
A comparative analysis of several nonlocal fracture criteria
L. P. Isupov, S. E. Mikhailov

Summary Comparative analysis has been carried out for three nonlocal fracture criteria
(NLFC) in application to plane problems: the average stress fracture criterion (ASFC), the
minimum stress fracture criterion (MSFC) and the ®ctitious crack fracture criterion (FCFC).
Each of them may be considered as an equality for a particular form of the general nonlocal
strength functional. The criteria contain two material parameters: a characteristic length and
the tensile strength (ASFC and MSFC) or the critical stress intensity factor (FCFC).

The criteria have been used for a strength description of a plate containing a smooth stress
concentrator (circular hole) or a singular stress concentrator (central straight crack). It has
been ascertained that ASFC and FCFC lead to identical results for the symmetrically loaded
central straight crack. ASFC and MSFC may be successfully used for the description of strength
of bodies with smooth as well as singular concentrators, while FCFC gives incorrect predictions
for large smooth concentrators and for some other cases. A comparison of the predicted and
experimental data has shown that ASFC is preferable in most cases; nevertheless, there exists a
systematic deviation of experimental points from the criterion predictions.
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1
Introduction
In the traditional local approach, the strength of a body in an analyzed point y is characterized
by the value of some function of stress tensor components at the same point, without con-
sideration of the stress state in other points. A local fracture criterion can be represented, e.g. in
the form

f �rij�y�� � rc ;

where f is a material function and rc is a material constant. Such criteria give a good de-
scription of experimental data when the stress distribution is close to a uniform stress state.

There are several problems of strength and fracture mechanics that can not be solved or are
tedious to solve, by use of traditional strength conditions. Such problems relate to small-scale
effects, singular stress concentrators like corner points, intersection of interfaces generating
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singularities with different exponents, uni®cation of strength conditions for bodies with
smooth and singular concentrators. Some examples of these problems are given in Fig. 1±3.

An example of the small-scale effect on strength is presented in Fig. 1. An in®nite elastic
plate with a circular hole is considered, which is loaded at the in®nity by a uniform traction q.
It is known from the elasticity theory that the maximum stress is independent of the hole radius
a, is equal to 3q, and is realized in the boundary point y. The plate strength evaluated by use of
the fracture criterion rhh � rc is then independent of the hole radius and is equal to one third
of the strength rc of the plate without a hole (the solid line). However, appropriate fracture test
data for plates with small holes, e.g. [1±3], pointed out schematically in the ®gure show that the
plate strength depends actually on the hole radius.

Another example of the strength small-scale effect is delivered by a plate with a crack having
a length 2a, Fig. 2. The linear elasticity yields the value for the stress intensity factor
K1�y� � q

������
pa
p

. From the linear fracture mechanics one has the fracture criterion K1�y� � K1c,

Fig. 1. Dependence of the plate strength q on
the hole radius a

Fig. 2. Dependence of the plate strength q on
the crack length a

Fig. 3. Plate with a diamond-shaped hole
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where K1c is a material constant-fracture toughness. Using these two expressions, we get the
theoretical dependence of the plate strength from the crack length (the solid line), according to
which the plate strength tends to in®nity as the crack length tends to zero. But the experiments
for short cracks, e.g. [2, 4, 5] show that strength tends to a ®nite value.

The same plate, but now with a diamond-shaped hole, Fig. 3, delivers an example of a
singular concentrator with a not square-root singularity. According to the linear elasticity, the
stress behavior near the corner points is rij�q; h� � K1� y; a�qÿc�a�fij�h; a�, where the exponent c
depends only on the angle a. It is not possible to estimate the strength of a body with such
stress behavior either by the traditional local strength condition or by the local linear fracture
mechanics condition. In principle, one can try to use the strength condition K1� y; c� � K1c�c�,
which is analogous to the linear fracture mechanics condition. However, one must then de-
termine the critical strength intensity factor K1c experimentally for each c, that is, for each angle
a, what is rather tedious and expensive. Moreover, the same dif®culties occur with the small-
scale effects as for short cracks or small circular holes.

These three examples show the necessity of a more general strength theory. Such a theory
should describe the small-scale effects and be applicable to bodies without and with cracks as
well as with other singular concentrators. These conditions are met by non-local strength
theories.

A functional approach to nonlocal strength conditions and fracture criteria was suggested in
[6, 7, 8], where a general form of nonlocal strength condition based on a nonlinear space
strength functional was proposed. The strength functional or the functional safety factor is
associated with the supremum of a positive factor, by which a given stress ®eld may be
multiplied to obtain a nonfracturing stress ®eld.

There is a number of nonlocal fracture criteria proposed earlier, which can be considered as
particular cases of the general strength functional form. The objective of this work is a com-
parative analysis of some of these nonlocal fracture criteria on the basis of experimental data
for the bodies containing smooth and singular concentrators.

2
Three nonlocal fracture criteria for plane problems
Three most popular nonlocal fracture criteria for the two-dimensional case are represented in
some generalized forms in [6]. Let �q; h� be a local polar coordinate system with the center at an
analyzed point y of a body; let g�h� be a unit vector making an angle h with the coordinate axis
and let rqq; rhh; rqh be the stress components in this coordinate system.

2.1
Fracture criterion based on average stress over a characteristic length (ASFC)
This approach was considered by Neuber [9], Novozhilov [10], and other author e.g. [2]. It can
be written in the following generalized form:

1

d1
max
ÿp<h�p

Z d1

0

rhh� y� qg�h��dq � rc : �1�

Here, rc is the strength of a body without concentrators under uniform traction, d1 is a material
constant with length measure.

If the direction h0, where the maximum in (1) is realized, is known, the ASFC has the
simplest form

1

d1

Z d1

0

rhh� y� qg�h0��dq � rc ; �2�

where the integration is performed along this direction.

2.2
Fracture criterion based on a minimum stress over a characteristic length (MSFC)
This approach was used in [2] and by other authors. In a generalized form, this criterion may
be written as
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max
ÿp<h�p

� min
0�q�d2

rhh� y� qg�h��� � rc : �3�

Here, rc and d2 are material constants. In the case of a known direction h0, where the maximum
in (3) is realized, the MSFC may be written in a more simple form

min
0�q�d2

rhh� y� qg�h0�� � rc : �4�

2.3
Fracture criterion based on a model of fictitious crack with a characteristic length (FCFC)
Criterion of such type was used in [1], [11], [12] and by other authors. It is supposed that there
exists a ®ctitious crack with a characteristic length d3 originating from the considered point y
of the body. After some modi®cation, [6], this criterion may be represented in the following
form:

max
ÿp<h�p

min
i

K1i� y; h; d3� � K1c : �5�

Here, K1c and d3 are material constants, and K11 � K1�y� and K12 � K1�y� d3g�h�� are the
stress intensity factors at the ends of the ®ctitious crack oriented at the g�h� direction.

If the direction h0 of fracture is known, Eq. (5) yields

min�K1�y�;K1� y� d3g�h0�� � K1c : �6�
For an edge crack beginning from the body boundary, there exists only one stress intensity
factor K1�y� d3g�h0�� and the minimum disappears in (6).

Each of the criteria written above includes two material parameters: a characteristic length di

and the strength parameter rc or K1c. These two parameters can be determined from two
independent macro-experiments. The following fracture tests may be, for example, chosen: a
tensile loading of a smooth specimen without concentrators and tensile loading of a specimen
with a transverse crack or with a circular hole.

3
Strength of a plate containing a central straight crack
A body containing a straight central crack provides a convenient object for the analysis of the
NLFC validity. Consider a straight crack of a length 2a in a plate of in®nite extent. The origin of
the �x1; x2�-coordinate system coincides with the center of the crack. If a uniform tensile
traction r is applied parallel to the x2-axis at in®nity, then r22�x1; 0� near the crack tip is
approximated asymptotically, e.g. [13], by the expression

r22�x1; 0� � K1����������������������
2p�x1 ÿ a�p ; �7�

where K1 is the mode 1 stress intensity factor given by the expression

K1 � r
������
pa
p

: �8�
Equation (7) presents only the main part of the asymptotic decomposition of the stress ®eld

near the crack tip, and it is usually considered to be quite correct for �xÿ a�=a � 0:1. For small
cracks, however, the fracture criteria may require an accurate knowledge of the stress distri-
bution near the crack tip. An exact expression for the normal stress ahead of the crack can be
obtained, e.g. as a limiting case of the solution for an elliptical hole in an in®nite plate [14]. It
should be noted that the result is the same for isotropic and anisotropic plates

r22�x1; 0� � K1x1������������������������
pa�x2

1 ÿ a2�p : �9�

The line of maximal tensile stress coincides with the continuation of the crack direction
along the x axis and all NLFC given above may be used in the simplest forms (2), (4) and (6).
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3.1
Average stress fracture criterion (ASFC)
Applying the criterion (2) to the end point of the crack in conjunction with Eq. (9) yields

K1c � rc

�������������
pd1g1

1� g1

s
; �10�

where g1 � a=�a� d1� is the normalized crack length. Let us denote q � r the tensile strength
of the plate with crack. Then, from Eqs. (8) and (10), one can obtain the relation between the
normalized plate strength and crack length

q

rc
�

�������������
1ÿ g1

1� g1

s
: �11�

It follows from (11), that q=rc ! 1 when g1 ! 0 �a! 0� for the short crack; and q=rc ! 0
when g1 ! 1 �a!1� for the long crack.

It is interesting to note that the critical stress intensity factor K1c used generally in the linear
fracture mechanics is not a material constant, when a nonlocal fracture criterion is applied. It is
the function of the crack length given by (10).

As a increases, the value K1c asymptotically approaches the limiting constant value K11c for
large cracks

K11c � rc

������������
pd1=2

p
: �12�

This value of K1c may be obtained at once if we use criterion (2) and stress asymptotics (7)
approximating (9) for suf®ciently large cracks. Just this value of K11c , determined from the long
crack tests, should be regarded as a material constant from the view point of non-local fracture
criteria.

If rc and K11c are de®ned from independent experiments, we can express d1 from (12):

d1 � 2

p
K11c

rc

� �2

:

If d1 is obtained from a plate strength q0 experimentally measured for a crack length 2a0 and
from rc also known from a fracture test, then

d1 � 2a0
q0
rc

� �2

1ÿ q0
rc

� �2 : �13�

3.2
Minimum stress fracture criterion (MSFC)
According to criterion (4) and Eq. (9), the following relation is valid for the dependence of the
critical stress intensity factor on the crack length:

K1c � rc

����������������������������
pd2g2�1� g2�

p
; �14�

where g2 � a=�a� d2�. Using (8) for r � q together with (14), one can obtain

q

rc
�

�������������
1ÿ g2

2

q
: �15�

As it was done in the previous section, the following results can be easily derived:

K11c � rc

����������
2pd2

p
; d2 � 1

2p
K11c

rc

� �2

;

or
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d2 � a0
1ÿ

�������������������
1ÿ q0

rc

� �2
r
�������������������
1ÿ q0

rc

� �2
r ; �16�

when d2 is evaluated from a test for a plate with a ®nite crack of length 2a0 and from rc.
Comparison of (13) and (16) given

d2 � a2d1; a2 � 1

2 1� 1=

�������������������
1ÿ q0

rc

� �2
r" # � 1

2 1�
��������
1�g01
2g01

qh i ; �17�

where g01 :� a0=�a0 � d01�. Since q0=rc ! 0 when a!1, we have from (17) the relation
d1 � 4d2 for the case when d1 and d2 are obtained from the critical stress intensity factor K11c
for a long crack and from the longitudinal strength rc of the plate without concentrators.

3.3
Fictitious crack fracture criterion (FCFC)
In accordance with this approach, one has to add a ®ctitious crack of the length d3 to the

considered end of the main crack of the length 2a. The stress intensity factor for this composed
crack may be written in the form

K1 � r

�����������������������
p a� d3

2

� �s
;

and criterion (6) gives

K11c � q

�����������������������
p a� d3

2

� �s
:

For a plate without a crack, we have a � 0 and K11c � rc

������������
pd3=2

p
. Thus,

d3 � 2

p
K11c

rc

� �2

; �18�

and

q

rc
�

�������������
1ÿ g3

1� g3

s
; �19�

where

g3 �
a

a� d3
: �20�

If d3 is evaluated from a test with a plate with a crack of a ®nite length 2a0 and from rc, then

d3 � 2a0
q0
rc

� �2

1ÿ q0
rc

� �2 : �21�

It follows from (13), (21), that ASFC and FCFC contain the same characteristic length
parameters d1 � d3, when they are obtained from experiments with a plate without and
with a crack, and lead to the same dependencies (11), (19) of the strength q on the crack
length a.
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The plate strength q � K11c =
������
pa
p

predicted by the linear fracture mechanics can be also
presented in terms of the same nondimensional variables if we express a in terms of g3 and K11c
from relations (20), (18)

q

rc
�

�������������
1ÿ g3

2g3

s
: �22�

One usually evaluates the critical stress intensity factor K 01c, instead of K11c , from the formula
q0 � K 01c=

�������
pa0
p

, applying the test with a crack of a ®nite length 2a0. Using (21), one can rewrite
the linear fracture mechanics strength prediction q=rc � �q0=rc�

���������
a0=a

p
in the normalized form

and get

q

rc
�

�������������
1ÿ g3

2g3

s ��������������
1ÿ q02

r2
c

s
; �23�

instead of (22).
Note that in deriving Eq. (22) it was supposed that the ratio of the strength predictions of the

linear fracture mechanics and of FCFC tends to unity as a!1. In contrast to that, in deriving
(23) it was supposed that this ratio is equal to unity at a ®nite a � a0. This explains the
difference between (22) and (23).

3.4
Predicted results and comparison with experimental data
To represent all results in the same coordinates, let us introduce a common nondimensional
crack length parameter g � a=�a� d0�, then

gi �
g

g� ai�1ÿ g� ; �24�

where ai � di=d0. In what follows, it is assumed that d0 � d1 � d3 and all plots are presented in
the nondimensional coordinates g � a=�a� d0� and q=rc. Then, g1 � g3 � g, but g2 is given by
(24), where a2 is determined by (17).

Note, that all the nonlocal fracture criteria give q=rc ! 1 when g! 0 for small cracks, as
would be expected, while the linear fracture mechanics criterion gives the unrealistic prediction
q=rc !1, as can be seen from (22).

From Eqs. (11), (15), (17), and (24), one can express the relative difference
d21 :� �q2 ÿ q1�=q1 between the predictions of the strength of a plate with a crack according to
the ASFC (coinciding with FCFC) and the MSFC. It is always positive, its maximum with
respect to g equals to dm

21 � �1ÿ a2�=
���������������
1ÿ 2a2

p ÿ 1 and is reached at g � a2
2=�a2

2 ÿ 3a2 � 1�,
where 0 � a2 � 1=4 according to (17). Thus, the maximum of d21 with respect to a2 and g is
reached at a2 � 1=4, i.e. in the case when d1; d2; d3 are obtained from the following two plate
fracture tests: without any crack and with an in®nitely large crack at g � 0:2 (i.e., at a � d2 �
d1=4 � d3=4); it is equal to d�21 � �3

���
2
p �=4ÿ 1 � 0:06. It means that if d1; d2; d3 are obtained

from a fracture test without any crack and from a test with a crack of any length, the maximal
relative difference between the ASFC/FCFC and the MSFC predictions for the cracked plate do
not exceed 6%.

Data obtained from experiments for laminated composite plates containing short cracks
[2, 4, 5] have been chosen to apply each of the criteria described above. The test result for the
crack of maximal length has been used to calculate di for each material by (13), (16), (21). Plots
for the three considered criteria, whose parameters are obtained by experiments on various
composites, are shown in Fig. 4±8 together with the corresponding experimental points. The
dashed line corresponds to the prediction of the linear fracture mechanics (23). All of the
experimental data used have been taken with an allowance for the ®nite widths of the speci-
mens.

The use of the standard nondimensional variables g and k � q=rc for the presentation of the
obtained results permits the marking of data of several series of experiments for different
materials on the same plot, for a chosen fracture criterion. Such common pictures of experi-
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mental data in comparison with theoretical predictions of the ASFC (coinciding with the FCFC)
and the MSFC are given in Fig. 9 and 10, respectively. Obviously, the g-normalizations of the
experimental points differ for the different materials because of the different values of di

obtained. In addition, the limiting value 1/4 for the factor a2 was used for the g-normalizations
of the experimental points in Fig. 10.

As can be seen from these ®gures, all the fracture criteria overestimate somewhat the plate
strength for most short cracks, when di are determined from the tests with the maximum length
cracks.

4
Strength of a plate containing a circular hole
Consider a circular hole of a radius a in an isotropic plate of in®nite extent. The origin of an
�x1; x2�-coordinate system coincides with the center of the hole. The solution of linear theory of
elasticity for a plate with a hole is well-known, see, e.g. [13, 14]. If a uniform tensile stress r is
applied parallel to the x2 axis at in®nity, then the distribution of the normal stress r22�x1; 0�
along the x1 axis �x1 � a� is given by the expression

Fig. 4. Comparison of predicted and
experimental results: 1,3-ASFC and
FCFC; 2-MSFC; 4-LFMC; �-experi-
mental data for a �0=� 45=ÿ 45�2s-
graphite-epoxy laminate [2]

Fig. 5. Comparison of predicted and
experimental results: 1,3-ASFC and
FCFC; 2-MSFC; 4-LFMC; (-experi-
mental data for a ��45=ÿ 45=0=90�s-
graphite-epoxy laminate [4]
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r22�x1; 0�
r

� 1� 1

2

a

x1

� �2

� 3

2

a

x1

� �4

: �25�

The stress distribution in the nondimensional coordinates, as it follows from (25), is inde-
pendent of the hole size, and the stress concentration factor at the edge of a hole is independent
of the hole radius too, r22�a; 0� � 3r. However, the size of the stress concentration region
depends on the hole radius.

Let us consider the strength predictions for this plate with the smooth concentrator by the
three NLFC given above. Let us introduce, as in Sec. 3, the normalized hole radius parameters
gi � a=�a� di�, where di are the characteristic lengths of the corresponding criteria.

4.1
Average stress fracture cirterion (ASFC)
Substituting Eq. (25) into (2), and performing the integration yield the fracture criterion for the
most stressed point �a; 0� at the plate with the hole

Fig. 6. Comparison of predicted and
experimental results: 1,3-ASFC and
FCFC; 2-MSFC; 4-LFMC; 4-experi-
mental data for a �90=0� 45=ÿ 45�s-
graphite-epoxy laminate [4]

Fig. 7. Comparison of predicted and
experimental results: 1,3-ASFC and
FCFC; 2-MSFC; 4-LFMC; �-experi-
mental data for a �0=� 45=ÿ 45=90�s-
glass-epoxy laminate [4]

605



q

rc
� 2

�1� g1��2� g2
1�

: �26�

One can easily see that for large values of the radius a, i.e. when g1 ! 1, the plate's strength
reduction caused by the hole is determined by the factor q=rc ! 1=3, while for small values of
a, i.e. when g! 0 no strength reduction is predicted, q=rc ! 1.

4.2
Minimum stress fracture criterion (MSFC)
According to criterion (4) and (25), one can obtain the following fracture criterion:

q

rc
� 2

2� g2
2 � 3g4

2

: �27�

For the limiting cases of large holes �g2 ! 1� and small ones �g2 ! 0� it follows from (27)
that q=rc ! 1=3 and q=rc ! 1, respectively

Fig. 8. Comparison of predicted and
experimental results: 1,3-ASFC and
FCFC; 2-MSFC; 4-LFMC; ?-experi-
mental data for a ®brous composite
Al/B [5]

Fig. 9. Description of the common
set of experimental data on the basis
of ASFC/FCFC. Marks of experimen-
tal points are the same as in Figs. 4±8
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4.3
Fictitious crack fracture criterion (FCFC)
Placing a ®ctitious crack of a length d3 at the most stressed point �a; 0� of the plate along the x1-
axis direction, one obtains a concentrator of nonsymmetric form: a circular hole with a single
crack originating at its boundary. The symmetric form with two cracks used earlier [1, 4]
corresponds to the simultaneous fracture at two points. It seems more natural not to demand
the fracture symmetry.

A linear elastic solution for the concentrator of such a form was obtained in [15, 16]. This
solution gives the following expression for the stress intensity factor:

K1 � r
��������
pd3

p
f �g3� ; �28�

where the function f �g3� (more exactly, ~f �e� where e � d3=a� is given in [15] in a table form.
In the limiting case, when the hole radius a tends to zero, g3 ! 0 and f �g3� ! 1=

���
2
p

. So, the
following fracture criterion takes place for the plate without a hole:

K1c � rc

������������
pd3=2

p
: �29�

The fracture criterion K1 � K1c together with Eqs. (28) and (29) gives

q

rc
� 1���

2
p

f �g3�
: �30�

Note that for the hole with the radius a!1; g3 ! 1 and the limiting geometry corresponds
to the half-plane with the edge crack under the tensile load 3r. Using the known solution of this
problem, see, e.g. [17], one can calculate the limiting value limg3!1 f �g3� ' 3:3645.

4.4
Predicted results and comparison with experimental data
To compare the predictions of all the criteria considered, we will use, as in Sec. 3, the common
normalization k � q=rc and g � a=�a� d0�; then gi is connected with g by (24), where
ai � di=d0. It is taken further that d0 � d1.

It should be noted in advance that the ®ctitious crack fracture criterion is not correct for
holes of large radius, since the reduction of strength described by (30) equals approximately
0.21 in the limiting case a!1 �g! 1�, what is more intensive than 1/3 given by linear
elasticity stress concentration factor. However, the value 1/3 is true for large holes, as exper-
iments show.

Fig. 10. Description of the common
set of experimental data on the basis
of MSFC. Marks of experimental
points are the same as in Figs. 4±8
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Let us suppose that, for the three fracture criteria considered, the parameters rc (or K1c) and
di are obtained from the following two fracture tests: for a plate without a hole and for a plate
with a hole of a radius a0. One can then get the normalized hole diameter g0i from the plate
strength q0 � q�a0� and from formulas (26), (27), (30) for each criterion; the characteristic
lengths, thus, are di � �a0=g0i� ÿ a0.

Let us now compare the maximum relative difference between the strength predictions given
by the ASFC and the MSFC. From (24), (26), (27) we have,

d21 :� q2 ÿ q1

q1
� �1� g��2� g2�

2� g2�g� a2�1ÿ g��ÿ2 � 3g4�g� a2�1ÿ g��ÿ4 ÿ 1 : �31�

Using (26) and (27), we can express g02 in terms of g01 � g0 and then, using (24), express a2 in
terms of g0

a2 � g0

1ÿ g0

�����������������������������������������������������������������
6

ÿ1� ������������������������������������������������
12�1� g0��2� g02� ÿ 23

ps
ÿ 1

 !
:

Analysis of this expression shows that 0 < a2 < 1=2 for 0 < g0 < 1; a2 ! 0 when g0 ! 0, and
a2 ! 1=2 when g0 ! 1. Analysing the maximum of expression (31) with respect to g and a2

such that 0 < g0 < 1; 0 < a2 < 1=2, we note that the maximum is reached at a2 ! 1=2 (i.e. at
a0 ! 1) and at g � 0:29888 (i.e. at a � 0:42629d1 � 0:85258d2), and is equal to d�21 � 0:15659.
Analogously, the minimum of (31) is reached at a2 ! 0 (i.e. at a0 ! 0) and g! 0 (i.e. at
a! 0), and is equal to d��21 � ÿ2=3. It means that if d1, d2 are obtained from the two fracture
test without and with a circular hole, the MSFC strength predictions can amount to between
33.3% and 115.7% of the ASFC predictions for the plate with a circular hole.

Comparison of the predicted and experimental [1±3] data for strength of multi-layer com-
posite materials are given in the Fig. 11±17. The characteristic lengths di�i � 1; 2; 3� were
determined for all criteria on the basis of the experiments for the concentrator of the maximal
size, except for the experiment on the graphite-epoxy laminate with holes of large radius [1] in
Fig. 15±17, where the minimal size concentrator was used. The dashed line corresponds to the
strength evaluation on the basis of elastic stress concentration factor.

As in the corresponding pictures of Sec. 3, the g-normalizations of the experimental points
on Fig. 15±17, including the common set of experimental data, differ for the different materials
because of the different values of di. In addition, the values a2 � 1=4 and a3 � 1 have been used
for the g-normalizations of the experimental points in Fig. 16±17.

Fig. 11. Comparison of predicted
and experimental results: 1-ASFC; 2-
MSFC; 3-FCFC; �-experimental data
for a �0=� 45=ÿ 45�s-graphite-epoxy
laminate [1]
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5
Some remarks about the fictitious crack fracture criteria
In addition to the remark given in Sec. 4.4, some more criticism of the FCFC can be given.

Let us consider a rectilinear elastic plate under the action of a uniform tensile tractions
q applied to two of its sides, Fig. 18. Placing the ®ctitious crack parallel to the loaded sides
of the plate at a distance h from one of these sides, one can see (e.g. from [17]) that the
stress intensity factor K1 at the crack ends tends to in®nity, when h tends to zero. It
means, that for any arbitrarily small q there exists a suf®ciently small distance h such that
FCFC will predict the fracture, what leads to a contradiction with experimental data and
experience.

In defence of this criterion, one can say that the type of the boundary conditions such
as positive tractions prescribed, is only a mathematical or mechanical model, and does not exist
in reality. But the rejection of this model seems to be too heavy a sacri®ce for saving the
criterion.

Fig. 13. Comparison of predicted
and experimental results: 1-ASFC; 2-
MSFC; 3-FCFC; �-experimental data
for a ��45=ÿ 45=0=90�s-graphite-ep-
oxy laminate [3]

Fig. 12. Comparison of predicted
and experimental results: 1-ASFC; 2-
MSFC; 3-FCFC; 4-experimental data
for a quasi-isotropic glass-epoxy
composite [2]
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Conclusion
The following conclusions may be drawn on the basis of the performed analysis:

1. All the nonlocal fracture criteria considered allow to describe the strength of bodies
containing smooth concentrators as well as singular ones. It has been shown that the FCFC
coincides completely with the ASFC for a plate with a central crack under symmetric loading.

2. Both the ASFC and the MSFC describe the dependence between body strength and the size
of concentrator qualitatively correct. The FCFC gives incorrect results for large smooth con-
centrators and does not enable the limiting transition to the local strength condition for the
half-plane. In addition, it gives extremely incorrect results even for the uniform stress state
under boundary tractions.

3. The best description of experimental data was obtained on the basis of the ASFC.
4. The considered criteria containing two material parameters do not enable the known

experimental data on the strength of bodies with small concentrators to be described exactly.
There are systematic deviations of the predicted results from the experimental data. Thus, the
nonlocal fracture criteria considered need to be improved.

Fig. 15. Description of the common
set of experimental data on the basis
of ASFC. Marks of experimental
points are the same as in Figs. 11±14;
(-experimental data for the graph-
ite-epoxy laminate with holes of
large radius [1]

Fig. 14. Comparison of predicted
and experimental results: 1-ASFC; 2-
MSFC; 3-FCFC; ?-experimental data
for a �90=0=� 45=ÿ 45�s-graphite-
epoxy laminate [3]

610



Fig. 17. Description of the common
set of experimental data on the basis
of FCFC. Marks of experimental
points are the same as in Fig. 11±14;
(-experimental data for the graph-
ite-epoxy laminate with holes of large
radius [1]

Fig. 18. A crack near the plate side loaded by tractions

Fig. 16. Description of the common
set of experimental data on the basis
of MSFC. Marks of experimental
points are the same as in Figs. 11±14;
(-experimental data for the graph-
ite-epoxy laminate with holes of
large radius [1]
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