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Some classes of partial Volterra operators acting (with respect to a real variable)
on a function of one complex and one real variable are explored. The case when
the operator kernels depend additionally on a complex parameter is also consid-
ered. It is proved that Volterra operators from these classes and the resolvent
operators act in weighted Hardy type classes of one parametric holomorphic
functions defined on a wedge or on a strip of the complex plane. Moreover, the
Volterra operators commutate with the Mellin operators in these classes. The half
line Paley—Wiener theorem for the resolvent of the Volterra operator is extended
to operators with parameter. Volterra operators tending to operators of the
convolution type as well as Volterra operators with fading memory are studied too.
© 1998 Academic Press

INTRODUCTION

Several weighted Hardy type classes of one-parametric holomorphic
functions defined on a wedge or on a strip of the complex plane are
introduced in [5]. Properties of functions from these classes and of their
Mellin images are also investigated there. Here we consider properties of
the Volterra operators (in a real variable ) acting on such functions.
These considerations are necessary for solving boundary value problems
for a hereditarily-elastic (visco-elastic) body by use of the complex
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Kolosov—Muskhelishvili potentials (see, e.g., [2—4]). The potentials are
functions holomorphic in a complex variable (space coordinate) and de-
pending also on a real variable (time). The hereditary properties of
materials are described by Volterra operators of the second kind with
respect to time.

Section 1 of the paper includes a definition of a class of Volterra
operators without parameter and a proof that these operators act in the
weighted Hardy type classes and commute with the Mellin operator acting
with respect to another variable. In Section 2 a class of Volterra operators
with a complex parameter on a strip is considered and it is proved that
their resolvents on a finite segment belong to the same operator class too;
such Volterra operators act in the corresponding Hardy type classes of
one-parametric functions in the strip. In Section 3 the half line
Paley—Wiener theorem for a resolvent of a Volterra operator of the
convolution type is extended to the considered class of operators with
parameter when the operators are, or tend to, operators of the convolution
type as ¢t — . The Volterra operators with fading memory are also
considered. It is proved that they act in the Hardy type classes of functions
that tend to harmonically oscillating functions in ¢ as ¢t — . It is shown
that a resolvent of an operator with fading memory (without or with a
complex parameter) is also an operator with fading memory. Asymptotic
relations for ¢+ — o are given too.

The results presented here were applied in [3, 4] to the stress singularity
analysis of visco-elastic bonded wedges. It was particularly shown there
that the presence of Volterra operators in the material model changes the
stress singular behavior at finite times drastically in comparison with the
classical elastic predictions.

The results of this paper are based on [7, 1], where Volterra operators,
acting on functions of one variable, are considered.

We shall use here the notions and the notations of Part | of this paper
given in [5]. The references on the numbers of formulas and statements of
[5] will be preceded by the symbol I.

We shall consider the matrix Volterra operators (i.e., integral operators
with (n X n) matrix kernels K(v,t, 7)) acting on n-dimensional vector
functions g(p,t), ®(y, 1), etc.; the symbol |-| will be used for a corre-
sponding matrix or vector norm. When n = 1, we come to the scalar case.

1. VOLTERRA OPERATORS INDEPENDENT OF
COMPLEX VARIABLES

Let us give some definitions and describe several known properties of
the Volterra operators.



376 S. E. MIKHAILOV

1.1. DeriniTION. (1) An operator K belongs to the class VB(J) if it is
an integral Volterra operator

(Ke)(1) = [K(t,7)g(r)dr  (t€]) K(t,7) =0V¥r>1
7
and the kernel norm is finite:

K Tl = supflK(t 7)|dr < =, (1.1)

tel]

(2) An operator K belongs to the class VC(J) if K belongs to VB(J)
and &(K;t,At) = [,|K(t + At,7) — K(t,7)ldr — 0 as At — 0 for any
trel.

1.2. THEOREM. (1) If K belongs to VB(J) (K belongs to VC(J)), then K
acts from the spaces L(J), B(J), C(J) into the spaces B(J) (C(J)) and is
bounded; furthermore, |K|| < |l K |ll, where ||K|| signifies the operator norm
in the corresponding spaces.

(2) If, moreoverJ = [t,,t,] and t, < =, then (I + K)~* acts in L.(J),
B(J) (and in C(J)) and is bounded; furthermore, (I + K)™* =1 — R, where
the resolvent operator R belongs to VB(J) (R belongs to VC(J)).

Proofs of these claims are given, e.g., in [1, Chap. 9.5].

Let us describe some properties of a Volterra operator as a partial
integral operator acting with respect to the second variable on a function
of two variables.

1.3. THEOREM. Let K belong to VC(J).

(1) If g belongs to L,,L (80, 8.3 J), then Kg belongs to CcL (80, 8.3 T)
and for p = 2, #Kg = KAg € CHZ(S(SO, 8); J).

(2 If ®(y,1) belongs to L HJ(S;J), S = 8(8,8,), then K be-
longs to CHX(S; ), (3/dyXK®) = K(&q)/&y) € CH)(S;J), and for p =
2, %—1(5)1@ K. Y$)® € CL,(8,, 5,; ).

(3 Ifh(z, 1) belongs to L,,H,(8y, 8., W, J), W= W(6_, 0.), then Kh
belongs to CHp(‘o‘o, S Wi J), (8/9zXKh) = (K(dh/dz)) € CHP(SO, 8,;
W', J)NW' C W, and for p = 2, W(W)Kh = KO(W)h € CH,'(6_, 0, ;
S(8y, 8); J).

@ If d(y,t) belongs to L,H,"(0_,0,;S;]), S:=5(8,,38,), then
K® belongs to CH,"(6_,6,; S, J) (9/dyNKP) = (K(aD/dy)) €
CHV(e 0.;S;J), andforp =2, M USHKD = KNS € CH,(5,,
O W(@_ 0, ) J).
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Proof. Let g belong to Lm]':p( 8y, 8.; J). Then according to the general-
ized Minkowski inequality, we get

IKg; 8;Jl,5 = sup

teJ

D 1/p
ppéfl dp}

f:‘/}K(t,ﬂg( p,T)dr

IA

SUpf[f |K(t,7)g(p. )0’ p 1dp}l/p dr

teJ

- SUp/IK(t ) g(.7); 8, dr

tel

IA

KT g 8; Tllpe <0
for any 8 € (§,, 8,). Consequently Kg belongs to BEP(BO, d,; J). Further,

I[Ke](- 1) = [Ke](- 1 + Ar); 5,

1/p
ppS—l dp}

[ f] K(t+ At,7) —K(t,7)]g(p,7)dr
1/p
f,[fo [[K(t+ A7) = K(t,7)]g(p.7)p%[ p 1dp} dr

0

IA

= [IKG+a67) =Kt lgCo7); 8l dr
< e(K;t,At)llg; 6; Tl — 0, At — 0.

The first claim of point (1) has been proved. To prove the last claim, let
us write an estimate

/O[/JIK(t,f)g(p,T)pv1|df}dps WK T g;Rey; |l < o,
y € 8(8,,8.). (1.2)

The last inequality follows from Remark 1.2.2. Then we have
(£ZKg)(v.t) = f [fK(t, 7)8(p,7) dr] p" rdp
0 J

- [k [eCp. 07 o] dr = (K6 (.00
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The change of the integration order is possible here due to estimate (1.2)
and to a corollary from the Fubini theorem (see, e.g., [6, XII, Sect. 4]). The
membership K.#g € L,H(S(5,, 8,);J) follows from the membership
Hg € L H)S(S,,48,); J) (see Theorem 1.2.5) and from the first claim of
point (2). The proof of point (1) is complete.

Prove now point (2). Let & belong to LprO(S; J). Owing to (1.1) and
(1.2.2), we have

[K@1(&m)] =|[K(r.m) (4 m) d,

< [IK(z,7)®(¢,7)]dry
J
< [IK; TNMO(D; 87 T) < o0 (1.3)

for any 7 € J. The estimate is uniform with respect to £ on any §’ € .

Let us prove that [K®](y, 7) is holomorphic with respect to y € § at
any t €J, Really ®(y, ) is holomorphic with respect to vy S at a.e.
7€ J, and therefore it can be represented (at such 7) as the Cauchy
integral:

Here vy is any point of S and T" is the boundary of an open disk lying
inside of S and containing y. Then

%'[]K(t,f)[/‘r%d(}&'
=2ibﬂg_y[fKU«ﬂ®(§r)dﬁ

IS C
_2771/ f—

[K®](y,1)

Z, (1.4)

where the order of the integration can be changed owing to estimate (1.3)
and the corollary from the Fubini theorem. Hence [ K®](y, t) is holomor-
phic at any point y € S at any ¢ € J as a Cauchy integral with a bounded
density (see (1.3)).

The inequality M (K®; 8;J) < « and the tendency M°[(K<I>)( t) —
(K®)(-,t + At); 8] 5 0 as At — 0 for any ¢ € J uniformly Wlth respect to
5 on any [§;, 8.1 c (8,, 8,) are proved as for point (1) above. The first
claim of point (2) has been proved.
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Prove that the operators K and d/dy commute. Differentiating (1.4),
we obtain

[KP](¢, f)
(¢-7v)°

1 (Zt)
2—[ fK(t T) y) dr

B 1 D(,1)
_/JK(t'T)[meru— v

PL
- (1_<—)<w> € CHY(S;J),
dy

P
a—y[K‘D](Y,f) = me

where the change of the integration order is possible owing to estimate
(1.3). The last inclusion is implied by (9/dy)® belonging to L, HJ(S;J)
and by the first claim of point 2.

The last claim of point (2) is proved as for point (1). Point (2) has been
proved. Points (3) and (4) are proved analogously. |

1.4. THEOREM. Suppose an operator K belongs to VC(J), where J =
[t,,1,], —o <t, <t, < then the operator (I + K)™* acts in the function
classes given in Definitions 1.2.1, 1.2.3, 1.2.6, 1.2.9.

Proof. Let g belongs to L., L (8¢, 8., J). Then according to Theorem
1.2, [(1+ K)'gCp,)N0) —g(p, t) — [Rg(p, )I(t) for ae. pe<l0,]
where R belongs to VC(J). According to point (1) of Theorem 1.3, Rg
belongs to CL (80, ;J) € L,L,(8,8.,;J) and consequently (1 + K)™'g

belongs to LWLP(SO, d.; J). The theorem claim for all the other classes is
proved analogously.

2. VOLTERRA OPERATORS WITH A COMPLEX
PARAMETER ON A STRIP

2.1. DEFINITION. An operator K depending on a parameter y belongs
to the class VCH(S; J) if

(i) itis an integral Volterra operator

[K(v)g](r) = fJK(%t,T)g(T)dr (tel]),K(y,t,7) =0 forr>1t,

forany y € S;
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(i) the kernel norm |||K; S"; J ||| == SUp, < ; [;8Up, e | K(y, ¢, Tl dr is
finite for any §’ c S

(i) e(K;S:t, At) = fjsupyegflK('y, t+ At,7) — K(y,t,7)ldr—> 0
as At — 0 for any §' C S; and

(iv) the kernel K(v, ¢, 7) is holomorphic with respect to v € S at any
¢t and at almost any 7.

2.2. Remark. (1) It follows from the definition that, if K belongs to
VCH(S; J), then | K(y); Jll < IK;S"; Tl < fory onany S’ c S and
consequently K(vy) belongs to V'C(J) for any y € S.

(2) A kernel K(y,t,7) satisfying condition (ii) of Definition 2.1 is
uniformly bounded with respect to v on any S’  § for any ¢ and almost
any .

2.3. LEMMA. If K belongs to VCH(S; J) and vy belongs to S, then:
() K(y) boundedly acts from the spaces L(J), B(J), C(J) into
c();

(i) a/9y[K(y)glt) = [K'(y)g)t) for any g € L(J) [or g € B(J),
org € C(J)] and for any t € J, where

[K'(v)g](1) = []K/w,t,f)g(r)dr, K'(y.t,7) = 0K(y,t,7)/dy,
(2.1)

and K' belongs to VCH(S; J).

Proof. Point (i) is a consequence of point (1) of Theorem 1.2.

To prove (ii), we shall prove at first that the operator K’ generated by
(2.1) belongs to VCH(S;J). Let us choose any § := 5“'(8(), 8)csS =
S(8,, 8,) and denote r :== imin(8; — §,,8, — 8.) > 0, &) = 8, — r, &/ =
8. + r. Let y be any point of S'. Then the circle T with the center y and
the radius r belongs to §” := §(&], 8/). Using the Cauchy theorem and
point (2) of Remark 2.2, we obtain

K(i,t, 7
K(y,m)_szr (g ty) Z,

K({t,7) 1 (o i —i0
d —m/(‘) K(y+re ,l,T)e dae,

1

1
|K'(y,t,7)]| < —f sule(n t,7)|d6 = — sup |K(n,t,7)| <o
r
nes”



ON SOME WEIGHTED HARDY TYPE CLASSES, II 381
for any ¢ and almost any 7. Consequently,

_ 1 _
MK ;S JI < 7|||K;S”;J||| < o, (2.2)
Further,
(K';S8';t,Ar) —fi su fZﬁ[
€ R o b

yeE’

K(y+re t + At, 1)
—K(y+re' 1, T)]€7i9d9 dr

1 oom
s—f e[K;5";t,At]do -0, At — 0.
2mr /g

The membership K’ € VCH(S; J) has been proved. Finally, we can change
the order of the differentiation in y and the integration in = because of
the derivatives definition and the Lebesgue dominated convergence theo-
rem together with estimate (2.2). 1|

2.4. Remark. If K belongs to VCH(S;J) and g(¢) belongs to L.(J),
B(J), or C(J), then [K(y)gl(#) is a holomorphic function with respect to
vy € S for any ¢t € J. This follows, e.g., from the representation of the
derivative (d/dy)IK(y)gl(¢), according to point (ii) of Lemma 2.3, and
from its boundedness owing to the membership K'(y) € VC(J) and to
point (1) of Theorem 1.2.

We discuss now properties of the resolvent for an operator from
VCH(S; J).
Let us consider the convolutions of functions a(vy, ¢, 7), b(y, ¢, 7):

[axb](y,t,7) = f]a(%t,n)b(%n,f)dnv

a*'(y.t,7) =a(y,t,7), a"(y,t,7) = [axa*" " '](y,t,7),n > 1.
Then from the resolvent definition we have the property
R(y.t,7) =K(y,t,7) = [K*R](v.t,7)
=K(y, t,7) = [R*K](y,t, 7). (2.3)

2.5. Remark. For operators K, K, satisfying conditions (i) and (ii) of
Definition 2.1, we have

Ky + Ky; ST < WKy 8T+ WKy 8751

Ky Ky S5 TN < Ky S5 TN K: S5 T
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for any S’ c S. Hence the operators K, + K, and K, K, satisfy conditions
(i) and (ii) of Definition 2.1 as well.

2.6. LEMMA. Suppose K belongs to VCH(S; J) and has a resolvent R(vy)
that satisfies conditions (i) and (ii) of Definition 2.1 for any y € S. Then R
belongs to VCH(S; J).

Proof. Let us prove that condition (iii) of Definition 2.1 is also fulfilled
for R under the lemma assumptions. By (2.3), we get

e(R;S';t,At) ==fsup |R(y,t+ At,7) — R(y,t,7)|dr

Jyes

K(vy,t+At,7) —K(y,t,7)

= f sup
J'yeg’

—j;[K(y,t + At, 7)) — K(’y,l,’Tl)]R(’y,’Tl,T) dr|dt

IA

e(K; S t,At) + IIR; S5 t,, 6,1l e(K; 85 ¢, At) > 0
as At -0
for any S’ c S. Condition (iii) of Definition 2.1 has been proved.

Let us prove the holomorphy of R(y,t, 1) at any ¢ and at almost any T,
required by point (iv) of Definition 2.1. Using (2.3), one can see that

R(y+ Ay) — R(y)
= [K(y+ Ay) = K(v)] = R(y) *[K(v + Ay) = K(v)]
—[K(y+ Ay) = K(y)]*R(y + Ay)
+R(y)*[K(y+ Ay) = K(y)]*R(y + Ay)
= Ay[K'(v1) = R(v) *K'(7v2) = K'(7v2) * R(y + Ay)
+R(y)* K'(v) * R(y + Ay)],
vi €[y, y+Ay]. (24)
The fixed arguments ¢, 7 are dropped here. Let us fix some §' c §. We
take into account that K’ belongs to VCHI[S(§,, 8.);J] by point (ii)
of Lemma 2.3 and that R satisfies condition (ii) of Definition 2.1. Then
we obtain from Remark 2.5 and point (2) of Remark 2.2 that the func-

tions K (¢, 7) = sup, cg|K'(y,t, 7), R,(t, 7) = sup,cglR(y, t, 7)l,
[R,* K, Xt,7),[K,*R,It 7),and [R,, = K| * R, (¢, 7) are finite at any
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t € J and at almost any T € J. Then

|[R(y + Ay,t,7) — R(v,t,7)]
<|Ayl[K,, +R,*K, +K,,*R,, + R, «K, «R,](t,7) = 0,
Ay -0,

at any t+€J and at almost any 7<€J. Hence R(y,t 7) is uniformly
continuous with respect to y on any S’ € S at any ¢ € J and at almost any
Tel.

Using then the same ¢, 7, dividing (2.4) by Ay, tending it to zero, and
taking into account the continuity of R(y,t, 7), we obtain

&_’iR(y,t,T) = K'(y,t,7) — [R(y)* K'(¥)](t,7)

—[K'(y) = R(v)](t,7)
+[R(y)* K'(v)* R(y)](t,7) (25)

at any ¢ and at almost any 7. Here the Lebesgue dominated convergence
theorem was used with the dominant functions R, (¢, 7)K) (7, 7),
K (t,7)R, (1, 7), R, (t,7)K (1, 7,)R, (7,, 7). The right hand side of
(2.5) is bounded and unique at any ¢ and at almost any 7. This completes
the proof of condition (iv) of Definition 2.1. |

2.7. LEMMA. Let K belong to VCHIS; J(¢,,1,)], t, < . Then the resol-
vent operator R belongs to VCHIS; J(¢,, t,)] too.

Proof. Note that, according to point (1) of Remark 2.2 and to point (2)
of Theorem 1.2, R(y) belongs to VC(J) for any y € S. Hence point (i) of
Definition 2.1 is fulfilled for R(y). We shall prove now that the kernel
R(v,t, 7) satisfies condition (ii) of Definition 2.1. Let us fix some §' c S
and consider the function K, (S';¢,71) = sup, c 57| K(y,t,7)| as a scalar
operator kernel. By conditions (i) and (ii) of Definition 2.1, the operators
K, (5" and —K, (S") belong to VB(J). Consequently the resolvent R,, (S")
of the operator —K, (S") also belongs to VB(J) for t, < = (see part (2) of
Theorem 1.2), and ||| R,,_(§); J Il < .

For the resolvent of a Volterra operator K(y) € VC(J), the Neumann
series converges with respect to kernel norm (1.1) for any y € S (see, e.g.,
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[1, Chap. 9]: R(y,t,7) = £7_ (= 1/~ YK)*/(y,1,7). Then

o

i K (y,t,7) < Y (Km)*j(g'; t,T)

j=1

IA

|IR(y.t,7)]

- L DK )

-R,_(S;t,7), VYyeS§cS.

Thus, I R; S"; JIIl < Il R,,_(8"); J Il < . Condition (ii) of Definition 2.1
has been proved. Conditions (iii) and (iv) follow from Lemma 2.6. |

2.8. THEOREM. Let K belong to VCH(S; J).

(1) If ® belongs to LwH[?(S; J), then K® belongs to CH[?(S; J).

@ If ® belongs to LOCHPV(O,,(L;S; J), then KO belongs to
CH, (6_,0,;S;J).

(3) If ® belongs to one of the classes from points (1), (2), then

%[K(V)Q(%')](t) = [K(v)(%q’(%')

(1) + [K'(v)P(y.")](2).

Proof. (1) Let ® belong to L.H)(S;J), S =5(5;,8,). Using the
generalized Minkowski inequality, we have for any § € [§g, 6.] < (5, 8,)

M (KD; 5;7)

~sl [

D 1/p
dg]
tel]

Supf[f m|K(5+if,t,r)|p|q)(5+i§,7)|pd§} pdT

teJ “JLY—

fK(s g, T)D(S+iE, 7)dr
J

IA

IA

sup/ sup | K(y.t,7)[MI[®(-,7); 8] dr
teJ " ye 554, 8.

INK; S(8,8.); JIM2(D;68;]) < . (2.6)

IA

Consequently MI?B(K@; 8; J) is uniformly bounded with respect to § on
any [8;, 8.1 < (8,, 8,).
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Further, writing the estimates analogous to (2.6), we have
M{[K®](r + Ar) — [K®](1); 8}
< &(K;S5(8),8.);t, At)M(®;8;]) =0, At—0,
and the tendency is uniform with respect to 8 on any [8g, 5.1 € (8, 8.).

Let us prove the holomorphy of [K(y)®(y, - )I(z) with respect to v € S.
Reasoning as in the proof of point (2) of Theorem 1.3, we obtain

1 K(y)®(¢,-
(KN ®(v.)](1) = 5 [ [—(v)gfs“y )1 (1)

mLJ'Tr

g, (2.7)

It is sufficient to prove the existence of the derivative with respect to vy.

Differentiating (2.7), one may change the order of the differentiation
and the integration. It is possible owing to the Lebesgue dominated
convergence theorem, since [K'(y®)®(¢, -)I(¢) is uniformly bounded with
respect to y° in a vicinity of by the force of Remark 2.4 and estimate
(1.2.2) holds. Then we have

[5(7)(57')]0)61
({—7v)°
L [K(v)P(L)](n)
* 27Tifr (Z-7)

1
ﬁiv[l_((v)tb(%')](t) - 2m‘fr 5

d¢

) 1 . ®(L, 1)
_fJK(%f'T)[szr(;— 7)’

“,

P
K(w)a—yq)(%')

d{ldT

] 1 . ®(,1)
a—yKW*”Hm e

d{}dT

(1) + [K'(v)P(y,)](1),
(2.8)

where all integrals exist by estimate (1.2.2), point (ii) of Definition 2.1, and
point (2) of Lemma 2.3.

The proof of point (1) is complete. Point (2) is proved analogously. Point
(3) follows from (2.8). 1
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2.9. THEOREM. LetJ = [t,, t,], t, < . If K belongs to VCH(S; J), then
R acts:

() from L.HX(S;J) to CHXS; J);
(i) from L.H,”(6_,0,;S;J)to CH,’(0_,0.;S;J).

Proof. According to Lemma 2.7, R(y) belongs to VCH(S;J). An
application of Theorem 2.8 completes the proof. |

3. VOLTERRA OPERATOR RESOLVENT PROPERTIES
ON THE HALF-AXIS

Up to now, we have considered the resolvent properties only for ¢, < o.
Let us now consider the case 7, < . Let J, = J(t;,%©) =: [t,, »).

3.1. DEFINITION. (1) A Volterra operator K~ is of the convolution type
if its kernel satisfies the relation K=(¢,7) = K~ (¢t — 7).

(2) An operator K € V'C(J,) tends to an operator of the convolution
type K- VC(J) if K — K7;[T,»)||| > 0as T — .

(3) An operator K € VCH(S; J,) tends to an operator of the convo-
lution type K- VCH(S; J) if |K— K ;S8";[T,»)||| > 0forany §'c S
at T — oo,

Let us recall here the classical half line Paley—Wiener theorem [7,
Theorem 18] (see also [1, Theorem 2.4.1]).

3.2. THEOREM. Suppose an operator of the convolution type K belongs
to VC(J,) and det[I + K- (w)] # 0, Re(w) = 0, where K (w) =
J§K ™ (1)e™“" dr. Then the resolvent of K~ is an operator R~ of the convolu-
tion type belonging to VC(J,).

Let us consider the following generalization of the formulated theorem.

3.3. THEOREM.  Suppose an_operator of the convolution type K~ belongs
to VCH(S; J,) and det[I + K- (y,w)] # 0 for y< S, Re(w) = 0, where
K (y, w) = [oK ™ (y, T)e” “7dr. Then the resolvent of K~ is an operator R~
of the convolution type belonging to VCH(S; J..).

Proof (sketch). From the classical half line Paley—Wiener Theorem 3.2,
it follows that R~ () belongs to VC(J,) and R~ () is of the convolution
type for any y € S under the theorem assumptions. Consequently, condi-
tion (i) of Definition 2.1 is fulfilled for R™(y), and R (v,t,7) = R (v,
t— 7).

Condition (ii) of Definition 2.1 is proved for R~ (y) by repeating the
long proof of the Paley—Wiener theorem from [1, Chap. 2] with the
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following modifications. We should replace successively the kernel norms
IIK™; Ll in the Lebesgue spaces L(t;,%) and L(—,~) by the correspond-
ing norms for the kernel supremum: [isup,, < ¢|K~ (y, - )l; L|l. The property
IK=(t + At) — K~(¢); L|| -» 0, At — 0 should be replaced by the corre-
sponding property [lsup, . glK (y, ¢t + A1) — K~ (y, 0)l; LII -0, At—>0
(provided by point (iii) of Definition 2.1), and sup, [/ + K ()] 1| w€E
(—o,%), should be replaced by sup,, JI+K (y,0)]Y, y€F, we
(=0, ).

The conditions (iii) and (iv) of Definition 2.1 follow from Lemma 2.6. |

3.4. LEMMA. Suppose operators K, K, belong to VCH(S; J), where K,
has a resolvent R, from VCH(S; J) and

Ky 85T <1/(1+ RS I VS 8. (3.2)

Then the operator K = K, + K, has a resolvent R from VCH(s; J).

Proof. By Theorem 9.3.9 and Corollary 9.3.18 in [1], it follows from the
lemma conditions that the resolvent R(vy) belongs to VC(J) for any y € S,
and the resolvent kernel is given by the Neumann series convergent with
respect to kernel norm (1.1):

R(vy.t,7) = R(v.t,7) —E(y,t,r) + [ﬁ* Rl](‘y,t,T),

o

R(y,t,7) = L (=1)/(K, = Ry * K;)*(y,1,7).
j=1

Using Remark 2.5 and inequality (3.1), we get

o

~ — — — — J
RS 70 < X (K 85700+ Ry ST Ky; ST 1) < o0

IR, S TN < R ST+ IR STl

+ N R; ST Ry S T < oo

Thus condition (ii) of Definition 2.1 is satisfied. Properties (iii) and (iv)
follow from Lemma 2.6. |

3.5. LEMMA. Suppose K € VCH(S; J,,) tends to an operator of the convo-
lution type K~ € VCH(S; J.), K~ has a resolvent R~ VCH(S; ) of the
convolution type, and K has a resolvent R € VCH(S; J.)). Then R tends to the
operator of the convolution type R™.
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Proof. Let K(y,t,7)=K(y, t,7) — K (y,t — 1), R(y,t 1) =
R(vy,t,7) — R (y,t — 7). From the resolvent definition, we get
R «K =K —R =K *R", R+K=K—-R=K=+*R, (32)
where the arguments vy, ¢, 7 are dropped. Then

R+R+K=K-R *K. (3.3)
Let us convolve this equation by R from the right and subtract the result
from (3.3). Then, allowing for (3.2), we have R=K-K+R-R =K+
R~ * K = R. Consequently,

IR, 5T, ll < 1K 5T, [t + WR;S;T,ll + IR 5;T,ll
+IR; 8T, |l R8T, =[] »0,T e,
since || K;S:T,»|| >0asT—0. |

3.6. THEOREM. Suppose K belongs to VCH(S; J.)) and tends to an opera-
tor of the convolution type K~ that satisfies the conditions of Theorem 3.3.
Then the resolvent R belongs to VCH(S, J.,) and tends to the operator of the
convolution type R~ VCH(S; J..) being the resolvent of K~.

Proof. From [1, Theorems 9.3.19 and 9.11.14], it follow that R(y)
belongs to VC(J,) for any y S under the above assumptions, i.e.,
condition (i) of Definition 2.1 is fulfilled for R(y).

Prove condition (ii) of Definition 2.1 for R(y). According to Theorem
3.3, R~ belongs to VCH(S;[T,»)) for any T < « and, consequently
IWR™; 8 [T, )l = IIR™; §";[0,%) Il < for any §' c S. Let T = T(S")
be sufficiently large such that ||| K — K—;8";[T, )|l <1/(1 + [IR™;S";
[0, ) [I]). Then it follows from Lemma 3.4 that the operator K considered
on the interval (T, ) has a resolvent R, belonging to VCH(S; [T, »)). Let
R, be a resolvent of the operator K considered on the segment [#,, T]. The
membership R, € VCH(S;[¢,, T] follows from Lemma 2.7.

Then, involving the same reasoning as in the proof of Theorem 9.3.13 in
[1], we have that the resolvent kernel on all the half axis J, has the
representation:

R(y.t,7) =K(y,t,7) = (K*R)(v,1,7) = (Rp * K)(y.,1,7)
+(Ry* K*Ry)(y,t,7), (3.4)

where the resolvent kernels R(y,t,7) and R,(y,t, ) are extended by
zero,i.e., R(y,t,7)=0fort>Torr>T,and R;(y,t,7) =0fort < T
ort<T.

From Remark 2.5, we obtain for any S cs:

IR S LAl < K 85 [y, 0) {1 + I Ry; 8 [0, T
+ IRy 8 [T ) Il + R 85 [T,0) Il M Ry; 875 [£, TTH < oo
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This completes the proof of condition (ii) of Definition 2.1. Conditions
(iii) and (iv) follow from Lemma 2.6. Consequently, R belongs to
VCH(S; I.). The tendency of R to R~ follows from Lemma 3.5. |

For the case when the operators are independent of vy, we obtain the
obvious corollary of Theorem 3.6:

3.7. THEOREM. Suppose K belongs to VC(J,) and tends to an operator of
the convolution type K~ that satisfies the conditions of Theorem 3.3. Then the

resolvent R belongs to VC(J.,) and tends to an operator of the convolution type
R~ € VC(J,) being the resolvent of K~.

Consider now the Volterra operators with fading memory and investi-
gate their asymptotic properties for ¢ — oo,

3.8. DEFINITION. An operator K belongs to VC,(J,;; Q) if:

(i) K belongs to VC(JI);
(i) fTIK@, Dldr— 0,8t > o, VT €J,; and
@i [ K(, e D dr > Ky, t > .

3.9. THEOREM. Let K belong to VC,(J,; Q).

(1) Suppose g belongs to Lw,L (60, Q) andg(p,t) - go(ple'™
as t — o, then Kg belongs to C,L (84, 6., J; Q) and (KgXp,t) =
Kqgq( P)elm ast — co.

(2)  Suppose ® belongs to L., H)(S; J.; Q) and ®(y,1) — D(y)e'"
as t —» o, then K® belongs to CIH 0(S; J.; Q) and (K®)y,t) -
K,® Q(y)e’ﬂ’ ast — .

(3) Suppose h belongs to L. H/(8y 8,W;J.;Q) and h(z,t) —>
ho(2)e'® as t —> »; then Kh belongs to C/H, (89, 65 W; J; Q) and
(Kh)(z t) > Kgh Q(z)e‘m ast — .

(4)  Suppose @ belongs to L., H,”(6_,6,;S;J.;Q) and O(y,1) >
Dy(y)e' as t - o; then K® belongs to C,H (6_,0.;8;J.;Q) and
(K®)y, 1) » Ko ® Q(y)e’“’ ast — o,

The limits here are understood as in Definition 1.2.14.

Proof. Points (2) and (4) are particular cases of points (3) and (4) of
Theorem 3.12 given a little bit later. The proof of points (1) and (3) is
analogous (with obvious modifications) to the proof of point (3) of Theo-
rem 3.12. |
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3.10. DeriNnITION.  An operator K belongs to VC,H(S; J.,; Q) if:

(i) K belongs to VCH(S; J.);
(i) f'sup,c5lK(y,t,7)ldr > 0ast—» VI €], VS cS;and
(iii) there is a function K(y) such that

A(t) = sup —>0ast—> = VS CS.

ves

/IK(% t T)em(f_[) dr — Kqo(v)

(3.5)

3.11. LeMMA. The function K (7y) from Definition 3.10 is bounded on
any S’ C S and holomorphic on S.

Proof. Due to (3.5), we have

sup [Ko(y)| < sup
yes’ yes’

fK(v t,7)e ’)dT—Ka(v)‘

+flsup |K('y,t,7)|d7

tl'yeg’
<A(t) + N K; S LI = WK; S5 LI, - .

The boundedness has been proved. The function [!K(y,,7)e'*" " dr is
holomorphic on S for any ¢ € J, by Remark 2.4. Taking into account (3.5)
and the fact that the uniform limit of holomorphic functions is holomor-
phic, we get the holomorphy of K,(y). 1

Let us formulate an analogue of Theorem 3.9 in this paper and of
Theorems 9.6.2, 9.6.4 in [1] for K from VC,H(S; J.;; Q).

3.12. THEOREM. (1) Suppose K, belongs to VC,H(S; J,;; Q) (n = 1 + «)
and there is K from VCH(S; J.) such that

lim |K—-K,;S; /7l >0, VS cSs. (3.6)

n— o

Then K belongs to VC,H(S; J..; Q) and K, (y) = li m, . K,o(y).
(2) Let Ky, K, belong to VC,H(S; J..; Q). Then K = K, K, belongs to
VC,H(S; J.; Q) and KQ('y) K o(¥)K,o(y).
(3) Let K belong to VC,H(S; J.; Q). Suppose ® belongs to
Lw,HI?(S; J.; Q) and ®(y,t) —> Py (y)e' as t — o; then KO belongs to
H)(S; J.; Q) and

(K®)(v.t) > Ko(v)Po(y)e'?, -0 (37)
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(4) Let K belong to VC,H(S; I, Q). Suppose ® belongs to
L,H(0_,60,;S;J;Q) and ®(y, 1) > @ o(¥)e as t > »; then KO
belongs to C,H, V(0_,0,;S8;J.;Q) and (K®P)y,t) = Kﬂ(y)e’m ast — o,

The limits in points (3) and (4) are understood as in Definition 1.2.14.

Proof. This is obtained by the corresponding modification of Theorems
9.6.2 and 9.6.4 in [1] using the norms and the limits with sup, . 5. We
demonstrate here the proof of point (3) only. The other points are proven
in an analogous way.

The membership of K® in the corresponding class without the symbols
1, Q follows from Theorem 2.8. The function K,(y)®,(y) belongs to the
required class by Lemma 3.11. We have to prove now only the tendency
(3.7) in the sense of Definition 1.2.14, point (2), by a modification of the
proof of Theorem 9.6.5 in [1].

Let us fix any &' = S(8;, 8,)  S. For any given > 0, we can find
numbers T, T, such that T, >y, T, > T}, MJI®(, 1) — Dy(-)e’®’; @;
[T,,©)] < Z for any ¢t > T,, and

/Tl sup |K(y,t,7)|dr <%,

1 ye§

sup <z

'y6§’

JK(y,t, 7)€% 0 dr = Ko (y)

forany t > T,. Then forany ¢t > T, and any y € S', we get
|(K‘D)(7’t) - Ku(?’)(bsz('}’)eim|

_ /,tK(%t,T)[‘D(%t) — Oy(y)e'] dr

t . .
+ /;K('Y: L, T)elmf_t) dr — K()('Y)}q)n(Y)elm
1

t .
S/th(’}’:l’T)Hq)('th) - %(v)e’“’|d7
1

1000 dr — KQ(V)‘ | Do (7)]

I iQr
sft |K(y.t.7)[|@(y,1) = Dy(y)e | dr

[ IK(y 6 [@(y,0) = @a(y)e™ |dr+ F Dy (7))
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Consequently,

Mpo[(l_{(b)(.,t) —KQ(')QDQ(-)eim; 6]
- 1/p
B [f_w|(K(I))(5+i§,t) —KQ(8+i§)CI)Q(5+i§)ein|P df}

< [Msup |K(y.t,7) [[MI(®(,0); 8) + MP(®y: 5)] dr

15} 'yE§'
+ [ sup | K(y,1,7) IMP[ (-, 1) = @y (-)e'™"; 8] dr
T yey

+ ZM)(Dg; 8)

< E[MO(®;8;[T,®)) + M)(Dy;8)| + II1K; S LIIF
+ EMO(Dy; 8).

for 8 €[5}, 8.]. Hence,
MR [(K®)(y,1) = Ko(y)Pa(y)e'™; 8; [T, )]

< E[MO(®; 8;[T, %)) + 2M2(®; 8) + IIK; 5 LII| -0
as T,, T, — . The tendency is uniform with respect to 6 € [y, 8.] by the
uniform boundedness of M) (®; §;[T,«)) and M(Dg; 8). |

3.13. LEMMA. Let K, K, belong to VC,H(S; J; Q), where K,(y) has a
resolvent R,(y) from VC/H(S; I,; Q), and || K,; StI < 1/ +
llRy; S L) for any S' C S. Then the operator K(y) = K,(y) + K,(y)
has a resolvent R(y) from VC/H(S; J,; Q), and R (y) = [I +
Ksz(y)]_lKu(V)-

Proof. By Lemma 3.4, we have that R belongs to VCH(S; J..),

R(y) = Ry(v) — R(y) + R(y)Ry(7),

Riy) = mR,(v),  B.(v) = X (-[Koy) = R(MKa()]',

and the limit exists in the sense of kernel norm (3.6). The lemma claims
follow then from points (1) and (2) of Theorem 3.12. 1

3.14. LEMMA. If K~ belongs to VCH(S; J,) and is an operator of the
convolution_type, then K~ belongs to VC,H(S; I, Q) for any real Q and
Ko(y) = K (v,iQ) (see Theorem 3.3).
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Proof. Due to condition (ii) of Definition 2.1 for K~ (), we have

K85 L= [ sup |K~(y,7)|dr
0

ye§

sule’(y,-)l;L(O,oo)H <w, VS CcS. (38)
yef’

Then

fTsup |K7(y,t — T)|d7'= ft_tlsup |K7(y,7)|d7

h yes§ -1 yes

sup [K™(y, )i L(t = Tt — ;)

ves

- 0,

t —> ©

forany T € J, and any S’ C S. Further,
. t .
Ko(y) = lim [K~(y,t = 7)e®C " dr
— tl

= lim v/(;tith_(’y,T)e_iﬂTdT—)j;)K_(’}’,T)e_iQTdT

[—
=K (7,iQ).

Here the last integral converges uniformly with respect to y on any §' c S
for any real Q by force of (3.8). 1

3.15. LEMMA. Let an operator K satisfy conditions (i) and (ii) of Defini-
tion 3.10 and tend to an operator of the convolution type K~ € VCH(S; I).
Then K belongs to VC,H(S; J..; Q) for any real Q, and K(y) = Ko(y) =
K (v,iQ).

Proof. We have to prove only condition (iii) of Definition 3.10. Really,
forany T € (1,, 1),

A = sup ftK(y,t,T)eigl(T_’)dT—K;)(y)
yel§ |70
= sup ft[K('y,t,T) — K (y,t—7)]e " Ddr
yel§ "0

+f K(v, T)efiQTdT
t—t,
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< fTSUp |K(‘y,t,7')|d7'+ /TSUQ |K7(‘y,t— T)ldT

1 .yeg' 2] yes’

—I—f sup|K(y,t,T)—K (v, t—T)|dT fx SUElK(’y,T)ldT

yES’ t_tl'yES'

< fTSUle(’y,t,T)ldT+

I ye§

sup [K™(y, )l L(t = Tt — ;)
yES’

+ K=K ;8;[T, )l +

sup |K (7.} L(t = t,,%) |
'yEg'

Suppose ¢ > 0. We choose a sufficiently large T such that the third
term will be less than /4. Choose then sufficiently large ¢ such that the
first term is less than £/4 (according to condition (ii) of Definition 3.10)
and the second and the fourth terms are less than e/4 (according to
inequality (3.8)). Since & is arbitrary, we get 4 —» 0 as t — .

3.16. THEOREM. Let an operator K satisfy conditions (i) and (ii) of
Definition 3.10 and tend to an operator of the convolution type K~ €
VCH(S; J.,) that satisfies the conditions of Theorem 3.3. Then both the
operator K and its resolvent R belong to VC,H(s; J,; Q1) for any real (,
Ky(y) = KQ('y) K- ('y,lQ) and Ro(y) =1 —[I1+ Ko(y)]™ %

Proof. The claims for K are proved in Lemma 3.15. By Theorem 3.3, R
belongs to VCH(S; J..). Repeating the proof of Theorem 3.6, we obtain the
same representation (3.4) for the resolvent. Let us check condition (ii) of
Definition 3.10 for each term of representation (3.4). The kernel K
satisfies it by the theorem assumption. Let ¢t > T. Then

" sup |(K % R,)(y,t,7)| dr

I yed

< ftTo[fTsur_J |K(y,t, €)R(v, f,r)ldg} dr

2] 'yES’
=]

2]

[supuqy L) [ sup | Ry €. T>|d+zg

ye s L ye§

< fTsup |K(y,t, €)|dENR; S [t, Ty) Il >0, - (3.9)

L 'y€§/

for any T, > ¢, since K meets condition (ii) of Definition 3.10.
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By Theorem 3.3, R~ belongs to VCH(S; J,). Hence, according to
Lemma 3.14, R~ belongs to VC,H(S; J.; ), and consequently, according
to Lemma 3.13, R; belongs to VC,H(S; J..; ). It follows from point (2) of
Theorem 3.12, that K := R; K belongs to VC,H(S J.; ), and conditions
(ii) and (iii) of Definition 3. 10 ) (where K(y) = Ryo(y)K(y)) are fulfilled
for K.

For the last term R, + K+ R, = K * R,, we rewrite inequalities (3.9)
replacing K by K. Thus point (ii) of Definition 3.10 has been proved for
R(y).

Let us prove point (iii). For K it has already been proved. For R, in
representation (3.4), we have R,(y,t,7) = Owhen ¢ > T or ¢t > T. Then as
in (3.9), we have forany t > T

sup

[{(K*R)(y.1,7)e 0 dr
'yEgl

< [sup [(K* Ry)(y.t,7)| dr

153 ve S’

<f sup |K(y,1, &) |de I Ry; S5 LI -0, 1.

I ye§

Consequently, KR, satisfies Definition 3.10 and (K * R,),(y) = 0. Simi-
larly, KR, satisfies Definition 3.10 and (K * R,)(y) = 0. Therefore KR,
and R;KR, belong to VC,H(S; J.; Q), and R belongs to VC,H(S; J.; Q)
due to (3.4).

From expression (2.3) and point (2) of Theorem 3.12, we have
Ko(y)Ry(y) = Ko(y) — Ro(y). Since the conditions of Theorem 3.3.
hold, we get that det[/ + K,(y)] = det[/ + K (y,iQ)] # 0 for any
real Q. Hence, the matrix [I + K,(y)]"* exists, and Ry(y) =[I +
KQ('Y)]_lKQ('Y) =1- [I + KQ(')/)]_l I

We note in conclusion that similar statements can be also given for a
Volterra operator K(z) depending on the parameter z on a wedge (in
place of K(vy) depending on the parameter y on a strip).
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