Several isolated singularities of f(z) inside I'
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Earlier results with 0 or 1 isolated singularities

Week 18: Cauchy-Goursat theorem: If f is analytic in a simply
connected domain D and I is any loop (i.e. a closed contour) in D

then
j{f(z)dz =0.
-

No singularities inside I.

Week 18: The generalised Cauchy integral formula:
If f is analytic in a simply connected domain D and I is any loop
and zg is inside [ then

(m)
f(zo)llff(z)dz, m=012...
m! 27i Jr (z—zo)’"Jrl

1 singularity inside I'.
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The Residue Theorem

If 21,20, ..., 2, are isolated singularities inside [ and C1, G, ..., C,
are non-intersecting circles traversed once in the anti-clockwise
direction then T U (—Cy) U --- U (—C,) is the boundary of a region
in which f(z) is analytic and

ﬁf(z)dz = kz;?{q f(z)dz

n
= 2mi Z Res(f, z).

k=1

With the knowledge of Laurent series to describe the behaviour of
f(z) in the vicinity of each point zx we get the above result.
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The earlier results as a
special case of the Residue Theorem

y{ f(z)dz = 2%/2 Res(f, z).

r k=1

» When f(z) is analytic inside ' we have no isolated
singularities inside I, i.e. n=0.

» When n =1 and we have a pole at z; of order m

f(m)(zl)
m'

f(2)

when g(z) = D

Res(g, Zl) = (Z >
— 21

The earlier results were of course needed to establish the
residue theorem result.
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Techniques to calculate the residue

In the case of a simple pole of f(z) at zyp most examples for
calculating the residue have involved calculating the limit

Res(f, zp) = lim (z — z)f(2).

Z—2Z)

In many of the examples L'Hopital's rule has been used.

More generally when we have a pole of order m > 1 we can
calculate the residue by using

m—1
(m i 01, ddzm—l ((z = 20)"f(2)).

Res(f, zp) =
We need to know the order of the pole to use the above.

It is sometimes possible to simplify the expression for
(z — z9)™f(z) before differentiation is done.
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Examples in the lectures

/OO dx
2 =7
Coo X+ 2x+2

I:/OO 1 ™2

In week 24.

dx = .
oo X+ 16 16

In week 25 (this week). Let a > 0.

o] eiax
/ 5 dx = me ?.
oo 1+ x

/OO xsin(x) dx = me L.

oo 14 X2

The last example will need Jordan's lemma to justify that the
contribution from C;,r tends to 0 as R — oo.
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Integrals on (—oo, 00) evaluated using residue theory

With P(z) and Q(z) being polynomials we consider

f(z) = gg)) (week 24) and f(z) = ggem. (week 25)
AY
N Suppose that f(z) has poles at
R points zi,...,z, in the upper
X half plane. Suppose that Q(z)
_R 0 R has no zeros on the real axis.

With g = [-R, R] U CZ denoting the closed contour
R n
?{ £(z) dz :/ £(x) dx+/ f(2)dz = 2mi 3 Res(f, z).
MR -R Cr =1
When the integral involving C; tends to 0 as R — oo we get

/OO f(x)dx or p.v. /OO f(x)dx = ,Jinm/_i f(x) dx.

—0OQ — 00
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Other loops in the exercises

y
Ri
Cr
Y
X
0 R
1
flz) = —4——
() z* 116

has one simple pole at z; = 2¢™/4 inside this loop when R > 2.
With an upper half circle instead as the loop we have 2 simple

poles inside the loop at z; and z, = 2e37™//4,
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A square as a loop in the exercises

In the context of the sum of a series

N

Z f(n), f(z) being even,

n=1
the following loop Iy, which is a square, is used.

e (N+ 3N+ 5)

N~ u
- Q== ® @ 9 9=0=0JO0 = =
[ o~

cef---

This has length Ly = 4(2N +1). My = max{|f(z)|: z€ Ty} .

We need MyLy — 0 as N — oo.
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A sufficient condition for the C; part to tend to 0
In week 24 we proved the following.

Suppose that f(z) is a rational function of the form

P(z)
f(z) = ,
(2) G
with
P(z) = apzP+---+a1z+ a,
Q(z) = bgz9+---+biz+ by

where a, # 0, bg # 0. When |z| = R is large

f(2) =0 (RF9) =0 <qu_p> ,

RMgr —-0as R—cowheng—p>2ie g>p+2.
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Singularities on R and Cauchy principal values

In the lectures and in the exercises of this week and next week we
will also consider integrals of the form

/_C: f(x)dx

when f(x) has poles on the real axis. The integrals need to be
considered in a principal valued sense. In the case of a singularity
at 1 the indented contour is illustrated below.

AY

—R
The knowledge of the Laurent series enables us to determine the

contribution from the smaller half circle.
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The integrals on C; when we have a €™ term
With z = x + iy, imz = —my + imx, €™ = e~™e™_ When

m >0, [eM?| =e™™ < 1 when y > 0.

When deg(Q) > deg(P) + 2 we have

P P ;
(2) dz — 0 and ﬂe”"z dz—0
c; Q2) c; Qz)

as R — oo by using the ML inequality.

When deg(Q) = deg(P) + 1 Jordan’s lemma also gives

P(Z) imz
/qQ(z)e dz—0

as R — oo.
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Jordan lemma comments

When deg(Q) = deg(P) + 1 there is a constant A > 0 such that
for part of the integrand

P(Re")iRe"

. < A, for sufficiently large R.
Q(Re,g) < y larg

Much of the detail is showing that for the other part to be
considered

/ exp(—mRsin0)df — 0 as R — oo.
0
Firstly, sin(0) = sin(m — 6) and

T /2
/ exp(—mRsin0) df = 2/ exp(—mR sin ) d6.
0 0
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A lower bound for sin(6) on [0, 7/2]

09+ e
08 ’

0.7 r ’

0.6 .

05 ’

04+ .
03r ’

02Ff ‘

01r ’

I I I I I I I
0 0.2 0.4 0.6 0.8 1 12 1.4 16

sin(f) is above the linear interpolant using x = 0, x = /2.

. 2
sin(0) > —46.
s
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Graphs of exp(—mRsin(6)), mR =1, 2 and 4

Graphs of exp(-mR sin(t)), O<t<pi

35

The value is 1 at 8 = 0 and € = 7 but small in the middle part.
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Jordan’s lemma, completing the detail

sin(9) >

SIES

™
<0< —.
0, 0<0<7

2mR
exp(—mRsin(0)) < exp(—k0), with k = m
T

/2 w/2
/ exp(—mRsin6)df < / exp(—k0)do
0 0

ee 1
< / exp(—k@)d0:1—>0 as R — oo.
0
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Singularities on R and Cauchy principal values

Suppose f(z) has a simple pole on R and we want to evaluate

/_C: f(x)dx.

The integrals need to be considered in a principal valued sense. In
the case of a pole at z = 0 we need an indented contour as
illustrated below.

Ay

The knowledge of the Laurent series enables us to determine the

contribution from the smaller half circle.
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The C;" contribution as r — 0

When f(z) has a simple pole at 0 it has a Laurent series of the
following form for z sufficiently close to 0.

f(2)

=21 4 g(z) where g(z) =analytic function.
z

z(0) = re®, 0 < @ < 7 describes C and the length of C is 7r.

T o 00 T
/ dz:/ ”e_edezi/ do = i,
ct Z o re 0

r

As a function g(z) analytic on and near C;" it is bounded and
there exists K such that |g(z)| < K in the region. (K = 2|g(0)|
will do if g(0) # 0 when r is sufficiently small.) Using the

ML inequality we have

/C,* g(z)dz

<Knr—0 asr—0. Iim/ f(z)dz = wiRes(f, 0).
Gt

r—0
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The principal value for a singularity on R

When we have a singularity of f(z) at xp € [—R, R] the principal
value means

o, /_ ’: F(x)dx = lim < /_ X:r F(x)dx + /X :1 f(x)dx)

In the above the part of the real line can be described as
[—R,R]\ (xo — r,xo + r). The part of [-R, R] that we are
excluding has xp exactly in the middle.
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Examples which use indented contours
We show the following.

00 i 00 oin2
I1:/ sin(x) dx =, /2:/ sin”(x) dx = .

2

o X oo X

We do these by using an indented contour and the following

expressions.
o0 eix
L =Im p.v/ —dx ;.
oo X
00 2ix
IQ:Re{p.v/ 1e2dx}.
oo 2X

I and |, exist in the usual sense, it is just intermediate quantities
which need the principal value meaning.
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