.16) while the known vector G(c, t ) :"
2 MSg(1)h T, iSg(1)

o T, Sg(2)h T, iSg(2)
o T, Sg(0)h T, iSg(0)

o T, SgJ (0)h T, iSgJ (0)o TN. Since g(l)
j
, gJ (0)

j
3

CLª
2
(d

g
, 1; 0, ¹ ), we see from point 10 of the Appendix that G3CH0

2
(S (d

g
, 1); 0, ¹ ).
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To obtain the solution of the original problem for a wedge, it is necessary to solve
system (3.17) and to invert the Mellin transformed potentials '(l)@

j
((j)@

j
in order to

obtain stresses and displacements after substituting '(l)
j
, ((l)

j
into relations (1.3). We will

consider now the case when the operator B
1
(c) degenerates into an algebraic matrix.

4. Degenerate case

For a degenerate case of hereditary operators we obtain here the power-logarithmic
stress asymtotic stress asymptotics for the solution from the function class CH3

2
. The

methods and results of this section will be used in the following sections. Particularly,
the same asymptotics hold for some non-degenerate cases too. However, we show also
in this section that even for the degenerate case it is impossible, in general, to obtain
the analogous power-logarithmic asymptotics for strains but appropriate estimates
are given instead.

Suppose a
N
"a0 (t) and b

N
"b0 (t), i.e. the operators a

N
, b
N
are not hereditary although

may be aging. This happens particularly when the Poisson ratios l
N
(l) (and conse-

quently the parameters i
N
(l)) are not hereditary (i.e. l

N
(l)"l(l)0(t)) and the operators k

N
(1)

and k
N
(2) are proportional to one operator (i.e. k

N
(l)"m(l)(t)k

N
, where k

N
3VC(0, ¹ ) is

a hereditary operator and functions m(l)(t)3C[0, ¹]). In this case the operator B
1
(c)

degenerates into the algebraic matrix B0(c, t).
Then for any fixed time instant t3[0, ¹], we arrive at the system of linear algebraic

equations

B0(c, t)F (c, t)"G(c, t) (4.1)

which is also obtained by solving the corresponds classical elasticity problem for
a wedge by using the complex Kolosov—Muskhelishvili potentials.

The solution of (4.1) is represented in the form

F(c, t)"(B0)~1(c, t)G(c, t ), (4.2)

(B0)~1(c, t) :"A(c, t)/*(c, t), (4.3)

where *(c, t) is the determinant of the matrix B0(c, t), A(c, t) is the transposed matrix of
its algebraic complements, and (B0)~1 (c, t) is the inverse matrix to B0(c, t). The function
*(c, t) coincides with the corresponding functionD(h(2), !h(1), a0(t), b0(t), 1!c) given
in [9], where the classical elasticity problem is solved for bonded wedges.

Let t be a fixed time instant. The matrixes B0(c, t) and A(c, t ) are entire functions of
c (see (3.18)). The function * (c, t ) is also an entire one, is not equal to zero identically
(see e.g. [9]), and consequently may have only zeros of finite multiplicities N0

k
at

isolated points c
k
(t) (see e.g. [6, chapter V, section 1]). By (4.3), consequently (B0)~1

(c, t) is a meromorphic function in the c-plane with poles of finite multiplicities in c
k
(t).

Moreover, according to [16, Theorem 7.1], (B0)~1 (c, t ) has the form

(B0)~1
jw

(c, t)"
Nk

+
n/1

Pkn

+
q/1

[c!c
k
(t)]~q

Pkn~q
+

p/0

/(np)
jk

(t)s(n,Pkn~q~p)
wk

(t )#!
jw

(c, t ) (4.4)

in a neighbourhood of c
k
(t). Here j, w"1%8; N

k
(t ) is the dimension of the eigenspace

of the matrix B0
jw

(c
k
, t); /(np)

jk
(t ) and s(np)

jk
(t) (n"1%N

k
(t), p"0%P

kn
!1) are some

canonical systems of eigenvectors and associated vectors of the matrix B0
jw

(c, t)
corresponding to c

k
(t) and of the conjugate matrix B0

wj
(c, t) corresponding to cN

k
(t) at
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a fixed instant t; !
jw

(c, t ) is a matrix function holomorphic in c
k
(t). In addition, due to

a result in [16, point 3 of section 1], +Nk (t)
n/1

P
kn

(t)"N0
k
, i.e. the algebraic multiplicity of

the eigenvalue c
k
(t) of the matrix B0

jw
(c

k
, t) is equal to the multiplicity of the zero c

k
(t)

of the function * (c, t ).
Due to (3.16), we can write (4.2) and (4.3) also in the form

'(1)@
j

(c, t)"
8
+

w/1

(B0 )~1
jw

(c, t)G
w
(c, t),

'(2)@
j

(c, t)"
8
+

w/1

(B0)~1
4`j,w

(c, t)G
w
(c, t ),

((1)@
j

(c, t )"
8
+

w/1

(B0)~1
2`j,w

(c, t)G
w
(c, t)

((2)@
j

(c, t)"
8
+

w/1

(B0)~1
6`j,w

(c, t )G
w
(c, t ),

(3 (l)@
jG

(c, t)"
8
+

w/1

DI (l)
jwG

(c, t)G
w
(c, t), j"1%2,

DI (l)
jwG

(c, t) :"!c(B0)~1
4l~4`j,w

(c, t)#exp(2ih(l)
jG

) (B0)~1
4l~2`j,w

(c, t ). (4.5)

Hereafter, let d (r, q ) be a set of circular neighbourhoods with a radius r'0 of all
the roots c

k
(q) and let for a strip S@ in the c-plane, S@

r
(q) :"S@Cd(r, q) be a perforated

strip.
The analysis of the elements of the matrix B0 (c, q ) (see (3.18)) shows that for any

q and any perforated strip S@
r
there exist finite positive numbers M@ :"M@(S@

r
, q) and

M@ :"M@(S@
r
, q) such that

D1/*(c, q) D(M@ exp[G2(h(2)!h(1))Im c] (Im cP$R), (4.6)

D(B0)~1
jw

(c, q) D(M@ De*ch D, ∀(c, h)3SM @
r
][h(1)

j~
, h(1)

j`
], (4.7)

D(B0)~1
4`j,w

(c, q) D(M@De*ch D, ∀(c, h)3SM @
r
][h(2)

j~
, h(2)

j`
], (4.8)

DI (l)
jw~

(c, q)(M@ De*ch D, ∀ (c, h)3SM @
r
][h(l)

j~
, hI (l)

j
], (4.9)

DI (l)
jw`

(c, q)(M@ De*ch D, ∀ (c, h)3SM @
r
][hI (l)

j
, h (l)

j`
], (4.10)

for j"1%2, w"1%8, and any hI (l)
j
3(h(l)

j~
, h(l)

j`
). Moreover, if a strip S@ does not

include zeros c
k
(q) of * (c, q) for q3[0, t], then S@

r
"S@ and the parameteres M@, M@

can be considered as independent of time q on the segment [0, t].
Let us introduce

d
g`

(t) :"max Csup
k

(Re c
k
(t)), d

gD (Re c
k
(t)(1),

d
s`

(t) :"sup
k,q

[Re c
k
(q)] (0)q)t, Re c

k
(q)(1),

d
gs`

(t ) :"max[d
s`

(t ), d
g
]"sup

q
d
g`

(q) (0)q)t). (4.11)

If the instantaneous Dundurs parameters a0 (t), b0 (t) are such that d
g`

(t)(1, then
there are no zeros of * (c, t) in the strip S (d

g`
(t), 1). If, in addition, a0(q), b0(q) are such

that d
gs`

(t)(1, then there are no zeros of * (c, q) for any q3[0, t] in the strip
S(d

gs`
(t), 1).
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Let d
gs`

(t)(1. Taking into account representations (4.5), estimates (4.7)— (4.10) for
S@
r
"S (d

gs`
(t), 1), and the membership G3CH0

2
(S (d

g
, 1); 0, ¹ ), we obtain from point

70 of the Appendix that '(l)@
j

, ((l)@
j

3CH3 @
2

(h(l)
j~

, h(l)
j`

; S(d
gs`

(t), 1); 0, t). Consequently
(see point 20 of the Appendix), the inverse Mellin transform exists for the solution of
(4.2) in S(d

gs`
(t), 1):

'(l)
j

(z
j
, q)"

1

2ni P
d`*=

d~*=

'(l)@
j

(c, q)z~c
j

dc,

((l)
j

(z
j
, q)"

1

2ni P
d`*=

d~*=

((l)
j

@(c, q)z~c
j

dc, (4.12)

and '(l)
j

, ((l)
j
3CH3

2
(d

gs`
(t), 1; ¼ (l)

j
; 0, t). Here d3 (d

gs`
(t), 1); '(l)@

j
, ((l)@

j
are given by

(4.5). Setting t"¹, we get memberships (3.15) (where dI
0
"d

gs`
(¹ )) as was a priori

supposed. Thus, the solution looked for is obtained. By point 60 of the Appendix, we
obtain for any t3[0, ¹] the estimate, which is rather coarse but uniform with respect
to q3[0, t]:

D'(l)
j

(z
j
(o, h), q) D, D((l)

j
(z

j
(o, h), q) D, D(3 (l)

jG
(z

j
(o, h), q) D(MII (t)o~dgs`(t)~e,

∀e3 (0, 1!d
gs`

(t)), ∀h3[h(l)@
~

, h(l)@
`

]L(h(l)
~

, h(l)
`

), (4.13)

where the bound MII (t) is independent of q and h.
Let us investigate now the asymptotics of the solution as oP 0. Let

d
~

(t ) :"min Mmin
k

[Re c
k
(t)], 1N (Re c

k
(t)'d

g
).

As usual (see e.g. [18]), we shift the investigation path in (4.12) to the left into the strip
S(d

g
, d

~
(t)), calculating residues of the integrands at the zeros c

k
(t) of the function

*(c, t). This is possible due to estimates (4.7)— (4.10) and to point 50 of the Appendix
applied to G(c, t). Thus, we obtain the asymptotic representation for the
Kolosov—Muskhelishvili potentials as oP 0:

'(l)
j

(z
j
, t)" +

dg:R% ck:1

res
c/ck C

8
+

w/1

(B0)~1
4l~4`j,w

(c, t)G
w
(c, t)z~c

j D#'(l)
*j

(z
j
, t )

" +
dg:R% ck:1

z~ck
j

Nk

+
n/1

Pkn~1
+

p/0

K
knp

(t)
p
+
q/0

1

q !
(!ln z

j
)q/(n,p~q)

4l~4`j,k
(t)#'(l)

*j
(z

j
, t ),

(4.14)

((l)
j

(z
j
, t)" +

dg:R%ck:1

z~ck
j

Nk

+
n/1

Pkn~1
+
p/0

K
knp

(t)
p
+
q/0

1

q !

](!ln z
j
)q/(n,p~q)

4l~2`j,k
(t)#((l)

*j
(z

j
, t ), (4.15)

K
knp

(t) :"
Pkn~p~1

+
l/0

8
+

w/1

s(n,Pkn~v~p~1)
wk

(t)G(l)
wk

(t), G(v)
wk

(t) :"
1

v !

­v

­cv
G

w
(c, t) Dc/ck .

Representation (4.4) was used for the residue calculations. The terms '(l)
*j

, ((l)
*j

have
the form (4.12) for d3(d

g
, d

~
(t)). Using estimates (4.7)—(4.10) for the strip

S@
r
"S (d

g
, d

~
(t)), the membership G3CH0

2
(S(d

g
, 1); 0, ¹ ), and also point 20 from the

Appendix, we see that '(l)
*j

( · ,t)3H
2
(d

g
, d

~
(t);¼(l)

j
) and (3 (l)

*jG
( · ,t)3H

2
(d

g
, d

~
(t); ¼I (l)

jG
)

for any hI (l)3(h(l)
~
, h(l)

`
) and for all t3[0, ¹].
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After substituting (4.14) into (1.3), we obtain the stress asymptotics

p(l)
ij

(o, h, t)" +
dg:R% ck:1

o~ck (t)
Nk

+
n/1

Pkn~1
+
p/0

K
knp

(t)

]
p
+
q/0

lnq A
1

oBF(l)
ijkn,p~q

(h, t)#p(l)
*ij

(o, h, t ) (i, j, l"1%2), (4.16)

where

Dp(l)
*ij

(o, h, t) D(M
*
(t)o~dg~e, ∀ e3 (0, d

~
(t)!d

g
),

∀h3[h(l)@~
, h(l)@

`
]L(h(l)

~
, h(l)

`
).

The parameters N
k
(t) and P

kn
(t) in (4.14) and (4.16) are described above. The stress

intensity factors K
knp

(t) depend on the right-hand sides of the boundary conditions
and they are expressed by (4.15) for the infinite wedge. It is easy to see that for each c

k
,

the number of stress intensity factors K
knp

(t) is equal to +Nk(t)
n/1

P
k
(t)"N0

k
(t), i.e. to the

multiplicity of the zero of the determinant * (c, t). The functions F (l)
ijkns

(h, t ) are
infinitely smooth with respect to h and can be written explicitly. For example,

F(l)
hhkns (h, t) :"

1

2

2
+
j/1

e~*ckhj
s
+

w/0

1

w !
[!ih

j
]w

][(2!c
k
)/(n,s~w)

4l~4`j,k
(t )!(1!d

sw
)/(n,s~w~1)

4l~4`j,k
(t)#exp(2ih

j
)/(n,s~w)

4l~2`j,k
(t)]

for p(l)
hh, where d

sw
is the Kronecker delta. The estimate for p(l)

*ij
in (4.16) follows from

the memberships of '(l)
*j

, (3 (l)
*jG

given above and from point 60 of the Appendix; the
bound M

*
(t) is independent of h on any internal segment [h(l)@

~
, h(l)@

`
]L(h(l)

~
, h(l)

`
).

Asymptotics (4.16) holds for any t3[0, ¹], the stress intensity factors K
knp

(t) and
the parameter M

*
(t) are finite for every t but may be unbounded on [0, ¹].

Thus, for the non-hereditary Dundurs parameters a
N
"a0(t) and b

N
"b0 (t), the same

power-logaritmic asymptotics of the solution from CH3
2

is obtained near the wedge
corner at any time instant t as for the corresponding classical elasticity problem, in
which the elasticity moduli coincide with the instantaneous moduli in the hereditary
problem considered, at the same instant. Such elastic problems (in other function
classes) were considered in [1, 9, 12].

Note that for the non-hereditary but aging Dundurs parameters a0(t), b0 (t), form
(4.16) of the stress asymptotics may be unstable in the vicinity of some t, where the
multiplicity of c

k
(t) change. It seems possible to rewrite the asymptotics in a stable

form using methods displayed in [13, 24].
Now let a

N
and b

N
not only be non-hereditary but also non-aging, i.e., a

N
"a0 and

b
N
"b0 are independent of time. Then the zeros c

k
of the function * (c) as well as the

associated vector chains /(np)
wk

, s(np)
wk

, the functions F(l)
ijkns

(h), and the parameters N
k
, P

kn
,

N0
k
, M

*
are independent of time too. The factors K

knp
(t ) dependent on time by means

of G(l)
wk

(t), i.e. of loads only. Since G
w
3CH0

2
(S (d

g
, 1); 0, ¹ ), we obtain (see point 40 of

the Appendix) that ­lG
w
(c, t)/­cl3CH0

2
(S (d

g
, 1); 0, ¹ ) too, and consequently K

knp
(t)

given by (4.15) are continuous and due to point 60 of the Appendix are also bounded
on [0, ¹]. After substituting asymptotics (4.16) into hereditary Hooke’s law (1.1), we
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obtain for strains analogous power-logarithmic asymptotics with the same singularity
powers c

k
as for the stress asymptotics

e(l)
ij

(o, h, t )" +
dg:R% ck:1

o~ck(t)
Nk

+
n/1

Pkn~1
+

p/0

p
+
q/0

lnq A
1

oB
]C!K(l1)

knp
(t)d

ij

2
+
v/1

F(l)
vvkn,p~q

(h)#K(l2)
knp

(t)F(l)
ijkn,p~q

(h)D
#e(l)

*ij
(o, h, t) (i, j, l"1—2), (4.17)

where

De(l)
*ij

(o, h, t) DSMI
*
(t )o~dg~e, ∀ e3 (0, d

~
(t)!d

g
), ∀h3[h(l)@

~
, h(l)@

`
]L(h(l)

~
, h(l)

`
).

K(l1)
knp

(t) :"[(2k
N
(l) )~1l

N
(l)K

knp
](t), K(l2)

knp
(t) :"[(2k

N
(l) )~1K

knp
](t )

for the plane strain case. For the plane stress case l
N
(l) must be replaced by

l
N
(l)
*

:"(1!l
6
(l))~1!1. Taking into account that [(k

N
(l))~1]*, l

N
(l)*, l

N
(l)
*
*3VC(0, ¹ ),

we obtain (see point 80 of the appendix) that the corresponding strain intensity
factors K(lj)

knp
(t) are continuous and bounded on [0, ¹] like the stress intensity factors

K
knp

(t).
For the case of parameters a0(t) and b0(t ) dependent on time, the stress singularity

powers c
k
(t) are functions of time, and power-logarithmic asymptotics of type (4.17)

for the strains e(l)
ij

with the same singularity powers as for the stresses will occur only
for degenerate (non-hereditary) operators k

N
(l)"k(l)0(t), l

6
(l)"l(l)0(t). If the operator

k
N
(l) or l

N
(l) is non-degenerate (has non-zero integral term k

6
(l)* or l

6
(l)*, respectively), then

after substituting into (1.1) we obtain that the strain asymptotics is generally not
power-longarithmic (with a finite number of logarithm terms) due to the action of
integral operators, however an estimate can be obtained for this case. Since
(k
6
(l) )~1, i

6
(l)3VC(0, ¹), it follows from point 80 of the Appendix and from the

memberships '(l)
j
, ((l)

j
3CH3

2
(d

gs`
(t), 1; ¼ (l)

j
; 0, t ) that the functions (k

6
(l))~1i

6
(l)'(1)

j
,

(k
6
(l) )~1((1)

1
belong to the same class and estimates (4.13) are true also for these

functions. Substituting the estimates into Kolosov—Muskhelishvili representation (1.3)
and into Hook’s law (1.1), we get

Dp(l)
ij

(o, h, q) D, De(l)
ij

(o, h, q) D(MII
0
(t )o~dgs`(t)~e

∀e3 (0, 1!d
gs`

(t)), ∀h3[h(l)@
~

, h(l)@
`

]L(h(l)
~
, h(l)

`
), ∀q3[0, t], (4.18)

where the bound MII
0
(t) is independent of o, h, q. The estimate holds for all q3[0, t].

For p(l)
ij

(o, h, q) this estimate is coarser than asymptotics (4.16) but it is uniform with
respect to q3[0, t]. In addition, p(l)

ij
(o, h, q), e(l)

ij
(o, h, q)3C[0, t] uniformly with re-

spect to (o, h) in any ¼M (l)@L¼ (l).
Thus, if g(l)

i
, gJ (0)

i
are sufficiently smooth near the corner point (i.e., d

g
(t)(0) and

*(c, t) has no zeros in the strip 0)Re c(1, then stresses and strains are bounded
near the corner point, otherwise stress and strain singularities of the form (4.16)— (4.18)
may occur.
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Appendix

Several properties of one-parametric holomorphic functions
from some Hardy-type classes, Mellin transform, and »olterra operators

We present here short information about properties of function classes defined in
Section 2 and about their interplay with the Mellin transform and Volterra operators.
Details are given in [20].

10 If g (o, t)3CLª
2
(d

0
, d

=
; 0, ¹ ), then (see Theorem 2.5 in [20]) its Mellin transform

with respect to the real argument o

SgT (c, t )"P
=

0

g(o, t)oc~1 do (A.1)

belongs to CH0
2
(S(d

0
, d

=
); 0, ¹ ).

20 It follows from Theorem 2.12 in [20] that if a function h (z, t )3CH
2

(d
0
, d

=
;¼(h

~
, h

`
); 0, ¹ ), then its Mellin transform with respect to the complex

argument z

h@(c, t ) :"P
=

0

h (z, t )zc~1 dz, z3¼(h
~

, h
`

) (A.2)

is independent of the integration path in ¼ (h
~

, h
`

), belongs to
CH@

2
(h

~
, h

`
;S (d

0
, d

=
); 0, ¹ ), and

h(z, t ) :"
1

2ni P
d`i=

d~i=

h@(c, t )z~c dc (d
0
(d(d

=
) (A.3)

for z3¼(h
~

, h
`

).
Conversely, if a function h@(c, t)3CH@

2
(h

~
, h

`
; S (d

0
, d

=
); 0, ¹ ), then the func-

tion h (z, t) defined by (A.3) belongs to CH
2
(d

0
, d

=
; ¼(h

~
, h

`
);0, ¹ ), is indepen-

dent of d3 (d
0
, d

=
), and (A.2) holds for c3S (d

0
, d

=
).

The corresponding statements for functions h (z)3H
2
(d

0
, d

=
; ¼(h~, h

`
)),

h@(c)3H@

2
(h

~
, h

`
;S(d

0
, d

=
)) of one variable also hold (see [20, Theorem 1.7]).

30 It follows from Lemma 2.13 in [20] that if h(z, t)3CH
2
(d

0
, d

=
; ¼ (h

~
, h

`
); 0, ¹ ),

then for every t3[0,¹] and for almost every o3(0, R) the functions
hG(o, t) :"limh?hGh(oe*h, t)3CLª

2
(d

0
, d

=
; 0, ¹ ) exist and

h@(c, t )"exp(ich
G

)ShGT(c, t ), c3S (d
0
, d

=
).

40 It follows from Lemma 2.4 in [20] that if hI 3CH0
2
(S; 0, ¹), then ­hI (c, t/­c3

CH0
2
(S; 0, ¹ ) too.

50 It is proved in Lemma 2.4 in [20] that if hI 3CH0
2
(S; 0, ¹ ), then for any internal

strip SM @LS (d
0
, d

=
) there exists a number MII 0(R such that sup

0)t)T
DhI (c, t) D)

MII 0, c3SM @, and hI (c, t )3C[0, ¹] with respect to t uniformly with respect to c3SM @.
60 It is proved in Lemma 1.10 in [20] that if h3H

2
(d

0
, d

=
; ¼ ), then for any internal

wedge ¼M @L¼ and for any [d@
0
, d@

=
]3(d

0
, d

=
) there exists a number MII (R

such that Dh(z) D)MII Dz D~d, Mz, dN3¼M @][d@
0
, d@

=
].

It is proved in Lemma 2.8 in [20] that if h3CH
2
(d

0
, d

=
; ¼; 0, ¹ ), then for any

internal wedge ¼M @L¼ and for any [d@
0
, d@

=
]3 (d

0
, d

=
) there exists a number
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MII (R such that

sup
0)t)T

Dh(z, t) D)MII Dz D~d, Mz, dN3¼M @][d@
0
, d@

=
] (A.4)

and h (z, t)zd3C[0, ¹] with respect to t, uniformly with respect to Mz, dN3
¼M @][d@

0
, d@

=
].

70 Let a function hI 3CH0
2
(S; 0, ¹ ). Let for all t3[0, ¹] a function hI

1
(c, t) be holo-

morphic in S with respect to c and be such that for some interval (h
~

, h
`

) and
for every SM @LS there exists a number MII (hI

1
; h

~
, h

`
; S@)(R such that

sup
0)t)T

DhI
1
(c, t) D)MI I @(hI

1
; h

~
, h

`
; S@) De*ch D, (c, h)3SM @](h

~
, h

`
), and hI

1
(c, t)e*ch3

C[0, ¹] with respect to t, uniformly with respect to Mc, hN3SM @](h
~

, h
`

); then
hI hI

1
3 CH[

2
(h

~
, h

`
; S; 0, ¹ ). (See Lemma 2.11 in [20]).

80 Let K
M
"K0 (t)#K*, K0(t )3C[0, ¹], K

M
*3VC(0, ¹ ). Then K

M
acts in C[0, ¹] as

well as in all the classes of functions dependent on t and defined in Section 2. If,
additionally, ¹(R and det[K0(t)]O0 (t3[0, ¹]), then K

M
~1"[K0 (t)]~1

!R
M
*, where R

M
*3VC(0, ¹ ) (see e.g. [17]).

If g (o, t)3CLª
2
(d

0
, d

=
; 0, ¹ ) and if an operator K

M
*3VC(0, ¹ ), then (see The-

orem 3.3 in [20]) SK
M
*gT (c, t)"(K

M
*SgT)(c, t)3CH0

2
(S (d

0
, d

=
); 0, ¹ ).

90 Let K
M
* (c)3VCH(S; 0, ¹ ), then K

M
* (c) and [I

M
#K

M
* (c)]~1 act in CH0

2
(S; 0, ¹ ) as

well as in CH@

2
(h

~
, h

`
; S; 0, ¹ ) (see Theorems 3.12, 3.13 in [20]).
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