
Chapter 18 
On Maximum Principles for Weak 
Solutions of Some Parabolic Systems 

S. E. Mikhailov 

18.1 Introduction 

Maximum principles for solutions parabolic equations constitute a traditional part 
of PDE analysis. It is well developed for classical solutions of scalar parabolic 
equations with constant coefficients, and these results also generalized to weak 
solutions of scalar elliptic and parabolic equations with variable coefficients; 
see, e.g., [LaSoUr67, Chapter III, Theorem 7.2]. The estimates of the essential 
maximum of weak solutions of parabolic systems are also available although with 
a constant depending on the system coefficients, cf., e.g., [LaSoUr67, Chapter VII, 
Theorem 2.1]. 

In this paper, by employing special test functions, sharper versions of the max-
imum principle for weak solutions of several linear parabolic variable-coefficient 
systems have been proved. The considered systems include non-stationary 
convection-reaction-diffusion systems as well as the Stokes and Brinkman systems. 
The obtained maximum principles for weak solutions can be employed to prove 
global existence of solutions of some nonlinear parabolic systems, cf. [PoRo16], 
where a maximum principle for strong solutions of the Burgers system has been 
used for this. 

We presented here maximum principles for the spatially periodic solutions, i.e., 
solutions on the n-dimensional flat torus; similar results can be re-stated also for 
solutions on bounded domains. 
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18.2 Periodic Function Spaces 

We will employ some function spaces on torus and periodic function spaces (see, 
e.g., [Ag65, p.26], [Ag15], [Mc91], [RuTu10, Chapter 3], [RoRoSa16, Section 
1.7.1] for more details). 

Let .n ≥ 1 be an integer and . T be the n-dimensional flat torus that can be 
parametrized as the semi-open cube .T = [0, 1)n ⊂ R

n, cf.  [Zy02, p. 312]. Let 
. Z denote the set of integers and .ξ ∈ Z

n denote the n-dimensional vector with 
integer components. The Lebesgue space on the torus .Lp(T), .1 ≤ p ≤ ∞, can 
be identified with the periodic Lebesgue space .Lp# = Lp#(R

n) that consists of 
functions .φ ∈ Lp,loc(R

n), which satisfy the periodicity condition 

. φ(x + ξ) = φ(x) ∀ ξ ∈ Z
n.

for a.e. .x ∈ R
n. For  .s ∈ R, let  .Hs

# := Hs
# (Rn) := Hs(T) denote the .L2-based 

periodic/toroidal Sobolev (Bessel-potential) spaces, cf.  [RuTu10, Definition 3.2.2, 
Proposition 3.2.6]. For any .s ∈ R, the space .H−s

# is adjoint (dual) to . Hs
# , i.e., . H

−s
# =

(Hs
# )∗. Note that the torus/periodic norms on . Hs

# are equivalent to the corresponding 
standard (non-periodic) Bessel potential norms on . T as a cubic domain, see, e.g., 
[Ag15, Section 13.8.1]. 

For any .s ∈ R, let us also introduce the space 

.Ḣ s
# := {g ∈ Hs

# : 〈g, 1〉T = 0}. (18.1) 

with the same norm as . Hs
# . Definition (18.1) and the Riesz theorem also imply that 

the space adjoin to . Ḣ s
# can be expressed as .(Ḣ s

# )∗ = Ḣ−s
# . 

The corresponding spaces of n-component vector functions/distributions are 
denoted as .Lq# := (Lq#)

n, .Hs
# := (Hs

# )n, etc. Let us also define the Sobolev spaces 
of divergence-free functions and distributions 

. Ḣs
#σ := {

w ∈ Ḣs
# : divw = 0

}
, s ∈ R,

endowed with the same norm as . Hs
#. Similarly, .Lq#σ denote the subspaces of 

divergence-free vector-functions from . Lq#, etc.  
Some more details about the periodic Sobolev spaces used here are available in 

[Mi22, Section 16.3]. 
For the evolution problems, we will use the spaces of Banach-valued functions 

.Lq(0, T ;Hs
# ), .s ∈ R, .1 ≤ q ≤ ∞, .0 < T < ∞, which consists of functions that 

map .t ∈ (0, T ) to a function or distribution from . Hs
# . For  .1 ≤ q < ∞, the space 

.Lq(0, T ;Hs
# ) is endowed with the norm 

.‖h‖Lq(0,T ;Hs
# ) =

(∫ T

0
‖h(·, t)‖q

Hs
#
dt

)1/q

< ∞
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and for .q = ∞ with the norm 

. ‖h‖L∞(0,T ;Hs
# ) = ess supt∈(0,T )‖h(·, t)‖Hs

#
< ∞.

For a function (or distribution) .h(x, t), we will use the notation . h′(x, t) :=
∂th(x, t) := ∂

∂t
h(x, t) for the partial derivative in the scalar variable .t ∈ R and 

the notation .∂αh(x, t) := ∂

∂xα

h(x, t) for the partial derivative in the space variable 
. xα . 

Let X and Y be some Hilbert spaces. We will further need the space 

. H 1(0, T ;X, Y ) := {u ∈ L2(0, T ;X) : u′ ∈ L2(0, T ;Y )}

endowed with the norm 

. ‖u‖H 1(0,T ;X,Y ) = (‖u‖2L2(0,T ;X) + ‖u′‖2L2(0,T ;Y ))
1/2.

Spaces of such type are considered in [LiMa72, Section 2.2], where they are 
denoted as .W(a, b). We will particularly need the space .H 1(0, T ;Hs

# ,H s−2
# ) and 

its vector counterparts. 

18.3 Maximum Principles for Some Parabolic Systems 

Let us consider the parabolic linear transport initial value PDE system 

.∂tu − div(μ∇u) + (U · ∇)u + cu = 0 in T × (0, T ].. (18.2) 

u|t=0 = u0 in T. (18.3) 

for unknown vector-function .u(x, t) ∈ R
n, .(x, t) ∈ T × [0, T ]. The matrix . μ =

{μαβ(x, t)}nα,β=1, the vector .U = {Uα(x, t)}nα=1, and the scalar .c(x, t) are some 
know functions of . x and t . Appropriate periodic function spaces for these functions 
will be specified later on, when necessary. We denoted . div(μ∇u) := ∂α(μαβ∂βu),

and the Einstein summation in repeated indices from 1 to n is assumed here and 
further on. Let us employ the notation .f + := max{f, 0}. We will also denote by 
.〈·, ·〉T the dual product on the periodicity cell . T. 

Theorem 1 Let .n ≥ 2 and the bilinear form .a(t;u, v) for vectors . u and . v be defined 
as 

. a(t;u, v) := 〈
μαβ(·, t)∂βu, ∂αv

〉
T

+ 〈(U(·, t) · ∇)u, v〉T +〈c(·, t)u, v〉T ∀ u, v∈H1
#.

Assume that .c(x, t) ≥ 0 and the form .a(t;u, v) is such that
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. a(t; v, v) ≥ 0 ∀ v ∈ H1
# for a.e. t ∈ [0, T ].

Let .u ∈ H 1(0, T ;H1
#,H

−1
# ) be a solution of the initial-variational problem 

.〈∂tu(·, t), v〉T + a(u(·, t), v) = 0 ∀ v ∈ H1
#, . (18.4) 

u|t=0 = u0 in T, (18.5) 

associated with (18.2)–(18.3), with .u0 ∈ L∞#. 
Then .‖u‖L∞(0,T ;L∞#) ≤ ‖u0‖L∞# . 

Proof We will generalize to the parabolic system the idea applied to a scalar 
parabolic heat equation; see, e.g., [LaSoUr67, Chapter III, Theorem 7.1], [ErGu04, 
Proposition 6.12]). 

Let . w be a constant unit vector in . Rn and let us denote .M := ‖u0‖L∞# . Then 
.(u·w)w is the orthogonal projection of the variable vector . u on the constant direction 
. w. Let us denote 

.v∗(x, t) := ((u(x, t) · w) − M)+ w. (18.6) 

Then .v∗ ∈ H 1(0, T ;H1
#,H

−1
# ) and we can use this vector as a test function . v in 

(18.4). First, we have  

. a(t;u, v∗) = a(t;u − Mw, (u · w − M)+ w) + a(t;Mw, (u · w − M)+ w)

= 〈
μαβ∂β(u − Mw),w∂α (u · w − M)+

〉
T

+ 〈
(U(·, t) · ∇)(u − Mw), (u · w − M)+ w

〉
T

+ 〈c(u − Mw), (u · w − M)+ w〉T + 〈cMw, (u · w − M)+ w〉T
= 〈

μαβ(·, t)∂β(u · w − M), ∂α (u · w − M)+
〉
T

+ 〈
(U(·, t) · ∇)(u · w − M), (u · w − M)+

〉
T

+ 〈c(u · w − M), (u · w − M)+〉T + 〈cM, (u · w − M)+〉T
= a(t; (u · w − M)+ w, (u · w − M)+ w) + 〈cM, (u · w − M)+〉T
= a(t; v∗, v∗) + 〈cM, (u · w − M)+〉T ≥ 0. (18.7) 

Then, employing Lemma 1.3 from Chapter 3 of [Te02] for the final equality, we 
obtain 

.〈∂tu, v∗〉T = 〈∂t (u − Mw), (u · w − M)+ w〉T
= 〈∂t (u · w − M), (u · w − M)+〉T
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= 〈∂t (u · w − M)+, (u · w − M)+〉T = 
1 

2 
∂t‖v∗‖2 L2# 

. (18.8) 

Thus, (18.4) with .v = v∗, (18.8), and (18.7) imply 

. 
1

2
∂t‖v∗‖2L2#

= −a(t;u, v∗) ≤ 0

Hence 

. ‖(u(·, t) · w − M)+‖2L2#
≤ ‖(u0 · w − M)+‖2L2#

= 0,

meaning that .(u(x, t) · w − M)+ = 0, that is, .u(x, t) · w ≤ M for a.e. . x, .∀ t ≥ 0. 
Since . w is an arbitrary unit vector, this implies .|u(x, t)| ≤ M for a.e. . x, .∀ t ≥ 0. . �

Note that Theorem 1 deals with a particular case of anisotropy. It is applicable 
also to the isotropic variable-coefficient case, .μαβ(x, t) = μ(x, t)δαβ . 

The proof of Theorem 1 is not directly applicable if we replace .u, v ∈ H1
# by 

.u, v ∈ Ḣ1
# because the chosen test function . v∗ given by (18.6) does not belong 

to the corresponding dot-space. In the following assertion, we modify the proof 
accordingly. 

Theorem 2 Let .n ≥ 2 and the bilinear form .a(t;u, v) for vectors . u and . v be defined 
as 

. a(t;u, v) := 〈
μαβ(·, t)∂βu, ∂αv

〉
T

+ 〈(U(·, t) · ∇)u, v〉T + c(t)〈u, v〉T ∀ u, v ∈ H1
#.

(18.9) 

Assume that .c(t) ≥ 0, .divU(x, t) does not depend on . x and the form .a(t;u, v) is 
such that 

. a(t; v, v) ≥ 0 ∀ v ∈ H1
# for a.e. t ∈ [0, T ].

Let .u ∈ H 1(0, T ; Ḣ1
#, Ḣ

−1
# ) be a solution of the initial-variational problem 

.〈∂tu(·, t), v〉T + a(u(·, t), v) = 0 ∀ v ∈ Ḣ1
#, . (18.10) 

u|t=0 = u0 in T, (18.11) 

associated with (18.2)–(18.3), where .u0 ∈ L̇∞#. 
Then .‖u‖L∞(0,T ;L∞#) ≤ ‖u0‖L∞# . 

Proof Let, as in the proof of Theorem 1, . w be a constant unit vector in . Rn and let 
us denote .M := ‖u0‖L∞# . Let us also denote
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. v∗(x, t) := ((u(x, t) · w) − M)+ w, v0(t) :=
∫

T

v∗(x, t)dx,

ṽ(x, t) := v∗(x, t) − v0(t).

Since .v0(t) is an average of .v∗(x, t) on the unite periodicity cell . T, it does not 
depend on . x. Moreover, .̃v ∈ H 1(0, T ; Ḣ1

#, Ḣ
−1
# ), and we can use . ̃v as a test function 

. v in (18.10). First, we have  

.a(t;u, ṽ) = a(t;u, v∗) − a(t;u, v0). (18.12) 

By (18.9), and taking into account that the average of . u over . T is zero and . divU(x, t)
does not depend on . x, we obtain 

. a(t;u, v0) = 〈
μαβ(·, t)∂βu, ∂αv0

〉
T

+ 〈(U(·, t) · ∇)u, v0〉T + c(t)〈u, v0〉T
= −〈divU(·, t),u · v0〉T = 0. (18.13) 

Then from (18.12) and (18.13), we obtain similar to (18.7) 

.a(t;u, ṽ) = a(t;u, v∗) = a(t; v∗, v∗) + c(t)〈M, (u · w − M)+〉T ≥ 0. (18.14) 

Further, .u ∈ H 1(0, T ; Ḣ1
#, Ḣ

−1
# ) implies that the average of . ∂tu over . T is zero. 

Hence .〈∂tu, v0〉T = 0, meaning that .〈∂tu, ṽ〉T = 〈∂tu, v∗〉T. Thus, similar to (18.8) 

.〈∂tu, ṽ〉T = 〈∂tu, v∗〉T = 1

2
∂t‖v∗‖2L2#

(18.15) 

Thus (18.10) with .v = ṽ, (18.15), and (18.14) implies 

. 
1

2
∂t‖v∗‖2L2#

= −a(t;u, ṽ) ≤ 0.

Hence, 

. ‖(u(·, t) · w − M)+‖2L2#
≤ ‖(u0 · w − M)+‖2L2#

= 0

meaning that .(u(x, t) · w − M)+ = 0, that is, .u(x, t) · w ≤ M for a.e. . x, .∀ t ≥ 0. 
Since . w is an arbitrary unit vector, this implies .|u(x, t)| ≤ M for a.e. . x, .∀ t ≥ 0. . �

Let us now prove an analogue of the maximum principle given by Theorem 2 for 
the initial-variational problem defined on the divergence-free functions. Such setting 
is particularly associated with the Stokes, Oseen, and Brinkman problems that are 
parabolic in the sense of Solonnikov, cf. [So65, Section 1], [LaSoUr67, Chapter 
VII, Section 8, Definition 4], [Ei98, Definition I.4])
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.∂tu − div(μ∇u) + (U · ∇)u + cu + ∇p = 0 in T × (0, T ], . (18.16) 

divu(x, t)  = 0 in  T × (0, T ], . (18.17) 

u|t=0 = u0 in T, (18.18) 

where .p(x, t) is another unknown function. 

Theorem 3 Let .n ≥ 2 and the bilinear form .a(t;u, v) for vectors . u and . v be defined 
as 

. a(t;u, v) := μαβ(t)
〈
∂βu, ∂αv

〉
T

+ 〈(U(t) · ∇)u, v〉T + c(t)〈u, v〉T ∀ u, v ∈ H1
#.

Assume that .c(t) ≥ 0, .U(t) does not depend on . x and the form .a(t;u, v) is such that 

. a(t; v, v) ≥ 0 ∀ v ∈ H1
# for a.e. t ∈ [0, T ].

Let .u ∈ H 1(0, T ; Ḣ1
#σ , Ḣ−1

#σ ) be a solution of the initial-variational problem 

.〈∂tu(·, t), v〉T + a(u(·, t), v) = 0 ∀ v ∈ Ḣ1
σ#, . (18.19) 

u|t=0 = u0 in T, (18.20) 

associated with (18.16)–(18.18), where .u0 ∈ L̇∞#σ . 
Then .‖u‖L∞(0,T ;L∞#) ≤ ‖u0‖L∞# . 

Proof Let . w be a constant unit vector in . Rn and let us denote .M := ‖u0‖L∞# and 
let, as in the proof of Theorem 2 

. v∗(x, t) := ((u(x, t) · w) − M)+ w, v0(t) :=
∫

T

v∗(x, t)dx,

ṽ(x, t) := v∗(x, t) − v0(t).

Since equation (18.19) is defined only for the divergence-free test functions . v, the  
function . ̃v can be not used in this role and needs further modification. Let us define 

. vσ (x, t) := P ṽ(x, t),

where .P : Ḣ1
# → Ḣ1

#σ is the Leray projector and .vσ (x, t) = ṽ(x, t) − ∇q(x, t) with 
.q(·, t) ∈ Ḣ 1

# (see, e.g., [RoRoSa16, Section 2.1]). Moreover, one can easily check 
the following orthogonality, cf. also [RoRoSa16, Corollary 2.5] 

. 〈u,∇q〉T = 0 ∀u ∈ Ḣ1
#σ , q ∈ L2#.

We can now use vector . vσ as a test function . v in (18.19). Then
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. μαβ(t)
〈
∂βu, ∂αvσ

〉
T

= μαβ(t)
〈
∂βu, ∂α ṽ

〉
T

− μαβ(t)
〈
∂βu, ∂α∇q

〉
T

= μαβ(t)
〈
∂βu, ∂α ṽ

〉
T

+ μαβ(t)
〈
∂βdivu, ∂αq

〉
T

= μαβ(t)
〈
∂βu, ∂α ṽ

〉
T

,

. 〈(U(t) · ∇)u, vσ 〉T = 〈(U(t) · ∇)u, ṽ〉T − 〈(U(t) · ∇)u,∇q〉T
= 〈(U(t) · ∇)u, ṽ〉T + 〈(∂αU(t) · ∇)uα, q〉T + 〈(U(t) · ∇)div u, q〉T

= 〈(U(t) · ∇)u, ṽ〉T ,

and 

. 〈u, vσ 〉T = 〈u, ṽ〉T − 〈u,∇q〉T = 〈u, ṽ〉T.

Hence 

. a(t;u, vσ ) = a(t;u, ṽ) = a(t; v∗, v∗) + c(t)〈M, (u · w − M)+〉T ≥ 0.
(18.21) 

as in (18.14). Further, 

. 〈∂tu, vσ 〉T = 〈∂tu, ṽ〉T − 〈∂tu,∇q〉T = 〈∂tu, v∗〉T − 〈∂tu, v0〉T + 〈∂tdivu, q〉T
= 〈∂tu, v∗〉T = 1

2
∂t‖v∗‖2L2#

(18.22) 

as in (18.8). Thus (18.19) with .v = vσ , (18.22), and (18.21) implies 

. 
1

2
∂t‖v∗‖2L2#

= −a(t;u, vσ ) ≤ 0.

Hence 

. ‖(u(·, t) · w − M)+‖2L2#
≤ ‖(u0 · w − M)+‖2L2#

= 0,

meaning that .(u(x, t) · w − M)+ = 0, that is, .u(x, t) · w ≤ M for a.e. . x, .∀ t ≥ 0. 
Since . w is an arbitrary unit vector, this implies .|u(x, t)| ≤ M for a.e. . x, .∀ t ≥ 0. . �
Remark 1 Note that the maximum principle for the divergence-free system (18.19)– 
(18.20) with the Oseen velocity, .U(x, t), variable in . x is not covered by Theorem 3. 

Remark 2 In Theorems 1–3, we did not specify the conditions on the known 
functions . μ, . U, and . c sufficient for the corresponding solutions . u to exist and 
the quadratic form .a(t;w,w) to be non-negative. To satisfy these assumptions, the 
known functions should, of course, satisfy the appropriate conditions.
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