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Abstract

Generalised fatigue durability diagrams and their properties are considered for
a material under multi-axial loading given by a (non-regularly) oscillating function
of time. Material strength and durability under such loading is described in terms
of durability and normalised equivalent stress. Relations between these functionals
are analysed. Phenomenological strength conditions are presented in terms of the
normalised equivalent stress. It is shown that the damage based fatigue durability
analysis is reduced to a particular case of such strength conditions. Examples of the
reduction are presented for some known durability models. Some complex strength
conditions applicable to the durability description at fatigue, creep, dynamic loading
and their combination are presented. The normalised equivalent stress functional
interpolation along classical periodic S–N diagrams is introduced.
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Nomenclature

τ, t = the natural continuous time;

σ(τ) = a uniaxial or multiaxial loading process in time;

σij(τ) = a multiaxial loading process in time;

m, n, j = a (quasi–)cycle number, discrete time;

σct(m) = {σij(τ); τm−1 ≤ τ ≤ τm} = a (quasi–)cycle with time parametrisation;

σcs(m) = a (quasi–) cycle as an oriented loop in the stress space without time parametri-
sation;

σc(m) = σct(m) or σcs(m)

{σc(m)}m=1,2,... = {σ(m)}m=1,2,... = {σc} = {σ} = a (quasi–)cyclic loading process;

σmax(j) = maximum stress in j-th cycle;

σmin(j) = minimum stress in j-th cycle;

σa(j) = [σmax(j)− σmin(j)]/2 = stress amplitude in j-th cycle;

σm(j) = [σmax(j) + σmin(j)]/2 = mean stress in j-th cycle;

R = σm−σa

σm+σa
= cycle asymmetry ratio;
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σmax
a = maximum stress amplitude in a loading process;

σ0
ij = constant stress tensor;

AR; bR; ÃR = material parameters in the Wöhler S–N diagram;

σi = 1√
2

√
(σ̂1 − σ̂2)2 + (σ̂2 − σ̂3)2 + (σ̂3 − σ̂1)2, von Mises intensity of a stress tensor σkj

possessing principal stresses σ̂1 > σ̂2 > σ̂3;

σi,a = von Mises intensity of a stress amplitude tensor in multiaxial loading process;

σi,m = von Mises intensity of a mean stress tensor in multiaxial loading process;

σr = strength under monotone uniaxial loading;

σ∗R(n) = stress amplitude to reach rupture on n-th cycle under uniaxial periodic loading
with asymmetry factor R;

σeq = equivalent stress amplitude e.g. von Mises or Tresca;

n∗{σ} = cyclic durability under a process {σ(m)}m=1,2..;

t∗(σ) = durability under a process {σ(τ)};
n∗R(σa) = number of cycles up to rupture under periodic loading with stress amplitude

σa and cyclic asymmetry factor R;

λ = a non-negative number;

λN({σ}; n) = (a value of) the cyclic safety factor functional;

ΛN({σ}; n) = (a value of) the cyclic normalized equivalent stress functional, NESF;

σ∗−1∞ = fatigue limit amplitude under uniaxial reversing (R = 0) tension-compression
loading;

σ∗0∞ = fatigue limit (amplitude) under repeated (with zero minimum stress) tension load-
ing;

σH,m = mean cyclic hydrostatic pressure;

σH,max = maximum cyclic hydrostatic pressure;

Sij = stress deviator;

P = period in a periodic process;

α, β = material constants in critical surface criteria;

σηη,a(~η, τ) = normal stress amplitude on a plane with a normal ~η;

τa(~η, τ) = shear stress amplitude acting in on a plane with a normal ~η;

σηξ,a = shear stress acting in a direction ~ξ on a plane with a normal ~η;

|σ| = a matrix norm of a tensor σij, e.g. |σ| =
√∑3

i,j=1 σ2
ij;

|||σc(m)||| = a norm of a tensor function σc(m) on the m−th cycle, e.g. |||σc(m)||| =
supσ∈σc(m) |σ|;

σ̃c(m) = σc(m)/|||σc(m)||| = normalised shape of a tensor function σc(m) on the m−th
cycle;

|~S| = Euclidian norm of a vector (the vector length).
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1 Introduction

In the traditional approach to cyclic strength of a material, the fatigue durability is
evaluated from the inequality

ω({σ}, n) < 1 (1)

where the damage measure ω({σ}, n) is a functional of the loading history {σ(m)}m=1,2,...

and m,n are the cycle numbers. When the number of cycles is sufficiently large such
that inequality (1) is violated (transfers into the equality), a material rupture occurs. A
particular form of ω({σ}, n) for a non-periodic cycling (i.e. with varying cycles σ(m)) is
usually related to a particular damage accumulation law. For example,

ω({σ}, n) =
n∑

m=1

1

n∗p[σ(m)]
(2)

for a material obeying the Palmgren-Miner hypothesis of linear damage accumulation,
where n∗p(σ) is the number of cycles to rupture in the periodic process, given by an
appropriate S–N Wöhler diagram with all the cycles equal to σ(m, y). By this way, a
durability under non-periodic cyclic process is related to experimental data for corre-
sponding periodic cyclic processes. However the linear accumulation rule does not work
for some cyclic processes and many attempts to improve it lead to some abstract damage
measures that one can not obtain (or verify) from direct durability experiments. Even
more methodical problems appear when the process under consideration is presented by
random (with unclosed cycles) oscillations where the known procedures for a reduction of
such processes to cyclic ones (e.g. the rain flow method) give not accurate prediction or
not applicable at all (say, for out-of-phase random multiaxial oscillations).

To overcome those difficulties with processes sufficiently general in time, appearing not
only for oscillating but also for dynamic and creep loading, and to create a more robust
and experimentally verifiable tool for durability analysis, some theoretical backgrounds of
a functional approach to durability description under a loading program (process) σij(τ),
which is a (tensor) function of time τ , were considered by Mikhailov (1999, 2000). How-
ever, the time dependence is not essential for the durability description of the materials,
whose rupture depends only on the loading sequence but not on time itself or on the load-
ing process rate (for considered loading conditions). The pure fatigue rupture (without
creep and ageing) is an example of such behavior. Although such processes may still be
considered with respect to time as a natural parameter and the approach described by
Mikhailov (1999, 2000) holds true, some other parameterizations seem to be more relevant
for fatigue.

The (quasi–) cycle number m can be considered then as the so-called discrete time
(see e.g. Bolotin 1989) and the main issues developed by Mikhailov (1999, 2000) for
the natural continuous time will be adopted here for the discrete time. We arrive af-
ter this at the notions of durability (number of cycles to rupture) n∗{σ}, generalised
Wöhler S–N diagram λ 7→ n∗{λσ}, functional safety factor λN({σ}, n) and normalised
equivalent stress functional ΛN({σ}, n) defined on a loading process {σ(m)}m=1,2,.... This
leads to a fatigue strength and durability phenomenological description in terms of these
mechanically meaningful and experimentally identifiable functionals without necessary
involvement of a geometrical, stiffness-related or abstract damage measure. On the other
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hand, this approach allows rather simple deviation from a standard linear Palmgren-Miner
damage accumulation rule to describe better the experimental observations.

Fatigue under stress fields independent of the space coordinates is mainly analysed in
this paper with obvious reasoning about application to moderately inhomogeneous stress
fields . Extension to highly inhomogeneous stress field incorporating a non-local approach
by Mikhailov (1995) will be considered elsewhere (Mikhailov & Namestnikova 2002).

2 Cyclic and quasi-cyclic processes and their parametri-

sations

We will call a multiaxial process σij(τ), τ ≥ 0 cyclic if it can be represented as a temporal
sequence of connected loops (cycles) σct(m) = {σij(τ); τm−1 ≤ τ ≤ τm} closed in the
stress space, σij(τm) = σij(τm−1), where m = 1, 2, ... is the loop number. Here the
notation σct(m) includes information on the loop position [τm−1, τm] in time, the loop
parametrisation with respect to time and consequently the loop shape in the stress space.
If τm− τm−1 = P = const for m = m1, ...m2 and σij(τ + P ) = σij(τ), τm1−1 ≤ τ, τ + P ≤
τm2 , we call the process {σct(m)}m=1,2,... periodic on τ ∈ [τm1−1, τm2 ] with the period P .

If a uniaxial process σ(τ) is randomly (not cyclically) oscillating, like in Fig. 1, we
can denote the local minima or local maxima or middle points between them as τm and
call the parts of the process σ(τ) on the segments [τm−1, τm] quasi–cycles σct(m). If

σ

ττn -1 τn

σc(n)

Figure 1: A parametrisation of a randomly oscillating process

σij(τ) is a multiaxial in-phase (proportional) process, i.e., σij(τ) = σ0
ijf(τ), where σ0

ij is a
constant tensor and f(τ) is a scalar function, we can associate the quasi–cycle boundaries
τm with the local minima or local maxima or local middle points of the function f(τ).
If σij(τ) is a general multiaxial process, we can distribute points τm by a more or less
reasonable way, such that τ0 = 0, τm > τm−1, and call the parts of the process σij(τ) on
the time segments [τm−1, τm] quasi–cycles σct(m). After such a parameterization we can
consider any process as quasi–cyclic. Note that since a (quasi–) cycle σct(m) includes all
the information about the process σij(τ) behavior on the segment τm−1 ≤ τ ≤ τn, the
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temporal sequence {σct(m)}m=1,2,... is equivalent to the original form σij(τ), 0 ≤ τ , of the
process presentation.

However, the particular values of the instants τm as well as the natural time parametri-
sation σij(τ) of a loop σct(m) is not essential for pure fatigue, for which only an order
of the loops, their shapes and orientations in the stress space is essential. To deal with
such less informative presentation of loading processes, we will consider also the sequence
{σcs(m)}m=1,2,... of connected oriented (quasi–) loops σcs(m) in the stress space, for which a
particular time parametrisation is not prescribed. If the loops coincide in the stress space,
σcs(m) = σcs, for m = m1, ...m2, we will say the loading is periodic in the block of (quasi–)
cycles [m1, m2]. Evidently, {σcs(m)}m=1,2,... is uniquely defined by {σct(m)}m=1,2,... but in-
verse is not true. For example, two different temporal cyclic processes:

{σct(1)(m)}m=1,2,... = {sin(τ); 2π(m− 1) ≤ τ ≤ 2πm}m=1,2,...

{σct(2)(m)}m=1,2,... = {sin(τ 2);
√

2π(m− 1) ≤ τ ≤
√

2πm}m=1,2,...

define one and the same stress space loop sequences {σcs(1)(m)}m=1,2,... = {σcs(2)(m)}m=1,2,...,
where each loop lies on the segment −1 ≤ σ ≤ 1 in the one-dimensional stress space.

Let {σ} be a uniaxial cyclic regular process, i.e. σ(τ) is defined in each instant τ of the
cycle and has not more than one internal local infimum and one internal local supremum
on each cycle. Let us denote by σmax(m) and σmin(m) the global supremum and infimum
of σ(τ) during a cycle m including its start and end points, by R(m) = σmin(m)/σmax(m)
the cycle asymmetry ratio, by σa(m) = (σmax(m)−σmin(m))/2 the stress cycle amplitude
and by σm(m) = (σmax(m) + σmin(m))/2 the stress cycle mean value. Then the sequence
{σcs(m)}m=1,2,... is equivalently presented by the sequences {σmax(m), σmin(m)}m=1,2,...,
{σa(m), R(m)}m=1,2,..., {σa(m), σm(m)}m=1,2,... or {σm(m), R(m)}m=1,2,....

Let σij(τ) be a multiaxial in-phase (proportional) cyclic regular process, i.e., σij(τ) =
σ0

ijf(τ), where σ0
ij is a constant tensor and f(τ) is a scalar function defined in each

instant τ of the cycle, which has not more than one internal local infimum and one
internal local supremum on each cycle. Let us denote by fmax(m) and fmin(m) the global
supremum and infimum of f(τ) during the cycle including its start and end points, by
R(m) = fmin(m)/fmax(m) the cycle asymmetry ratio, and by

σij,max(m) = σ0
ijfmax(m), σij,min(m) = σ0

ijfmin(m),

σij,a(m) = σ0
ij(fmax(m)− fmin(m))/2, σij,m(m) = σ0

ij(fmax(m) + fmin(m))/2 (3)

the stress cycle maximum, minimum, amplitude and mean value tensors, respectively.
Then similar to the previous paragraph, the sequence {σcs(m)}m=1,2,... is equivalently pre-
sented by the sequences {σij,max(m), σij,min(m)}m=1,2,..., {σij,a(m), R(m)}m=1,2,...,
{σij,a(m), σij,m(m)}m=1,2,... or {σij,m(m), R(m)}m=1,2,....

We will write {σc(m)}m=1,2,... when considering the both presentations {σct(m)}m=1,2,...

and {σcs(m)}m=1,2,... at the same time. We will further omit sometimes the superscript c
and write σt(m), σs(m) or σ(m) for a (quasi–) cycle if this lead to no confusion. Sometimes
we denote a process {σc(m)}m=1,2,... as {σc} or {σ}.
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3 (Quasi–) Cyclic Durability and Generalised S–N

Diagram

Let a material undergo a multiaxial quasi–cyclic loading process {σ(m)}m=1,2,.... We will
discuss here rupture without specifying the rupture type and only assume that (i) one can
unambiguously detect at the end of any (quasi–) cycle whether the material is ruptured
or not, and (ii) if the material is ruptured during a (quasi–) cycle n1, it will be ruptured
also at any n2 > n2 (no repairing mechanism). The (quasi–) cycle number n∗{σ}, during
which a rupture for the material appears under a loading process {σ} is called (quasi–)
cyclic durability or (quasi–) cyclic life time. For different loading processes σ1

ij(m), σ2
ij(m),

m = 1, 2, ..., the durability has generally different values n∗{σ1}, n∗{σ2}.

3.1 Classical S–N diagram under periodic loading

Let {σ} be a uniaxial periodic regular process, i.e. a regular cyclic process, where all
the cycles σc(m) are independent of m. Under such a loading, it is usual to determine
experimentally the Wöhler S–N diagram in the axes σa 7→ n∗R(σa), where n∗R(σa) = n∗{σ}
is the number of cycles up to rupture.

An example of a simple S–N diagram given by a power law (a straight line in the
double logarithmic coordinates) is usually written as

n∗{σ} = n∗R(σa) =
[
σ∗R1

σa

]−bR

. (4)

where σ∗R1 and bR are positive material parameters considered as depending generally on
the asymmetry ratio R but not on the amplitude σa.

Taking into account that n∗{σ} can take only integer values, this should be rewritten
more precisely as

n∗{σ} = n∗R(σa) = Int+

([
σ∗R1

σa

]−bR
)

(5)

where Int+(x) is the minimal integer greater or equal to real x. However, both forms (4)
and (5) for the durability n∗{σ} lead to equivalent results when it is used in the strength
condition like n < n∗{σ} for an integer cycle number n, and we will not distinguish the
forms sometimes.

If we introduce a notation |||σc||| = max(|σmax|, |σmin|), then the above relation can be
rewritten also in the form

n∗{σ} = Int+




[
σ̌∗R1

|||σc|||

]−bR

 (6)

where σ̌∗R1 = σ∗R1max =

{
2σ∗R1(1−R ), |R| ≤ 1
2σ∗R1(1−R−1), |R| > 1

}
and b = bR.

Let now {σ} be an arbitrary periodic multi-axial cyclic loading process, i.e. the shape
of the periodicity loop σc is arbitrary. For multiaxial cases, let |σ| denote a matrix norm

of tensor σij, for example, |σ| =
√∑3

i,j=1 σ2
ij. Let |||σc(m)||| denote a norm of the tensor

function σc, for example, |||σc(m)||| = supσ∈σc(m) |σ|. Then power dependence (6) can
be used also for general periodic processes if we suppose that σ̌∗R1 = σ̌∗R1(σ

c/|||σc|||) and
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b = b(σc/|||σc|||) are positive material parameters depending generally on the cycle σc shape
in the stress space but not on the cycle norm |||σc|||.

3.2 Generalised S–N diagram under arbitrary loading

To present a generalised S–N diagram for an arbitrary multi-axial quasi–cyclic process
{σc(m)}m=1,..., let us consider a family of proportional processes {λσc(n)}n=1,..., obtained
from the original process {σc} after its multiplication by a non-negative constant number
λ. Then the durability n∗{λσ} becomes an integer-valued (piece-wise constant) function

σ

τ

λ1σ

n*{λ2 σ}n*{σ}n*{λ1 σ}

λ2σ

σ

Figure 2: Proportional loading processes and durabilities, 0 < λ2 < 1 < λ1.

of the parameter λ (see on Fig. 2 an example for a quasi–cyclic uniaxial process, where
the quasi–cycle boundaries are associated with the local minima of σ).

The generalised S–N diagram for a process {σc} is the dependence of the durability
n∗{λσc} on parameter λ ≥ 0.

The concept propounded in the paper concerns mainly materials, which strength de-
pends on the oscillating loading history but should work also in the particular case of
materials independent of history and for rather simple loading processes split into quasi–
cycles. We will widely use the latter for illustrations.

Let us consider, for example, a material independent of history (that is, its strength
is determined only by the instants stress value) and obeying the strength condition |σ| <
σr under uniaxial loading, where σr is a material constant. Suppose the material is
periodically loaded by a uniaxial process {σc}, where some minimal and maximal values
σmin and σmax are reached during the cycle σc. Then the S–N diagram is given by the
constant sequence λm = σr/|||σc|||, m = 1, 2, ..., where |||σc||| = max(|σmax|, |σmin|) that is,

n∗{λσ} =

{
∞, λ < σr/|||σc|||
1, λ ≥ σr/|||σc|||

}
.

Suppose the same material is loaded by a uniaxial loading process {σc} such that some
minimum σmin(m) and maximum σmax(m) are reached during the cycle σc(m) and their
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values grow linearly with the cycle number, hence |||σc(m)||| = max(|σmax(m)|, |σmin(m)|) =
am, where a is a constant. Then the S–N diagram is given by a discrete hyperbola
n∗{λσ} = Int+[σr/(aλ)].

Let us consider general properties of the generalised Wöhler S–N diagram n∗{λσ} for
a material under an arbitrary process {σc}. The function λ 7→ n∗{λσ} is defined on the
half axis λ ∈ [0,∞) and is non-negative and integer-valued. When λ varies, different
situations can arise. On Fig. 3a, we plot schematically an S–N diagram n∗{λσ} (step-
like graphs) over corresponding durability diagram t∗{λσ} (smooth curves, see Mikhailov
2000, Fig. 3a) for the same process. The diagram t∗{λσ} can be always obtained for a
{σct} presentation of the process. Although we consider n∗{λσ} as a function of λ, the
choice of the axes directions on the plot is traditional for the fatigue analysis. The curves
a, b, c at large λ and curves d, e, f at small λ present different possible cases of the
diagram behaviour, that is, one of the curves a, b or c continues by one of the curves d, e
or f for a particular material under a particular loading {σ}.

To be consistent, we keep below the item numbering by Mikhailov (2000).
(A-B): The rupture can occur at t = t∗(λ0σ) = 0 for a finite but sufficiently large λ0,

curve a on Fig. 3a, or t∗(λσij) can be non-zero at any finite λ but tends to zero as λ
tends to infinity, curve b on the Fig. 3a, i.e. λ0 = ∞. Since the rupture/strength state
of the material is checked only at the (quasi–) cycle ends, when using the discrete time
description, the rupture is attributed to the first (quasi–) cycle in the both cases, that is,
n∗{σ} = 1 when λ is sufficiently close to λ0 for the curve a, or sufficiently large for the
curve b.

(C): There exist loadings for some materials (or material models), that do not cause
rupture however large these loadings are. An example is the uniform three-axes con-
traction cycling. Suppose a loading process σij(τ) is represented by such a loading on a
beginning time interval 0 ≤ τ ≤ t+ followed by a loading able to cause rupture at some
time. Then there is no rupture on 0 ≤ τ ≤ t+ for any non-negative λ, curve c on the Fig.
3a, and we can put λ = λ0 = ∞ on this segment. For the discrete parametrisation, the
rupture for some λ can appear not earlier than during a (quasi–) cycle n+ for which t+ is
either start or internal point, i.e., τn+−1 ≤ t+ < τn+ .

Let us consider the fatigue durability behaviour at large n∗, that is, at small λ.
Let λ = 0. The durability n∗{0}, when no loading is applied, is either finite or infinite.
(0): The first case means that rupture at t = t∗(0) < ∞, that attributed to a (quasi–)

cycle n∗{0} including that point is caused not by a mechanical load {σ(m)}m=1,2,... but for
another reason, for example, by a previous loading history at t < 0. Other possible reasons
for such behaviour can be radiation, corrosion or other chemical reactions, dissolution etc.,
which we can refer to as natural or artificial ageing leading to the complete degradation of
the material at the time t∗(0) ((quasi–) cycle n∗{0}). We call the material self-degrading
if t∗(0) < ∞.

Generally, ageing does not necessarily lead to complete degradation but means that a
shift of a loading process in time does not cause the same shift in durability for an ageing
material (see Mikhailov 2000). Note that pure fatigue processes can not be ageing or, by
other words, pure fatigue models will be not sufficient for materials with strength ageing.

(D): Curve d on Fig. 3a presents the case when the durability t∗(λσ) tends to a finite
value t∗0(σ) ≤ t∗(0) and n∗{λσ} tends to a finite value n∗0{σ} ≤ n∗{0} as λ tends to 0.
For example, this can be the case for a singular stress σij(τ) infinitely growing during the
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t∗(0)t∗0t+
n+

0
n∗0 n∗(0)

a

b c

d e

f

t

λ

λ0

n
1

λth{σ}

(a)

t∗(0)t∗0t+
n+

0
n∗0 n∗(0)

a

b
c

d e

f

t

λ({σ};n)

λ0

n
1

λth{σ}

(b)

ab

c

d

e

f

tt∗(0)t∗0t+

Λth{σ}

 Λ({σ};n)

Λ 0

n+ n∗0
n∗(0) n

(c)

Figure 3: (a) S–N diagram for a process {σ}. (b) Safety factor vs. n and t for the process.
(c) Normalised equivalent stress vs. n and t for the process.
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quasi–cycle n∗0{σ} as τ tends to t∗0 ∈ (τn∗0−1, τn∗0 ], e.g., for σij(τ) = σ0
ij/(t

∗0 − τ).

(E): n∗{λσ} → n∗0{σ} = ∞ as λ → 0 and there exists no non-zero threshold, that is,
the durability n∗{λσ} monotonously grows up to infinity with diminishing λ but is always
finite at λ > 0, curve e on Fig. 3a.

(F): n∗{λσij} → n∗0{σ} = ∞ as λ → 0 and there exists a threshold value λth(σ) > 0
such that n∗{λσ} = ∞ for all λ such as 0 ≤ λ ≤ λth{σ} and n∗{λσ} < ∞ for all
λ > λth{σ}, curve f on Fig. 3a.

(G): n∗{λσ} has no definite limit n∗0(σ), this means it is not monotonous as λ → 0.
This can happen for materials and processes that are not monotonously damaging (see
below and Mikhailov 2000).

Cases E and F seem to be most usual in the fatigue durability analysis.
Analysing the S–N diagram for intermediate λ, we should remark that the dependence

n∗{λσ} on λ can be either monotonously non-increasing or not.
If n∗{λ1σ} ≥ n∗{λ2σ} for any numbers λ2 > λ1 ≥ 0, the (quasi–) cyclic process

will be called monotonously damaging (MD). A material is monotonously damaging if all
processes are monotonously damaging for it (see Mikhailov 2000).

Note that there exist materials that are not monotonously damaging. For example,
strength and durability of solidifying or cemented materials can be essentially increased,
if the contracting (cyclic) loading is increased during the solidification or cementation
phase, see Fig. 4.

Further, in addition to the finite jumps along λ axis caused by the discrete numbering
of the (quasi–) cycles, the S–N diagrams can have finite jumps along the n∗{λσ} axis as
well. Fig. 5, 6, and 7 give some examples of the loading processes with such features for
a material independent of time and history, in which rupture appears at σ = σr.

3.3 Quasi– cyclic strength stability in proportional load pertur-
bations

Quasi–cyclic strength is said to be stable with respect to proportional load perturbations
(λ−stable) during a (quasi–) cycle n < ∞ under a (quasi–) cyclic process {σ(m)}m=1,2,...

if there is no rupture during and before the (quasi–) cycle n under {σ} and under slightly
higher and lower loadings. More precisely, there exists ε > 0 such that there is no rupture
at and before the (quasi–) e n under the process {λσ} for any λ ∈ (1− ε, 1 + ε).

This implies that if the strength in a material is λ−unstable on a (quasi–) cycle n1, it
can not become λ−stable on any (quasi–) cycle n2 > n1.

We will denote by n∗∗{σ} the critical (quasi–) cycle number, that is such that (quasi–)
cyclic strength is λ−stable at all (quasi–) cycles n < n∗∗{σ} but either rupture or strength
λ−instability exists on the (quasi–) cycle n = n∗∗{σ}.

It is evident, that the critical (quasi–) cycle number n∗∗{σ} is not greater than the
durability n∗{σ}. If n∗∗{σ} < n∗{σ}, then strength is λ−unstable on (quasi–) cycles
n ∈ [n∗∗{σ}, n∗{σ} − 1]. This means, the S–N diagram has at λ = 1 a horizontal jump
from n∗∗{σ} to n∗{σ} (see Fig. 7b at σ∧ = σr).

For n = ∞, the above reasoning can be modified by the following way.
Endurance is said to be stable with respect to proportional load perturbations (λ−stable)

under a (quasi–) cyclic process {σ(m)}m=1,2,..., if there is no rupture under {σ} and under
slightly higher and lower loadings at any (quasi–) cycle. More precisely, there exists ε > 0
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Figure 4: (a) Proportional non-monotonously damaging loading processes for λ = 1 and
λ > 1. (b) S–N diagram for the process. (c) The normalised equivalent stress for the
process.
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Figure 5: (a) Monotonous piecewise continuous loading process. (b) S–N diagram gener-
ated by the process. (c) The normalised equivalent stress for the process.
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Figure 6: (a) Non-monotonous continuous loading process. (b) S–N diagram generated
by the process. (c) The normalised equivalent stress for the process.
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Figure 7: (a) Non-monotonous right-continuous loading process. (b) S–N diagram gener-
ated by the process. (c) The normalised equivalent stress for the process.
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such that there is no rupture at all (quasi–) cycles n < ∞ under the process {λσ} for any
λ ∈ (1− ε, 1 + ε).

4 Quasi–cyclic safety factor and normalised equiva-

lent stress

For a given process {σ(m)}m=1,2,..., we can determine (experimentally) a unique finite or in-
finite durability n∗{λσ} for any number λ ≥ 0. Consider the inverse task: for any (quasi–)
cycle number n ≥ 0, to determine a number λ∗({σ}; n) such that n∗{λ∗({σ}; n)σ} = n.
This is equivalent to interpreting the S–N diagram λ 7→ n∗{λσ} as the dependence
n 7→ λ∗({σ}; n). Examples of the diagrams on Fig. 3a, 4b, 5b, 6b, 7b show this is
not uniquely possible and for some cases is not possible at all since the dependence is
not defined for some (quasi–) cycles n. To overcome the difficulty, we introduce a notion
of (quasi–) cyclic safety factor functional and (quasi–) cyclic normalised equivalent stress
functional (NESF).

Definition 1 Let {σ(m)}m=1,2,... be a quasi–cyclic process. The (quasi–) cyclic safety
factor λN({σ}; n) is supremum of λ ≥ 0 such that n∗{λ′′σ} > n for any λ′′ ∈ [0, λ]; if
there is no such λ, we take λ({σ}; n) = 0.

The (quasi–) cyclic normalized equivalent stress ΛN({σ}; n) is defined as 1/λN({σ}; n)
if λN({σ}; n) 6= 0 and ΛN({σ}; n) := ∞ otherwise.

The mappings ({σ}; n) 7→ λN({σ}; n) and ({σ}; n) 7→ ΛN({σ}; n) defined on a set of
processes {σ} and (quasi–) cycle numbers n are called the (quasi–) cyclic safety factor
functional λN and the (quasi–) cyclic normalized equivalent stress functional Λ, respec-
tively.

For monotonously damaging processes the definition can be simplified as follows.

Definition 1MD The (quasi–) cyclic safety factor λ({σ}; n) for a quasi–cyclic MD pro-
cess {σ(m)}m=1,2,... is supremum of λ ≥ 0 such that n∗{λσ} > n; if there is no such λ,
we take λN({σ}; n) = 0. The (quasi–) cyclic normalized equivalent stress ΛN({σ}; n) is
defined as 1/λN({σ}; n) if λN({σ}; n) 6= 0 and ΛN({σ}; n) := ∞ otherwise.

We call both λN and ΛN also the (quasi–) cyclic strength functionals. They are material
characteristics reflecting the influence of the endured (quasi–) cyclic loading process on
the material strength. Using these definitions, the functionals values can be obtained
from experiments for any process {σ} and any (quasi–) cycle n.

Particularly, if the durability functional n∗{λσ} is known for all λ ≥ 0, the value of
the normalized equivalent stress ΛN({σ}; n) for any n is a supremum of solutions to the
scalar equation

n∗{σ/Λ} = n

for each (quasi–) cycle n and loading process {σ} for which solutions do exist; otherwise
ΛN({σ}; n) can be determined directly from Definition 1. Note that values of ΛN({σ}; n)
are uniquely defined in the both cases.

But what information about ΛN can one extract from durability measurement n∗{σ}
under only one process {σ}? From Definition 1, one can get for an MD material (see
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Appendix A) only the inequality

ΛN({σ}; n∗{σ} − 1) ≤ 1 ≤ ΛN({σ}; n∗{σ}) (7)

This uncertainty is quite natural and is connected with the fact that the loadings slightly
higher and slightly lower than {σ} can cause rupture during the same (quasi–) cycle
n∗{σ}. In fact, it is a payment for identifying rupture only at the (quasi–) cycle end
points but not at the (quasi–) cycle internal points.

Remark 1 One can observe from Definition 1 that one can replace the durability n∗{λσ}
by the critical (quasi–) cycle number n∗∗{λσ} in the definition to arrive at exactly the same
functionals, λ∗∗({σ}; n) = λ({σ}; n), Λ∗∗({σ}; n) = Λ({σ}; n) (see proof in Appendix B).

The (quasi–) cyclic safety factor λN({σ}; n) and (quasi–) cyclic normalized equiva-
lent stress ΛN({σ}; n) are counterparts of the time-dependent safety factor λT (σ; t) and
normalized equivalent stress ΛT (σ; t) (Mikhailov 1999, 2000) and of the non-local safety
factor functional λ(σ; x) and non-local normalized equivalent stress (load factor) func-
tional Λ(σ; y) defined by Mikhailov (1995-I).

For brevity, we will drop the superscript N further in the paper if this will not lead
to a confusion.

To justify the title normalized equivalent stress for Λ, we consider a regular periodic
multiaxial in-phase process {σ} where σij(τ) varies on each cycle from 0 to a tensor σaij

and back to 0. Let, for example, the material cyclic strength under such loading be associ-

ated with the von Mises equivalent stress σeq(σ) =
√

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]/2,

that is the strength condition has the form σeq(σa) < σ∗0(n), where the function σ∗0(n) is
a material characteristic (classical S–N diagram under the uniaxial periodic cycling with
R = 0) and σ1, σ2, σ3 are the principal stresses. Then Λ({σ}; n) is defined from the
equation σeq(σa/Λ) = σ∗0(n), that is

Λ({σ}; n) = σeq(σa)/σ
∗
0(n). (8)

Formula (8) holds true not only for the von Mises equivalent stress but also for the
Tresca and other equivalent stress representations σeq(σa) that are functions positively
homogeneous of the order +1.

One can see from the above definitions (proof is similar to Mikhailov, 2000) that the
safety factor is a non-increasing and the normalised equivalent stress is a non-decreasing
function of the (quasi–) cycle number, that is,

λ({σ}; n2) ≤ λ({σ}; n1), Λ({σ}; n2) ≥ Λ({σ}; n1) if n2 > n1. (9)

It follows from the definitions (see Mikhailov 2000, Appendix C) that for any n, the
safety factor functional and the normalised equivalent stress functional are non-negative
positively-homogeneous functionals of the orders -1 and +1 respectively, that is

λ({kσ}; n) =
1

k
λ({σ}; n) ≥ 0, Λ({kσ}; n) = kΛ({σ}; n) ≥ 0, for any k > 0. (10)

For infinite n we get the following corresponding definitions of the (quasi–) cyclic
endurance safety factor and normalised equivalent stress.
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Definition 2 The (quasi–) cyclic endurance (threshold) safety factor λN
th{σ} is supremum

of λ ≥ 0 such that there is no body rupture under the process {λ′′σ} for any λ′′ ∈ [0, λ]
for all n < ∞; if there is no such λ, we take λN

th{σ} = 0.
The (quasi–) cyclic endurance (threshold) normalised equivalent stress is defined as

ΛN
th{σ} = 1/λN

th{σ} if λN
th{σ} 6= 0 and ΛN

th{σ} := ∞ otherwise.
The mappings σ 7→ λN

th({σ}), σ 7→ ΛN
th{σ} defined on a set of processes {σ} are called

the (quasi–) cyclic endurance (threshold) safety factor functional λN
th and the endurance

(threshold) normalised equivalent stress functional ΛN
th respectively.

Owing to monotonicity (9), we can define the endurance functionals also as

λth{σ} = λ({σ};∞) := lim
n→∞λ({σ}; n) = inf

n<∞λ({σ}; n), (11)

Λth{σ} = Λ({σ},∞) := lim
n→∞Λ({σ}; n) = sup

n<∞
Λ({σ}; n). (12)

We can point out the cases, described in the previous section, for which λth{σ} = 0:
case (0) when material is self-degrading, i.e. n∗{σ} < ∞; case (D), i.e. n∗({λσ}) →
n∗0{σ} 6= ∞ as λ → 0; case (E); case (G) since the absence of a limit of the function
n∗({λσ}) as λ → 0 implies that there exists n < ∞ such that λ({σ}; n) = 0.

Evidently, the endurance safety factor and the endurance normalised equivalent stress
make sense as material characteristics only for non-self-degrading materials. As follows
from the self-degradation definition above, a material is self-degrading, if and only if there
exists a (quasi–) cycle n∗{0} such that Λ({0}; n) = 0 for n < n∗{0} and Λ({0}; n) = ∞
for n ≥ n∗{0}. This statement gives an equivalent definition of self-degradation in terms
of the safety factor λ behaviour.

The safety factor λ({σ}; n) as function of n at a given process {σ} can also be con-
sidered as a generalised S–N diagram n 7→ λ({σ}; n). As a function of discrete integer
argument n, it takes only discrete values and hence is presented not by a curve but by
a discrete set of points on the (n, λ) plane. At each n, the point is placed on the bot-
tom of the vertical segment (lowest if it is not unique), corresponding to the n, on the
λ 7→ n∗{λσ} diagram, see Fig. 4b. The points are also placed for integer n from the
jump segment [n∗{(λ+0)σ}, n∗{(λ−0)σ}] for some λ where no values of the λ 7→ n∗{λσ}
diagram do exist, see Fig. 6b, 7b. As shown above in this section, the n 7→ λ({σ}; n)
diagram is monotonously non-increasing in n. The collection of such diagrams for all
possible processes in fact defines the functional λN .

One can also associate with each n−th (quasi–) cycle not a point n but a segment
[n − 1, n] on the n−axis. Then, remaining in the discrete time description related with
the strength/rupture status detection only at the (quasi–) cycle end point, one should
extend the status to the whole (quasi–) cycle except its start points being also end point
of the previous (quasi–) cycles. Using such approach, one can extend the point-wise S–
N diagram n 7→ λ({σ}; n) to the piece-wise constant left-continuous function coinciding
with the monotonous parts of the corresponding diagram λ 7→ n∗{λσ} at the (quasi–)
cycle ends and remaining constant at other points of the (quasi–) cycles. It cuts off the
non-monotonous (multi-valued) parts of the diagram λ∗({σ}; n) (connecting by the above
way to the branch with the lowest λ∗ and making a corresponding finite jump in λ({σ}; n)
in the branch beginning, see Fig. 4). It continues also the diagram onto the jump segment
[n∗{(λ + 0)σ}, n∗{(λ− 0)σ}] where λ∗({σ}; n) does not exist, see Fig. 7b.
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From the generalised S–N diagram n 7→ λ({σ}; n) for a given process {σ}, presented
e.g. on Fig. 3b, we can obtain the corresponding diagram n 7→ Λ({σ}; n) = 1/λ({σ}; n)
for the normalised equivalent stress Λ({σ}; n), Fig. 3c. Different curves correspond to
different possible cases of its behaviour described in points (A)-(F) of Section 3. Generally,
n 7→ Λ({σ}; n) is a non-decreasing function of the (quasi–) cycle number n (see above).
Some examples are given on Fig. 4c, 5c, 6c, 7c.

The diagram can be used in two ways. First, it gives a number Λ({σ}; n) such that
there is no rupture up to (quasi–) cycle n for any process {σ/Λ′} with Λ′ > Λ({σ}; n).
For example, if the diagram includes curve f (see Fig. 3), then the process {σ/Λ′} with
Λ′ > Λth{σ} causes no rupture for any n. Another way is to use the diagram together with
the stable strength condition (14) below for given {σ} and n. For example, if the diagram
includes the curve f , then the process {σ} causes no rupture for any n if Λth{σ} < 1.

Consider existence and uniqueness of the NESF Λ. Suppose the material (quasi–)
cyclic strength under a process {σ} on a (quasi–) cycle n is described by a strength
condition

F ({σ}; n) < 1 (13)

where F is a non-linear functional non-decreasing in n, known from experimental data
approximation or from a (quasi–) cyclic durability theory on the processes {λσ} for all
λ ≥ 0 for the considered n. Then the NESF Λ is uniquely determined from (13) by
Definition 1 for the process {σ} and the (quasi–) cycle n, although analytical expressing
Λ in terms of F is not always possible.

However, if F ({σ}; n) is a non-negative positively homogeneous of order +1 functional
of {σ}, then simply Λ({σ}; n) = F ({σ}; n) (proof is similar to Mikhailov 2000). This
relation will be used in Section 6 to obtain the NESF from known strength conditions of
some (quasi–) cyclic durability theories.

5 (Quasi–) cyclic strength and endurance conditions

Let {σ} be a process and n be a (quasi–) cycle number. From Definition 1 for the strength
functionals, we have the following conclusions:
(i) The inequality

Λ({σ}; n) < 1 (14)

implies λ−stable strength under the process {σ} on or before the (quasi–) cycle n.
(ii) The equality

Λ({σ}; n) = 1 (15)

implies either rupture or λ−unstable strength under the process {σ} on or before the
(quasi–) cycle n.
(iii) The inequality

Λ({σ}; n) > 1 (16)

implies rupture under the process {σ} on or before the (quasi–) cycle n if {σ} is an MD
process.

Inversely, if strength is λ−stable for an MD process {σ} at and before a (quasi–)
cycle n then (14) is satisfied (see proof by Mikhailov, 2000). Consequently, we have the
following
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Statement 1 Inequality (14) gives a sufficient (and necessary, if {σ} is an MD process)
condition of λ−stable (quasi–) cyclic strength on and before a (quasi–) cycle n under a
process {σ}.

By the same way, we have from Definition 2 the following conclusions for the endurance
functionals:

(i) The inequality
Λth{σ} < 1 (17)

implies λ−stable endurance for the process {σ}.
(ii) The equality

Λth{σ} = 1 (18)

implies either rupture on a (quasi–) cycle n < ∞ that is, n∗{σ} < ∞, or λ−unstable
endurance, that is, there is no rupture under the process {σ} on any (quasi–) cycle but
for any λ > 1 there exists λ′′ ∈ (1, λ] such that n∗{λ′′σ} < ∞.

(iii) The inequality
Λth{σ} > 1 (19)

implies rupture on a (quasi–) cycle n < ∞, that is, n∗{σ} < ∞ if {σ} is an MD process.
Similarly to Statement 1, we have the following

Statement 2 Inequality (17) gives a sufficient (and necessary if {σ} is an MD process)
condition of λ−stable (quasi–) cyclic endurance under a process {σ}.
Conditions (14)-(19) together with the homogeneity of ΛN , ΛN

th also show that the func-
tionals do really play the role of normalised equivalent stresses.

It follows from the Λ definition that if the durability n∗{λσ} is known for a process
{σ} for all λ ≥ 0, then the normalised equivalent stress Λ({σ}; n) can be obtained for {σ}
for any n = 1, 2, .... Consider now if it is possible to obtain values of the (quasi–) cyclic
durability functional n∗{λσ} for a process {σ} for any λ ≥ 0 if the values of the NESF
Λ({σ}; n) are known for the process {σ} for any n = 1, 2, ....

It is evident that this is not possible if {σ} is not an MD process, since the information
about the non-monotonous behaviour of n∗{λσ} as function of λ is lost in Λ({σ}; n).
However, as one can prove similar to Mikhailov 2000, the following inequality holds for
any process,

Λ({σ}; n∗{λσ}) ≥ 1/λ for all λ > 0. (20)

The discussion above shows that in addition to the non-sensitivity to non-monotonous
behaviour of the S–N diagram, the NESF Λ({σ}; n) does not also distinguish rupture from
not λ−stable strength. For this reason it is the critical (quasi–) cycle n∗∗{σ} ≤ n∗{σ},
who can be obtained from NESF Λ({σ}; n), but generally not the durability n∗{σ}. The
following statement is proved in Appendix C.

Statement 3 Let {σ} be an MD process. Let n∗∗− {σ} be supremum of n such that

Λ({σ}; n) < 1. (21)

Then the critical (quasi–) cycle is n∗∗{σ} = n∗∗− {σ} + 1 if n∗∗− {σ} < ∞, otherwise the
(quasi–) cyclic endurance is λ−stable under the process {σ}.
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Taking into account that Λ({σ}; n) is monotonously non-decreasing in n and that if
n∗∗− {σ} = n∗∗{σ} − 1 is finite, it does satisfy inequality (21) but n∗∗{σ} does not, we
have the following corollary from Statement 3.

Corollary 1 A (quasi–) cycle n∗∗ is critical for an MD process {σ}, i.e. n∗∗ = n∗∗{σ},
if and only if it satisfies the inequality

Λ({σ}; n∗∗ − 1) < 1 ≤ Λ({σ}; n∗∗). (22)

If such n∗∗ does not exist, the (quasi–) cyclic endurance is λ−stable under the process
{σ}.

Thus, inequality (22) is a criterion of rupture or strength instability on a (quasi–)
cycle n∗∗ under a (quasi–) cyclic MD process.

Applying Statement 3 to a process {λσ} and using the positive homogeneity of Λ({σ}; n),
we get some generalisation of the Statement:

Corollary 2 Let {σ} be an MD process. Let n∗∗− {λσ} be supremum of n such that

Λ({σ}; n) < 1/λ. (23)

Then for any λ > 0, the critical (quasi–) cycle is n∗∗{λσ} = n∗∗− {λσ}+1 if n∗∗− {λσ} < ∞,
otherwise the (quasi–) cyclic endurance is λ−stable under the process {λσ}.

Remark 2 As noted in Remark 1, one can replace the durability n∗{λσ} by the critical
(quasi–) cycle number n∗∗{λσ} in Definition 1 to arrive at exactly the same functional,
Λ∗∗N = ΛN . Thus, if the critical (quasi–) cycle number n∗∗{λσ} is known for a process
{σ} at all λ ≥ 0, then values of the NESF Λ({σ}; n) are uniquely determined for the
process {σ} at any n. Conversely, if values of the NESF Λ({σ}; n) are known for an MD
process {σ} at all n, then numbers of the critical (quasi–) cycles n∗∗{λσ} are uniquely
determined for the process {σ} at any λ ≥ 0 and particularly at λ = 1.

Note that namely the critical (quasi–) cycle number n∗∗{σ} is necessary for practical
design since, for the cases when n∗∗{σ} 6= n∗{σ}, the material strength is λ−unstable for
n ∈ [n∗∗{σ}, n∗{σ}) and the material can be ruptured by an arbitrarily small increase of
loading {σ}.

5.1 General remarks

The (quasi–) cyclic NESF ΛN as well as durability n∗ and critical (quasi–) cycle n∗∗

functionals are supposed to be material characteristics in the sense that they may have
different values on the same processes {σ} for different materials but must give the same
values on the same processes for the same material independent particularly of the shape
of the body consisting of the material.

The durability n∗{σ} does not depend on a particular time parametrisation of (quasi–)
cycles σc(m) for materials with pure fatigue responses. Thus the pure fatigue NESF ΛN

must also be time-independent and non-sensitive to the loop time parametrisation but
may be sensitive to the loop shape and direction in the stress space as well as to the

20



S.E.Mikhailov, I.N.Namestnikova

(quasi–) cycle order in the sequence {σc(m)}m = 1, 2, .... This means the functional ΛN

should be defined on sequences {σcs} for pure fatigue.
On the other hand, there are materials that manifest a rupture dependence on time

(e.g. under creep or dynamic loading) along with (quasi–) cyclic fatigue effects. For such
materials, the time sensitivity should be reflected also in the functional ΛN that will be
than defined on sequences {σct} to take into account the time-history-fatigue interaction.

All the written above in Sections 3-5 can be referred to each of the both loading process
representations {σc(m)}m=1,2,....

As material characteristics, the functionals n∗∗ and ΛN for a particular material can
be (approximately) identified from experimental data on durability n∗{σ}. Evidently
only a finite number of the durability tests n∗{σ} for different processes {σ} can be done
and identification of n∗{σ} or ΛN({σ}; n) for other processes and (quasi–) cycle numbers
should be done along those test results using an interpolation/approximation procedure.

In spite of the fact that it is just the durability n∗{σ}, which values are obtained
directly from experiments for some test processes {σ}, it is usually more straightforward
to approximate along those date first the NESF ΛN rather than n∗. This is because,
although the both functionals are nonlinear, the functional ΛN({σ}; n) is homogeneous
and can be considered as bounded with respect to {σ} in appropriate function spaces.

For the (quasi–) cyclic NESFs, any one durability test for a process {σ} will allocate,
according to uncertainty inequality (7), the value 1 between the values of NESF for the
neighbouring (quasi–) cycles, ΛN({σ}; n∗{σ}) and ΛN({σ}; n∗{σ})− 1. Typical numbers
of (quasi–) cycles under fatigue loading vary between 103 and 107, and consequently one
can suppose rather small changes of ΛN({σ}; n) between the (quasi–) cycles and attribute
ΛN({σ}; n∗{σ}) ≈ 1. Then, taking into account the functional homogeneity, we obtain
the NESF for the one-dimensional linear set, ΛN({kσ}; n∗{σ}) = k ∀k ≥ 0.

In what is written above in the paper, we analysed strength and durability under a
(quasi–) cyclic loading process {σc} where the stress field σ = σij(τ) is independent of
the space coordinates. If the stress field depends not only on time (or (quasi–) cycle
number) but also on the space coordinates x = (x1, x2, x3), i.e. σ = σij(x, τ), it is usually
supposed that rupture is local, that is, rupture at a point y depends only on the stress
(quasi–cyclic) history at the point y, that is on σij(y, τ) (or on {σc(y,m)}m=1,2,... for a
(quasi–) cyclic process) and does not depend on the stress history at other points of the
body. This means, one can use the durability n∗ and the NESF ΛN , obtained from tests
under homogeneous in space loading processes, to predict rupture under inhomogeneous
in space loadings. Particularly, the counterpart of condition (14) for prediction of stable
(quasi–) cyclic strength in a point y during a (quasi–) cycle n will then have form

Λ({σ(y)}; n) < 1.

This approach works well for moderately inhomogeneous stress fields but fails, when a
stress field vary rather sharp, e.g. near a crack tip or other stress concentrator. Some
non-local approaches able to deal with such stress fields for time and history independent
materials were considered by Mikhailov (1995–I&II). Their extension to history depen-
dent materials under (quasi–) cyclic loadings is developed by Mikhailov & Namestnikova
(2002).
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6 Examples of (quasi–) cyclic normalised equivalent

stress

functionals for uniaxial loading

6.1 Uniaxial periodic loading processes for material indepen-
dent of history

Let us consider a material independent of history (that is, its strength is determined only
by the instants stress value) and obeying the strength condition

|σ| < σr

where σr is a material constant (the material strength under monotone uniaxial tension).
Using the example in section 3.2, we have from the definition of NESF,

ΛN({σ}, n) = max
1≤m≤n

|||σc(m)|||
σr

,

where as above |||σc(m)||| = max(|σmax(m)|, |σmin(m)|).

6.2 Uniaxial regular periodic loading processes

The fatigue strength conditions at an n-th cycle of a uniaxial regular periodic loading
process {σ} can be written in the following form

σa < σ∗R(n), (24)

or inversely,
n < n∗R(σa)

Here σa is a cycle amplitude and n∗R(σa) is the classical S-N diagram, depending on the
asymmetry ratio R. Sometimes the maximum stress value σmax is used instead of the
stress amplitude σa in a cycle if σmax > 0. Then the strength condition at the n-th cycle
can be rewritten as

σmax < σ∗R,max(n), (25)

where σ∗R,max(n) is the S–N diagram for σmax. Inversely,

n < n∗R,max(σmax)

Note that at R = −1 the stress amplitude coincides with the maximum stress value in a
cycle. According to the Definition 1 of the NESF, we have for arbitrary stress asymmetry
ratio R

ΛN({σ}; n) =
σa

σ∗R(n)
(26)

or, respectively,

ΛN({σ}; n) =
σmax

σ∗R,max(n)
(27)
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Let the Wöhler S–N diagram σ∗R(n) be approximated by a power law

σ∗R(n) = σ∗R1n
−1/bR , (28)

where σ∗R1 and bR are positive material parameters generally dependent on R. Then the
NESF is

ΛN({σ}; n) =
σa

σ∗R1

n1/bR

Let the Wöhler diagram σ∗R(n) for arbitrary R be approximated in terms of the Wöhler
diagram for symmetric cycling, σ∗−1(n), as

σ∗R(n) = σ∗−1(n)

[
1 +

1 + R

1−R

σ∗−1(n)

σr

]−1

(29)

then we arrive at the strength condition at an n-th cycle, associated with the Haigh
diagram

σa

σ∗−1(n)
+

σm

σr

< 1 (30)

where σm = σmax+σmin

2
is mean stress in the cycle. Note that the Haigh diagram can be

considered as the fatigue strength diagram at a fixed number of cycles n (constant-lifetime
diagram) and also as the endurance diagram (then n = ∞).

The NESF corresponding to (29), (30) is

ΛN({σ}; n) =
σa

σ∗−1(n)
+

σm

σr

6.3 Uniaxial non-periodic regular cyclic loading processes

The approaches analysed below in this section were originally developed for block-periodic
loadings. The block-periodicity usually means a large number of periodic cycles in a
small number of blocks. For this reason, the number of transitions between the blocks
is also small and can be neglected in the durability analysis. However, all the block-
periodic theories considered below can be equally applied also to arbitrary uniaxial loading
with closed cycles, that is, periodicity in blocks is not necessary and there can be many
transitions between the blocks if the transitions are closed cycles.

6.3.1 Palmgren-Miner linear damage accumulation rule

For a uniaxial block-periodic loading process {σc(m)}, the cyclic strength condition ac-
cording Palmgren(1924,1945)-Miner(1945) linear damage accumulation rule can be writ-
ten as the inequality

n∑

j=1

1

n∗R(j)(σa(j))
< 1. (31)

The value of n∗R(j)(σa(j)) is found from an appropriate classical S–N curve σa 7→ n∗R(σa) for
the same material under corresponding periodic cycling. For a process {λσc(m)}, where
λ ≥ 0, we have thus the strength condition

n∑

j=1

1

n∗R(j)(λσa(j))
< 1. (32)
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Definition 1 together with the strength condition (32) allow to obtain the NESF for
any particular S–N diagram n∗R(σa) although not always explicitly. If any periodic loading
is monotonously damaging for the considered material, that is, n∗R(σa) is a non-increasing
function of σa (what is usually the case for structural materials), then the left hand side of
(32) is non-decreasing in λ and consequently any block-periodic loading is monotonously
damaging for the material obeying the linear damage accumulation rule. In this case one
can apply a simplified Definition 1MD and obtain that ΛN({σ}; n) = 1/λN({σ}; n), where
λN({σ}; n) is the supremum of numbers λ ≥ 0 satisfying inequality (32).

Although as follows from the cyclic durability definition, n∗R(σa) is a piece-wise con-
stant integer-valued function of σa, some continuous or piece-wise continuous interpolation
of n∗R(σa) is usually used for simplicity in damage accumulation rules like (31) and we will
often follow this tradition below. This leads to an error less then one cycle for n∗R(σa),
which is negligible in comparison with the durabilities 103 − 107 typical for fatigue.

If n∗R(σa) is a continuous monotonously decreasing function of σa, then the left hand
side of (32) is continuous and monotonously increasing in λ, and instead of taking supre-
mum according to Definition 1MD, one can determine the NESF as ΛN({σ}; n) = 1/λ,
where λ is a solution of the equation

n∑

j=1

1

n∗R(j)(λσa(j))
= 1. (33)

In the case when n∗R(σa) is a piece-wise continuous monotonously decreasing function of
σa, one can also try to find the NESF in form ΛN({σ}; n) = 1/λ, where λ is a solution of
equation (33) if the solution does exist, or use more general Definition 1MD otherwise.

Suppose, particularly, that n∗R(σa) is given by the power law inverse to (28), that is,

n∗R(σa) =
(σ∗R1

σa

)bR
(34)

where σ∗R1, bR > 0. The so–defined n∗R(σa) is a continuous monotonously decreasing
function of σa. Then ΛN({σ}; n) = 1/λ, where λ is a solution of the equation

n∑

j=1


λσa(j)

σ∗R(j)1




bR(j)

= 1 (35)

If bR = b does not depend on R, or R(j) = R does not depend on the cycle number j,
then the equation can be solved explicitly and the NESF is

ΛN({σ}; n) =




n∑

j=1


 σa(j)

σ∗R(j)1




b



1/b

(36)

in the first case and

ΛN({σ}; n) =
1

σ∗R1




n∑

j=1

σbR
a (j)




1/bR

(37)

in the second case.
Note, perhaps the most significant shortcoming of the Palmgren-Miner hypothesis is

that it does not account for sequence effects; that is, that damage caused by a stress cycle
is independent of where it occurs in the load history.
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6.3.2 Marin damage accumulation rule

Marin (1962) proposed the damage accumulation rule for a block-periodic process with the
stress asymmetry ratio R = −1. Using Marin’s hypothesis the fatigue strength condition
can be written in form

1

n∗−1(σ
max
a (n))

n∑

j=1

[
σa(j)

σmax
a (n)

]d

< 1 (38)

Here σa(j) is the stress amplitude in the j-th cycle, σmax
a (n) = max

j=1,...n
σa(j) is the maximum

stress amplitude in the process {σ(j)}n
j=1, and n∗−1(σa) is the number of cycles up to

rupture in a periodic process with the stress amplitude σa and the asymmetry ratio
R = −1, d is a material constant.

As above, under assumption (34) we can rewrite (38) in the following form

[
σmax

a (n)

σ∗−1,1

]b−1 n∑

j=1

[
σa(j)

σmax
a (n)

]d

< 1 (39)

We should note that strength condition (39) can be used only for d ≤ b−1. Otherwise,
if we consider for example, a cyclic process with a constant amplitude σa, then, according
to (39), the addition to the process of only one cycle with the amplitude 2σa increases the
number of cycles to rupture by almost 2d−b−1 times, what does not seem to be natural.

From (39), the durability n∗(λσ) under the process {λσ(j)}j=1,2... is determined from
the equation [

λσmax
a (n∗)
σ∗−1,1

]b−1 n∗∑

j=1

[
σa(j)

σmax
a (n∗)

]d

= 1

Finally we find

λ =
σ∗−1,1

σmax
a (n∗)

(
n∗∑

j=1

[
σa(j)

σmax
a (n∗)

]d
)−1/b−1

and have the following representation for the NESF,

ΛN({σ}; n) =
σmax

a (n)

σ∗−1,1

(
n∑

j=1

[
σa(j)

σmax
a (n)

]d
)1/b−1

=
(σmax

a (n))
1− d

b−1

σ∗−1,1

[
n∑

j=1

[σa(j)]
d

]1/b−1

(40)

for d ≤ b−1.
Note, that the same expression (38) for the durability was obtained by Corten &

Dolan (1956) under other assumptions than by Marin. Consequently, the functional ΛN

for the Corten & Dolan fatigue model is also determined by (40) if the Wöhler diagram
is used in form (34). When n∗−1(σa) is given by (34) and d = b−1, the both damage
accumulation rules are reduced to strength condition (31) for the Palmgren-Miner linear
damage accumulation rule.

6.3.3 Pavlov non-linear accumulation rule

A non-linear strength condition, taking into account instantaneous rupture, was proposed
by Pavlov (1988)

n∑

j=1

f̃ [σmax(j), R(j)] +
σmax(n)

σr

< 1 (41)
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Where σmax(j) is the maximum stress in the j-th cycle. Under block-periodic loading, the
function f̃ [σmax(j), R(j)] was taken in the form

f̃ [σmax(j), R(j)] =

(
1− σmax(j)

σr

)
1

n∗R(j)max[σmax(j)]
(42)

Substituting (42) into (41) we have

n∑

j=1

(
1− σmax(j)

σr

)
1

n∗R(j)max[σmax(j)]
+

σmax(n)

σr

< 1 (43)

Assuming the Wöhler diagram in form

n∗R,max(σmax) =
(σ∗R1,max

σmax

)bR
, (44)

where bR, σ∗R1 are material characteristics generally depending on R, we obtain after some
algebraic manipulations the following equation for ΛN ,

ΛbR
σmax(n)

σr

+ Λ
n∑

j=1

(σmax(j)

σ∗R1,max

)bR − ΛbR+1 =
n∑

j=1

(σmax(j)

σ∗R1,max

)bR σmax(j)

σr

, (45)

which can be solved numerically. Here bR = bR(j), σ∗R1 = σ∗R(j)1.
Note that the strength condition (43) can be rewritten in the following form

1

σr − σmax(n)

n∑

j=1

σr − σmax(j)

n∗R(j),max[σmax(j)]
< 1

This last inequality was generalized by Pavlov (1988) to the non-linear damage accumu-
lation strength condition

l[σmax(n); R(n)]
n∑

j=1

1

l[σmax(j); R(j)]n∗[σmax(j), R(j)]
< 1. (46)

Here l[σmax(j); R(j)] is a parameter depending not only on the maximum stress in a cycle
but also on the cycle asymmetry ratio.

Assuming the Wöhler diagram in form (44), the durability n∗(λσ) under the process
{λσ(j)}j=1,2... is determined from the equation

l[λσmax(n
∗); R(n∗))]

n∗∑

j=1

1

l[λσmax(j); R(j)]


 λσmax(j)

σ∗R(j)1,max




bR(j)

= 1 (47)

Then, from (47), the NESF ΛN({σ}; n) is a solution of the equation

l[Λ−1σmax(n
∗); R(n∗)]

n∑

j=1

Λ−bR(j)

l[Λ−1σmax(j); R(j)]


σmax(j)

σ∗R(j)1




bR(j)

= 1 (48)

which can be solved numerically. Note that if l(σmax; R) = const then (46) degenerates
into (31) and (48) into (37).
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6.3.4 Serensen-Kogaev model

To get a better agreement to the test data under a non-regular in time loading {σa(j)}j=1,2,...

with the stress asymmetry ratio R = −1, it was proposed by Serensen et al (1975) and Ko-
gaev et al (1985) (see also in English Lagoda (2001)) to use an improved Palmgren-Miner
hypothesis, for which we can write the strength condition in the form

n∑

j=1

σa(j)>σ∗−1∞

1

n∗−1(σa(j))
< ap({σ}; n) (49)

The value ap({σ}; n) is defined as

ap({σ}; n) = max

[
σ̃(n)− 0.5σ∗−1∞

σmax
a (n)− 0.5σ∗−1∞

, 0.1

]
(50)

Here

σ̃(n) =
1

ñ

n∑

j=1

σa(j)>0.5σ∗−1∞

σa(j) (51)

Here ñ is a number of cycles out of n with the stress amplitudes σa(j) > 0.5σ∗−1∞, j =
1, ..., n; σ∗−1∞ = σ∗−1(∞) is the fatigue limit for the symmetric loading (R = −1).

Note that as follows from (51), 0.5σ∗−1∞ ≤ σ̃ ≤ σmax
a (n) if not all σa(j) < 0.5σ∗−1∞.

Then owing to (50), 0.1 ≤ ap ≤ 1. Hence the strength criterion (49) can describe only an
decrease but not an increase of the durability in comparison with the prediction of the
classical Palmgren-Miner linear damage accumulation hypothesis (31).

The Wöhler curve n∗−1(σa) is presented by two straight line parts in the double loga-
rithmic coordinates. One of them, σa = σ∗−1∞ for the large number of cycles, is parallel
to the abscissa axis. The non-constant part of the Wöhler diagram is presented by the
power law (34). Then the coordinates for the point of the lines intersection are (n∗G, σ∗−1∞),
where n∗G = (σ∗−1,1/σ

∗
−1∞)b−1 . Substituting (34) into (49), we have

1

[σ∗−1,1]
b−1

n∑

j=1

σa(j)>σ∗−1∞

[σa(j)]
b−1 < ap({σ}; n)

Then the durability n∗(λσ) for the process {λσ} is determined from the equation

1

[σ∗−1,1]
b−1

n∗∑

j=1

λσa(j)>σ∗−1∞

[
λσa(j)

]b−1

= ap({λσ}; n∗) (52)

The NESF can be determined as ΛN({σ}; n) = 1/λ, where λ is a solution of equation (52)
if the solution does exist, or from Definition 1MD otherwise.
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If the fatigue limit σ∗−1∞ is equal to zero, strength condition (49) reduces to the
following inequality,

n∑

j=1

1

n∗−1(σa(j))
< ap({σ}; n) = max


 1

nσmax
a (n)

n∑

j=1

σa(j), 0.1


 (53)

Using (34), we obtain the NESF for the case in the form

ΛN({σ}; n) =
1

σ∗−1,1


 1

ap({σ}; n)

n∑

j=1

[σa(j)]
b−1




1/b−1

(54)

6.4 Remarks on applications to random uniaxial loading
processes

Under a random loading {σc(m)}m=1,2,..., the quasi-cycles σc(m) are not closed and con-
sequently direct applying a linear or non-linear summation rule to reduce a durability
description to a material characteristic determined under corresponding periodic pro-
cesses is impossible. Usual in this case is an intermediate step: to define an auxiliary
reduced process, or better to say, a finite set of closed cycles {σ̃c(m̃; n)}ñ

m=1 deemed to
be equivalent to a finite subsequence {σc(m)}n

m=1 of the original process, using one of the
cycle counting methods (for example the rainflow method), see e.g. Dowling N.E. (1972),
Downing S.D. & Socie D.F. (1982), Collins (1993), Rychlik (1987), the British Standards-
5400 (1980). For a given process {σc(m)}m=1,2,..., both the reduced cycles σ̃c(m̃; n) and
their number ñ in the set depend on n. After this step, normally the linear summation
rule is applied.

The cycle counting methods have several features important for our analysis:
(i) The sequence effect is lost in the reduced cycle set {σ̃c(m̃; n)}ñ

m=1.
(ii) If {σ̃c(m̃; n)}ñ

m=1 is a reduced set to a subsequence {σc(m)}n
m=1, then {λσ̃c(m̃; n)}ñ

m=1

is a reduced set to the subsequence {λσc(m)}n
m=1 for any λ ≥ 0.

(iii) Suppose {σc(m)}n1
m=1 and {σc(m)}n2

m=1 are two finite subsequences of an original se-
quences {σc(m)}m=1,2,... and n2 > n1, then {σc(m)}n1

m=1 constitutes a part of {σc(m)}n2
m=1.

For the reduced sets, ñ2 > ñ1 but the reduced set {σ̃c( ˜m; n1)}ñ1
m=1 does not generally

belong to the reduced set {σ̃c( ˜m; n2)}ñ2
m=1.

Using a cycle counting method and a summation rule, one can estimate durability
under a process {σc(m)}m=1,2,... by the durabilities under the reduced sets {σ̃c(m̃; n)}ñ

m=1.
Then one can estimate the NESF Λ({σc}; n) by the NESF under the reduced load set,

Λ({σc}; n) = Λ({σ̃c(m̃; n)}ñ(n)
m=1; ñ(n)).

As follows from item (ii) above, the NEFS Λ({σc}; n) obtained in this way satisfy the
homogeneity property (10) with respect to {σc}. However, the monotone non-decreasing
with respect to n, see (9), is not evident as follows from item (iii) above, and a detailed
analysis of particular cycle counting method is necessary to investigate this.
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7 Examples of cyclic normalised equivalent stress

functionals for multiaxial loading

The fatigue strength criteria for multiaxial case can be classified roughly into three main
categories: criteria based on equivalent stress concept (approaches based on the stress
invariants), critical surface criteria and strain energy criteria. The approach based on an
equivalent stress σeq, which is applicable to a cyclic loading with synchronous (propor-
tional, coaxial, in-phase) cycling for all stress components, is described e. g. by Pavlov
(1988), Lebedev (1990). The equivalent stress is defined as a function of the stress am-
plitudes and the mean stresses in a cycle and then is substituted into the corresponding
durability expressions known for symmetric uniaxial periodic loading. In this way, the
durability analysis under asymmetric multiaxial cyclic loading is reduced to one S-N dia-
gram under symmetric uniaxial cyclic loading.

The so-called critical surface criteria for in-phase loading, based on the von Mises
equivalent stress and taking into account an influence of the hydrostatic stress on the
fatigue endurance were proposed by Crossland (1956) and Sines (1959). The both criteria
have similar analytical formulas. The difference is that Sines used the mean on cycle
hydrostatic stress σH,m while Crossland used in his criterion the maximal on cycle hydro-
static stress σH,max. Another criterion, based on the Tresca maximum shear stress was
proposed by Dang Van (1973). Modifying the Sines criterion, Kakuno (1979) proposed to
take into account an effect of the hydrostatic pressure amplitude. Endurance limits (or
S–N diagrams) under several types of periodic loading are necessary to obtain the criteria
parameters (or their dependence on the cycle number). All these criteria were extended
for the case of existing residual stress by Flavenot & Skalli (1989). Papadopoulos et al
(1997) made an attempt to extend the critical surface approaches to non-proportional
periodic processes.

7.1 Multiaxial loading processes for materials independent of
history

Let us consider a material independent of history (that is, its strength is determined only
by the instants stress value) and obeying the strength condition

σeq(σ) < σr

where σeq(σ) is the von Mises, Tresca or other equivalent stress (positively homogeneous
function of order +1), σr is a material constant (the material strength under monotone
uniaxial tension). Then we have from the definition of NESF,

ΛN({σ}, n) = max
1≤m≤n

max
σ∈σc(m)

σeq(σ)

σr

= max
1≤m≤n

|||σc(m)|||
σ∗(σ̃c(m))

. (55)

Here |||σc(m)||| denotes a norm of a tensor function σc(m) describing the stress tensor
behaviour on the m−th cycle, for example, |||σc(m)||| = supσ∈σc(m) |σ|, where the supremum
is taken along the m−th cycle and |σ| denotes a matrix norm of a tensor σij, for example,

|σ| =
√∑3

i,j=1 σ2
ij;

σ∗(σ̃c(m)) = min
σ∈σ̃c(m)

[σr/σeq(σ)], σ̃c(m) = σc(m)/|||σc(m)|||. (56)
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7.2 Multiaxial regular proportional periodic loading

7.2.1 Equivalent stress concept for regular periodic loading

Let σeq(σ
c) be an equivalent stress expressed in terms of stress amplitude tensor σij,a

and asymmetric ratio R or of maximum stresses tensor σij,max and R, in a multiaxial
proportional cycle σc. The main assumption is that the number of cycles up to rupture
n∗{σc} under multiaxial cyclic loading {σc

ik} with an equivalent stress σeq(σ
c) can be

found from fatigue curves n∗−1(σa) for uniaxial symmetric cyclic loading with the stress
amplitude σa = σeq(σ

c) and the asymmetry ratio R = −1,

n∗{σc} = n∗−1(σeq(σ
c)) (57)

The function σeq is chosen such that σeq(σ
c) = σa for any uniaxial process σc with an

amplitude σa and the asymmetry ratio R = −1.
For example, if the uniaxial durability is described by (34), then for a multiaxial

periodic loading we obtain from (57),

n∗(σc) := n∗−1(σeq(σ
c)) =

(
σ∗−1,1

σeq(σ)

)b−1

, (58)

where σ∗−1,1 and b−1 are positive material constants.
There are many possibilities to introduce the value σeq(σ). let us consider two expres-

sions presented by Pavlov (1988). First one is

σeq1(σ
c) =

σi,a

1− σi,m

σr

, (59)

where σr is the material strength under monotone uniaxial loading and σi,a, σi,m are the
intensities (the von Mises equivalent stress) of stress amplitude and mean stress tensors
introduced in (3), respectively. In terms of the tensor principal values σk,a, σk,m, k =
1, 2, 3,

σi,a =
1√
2

[
(σ̂1,a − σ̂2,a)

2 + (σ̂2,a − σ̂3,a)
2 + (σ̂3,a − σ̂1,a)

2
]1/2

,

σi,m =
1√
2

[
(σ̂1,m − σ̂2,m)2 + (σ̂2,m − σ̂3,m)2 + (σ̂3,m − σ̂1,m)2

]1/2
.

Expression (59) can be considered as a generalization of Haigh diagram for the multiaxial
case.

The second example is

σeq2(σ
c) =

ξa

1− ξm

σr

, (60)

ξa = ζσi,a + (1− ζ)σ̂1,a, ξm = ζσi,m + (1− ζ)σ̂1,m, ζ =
1√

3− 1

(
σ∗−1∞
τ ∗−1∞

− 1

)

Here σ∗−1∞ := σ∗−1(∞) and τ ∗−1∞ := τ ∗−1(∞) are respectively the fatigue limits under peri-
odic symmetric uniaxial and pure shearing cycling; σ̂1,a is the amplitude of the maximum
principal stress, σ̂1,m is the mean value of the maximum principal stress. The values ηa

and ηm are the modified stress amplitude and the modified mean stress respectively.
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Another expression for σeq under asymmetric cycling was given by Lebedev (1990)

σeq3(σ
c) = σi,a

[ (
1− 2

3

σi,m

σr

)2

− 1

9

(
σi,m

σr

)2
]−1/2

(61)

For brittle materials under symmetric cycling R = −1 the maximal normal stress
amplitude, that is, maximal principal stress amplitude σ̂1,a can be used as an equivalent
stress (e.g. Lebedev, 1990),

σeq4(σ
c) = σ̂1,a (62)

Under the multiaxial regular periodic loading, the fatigue strength conditions for (59),
(60), (61) and (62) at the n-cycles can be written in the following form respectively

σi,a

1− σi,m

σr

< σ∗−1(n), (63)

ξa

1− ξm

σr

< σ∗−1(n), (64)

σi,a

[ (
1− 2

3

σi,m

σr

)2

− 1

9

(
σi,m

σr

)2
]−1/2

< σ∗−1(n). (65)

σ̂1,a < σ∗−1(n), (66)

Hence, according to the definition of the NESF, we have for (63), (64), (65) and (66),
respectively,

ΛN({σ}; n) =
σi,a

σ∗−1(n)
+

σi,m

σr

ΛN({σ}; n) =
ξa

σ∗−1(n)
+

ξm

σr

ΛN({σ}; n) =
2

3

σi,m

σr

+

√√√√
(

σi,a

σ∗−1(n)

)2

+
1

9

(
σi,m

σr

)2

ΛN({σ}; n) =
σ̂1,a

σ∗−1(n)

7.2.2 Invariant based critical surface approaches for regular periodic loading

Popular fatigue endurance conditions under in-phase multiaxial periodic loading, based
on the von Mises equivalent stress and taking into account an influence of the hydrostatic
stress were proposed by Sines (1959),

σi,a + ασH,m < β, (67)

and Crossland (1956),
σi,a + ασH,max < β. (68)

Here σH,m = σjj,m/3 is the mean and σH,max = −σjj,max/3 is the maximum on cycle
hydrostatic stresses. The material parameters α and β can be found, for example, from
tension-compression tests with R = 0 and R = −1. Then we have,

α = 3

(
σ∗−1∞
σ∗0∞

− 1

)
, β = σ∗−1∞ (69)
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for the Sines criterion and

α = 3

(
σ∗−1∞ − σ∗0∞
2σ∗0∞ − σ∗−1∞

)
, β =

σ∗−1∞σ∗0∞
2σ∗0∞ − σ∗−1∞

(70)

for the Crossland criterion. The value σ∗0∞ = σ0(∞) denotes the fatigue limit at the
reversed (with zero minimum stress, i.e. at R = 0) tension test. Note that the use of the
maximum on cycle hydrostatic stress σH,max in the Crossland endurance condition allows
to describe, in particular, a difference between torsional and tensile or bending symmetric
(R = −1) fatigue tests.

Another fatigue endurance condition, based on the Tresca equivalent stress i.e. on the
maximum shear stress and also taking into account the hydrostatic stress, was proposed
by Dang Van (1973), Dang Van et al (1989),

τ̂a + ασH,max < β. (71)

Here τ̂a is the shear stress amplitude acting on the plane of maximum shear. The unknown
constants α and β can be also determined from the tension tests with R = −1 and R = 0,

α =
3

2

(
σ∗−1∞ − σ∗0∞
2σ∗0∞ − σ∗−1∞

)
, β =

σ∗−1∞σ∗0∞
2(2σ∗0∞ − σ∗−1∞)

(72)

Note that for the Crossland and the Dang Van endurance conditions to be applicable
to compression fatigue tests (with σH,max ≤ 0), the constant β in (68) and (71) should
be positive. Then relations (70), (72) imply 2σ∗0∞ = σ∗0∞,max > σ∗−1∞,max = σ∗−1∞, that is,
the endurance limit under uniaxial tension-compression is higher under the cycling with
zero minimum stress than with the negative one, in terms of the maximal stress. This
demand seems to be rather natural for structural materials.

Kakuno & Kawada (1979) proposed to take into account an effect of both the am-
plitude and the mean value of hydrostatic stress, modifying the Sines criterion in the
following way

σi,a + α1σH,a + α2σH,m < β (73)

The material constants are defined from three simple tests, for example fully reversed
torsion test, fully reversed tension-compression test and repeating (zero minimum stress)
tension test,

α1 = 3
√

3
τ ∗−1∞
σ∗−1∞

− 3, α2 = 3
√

3τ ∗−1∞

(
1

σ∗0∞
− 1

σ∗−1∞

)
, β =

√
3τ ∗−1∞. (74)

Here τ ∗−1∞ is the fatigue limit in fully reversed torsion, σ∗−1∞ is the fatigue limit in fully
reversed tension-compression. The value σ∗0∞ denotes here the fatigue limit at repeated
(zero minimum stress) tension. Note that the parameters σ∗−1∞, σ∗0∞ can be also referred
to the bending tests.

Flavenot & Skalli (1989) extended all these criteria for the case of existing residual
stress. The total hydrostatic stress was assumed to be the sum of the mean stress induced
by the external load and of the residual stresses.

Inequalities (67), (68), (71) and (73) can be used not only as the fatigue endurance (i.e.
at n = ∞) conditions but also as the fatigue strength conditions at an arbitrary number
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of cycles n if one replaces the constants α, β, α1 and α2 by corresponding functions. To
find the functions α(n), β(n), α1(n) and α2(n), one could use e.g. corresponding relations
(69), (70), (72), where σ∗−1∞, σ∗0∞ and τ ∗−1∞ should be replaced by σ∗−1(n), σ∗0(n) and
τ ∗−1(n) respectively.

Using the fatigue strength conditions (67), (68), (71) and (73) we find the NESFs:

ΛN({σ}; n) =
1

β(n)
(σi,a + α(n)σH,m) (75)

for the Sines criterion;

ΛN({σ}; n) =
1

β(n)
(σi,a + α(n)σH,max) (76)

for the Crossland criterion;

ΛN({σ}; n) =
1

β(n)
(τ̂a + α(n)σH,max) (77)

for the Dang Van criterion and

ΛN({σ}; n) =
1

β(n)
(σi,a + α1(n)σH,a + α2(n)σH,m) (78)

for the modified Sines (Kakuno & Kawada) criterion.
In particular cases, when the parameters α(n), β(n), α1(n) and α2(n) are expressed

in terms of σ∗−1(n), σ∗0(n) and τ ∗−1(n), we can rewrite the NESF in terms of the uniaxial
S–N diagrams under tension-compression and torsion periodic loadings:

ΛN({σ}; n) =
σi,a(n)

σ∗−1(n)
+ 3

(
1

σ∗0(n)
− 1

σ∗−1(n)

)
σH,m(n) (79)

for the Sines criterion;

ΛN({σ}; n) =

(
2

σ∗−1(n)
− 1

σ∗0(n)

)
σi,a(n) + 3

(
1

σ∗0(n)
− 1

σ∗−1(n)

)
σH,max(n) (80)

for the Crossland criterion;

ΛN({σ}; n) = 2

(
2

σ∗−1(n)
− 1

σ∗0(n)

)
τ̂a(n) + 3

(
1

σ∗0(n)
− 1

σ∗−1(n)

)
σH,max(n) (81)

for the Dang Van criterion and

ΛN({σ}; n) =
1√

3τ ∗−1(n)
σi,a(n) +

[
3

σ∗−1(n)
−

√
3

τ ∗−1(n)

]
σH,a(n)

+ 3

[
1

σ∗0(n)
− 1

σ∗−1(n)

]
σH,m(n) (82)

for the modified Sines criterion.
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7.2.3 Critical surface approaches for critical planes under regular periodic
loading

The criteria based on the stress invariants (stress intensity amplitude and hydrostatic
stress) are not able to determine a fracture (critical) plane. Including in a criterion some
non-invariant values (e.g. normal or shear stresses acting on a considered plane) allowes
to predict not only a fracture point but also a fracture plane. One of such criteria can be
obtained by a modification of the Matake criterion.

Matake criterion. Let ~η denote a normal vector to a material plane. Matake (1977)
assumed that the critical plane ~η∗ is a plane on which the shear stress amplitude reaches
its maximum and one can write the endurance condition in the form

τa(~η) + ασηη,max < β, (83)

for ~η = ~η∗, where α and β are some material constants; σηη,max is the maximum along the
cycle of the normal stress σηη acting on the plane ~η. Using the definition of the endurance
functional ΛN

th({σ}) = ΛN({σ},∞) we obtain from (83)

ΛN
th({σ}) =

1

β
[τa(~η

∗) + αση∗η∗,max] (84)

In particular, the constants can be identified from fully reversed torsion test and fully
reversed tension-compression test

α =
2τ ∗−1∞
σ∗−1∞

− 1, β = τ ∗−1∞ (85)

Then the endurance functional ΛN
th is

ΛN
th({σ}) =

τa(~η
∗)

τ ∗−1∞
+

[
2

σ∗−1∞
− 1

τ ∗−1∞

]
ση∗η∗,max (86)

Inequality (83) can be used not only as the fatigue endurance condition (i.e. at n = ∞)
but also as the fatigue strength condition at an arbitrary number of cycles n if one replaces
the constants α and β by corresponding functions α(n) and β(n), α1(n). Then we find
the NESF for the Matake criterion

ΛN({σ}; n) =
1

β(n)
[τa(~η

∗) + α(n)ση∗η∗,max] (87)

Modified Matake criterion. If we consider the left hand side of (83) not for the
maximal shear stress plane but for an arbitrary plane ~η, we can realise that the maximum
of this expression with respect to ~η will be not necessarily on the maximal shear stress
plane. Thus it seems to be natural to modify the Matake criterion in the following way.
Let

τa(~η) + ασηη,max(~η) < β, (88)

be the endurance condition for a plane ~η. The the endurance condition for a material
point, that is for all planes passing through the point, is

max
~η

[τa(~η) + ασηη,max(~η)] < β, (89)

34



S.E.Mikhailov, I.N.Namestnikova

We assume now critical plane ~η∗ is that, where the maximum in the left hand side of (89)
is achieved, that is,

τa(~η
∗) + αση∗η∗,max = max

~η
[τa(~η) + ασηη,max]. (90)

If the S–N diagrams τ ∗−1(n), σ∗−1(n) or at least their limits τ ∗−1∞ = τ ∗−1(∞), σ∗−1∞ =
σ∗−1(∞) are available, we can interpret (89) as a Coulomb-Mohr strength condition and
after some trigonometric manipulations obtain a counterpart of (85) for the modified
Matake criterion

α(n) =

2τ ∗−1(n)

σ∗−1(n)
− 1

√√√√4τ ∗−1(n)

σ∗−1(n)
−

(
2τ ∗−1(n)

σ∗−1(n)

)2
, β(n) =

τ ∗−1(n)√√√√4τ ∗−1(n)

σ∗−1(n)
−

(
2τ ∗−1(n)

σ∗−1(n)

)2
(91)

The normalised equivalent endurance functional for the modified Matake criterion is

ΛN
th({σ}) = max

~η
ΛN

th({σ}; ~η) = max
~η

{
1

β
[τa(~η) + ασηη,max)]

}
(92)

and the NESF for a finite n is

ΛN({σ}; n) = max
~η

ΛN({σ}; ~η; n) = max
~η

{
1

β(n)
[τa(~η) + α(n)σηη,max)]

}
(93)

McDiarmid criterion. If one chooses the parameters α and β in (83) as

α =
τ ∗−1∞
2σr

, β = τ ∗−1∞,

one arrives at a criterion proposed by McDiarmid (1991, 1994)

τa(~η) +
τ ∗−1∞
2σr

σηη < τ ∗−1∞ (94)

where ~η = ~η∗ is the critical plane supposed to be the maximum shear stress amplitude
plane. Then for the endurance functional Λth we obtain

Λth({σ}) =
τa(~η

∗)
τ ∗−1∞

+
ση∗η∗(~η

∗)
2σr

. (95)

The NESF for the McDiarmid criterion is

ΛN({σ}; n) =
τa(~η

∗)
τ ∗−1(n)

+
ση∗η∗(~η

∗)
2σr

(96)

One can also consider a modified version of criterion (94) interpreting it as an endurance
condition of a plane ~η. The critical plane is taken to be that subjected to the greatest
value of the left hand side of (94) (McDiarmid, 1994). Then the normalised equivalent
endurance functional becomes

ΛN
th({σ}) = max

~η
ΛN

th({σ}; ~η) = max
~η

{
τa(~η)

τ ∗−1∞
+

σηη(~η)

2σr

}
(97)

and the NESF for a finite n becomes

ΛN({σ}; n) = max
~η

ΛN({σ}; ~η; n) = max
~η

{
τa(~η)

τ ∗−1(n)
+

σηη(~η)

2σr

}
(98)
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A more general form of a critical surface-type fatigue life criterion was proposed by
Papadopoulos (1998) for a plane, where the shear stress amplitude reaches its maximum
value (considered by the author as a critical plane),

F (τa, |τm|, σηη,a, σηη,m, n) ≤ 1 (99)

Here τm is the mean shear stress acting on the plane of maximum shear, σηη,a is the normal
stress amplitude acting on the plane of the maximum shear stress and σηη,m is the mean
value of the normal stress. From (99) the durability n∗(λσ) under a process {λσ}, λ ≥ 0,
is determined from the equation

F (λτa, λ|τm|, λσηη,a, λσηη,m, n) ≤ 1 (100)

If the left hand side of (100) is a function non-decreasing in n and positive homogenous
of order +1 with respect to λ, then, as pointed out at the end of Section 4, we have the
following representation for the NESF,

ΛN({σ}; n) = F [τa, |τm|, σηη,a, σηη,m, n].

Note that as for the Matake criterion, it seems to be more justified to apply condition
(99) to any plane and consider as critical the plane where F reaches maximum; such a
plane may generally not be the maximum shear stress amplitude plane.

7.3 Palmgren-Miner hypothesis for multiaxial regular propor-
tional cyclic loading

As for the uniaxial case, the damage accumulation theories considered in this section are
equally applicable to multiaxial proportional loadings with a large number of periodic
cycles in a small number of blocks and to arbitrary proportional loadings with closed
cycles, that is, periodicity in blocks is not necessary and there can be many transitions
between the blocks if the transitions are closed cycles.

The strength condition for the Palmgren-Miner linear damage accumulation rule (31)
can be easily generalised to a multiaxial cyclic loading,

n∑

j=1

1

n∗p(σc(j))
< 1 (101)

Here σc(j) is the stress trajectory on the j−th cycle; n∗p(σc(j)) = n∗{σc}|σc=σc(j) is an
appropriate S–N Wöhler diagram, that is, the number of cycles up to rupture under a
multiaxial periodic loading {σc

ik(m)}m=1,2,..., where σc
ik(m) = σc

ik(j).
The other uniaxial damage accumulation from Section 6.3 can be generalised to the

multiaxial closed-cyclic loading by in a similar way.

7.3.1 Equivalent stress concept for regular proportional cyclic loading

Using the equivalent stress concept given for periodic loading by (57), one can express
the multiaxial S–N diagram n∗p(σc(m)) in terms of the uniaxial one. Then the strength
condition (101) can be written in the form

n∑

j=1

1

n∗−1(σeq(σc(j)))
< 1. (102)
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Using the equivalent stress σeq1(σ) given by (59) and the S–N diagram in form (58),
we have the equations for finding the durability n∗({λσ)} for a process {λσik} for any
λ ≥ 0 from linear damage accumulation rule (102),

n∑

j=1


 λσi,a(j)

σ∗−1,1

(
1− λσi,m(j)

σr

)



b−1

= 1. (103)

The functional safety factor λN is the solution of the equations (103) and the NESF is
ΛN = 1/λN . Equation (103) can be analytically solved e.g. if σi,m(j) = σi,m = const.,

ΛN({σ}; n) =
σi,m

σr

+
1

σ∗−1,1

[
n∑

j=1

σ
b−1

i,a (j)

]1/b−1

. (104)

Repeating the same manipulations for the equivalent stress σeq2(σ) given by (60) and
taking the S–N diagram in form (58), we obtain an equation similar to (103) for deter-
mining λ and Λ, which can be analytically solved for the case of constant mean stresses
σik,m(j) = σik,m = const

ΛN({σ}; n) =
ξm

σr

+
1

σ∗−1,1

[
n∑

j=1

ξb−1
a (j)

]1/b−1

. (105)

If we consider the equivalent stress σeq3(j) given by (61) and the S–N diagram in form
(58), then the corresponding equation, obtained from (102) for the determination of the
NESF ΛN = 1/λ (31), can be also analytically solved if σi,m(j) = σi,m = const

ΛN({σ}; n) =
2

3

σi,m

σr

+

√√√√√ 1

(σ∗−1,1)
2

[
n∑

j=1

σ
b−1

i,a (j)

]2/b−1

+
1

9

(
σi,m

σr

)2

(106)

We can also use damage accumulation rule (102) and the equivalent stress σeq4(j)
given by (62). If we take the S–N diagram in form (58), then we find,

ΛN({σ}; n) =
1

σ∗−1,1

[
n∑

j=1

σ̂
b−1

1,a (j)

]1/b−1

. (107)

7.3.2 Critical surface approaches for regular proportional cyclic loading

The critical surface approach can be also applied to find the multiaxial S–N n∗{σc} dia-
gram under a periodic loading for (101). To do this, one should have the functions α(n),
β(n), α1(n) and α2(n) and solve with respect to n an equation, obtained after replacement
the inequality by the equality sign in (67), (68), (71) or (73). Equivalently, one can solve
the equation ΛN({σ}; n) = 1 with respect to n, where ΛN({σ}; n) is given by (76)–(78)
or, the same, by (79)–(82).

Let us use presentations (79)–(82) and suppose the S–N diagrams for σ∗−1(n), σ∗0(n)
and if necessary for τ ∗−1(n) can be approximated by a power law with the same parameter
b,

σ∗−1(n) = σ∗−1,1n
−1/b, σ∗0(n) = σ∗0,1n

−1/b, τ ∗−1(n) = τ ∗−1,1n
−1/b, (108)
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where σ∗−1,1, σ∗0,1, τ ∗−1,1 and b are material parameters. Then the find the S–N diagrams
under a multiaxial periodic loading,

n∗({σ}) =

[
σi,a

σ∗−1,1

+ 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,m

]−b

(109)

for the Sines criterion,

n∗({σ}) =

[(
2

σ∗−1,1

− 1

σ∗0,1

)
σi,a + 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,max

]−b

(110)

for the Crossland criterion,

n∗({σ}) =

[
2

(
2

σ∗−1,1

− 1

σ∗0,1

)
τ̂a + 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,max

]−b

(111)

for the Dang Van criterion and

n∗({σ}) =

[
1√

3τ ∗−1,1

σi,a +

(
3

σ∗−1,1

−
√

3

τ ∗−1,1

)
σH,a + 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,m

]−b

(112)

for the modified Sines criterion.
After substituting (109) into the damage accumulation laws (31) or (43) (see also (49)

or (54)) we have the expressions for finding the durability n∗(λσ) for the process λσij.
For example, using (31) and solving the corresponding equation with respect to λ, we find
the NESF ΛN = 1/λ

ΛN({σ}; n) =

[
n∑

j=1

[
σi,a(j)

σ∗−1,1

+ 3

(
1

σ∗0,1(j)
− 1

σ∗−1,1

)
σH,m(j)

]b]1/b

(113)

Repeating the same manipulations for the Crossland criterion we obtain

ΛN({σ}; n) =

[
n∑

j=1

[(
2

σ∗−1,1

− 1

σ∗0,1

)
σi,a(j) + 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,max(j)

]b]1/b

(114)

For the Dang Van criterion we have

ΛN({σ}; n) =

[
n∑

j=1

[
2

(
2

σ∗−1,1

− 1

σ∗0,1

)
τa(j) + 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,max(j)

]b]1/b

(115)

Finally, the NESF for the modified Sines criterion is

ΛN({σ}; n) =

[
n∑

j=1

[
1√

3τ ∗−1,1

σi,a(j) +

(
3

σ∗−1,1

−
√

3

τ ∗−1,1

)
σH,a(j)

+ 3

(
1

σ∗0,1

− 1

σ∗−1,1

)
σH,m(j)

]b]1/b

(116)

38



S.E.Mikhailov, I.N.Namestnikova

7.4 Critical surface approaches for multiaxial non-proportional
periodic process

General multiaxial periodic processes consist of the loops in the stress space that do not
necessarily lie on a line. Consequently, the notions of the amplitude and the mean stress
become ambiguous and the approaches used in the case of proportional cycling need some
generalisations.

To extend the critical surface approaches on the case of non-proportional periodic
process, some generalised definitions of the mean value and amplitude of the hydrostatic
stress σH and shear stress for multiaxial non-proportional periodic process were considered
by Papadopoulos et al (1997) and Papadopoulos (1998). The maximum, the minimum,
the mean and the amplitude of the hydrostatic stress per cycle with a period P was
defined as

σH,max = max
t∈[0,P ]

[σH(t)], σH,min = min
t∈[0,P ]

[σH(t)]

σH,m =
σH,max + σH,min

2
, σH,a =

σH,max − σH,min

2
(117)

Let us consider a material plane (with a normal vector) ~η. Let ~σ(~η, t) be the stress
vector (traction) on the plane ~η and σηη(~η, t) be the normal stress tensor component on
the plane ~η. Then the maximum, the minimum, the mean and the amplitude of σηη(~η, t)
per cycle can be defined as

σηη,max = max
t∈[0,P ]

[σηη(t)], σηη,min = min
t∈[0,P ]

[σηη(t)]

σηη,m =
σηη,max + σηη,min

2
, σηη,a =

σηη,max − σηη,min

2
(118)

During a cycle, the tip of the shear stress vector ~τ(~η, t) = ~σ(~η, t)− σηη(~η, t)~η on a plane ~η
is moving along a closed curve Ψ on the plane. To define the mean value of shear stress
τm(~η, t) and the shear stress amplitude τa(~η, t) the minimum circumscribed circle to the
curve Ψ is constructed. The circle radius is taken as the shear stress amplitude on the
plane ~η,

τa(~η) := min
~τ ′

[
max
t∈[0,P ]

|~τ(~η, t)− ~τ ′|
]
. (119)

The length of the vector, which points to the centre of this circle, is taken as mean shear
stress τm(~η) on the plane ~η, that is, τm(~η) := |~τm(~η)|, where ~τm(~η) is such that

max
t∈[0,P ]

|~τ(~η, t)− ~τm(~η)| = τa(~η). (120)

The stress deviator Skj(t) = σkj(t)− 1
3
σll(t)δkj can be mapped onto a vector ~S(t) in a five-

dimensional Euclidian space. The length of the vector ~S is equal to the stress intensity σi

multiplied by
√

2/3. During a periodic loading the tip of the vector ~S(t) describes a closed

curve Φ. To obtain the unique value of σi,a, Papadopoulos et al (1997) and Papadopoulos
(1998) constructed the unique minimum five-dimensional hypersphere circumscribed to

the curve Φ. The radius of this sphere is taken as
√

2/3 σi,a, that is,

σi,a =
√

3/2 min
S
′

[
max
t∈[0,P ]

|~S(t)− ~S
′|
]
. (121)
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The length of the vector ~Sm which points to the centre of this hypersphere is taken as√
2/3 σi,m, that is, σi,m =

√
3/2 |~Sm|, where ~Sm is such that

max
t∈[0,P ]

|~S(t)− ~Sm| =
√

2/3 σi,a.

After the above generalisations for the cycle parameters, the Sines criterion, the Cross-
land criterion, the Kakuno-Kawada criterion, the Matake criterion and its modification,
and the McDiarmid criterion and its modification can be extended for non-proportional
periodic loading if one uses in (67), (68), (73), (83) and (94) the values given by (121) for
σi,a, by (117) for σH,max, σH,m and σH,a and by (118) for σηη,max. The same generalised
cycle parameters should be used then in the corresponding NESF expressions (113), (114),
(116), (87), (93), (96) and (98).

Consider some generalisation of the Dang Van criterion (71). Let ~τ(t) be the shear

stress vector in a plane ~η. Let us consider its projection σηξ(t) = ~τ(~η, t)~ξ on a direction ~ξ
in this plane and introduce the shear stress amplitude

σηξ,a =
maxt∈[0,P ] σηξ(t)−mint∈[0,P ] σηξ(t)

2
.

Following Papadopoulos et al (1997), the generalised Dang Van criterion can be written
in the form √

〈τ 2
a 〉+ ασH,max < β (122)

Here 〈τ 2
a 〉 is the average value of the shear stress amplitude projection square,

〈τ 2
a 〉 =

5

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
σ2

ηξ,adχξ sin(ϑη)dϑηdφη. (123)

The angles ϑη and φη spherical coordinates of the vector ~η, and χξ is a polar angle of the

vector ~ξ in the plane ~η.
In particular, the constants can be identified from fully reversed torsion test and fully

reversed tension-compression test

α = 3
τ ∗−1∞
σ∗−1∞

−
√

3, β = τ ∗−1∞ (124)

Then the NESF for the generalised Dang Van criterion a non-proportional periodic process
{σ} will have the form

ΛN({σ}; n) =
1

β(n)

(√
〈τ 2

a 〉+ α(n)σH,max

)
. (125)

It can be shown that 〈τ 2
a 〉 is equal to the square of the stress intensity amplitude

multiplied by a constant number, for a proportional periodic process. Hence this criterion
is reduced to the Crossland criterion in that case.

Another modification of the Dang Van endurance criterion (71) applicable to non-
proportional periodic loading was presented by Ballard P. et al (1995),

max
t∈[0,P ]

[
τ̂(t) + ασH(t)

]
< β, (126)
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where τ̂ is the maximum (along all planes) shear stress. Then according to the definition,
the endurance functional Λth is

Λth{σ} =
1

β
max
t∈[0,P ]

[
τ̂(t) + ασH

]
(127)

The corresponding NESF for an arbitrary n can be written as

Λ({σ}; n) =
1

β(n)
max
t∈[0,P ]

[
τ̂(t) + α(n)σH

]
(128)

7.5 Palmgren-Miner hypothesis for multiaxial non-proportional
cyclic loading

The Palmgren-Miner linear damage accumulation rule for this case will have the same
form (101), where n∗p(σc(m)) = n∗{σc}|σc=σc(m) is is an appropriate S–N Wöhler diagram
for a multiaxial periodic non-proportional loading {σc

ij(k)}k=1,2,..., where σc
ij(k) = σc

ij(m).
Suppose the Wöhler diagram n∗p(σc

ij) is given by the power law (a straight line in the
double logarithmic coordinates):

n∗p(σc) =

[ |||σc|||
σ∗./1(σ̃

c)

]−b(σ̃c)

. (129)

Here σ̃c = σc/|||σc||| is the normalised shape of the cycle playing for the non-proportional
cycling the same role as the asymmetry ratio R in regular uniaxial processes; σ∗./1(σ̃

c) and
b(σ̃c) should be taken as positive material characteristics in the power S–N diagram for
the corresponding multiaxial periodic process, depending generally on the cycle σc shape
in the stress space but not on the cycle norm |||σc|||.

Then we can determine NESF Λ({σ}; n) = 1λ, where λ is a solution to the equation

n∗∑

m=1

[
λ|||σc(m)|||

σ∗./1(σ̃
c(m))

]b(σ̃c(m))

= 1. (130)

We consider below two cases when it is possible to solve the equation analytically.

7.5.1 Self-similar multi-axial cyclic process

Suppose σij(t) is a self-similar multi-axial cyclic process σc
ij(m) = k(m)σc

ij(1), k(m) =
|||σc(m)|||/|||σc(1)||| ≥ 0. Then the cycle shape σ̃c(m) is independent on m and consequently
b(σ̃c(m)) = b = const and σ∗./1(σ̃

c(m)) = σ∗./1 = const, and we have from (130),

λ = σ∗./1

[
n∗∑

m=1

|||σc(m)|||b
]−1/b

. (131)

The right hand side of (131) is a monotonously non-increasing function of n∗. From the
definition of Λ, we then have,

ΛN({σ}; n) =
1

σ∗./1

[
n∑

m=1

|||σc(m)|||b
]1/b

. (132)
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7.5.2 Power S–N diagram with a constant exponent

Let {σ} be a (not necessarily self-similar) multi-axial cyclic process but the exponent in
(129) does depend on the cycle shape, b(σ̃c(m)) = b = const. Then we can solve (130)
and obtain the formula for the NESF,

ΛN({σ}; n) =




n∑

m=1

( |||σc(m)|||
σ∗./1(σ̃

c(m))

)b



1/b

. (133)

Specific functions σ∗./1(σ̃
c(m)) for an S–N diagram under a non-proportional cyclic

loading can be obtained e.g. from some equivalent stress concepts or critical surface ap-
proaches described in Section 7.2 if one substitute there expressions for σi,a, σi,m, σH,m,
σH,max and σH,a from Section 7.4. Then one arrives for the NESF at the same expressions
(104) and (106) for the equivalent stresses σeq1 and σeq3 if σi,m is constant, and expres-
sions (113), (114), (116) for the Sines, the Crossland, and the modified Sines (Kakuno &
Kawada) criteria, where the mentioned substitutions should be done.

The generalised Dang Van criterion (122) for non-proportional cyclic loading can be
also used in the similar way. Substituting the constants (124), we obtain another the
(115) expression of the NESF

ΛN({σ}; n) =

[
n∑

j=1

[
1

τ ∗−1,1

√
〈τ 2

a 〉(j) +

(
3

1

σ∗−1,1

−
√

3

τ ∗−1,1

)
σH,max(j)

]b]1/b

(134)

7.6 Fatigue endurance under multiaxial random loading

Macha introduced several fatigue endurance criteria (Macha (1976), Macha (1984)) for
different cases of loading generalised later (Macha 1989) for random loading. The corre-
sponding endurance condition can be written in the form

max
0<t<∞

[α1σηξ(t) + α2σηη(t)] < β, (135)

where σηη is the normal stress amplitude on a plane (with a normal vector) ~η, σηξ,a is the

shear stress acting in a direction ~ξ on the plane with the normal vector ~η. The constants
α1, α2 and β are the material constants determined from three endurance tests under
periodic loadings. Condition (135) was applied on a critical plane ~η = ~η∗ for a critical

direction ~ξ = ~ξ∗, which were determined by mean of the stress tensor σkj(t) principal
directions and by the mean direction of the maximum shear stress vector.

Using the definition of the endurance functional, we then have

Λth{σ} = max
0≤t<∞

[
α1

β
ση∗ξ∗(t) +

α2

β
ση∗η∗(t)

]
(136)

As for some fatigue strength and endurance conditions considered previously, it seems
to be more natural to modify the Macha approach and consider (135) as an endurance
condition not for a critical plane and direction pre-determined by other reasoning but for
all planes ~η and for all directions ~ξ on those planes. Then the critical (fracture) plane ~η∗
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and the direction ~ξ∗ can be defined are those where the left hand side of (135) reaches
maximum. Thus we arrive at the strength condition

max
0<t<∞

[α1ση∗ξ∗(t) + α2ση∗η∗(t)] = max
~η

max
(~ξ~η)=0

max
0<t<∞

[α1σηξ(t) + α2σηη(t)] < β (137)

The corresponding endurance functional then becomes

Λth{σ} = max
~η

max
(~ξ~η)=0

max
0≤t<∞

[
α1

β
σηξ(t) +

α2

β
σηη(t)

]
(138)

In the case of bending and torsion, the empirical Gough-Pollard ”ellipse quadrant”
criterion (Gough-Pollard, 1951) was also generalized on the case of a random loading in
the following way by Macha (Macha (1976), Macha (1984))

max
0≤t<∞

[ (
σηη(t)

σ∗−1∞

)2

+

(
τ(t)

τ ∗−1∞

)2 ]
= 1 (139)

The endurance functional Λth(~η) in this case (139) is

Λth(~η) = max
0≤t<∞

√√√√
[ (

σηη(t)

σ∗−1∞

)2

+

(
τ(t)

τ ∗−1∞

)2 ]
(140)

Note, the NESF Λ(t̃) for some t̃ < ∞ is obtained from (136), (138), (140) if the
maximum in t is considered on the interval 0 ≤ t ≤ t̃.

8 Complex NESF for combined fatigue, creep and

instant loading

The NESF ΛN is a material characteristic which is not necessary connected with a ge-
ometrical, stiffness-related or abstract damage measure and can be identified from some
cyclic durability tests under homogeneous stress process fields. As was shown in the pre-
vious sections, any cyclic strength condition written in terms of a damage measure can
be expressed in terms of a corresponding NESF (although not always analytically). Let
us show some simple ways constructing NESFs to include e.g. instant overloading, creep
or dynamic effects. Most of the damage accumulation rules mentioned above (except
the Pavlov rule) did not take into account sequence effects, that is damage caused by a
stress cycle is independent of where it occurs in the load history. We will see that this
shortcoming can be overcome in a simple way choosing a proper structure of NESFs.

Suppose one has a NESF ΛN({σ}; n) obtained e.g. from a damage measure approach,
which do not take into account an influence of instantaneous overloads of material, espe-
cially a finite strength σr under instantaneous loading. Particularly, NESFs (36), (37),
(40), (113)–(116) based on the power-type S–N diagrams give such examples. If one
would like to avoid this shortcoming, one can introduce a new NESF and arrive at a local
strength condition e.g. in the form

ΛIN({σ}; n(t)) = sup
0≤t′≤t

{
σeq(σ(t′))

σr

+ ΛN({σ}; n(t′))

}
< 1. (141)
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Here σeq(σ) is e.g. von Mises, Tresca or other instantaneous equivalent stress; ΛN is
normalised equivalent stress functional defined, for example, from (132) or (113)-(116);
σr is a material strength under uniaxial monotone tensile loading; the cycle number n(t)
is a function of time t.

If one would like to take into account an influence of both the instantaneous overloads
of material and creep durability, one can add a term ΛT (σ; t′) connected with a durability
under creep (see Mikhailov 2000), and arrive at another one complex NESF and local
strength condition,

ΛITN({σ}; n(t)) = sup
0≤t′≤t

{
σeq(σ(t′))

σr

+ ΛT (σ; t′) + ΛN({σ}; n(t′))

}
< 1 (142)

For example, if we take ΛN({σ}; n) in form (133) and associate ΛT (σ; t′) with the
Robinson rule of time-dependent damage accumulation and power time-durability dia-
gram (see Mikhailov 2000),

ΛT (σ; t′) =

[∫ t′

0

|σ(t′′|bT

AT (σ̃(t′′))
dt′′

]1/bT

, (143)

the NESF (142) will take form

ΛITN({σ}; n(t)) = sup
0≤t′≤t

{
σeq(σ(t′))

σr

+

[∫ t′

0

|σ(t′′)|bT

AT (σ̃(t′′))
dt′′

]1/bT

+




n(t′)∑

m=1

( |||σc(m)|||
σ∗./1(σ̃

c(m))

)bN



1/bN }
. (144)

where bT , bN are material parameters AT (σ̃(t′′)), is a material functions of the normalised
stress tensor σ̃ij(t

′′) = σij(t
′′)/|σ(t′′)| at the instant t′′, σ∗./1(σ̃

c(m)) is a material functions
of the normalised shape of the stress cycle.

If there exist also dynamic effects on the material strength, one can replace the instant
strength term by a corresponding dynamic NESF ΛD(σ(t′) (see e.g. Mikhailov 2000) and
arrive e.g. at the complex NESF and strength condition,

ΛDTN({σ}; n(t)) = sup
0≤t′≤t

{
ΛD(σ; t′) + ΛT (σ; t′) + ΛN({σ}; n(t′))

}
< 1 (145)

For example, we can take ΛN({σ}; n) in form (133), ΛT (σ; t′) in form (143), and
ΛD(σ; t′) associated with the Morozov, Petrov and Utkin criterion (see Morozov and
Petrov, 2000) generalised on the multiaxial case (see Mikhailov 2000), in the form

ΛD(σ; t′) =
1

σr

σeq (σ̄(t′; tr)) , σ̄kj(t
′; tr) =

1

tr

∫ t′

t′−tr
σkj(t

′′)dt′′, (146)

where σr is, as before, a longitudinal material strength and σeq(σ) is e.g. von Mises,
Tresca or other instantaneous equivalent stress and tr is a material constant. Then the
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NESF (145) will take form

ΛDTN({σ}; n(t)) = sup
0≤t′≤t

{
1

σr

σeq (σ̄(t′; tr)) +

[∫ t′

0

|σ(t′′)|bT

AT (σ̃(t′′))
dt′′

]1/bT

+




n(t′)∑

m=1

( |||σc(m)|||
σ∗./1(σ̃

c(m))

)bN



1/bN }
. (147)

Note that all the three strength conditions (141), (142) and (145) lead to a non-linear
summation rule.

Note also that presentations (141), (142) and (145) are not uniquely possible and one
can use not only the sum but also other homogeneous combinations of the four terms
σeq(σ)/σr, ΛD, ΛT and ΛN to get other possible simple forms of the NESF describing
interaction of instant, dynamic, time-dependent and cycle-dependent effects on the dura-
bility. For example, one can take,

ΛDTN({σ}; n(t)) = sup
0≤t′≤t

{
[ΛD(σ; t′)]q + [ΛT (σ; t′)]q + [ΛN({σ}; n(t′))]q

} 1
q , (148)

where q > 0 can be considered as a material parameter. If q = 1, (148) is reduced to
(145). The limiting case q →∞ corresponds to the NESF

ΛDTN({σ}; n(t)) = sup
0≤t′≤t

max
{
ΛD(σ; t′), ΛT (σ; t′), ΛN({σ}; n(t′))

}
. (149)

Evidently, which form fits better to a particular material behaviour, can be determined
from comparison with experimental data.

9 Direct interpolation of NESF for cyclic loadings

As one can see in section 6.2, the cyclic strength conditions (24) for the stress amplitude or
(25) for the maximum stress under a uniaxial periodic regular process {σc} are expressed
in terms of the corresponding S–N diagrams σ∗R(n) or σ∗R,max(n), respectively. Then the
NESF on such processes is also expressed by very simple formulas (26) and (27).

For a multiaxial periodic process, similarly, the cyclic strength conditions can be writ-
ten in the form

|||σc||| < σ∗(σ̃c; n) (150)

where a scalar function σ∗(σ̃c; n) is the S–N diagram under the multiaxial periodic process,
depending on the normalised shape σ̃c of the tensor loading process on the cycle. Then
we get from the NESF definition, that

ΛN({σ}; n) =
|||σc|||

σ∗(σ̃c; n)
(151)

under such processes. Sections 7.2 and 7.4 specify the NESF given by (151) for the cases
when the S–N diagram σ∗(σ̃c; n) under an arbitrary periodic multiaxial process can be
expressed in terms of the S–N diagrams under some periodic uniaxial regular processes,
using one or another cyclic strength criterion.
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For non-periodic process, it is usual to apply some damage accumulation theories to
reduce a strength and durability analysis to some S–N diagrams under periodic processes.
We discussed in sections 6.3 and 7.3 some of existing approaches. For any of them one can
obtain a corresponding NESF, e.g., numerically but analytical formulas are not always
available and we given examples only for power S–N diagrams.

However, the damage accumulation theories, being quite suitable for the analysis in
terms of the damage (abstract or partial life time), is in fact not necessary for the NESF
concept. Instead, we will try to interpolate an NESF directly along the S–N diagrams
for periodic processes. Together with some additional properties implied either by the
NESF definition or by some properties of the S–N diagrams for periodic processes, the
interpolating NESF is to meet the following conditions

(i) ΛN({σ}; n) must satisfy interpolation condition (151) on periodic processes {σ};
(ii) ΛN({σ}; n) must be homogeneous in {σ};
(iii) ΛN({σ}; n) must be non-decreasing in n;

(iv) the interpolation formula should be applicable to history independent materials, for
which σ∗(σ̃c; n) is given by (56).

9.1 Direct interpolation of NESF for uniaxial regular cyclic load-
ing

9.1.1 Direct interpolation of NESF by a linear rule

We will try to write down a ”linear” accumulation rule not in the partial life times but
in the normalised stress partial increments and start from the uniaxial case.

Let {σc} be first a uniaxial regular cyclic process with R = −1. If the process is
periodic, then we have from (26),

ΛN({σ}; n) =
σa

σ∗−1(n)
=

σa(1)

σ∗−1(n)
(152)

for the NESF value at an n−th cycle. If the cycle amplitude increases after the first cycle
and the process becomes periodic from the second cycle, we can take into account the
amplitude increment as follows,

ΛN({σ}; n) =
σa(1)

σ∗−1(n)
+

σa(2)− σa(1)

σ∗−1(n− 1)
. (153)

If the cycle amplitude may increase on each cycle, we can continue the formula as

ΛN({σ}; n) =
n∑

m=1

σa(m)− σa(m− 1)

σ∗−1(n−m + 1)

=
σa(n)

σ∗−1(1)
+

n−1∑

m=1

σa(m)

[
1

σ∗−1(n−m + 1)
− 1

σ∗−1(n−m)

]
, (154)

where the condition σa(0) = 0 was taken into account in the first part of (154).
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To extend the NESF representation to an arbitrary change of the cycle amplitude from
cycle to cycle and comply with condition (iii) above, we write

ΛN({σ}; n) = max
1≤n′≤n





n′∑

m=1

σa(m)− σa(m− 1)

σ∗−1(n
′ −m + 1)





= max
1≤n′≤n





σa(n
′)

σ∗−1(1)
+

n′−1∑

m=1

σa(m)

[
1

σ∗−1(n
′ −m + 1)

− 1

σ∗−1(n
′ −m)

]

 (155)

for an arbitrary uniaxial regular cyclic process with R = −1.
To consider uniaxial regular cyclic process with variable asymmetry ratio R(m), we

use the second part of representation (155) in the modified form,

ΛN({σ}; n) = max
1≤n′≤n





σa(n
′)

σ∗R(n′)(1)
+

n′−1∑

m=1

σa(m)


 1

σ∗R(m)(n
′ −m + 1)

− 1

σ∗R(m)(n
′ −m)






 (156)

Let us check now the above conditions (i)-(iv) for NESF (156). For a periodic process,
σa(m) = σa(1) and after some manipulations we have that ΛN({σ}; n) is reduced to (152),
that is interpolation condition (i) is satisfied. Homogeneity condition (ii) and monotonicity
condition (iii) are obviously satisfied too.

Let us check condition (iv). Under definition, σ∗R(m)(m
′) does not depend on m′ for a

history independent material and is an amplitude such that maxσ∈σc(m) σeq(σ) = σr. Then
σ∗R(m)(m

′) = σr/maxσ∈σc(m) σeq(σ). Consequently, NESF (156) for such material becomes

ΛN({σ}; n) = max
1≤n′≤n

σa(n
′)

σ∗R(n′)(1)
= max

1≤n′≤n
max

σ∈σc(n′)

σr

σeq(σ)

what coincides with (56). Thus condition (iv) is satisfied.
As an example, let us consider a particular case, when the S–N diagram σ∗R(n) is given

by power function (29). Then NESF (156) becomes

ΛN({σ}; n) = max
1≤n′≤n





σa(n
′)

σ∗R(n′),1
+

n′−1∑

m=1

σa(m)

σR(m),1

[
(n′ −m + 1)1/bR(m) − (n′ −m)1/bR(m)

]


 (157)

As one can see, unlike to the Palmgren-Miner rule described in Section 6.3.1, this approach
gives an analytical presentation of NESF for an arbitrary process and a general dependence
bR, however it is does not generally reduces to (36) or (37) for a constant bR or constant
R.

9.1.2 Direct interpolation of NESF by a nonlinear rule

The linear interpolation of NESFs is not unique option. Let us consider a nonlinear in-
terpolation in the following form,

ΛN({σ}; n) =

max
1≤n′≤n






 σa(n

′)
σ∗R(n′)(1)




b

+
n′−1∑

m=1





 σa(m)

σ∗R(m)(n
′ −m + 1)




b

−

 σa(m)

σ∗R(m)(n
′ −m)




b







1
b

(158)
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Here b > 0 is considered as a material constant and the NESF (158) degenerates into
(156) if b = 1. In the same way as for the linear rule, one can check the conditions (i)–(iv)
are satisfied.

Let us consider the particular case, when the S–N diagram σ∗R(n) is given by power
function (29). Then NESF (158) becomes

ΛN({σ}; n) =

max
1≤n′≤n






 σa(n

′)
σ∗R(n′),1




b

+
n′−1∑

m=1

(
σa(m)

σR(m),1

)b [
(n′ −m + 1)b/bR(m) − (n′ −m)b/bR(m)

]




1
b

(159)

One can see, that if bR(m) = b then (159) coincides with representation (36) obtained
from the Palmgren-Miner rule for the case of constant bR(m).

9.2 Direct interpolation of NESF for multiaxial cyclic loading

A multiaxial counterpart of uniaxial NESF (156) can be obtained if one takes into account
that the cycle amplitude σa can be replaced by the cycle shape norm |||σc|||, the role of
the asymmetry ratio R is plaid by the normalised cycle shape σ̃c and the uniaxial S–N
diagram σ∗R(n) for the amplitude σa should be replaced by the multiaxial S–N diagram
σ∗(σ̃c; n) for the norm |||σc|||. Then the normalised stress linear accumulation rule gives
the NESF

ΛN({σ}; n) = max
1≤n′≤n

{ |||σc(n′)|||
σ∗(σ̃c(n′); 1)

+

n′−1∑

m=1

|||σc(m)|||
[

1

σ∗(σ̃c(m); n′ −m + 1)
− 1

σ∗(σ̃c(m); n′ −m)

]

 (160)

For a normalised stress nonlinear (power) accumulation rule, we similarly have a mul-
tiaxial counterpart of (158),

ΛN({σ}; n) = max
1≤n′≤n





( |||σc(n′)|||
σ∗(σ̃c(n′); 1)

)b

+

n′−1∑

m=1




( |||σc(m)|||
σ∗(σ̃c(m); n′ −m + 1)

)b

−
( |||σc(m)|||

σ∗(σ̃c(m); n′ −m)

)b







1
b

(161)

Here b is considered as a material constant and the NESF (161) degenerates into (160) if
b = 1.

If the periodic S–N diagram σ∗(σ̃c; n), used in (160) and (161), is not available for a
particular cycle shape σc, it can be expressed in terms of the uniaxial S–N diagrams for
the same material, using the approaches described in Sections 7.2 and 7.4.

Similar to the uniaxial case, one can check conditions (i)-(iv) are satisfied for NESFs
(160) and (161).

As we have seen, NESF (161) interpolate the periodic S–N diagrams for any b > 0,
including the NESF linear counterparts appearing for b = 1. However, if experiments on
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non-periodic cyclic processes show some deviations of the formula predictions, one can
percept the NESF (161) as a first approximations to a NESF specific for a considered
material and use an interpolation procedure to refine the approximation. Particularly the
approaches presented by Mikhailov (1997, 1998) can be adopted to this case.

10 Conclusion

The notions of generalised S–N diagram and normalised equivalent stress functional in-
troduced by Mikhailov (2000) for arbitrary loading processes were adopted in this paper
to oscillating loading by consideration some quasi-cyclic (discrete) parameterization more
relevant for cyclic fatigue.

The NESF concept reduces different durability and strength fatigue models to a unique
form what facilitates their comparison. Numerous examples of the reduction are presented
in the paper for some known fatigue durability and strength models. Some complex NESFs
describing interaction of instant , creep, fatigue and dynamic loading were introduced.

The NESF is a mechanically meaningful material characteristic, which can be approx-
imated from a finite number of durability tests for different loading processes without any
other information such as micro-cracks or stiffness change. The NESFs interpolating the
classical S–N diagrams for periodic processes were presented in the paper. Methods for a
refined NESF identification (interpolation) from a finite number of experimental data is
to be developed further. Adaptation of the identification approaches by Mikhailov (1997,
1998) to NESFs looks promising.

Fatigue under stress fields independent of the space coordinates was mainly analysed
in this paper with obvious reasoning about application to moderately inhomogeneous
stress fields . Extension to highly inhomogeneous stress field incorporating a non-local
approach by Mikhailov (1995) will be considered elsewhere (Mikhailov & Namestnikova
2002).
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Appendix

A Proof of inequality (7) for MD material

From Definition 1MD,

λN({σ}; n∗{σ}) = sup{λ : n∗{λσ} > n∗{σ}} =

sup{λ : λ ≤ 1, n∗{λσ} > n∗{σ}} ≤ 1

since n∗{λσ} ≤ n∗{σ} for all λ > 1 for MD materials. Similarly,

λN({σ}; n∗{σ} − 1) = sup{λ : n∗{λσ} > n∗{σ} − 1} =

sup{λ : λ ≥ 1, n∗{λσ} > n∗{σ} − 1} ≥ 1
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since n∗{σ} > n∗{σ} − 1 and consequently n∗{λσ} > n∗{σ} − 1 for all λ ≤ 1 for MD
materials.

B Proof of Remark 1

We define λ∗∗({σ}; n) := sup{λ : n∗∗{λ′′σ} > n ∀ λ′′ ∈ [0, λ]}. Since n∗∗{λ′′σ} ≤
n∗{λ′′σ} then λ∗∗({σ}; n) ≤ λ({σ}; n).

Suppose λ∗∗({σ}; n) < λ({σ}; n). Then for any λ0, λ00 such that λ∗∗({σ}; n) < λ0 <
λ00 < λ({σ}; n), we have,

n∗∗{λ0σ} ≤ n < n∗{λ0σ}, n∗∗{λ00σ} ≤ n < n∗{λ00σ} (162)

Consequently, strength is λ−unstable on the (quasi–) cycle n under the process {λ0σ},
that is, for any ε > 0 there exists λ00 ∈ (λ0− ε, λ0 + ε) such that n∗{λ00σ} ≤ n. Choosing
ε ≤ min[λ({σ}; n) − λ0, λ0 − λ∗∗({σ}; n)], we have, λ∗∗({σ}; n) < λ00 < λ({σ}; n), and
arrive at a contradiction with the last inequality in (162). Thus λ∗∗({σ}; n) = λ({σ}; n).

C Proof of Statement 3

Let us complete here the definition of n∗∗{σ} by∞ if the endurance under {σ} is λ−stable.
Let n∗∗− {σ} < ∞, then supremum can be replaced by maximum in the definition of
n∗∗− {σ}. Suppose first n∗∗− {σ} + 1 < n∗∗{σ} ≤ ∞. For any n > n∗∗− {σ} and particularly
for n = n∗∗− {σ} + 1, condition (21) is violated, that is λ({σ}; n) ≤ 1. Consequently,
n∗{λ′σ} ≤ n∗∗− {σ} + 1 < n∗∗{σ} for any λ′ > 1 due to the definition of λ(σ; t) for
MD processes. However the last inequality contradicts to the definition of the critical
(quasi–) cycle n∗∗{σ} since the strength appears to be λ−unstable on the (quasi–) cycle
n∗∗− {σ} + 1 < n∗∗{σ} under the process {σ}. Consequently n∗∗− {σ} + 1 can not be less
than n∗∗{σ}. If n∗∗− {σ} = ∞ then evidently n∗∗− {σ}+ 1 also can not be less than n∗∗{σ}.

Suppose now first n∗∗{σ} < n∗∗− {σ} + 1 < ∞. Then we obtain from the definition of
n∗∗− {σ} that condition (21) holds for any n ≤ n∗∗− {σ} and particularly for n = n∗∗{σ}.
Suppose then n∗∗{σ} < n∗∗− {σ}+1 = ∞. This means condition (21) holds for any n < ∞
and particularly for n = n∗∗{σ}. That is, in the both cases there exists λ′ > 1 such that
n∗{λ′′σ} > n∗∗{σ} for all λ′′ ∈ [0, λ′]. This implies λ−stable strength on the (quasi–)
cycle n∗∗(σ) under the MD process {σ}, which contradicts to the definition of the critical
(quasi–) cycle n∗∗{σ}. The contradiction proves that n∗∗{σ} can not be less than the
finite or infinite n∗∗− {σ}+ 1.

Hence n∗∗− {σ} + 1 = n∗∗{σ} in all cases. For n∗∗− {σ} = ∞ this means n∗∗{σ} = ∞,
that is, endurance is λ−stable under the process {σ}.

References

Ballard P., Dang Van K., Deperrois and Papadopoulos I.V. (1995) High-cycle fatigue
and a finite element analysis, Fatigue and Fracture of Engineering Materials and
Structures, 18(3), p. 397-411.

Bolotin, V.V., (1989). Prediction of service life for machines and structures, ASME Press,
New York.

50



S.E.Mikhailov, I.N.Namestnikova

British Standards 5400, (1980).Steel concrete and composite bridges, Part 10 : Code of
practice for fatigue.

Collins J.A., (1993). Failure of materials in mechanical design, A Wiley-Interscince pub-
lication, New Yourk, 654 p.

Corten H.T., Dolan T.J., (1956). Cumulative fatigue damage, Proceedings of Interna-
tional Conference on Fatigue of Metals, ASME and IME, p. 235.

Crossland B., (1956). Effect of large hydrostatic pressures on the torsional fatigue
strength of an alloy steel, Proc. Int. Conf. on Fatigue of Metals, I. Mech. E., London,
p. 138-149.
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