Integrals on (—oo, 00) evaluated using residue theory

With P(z) and Q(z) being polynomials we consider

f(z) = ZE?) (week 24) and f(z) = gae'm. (week 25)
AY
N Suppose that f(z) has poles at
R points zi,...,z, in the upper
X half plane. Suppose that Q(z)
_R 0 R has no zeros on the real axis.

With g = [-R, R] U C& denoting the closed contour
R n
]f £(z) dz :/ £(x) dx+/ f(z)dz =271 3 Res(f, 2).
MR -R Cr =1
When the integral involving C; tends to 0 as R — oo we get

/OO f(x)dx or p.v. /OO f(x)dx = /Jinm/_i f(x) dx.

—0oQ — 00
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Singularities on R and Cauchy principal values

Suppose f(z) has a simple pole on R and we want to evaluate

/Z f(x)dx.

The integrals need to be considered in a principal valued sense. In
the case of a pole at z = 0 we need an indented contour as
illustrated below.

Ay

The knowledge of the Laurent series enables us to determine the
contribution from the smaller half circle in the limit r — 0.
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Examples in the lectures

/°° dx
2 4. .5 7
—o0 X +2X+2

/:/ 1d V2

In week 24.

—adX = ——.
oo XY+ 16 16

In week 25. Let a > 0.

00 eia><
/ 5 dx = me™?.
oo 1+ x

o -
[ g e
oo 14+ x

The last example needed Jordan's lemma to justify that the
contribution from CZ tends to 0 as R — co.
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The principal value for a singularity on R
When we have a singularity of f(z) at xp € [-R, R] the principal
value means

- /_ i F(x)dx = lim ( /_ X:r F(x)dx + / R+ f(x)dx>

In the above the part of the real line can be described as
[—R,R]\ (xo — r,xo + r). The part of [-R, R] that we are
excluding has xp exactly in the middle.
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The C;' contribution as r — 0

When f(z) has a simple pole at 0 it has a Laurent series of the
following form for z sufficiently close to 0.

f(z)= % + g(z) where g(z) =analytic function.

/ f(z)dz=a_1 dz —|—/ g(z)dz.
Gt G Z Gt

z(#) = re®, 0 < @ < 7 describes C and the length of CF is 7r.

d T o 00 T
/ Z:/ ”e.edezi/ 46 = i,
cr Z o re 0

Now a function g(z) which is analytic on and near C;" has the
property of being bounded, i.e. there exists K such that

lg(2)| < K in the region. (K = 2|g(0)| will do if g(0) # 0 when r
is sufficiently small.) Using the ML inequality we have

/Cr+ g(z)dz

r—0
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Other loops in the exercises

iT/3
Rei™/ y
2 Ri
o0 TR cd
TR
\ X
o % RO R
64 f(z) = —
2(z) = 47——.
fi(z) = ——), * 116
1(2) 2% + 64 z+

When R > 2 the function f;(z) has one simple pole at 2¢™/®
inside this loop. In the case of f(z) it has one simple pole at
2¢e™/4. Both problems could have also been done using an upper

half circle which would have involved more than one pole inside the
loop in each case. MA3614 2024/5 Week 26, Page 7 of 12

<Knr—0 asr—0. Iim/ f(z)dz = wiRes(f, 0).
G

Examples which use indented contours

In week 25 we showed the following.

00 00 12
/1:/ sin(x) dx = 7. 12:/ sin §X) dx — 7.

o X oo X

We do these by using an indented contour and using the following

expressions.
00 eix
L =Im p.v/ —dx .
oo X
© 1 e2ix
I =Re< p.v ———dx .
2 {p /_OO 2X2 }

I and |, exist in the usual sense, it is just intermediate quantities
which need the principal value meaning.
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A square as a loop in the exercises
In the context of the sum of a series

N

Z f(n), f(z) being even,

n=1
the following loop Iy, which is a square, is used.

e (N+ 3, N+ 5)

N~ u
= O0fut G @ O ut=0JO = =
[ A~

cef---

This has length Ly = 4(2N +1). My = max{|f(z)|: ze Ty} .

We need MyLy — 0 as N — oo.
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Semester 1 exercises involving p! /p,, 4'/q

Let z1, 25, ..., z, be points in the complex plane and let

pn(2) = (2 = 21)(z = 22) -+ (2 = zn)-

Prove by induction on n that

' (z 1 1 1
Pn(2) _ n P ‘
pn(z) z—2z1 z—2 zZ— z,
Let
a(2) = (2= 2) 2= 22)" oz~ )"
where z1,..., z, are distinct points. What can you say about the
multiplicity of the zeros of ¢'(z) at the points z, ..., z,? Using a

derivation based on partial fractions show that

'(z r r r
q(): ! 2 4+t n_
9(z) z—-zz z—2m zZ— 2z,

Counting zeros and poles

Suppose that f(z) is analytic in a domain except for a finite
number of poles. Let
f'(2)
G(z) = .
(2) f(2)
Let zg be a zero of f(z) of multiplicity m and let z, be a pole of
f(z) of order n. It can quickly be shown that

Res(G, zp) = m, and Res(G, z,) = —n.

In both cases it is simple poles and the residues are integers. We
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The fundamental theorem of algebra
Let

1

p(z) = anz" + ap 12" - a1z + a0, an #0

denote a polynomial of degree n. Let
f(z) = anz", g(z) =an-12"'+ -+ a1z + ap.

For R sufficiently large |f(z)| > |g(z)| on the circle |z] = R. As
f(z) has a zero at z = 0 of multiplicity n the use of Rouche's
theorem implies that p(z) = f(z) + g(z) also has n zeros

inside |z| = R. This is the fundamental theorem of algebra and the
proof here is independent of the proof given in chapter 6.
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Let f(z) be analytic inside a loop ' and let No(f) be the number
of zeros of f(z) inside I'. By the residue theorem

1 f'(2)
If g(z) is also analytic inside C and |g(z)| < |f(z)] on T then
No(f + &) = No(F).

This is Rouche’s theorem. A smaller enough change to f(z) on I
does not change the integer.
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Another example using Rouche’s theorem
Let

3 1
— 5 3 _ 5
h(z) = z2+3z2°-1=z <1+2—5>

V4 V4

= Z5h(w), h(w)=1+3w?—-ub w

N |

h(z) = f(z) + g(z), with f(z)=2° g(z)=32>-1.

On the circle |z| = 2 we have

lg(z)] <3(8) +1=25<32=|f(z)|]. f(z) has one zero of
multiplicity 5 at 0. Thus by Rouche’s theorem h(z) has 5 zeros
inside the circle |z| = 2.

Similary by considering h(w) with f(w) = —WN5, g(w) =1+ w?
and the circle [w| = 2 we get all the roots of h(w) satisfy |w| < 2.

Conclusion: All the roots of f(z) satisfy 1/2 < |z| < 2.
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