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» The differential equation of a 2"? order system:

2

Py N ald— + aygy = bou (1)

The Laplace transform of a simple 2" order system with IC=0:

WK bg
G(s) = U(s)  a,s?+aqis+ag (2)
» Consider:
G AN
(s) s2+5s+6

Apply a unit step H(t) = ? = U(s) =-
Therefore;

6 6

Y(s) =G(s)U(s) =

S(s235s:-6) \ s(s+2)(s + 3)

2™ Orcler Systems



Expanding the X(s) into partial fractions:

Y()—l 3 \ 2
S_S s+2 s+3

From the standard table of Laplace Transforms:
y(t) = (1 —3e 2t + 2e3H)H(L)

The unit step:

1

y(t)
O5F

2™ Qrder Systems contel.
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» Consider a system with TF: G(s) =
» Apply a unit step input:

Y (s)=

2 2S +4
s(s +2$+5) s s’+2s+5

2(s+1)+2 22 2(s+1) \ 2

\ Y(S)ZE_(S+1)2+(5_1) S G+ 42 (s+1y+2°

So y(t) = (2 — 2e~tcos2t — e~ tsin2t)H(t)
It can be converted into: y(t) = 2 — Ae~tsin(2t + ¢)

Where: A =22+ 12 =+/5
And RN AN ST VAR N AV P R A

2 Qraer Systems contd.



The unit step response will look like:

y(t)

2™ Orcler Systems contd. )
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2 2
S“+2CwnS+wy

G(s) = (3)

Where Cis the damping ratio
And
w,, is the natural angular (undamped) frequency

Where four scenarios:
» (>1 overdamped (real, distinct factors)
» (=1 critically damped (real, repeated factors)
» (<1 underdamped (complex factors)
The factors occur as a complex conjugate pair
» (=0 undamped

The general representation of 2nel
Qreler T



For the underdamped case (0 < { <1), the unit step response with zero IC
would be:
1

NS

y() =1= e~ @ntsin(w,ty/1 — 7 + cos 1Y) (4)

For different { values the unit step response would look like:

y(®)
1.8
1.6

The frequency of
oscillation is:

0 = o T=C2

1.4
by
1
0.8
0.6
0.4
0.2

0

wnt

The general representation of 2nel ) -
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It helps to characterise the 2"9 order step response as:

+100

W IO;oO\ershoot (PO)

Where:

t, is the rise time

t, is the first peak

PO is the % overshoot

ts is the setting time for the response to fall within a prescribed band round about the
final steady state value

General Characterisation of the 2™ oreer )
step Fesponse




t, can be found by differentiating y(t) and setting the derivative equal to zero.

T
wn+/ 1-02

The time for the first peak is: t,, =

Alternatively, note that the transient response oscillates at the damped

natural frequency, wg; = wy+/1 — (2

Zn_n

- Time to first peak = % of the period =% X

wd Wd

At this point the output will be: y(t,) = 1 + exp (\/%)

General Characterisation of the 2™ oreer )
step response cont.




Percentage Overshoot vs Damping Ratio
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t, is found by setting y(t) = 1 an solving the lowest value of t

Giving w,/1—Ct, +cos i =m

m—cos ™1

ts is found by the amplitude term AN y(t) (see equation 4 slide 8)

AW \ ; WAN 1
» this is a decaying exponential term with time constant Of(T
n

The response would decay within 5% of the final value after 3 times constants
or 2% of the final value after 4 times constants etc.

So for settling to within 5%, t, = = and 2%, tg = %
n

N Cwn

General Characterisation of the 20¢ )
Oreer step response Cont.



» A system can be categorised as stable if it is excited by an input, it has
transients which dissipate in time and leave the system in its steady-state
condition.

» A system can be considered as unstable if the transients do not die off
with time but increase in size, thus the steady-state is never reached.

» Consider an input of a unit of impulse to a first order system with:

G(s) = i the system output Y(s):

X 1

Y(s) =G(s)U(s) = 3 _Il_ !

L astime tincreases the output dies away equal to zero.

and thusthey = e~
Stable System
Now if the transfer function is: G(s) = s—% NSNS s—% AN

Therefore, y = e!, as t increases output increases, ever increasing output.
Thus the system is Instable.

Efftect of pole location on transient )
FESPONSE



» Remember that the values of s that make the TF infinite are the Poles.
» In other words the roots of characteristic equation.

In the case of G(s) = s—%' s=1andG(s) = 5%1 ,s=-1 are the poles.

y y

t t

unstable (s positive) stable (s negative)

Poles eff TTF
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» For 2" order system with TF:
RN

G(s) =
(s) s% + 2lw,s + w2,

When subject to a unit of impulse input:

w?

(5 +p1)(s +p2)
Where p; and p, are the roots of equation:
s? 4+ 2w, s + w, =0

Y(s) =

Using the equation for roots of quadratic equation:

—20w, T 4P w?, — 4w?
N <n_\/zz \ n:_zwniwnvcz_l

Poles for secone oreer system



» Depending on the value of ¢ (damping factor), the term under the square
root can be real or imaginary.

» In case there is an imaginary term the output involves an oscillation.

Let’s look at 2 scenarios

Poles for second orcer system cont. &




K K
VAN RN R R R two real poles : stable

Imaginary parts

io
k F s - plane
L = B, 0 OO e B S >

K % »
10 1 o real parts

System mode will persist much longer due to pole at s =-1 than the system
mode due to pole at s =-10.

No zero to influence the magnitude of the modes.

Therefore pole at s = -1 will dominate transient response of system

Pole/Zere Plots for 2™ erder system )
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NN I R R R A S two complex conjugate poles
s+ 2lwy,s + w2, w, =V5; = \/_1_
5
S = —lw, T jow,1— stable system
Ao
w2 +2]
r
S - plane
0
T e
-Il o
x---|-2

Pole/Zero Plots for 2™ erder system cont. &




W, =1=122+12=+/5
1

Czcosezﬁ

confirm from the characteristic polynomial

The frequency of oscillation, w, in the output response

- given by the imaginary component of the poles (w; = 2rads™1! in this case)

- Conforming that wy; = w,,4/1 — (7

two complex conjugate peles &




Antenna Azimuth Position Control System

The diagram of the system:

Fotentiometer

A,
ﬁ%) i
Degired f_.-;:?:::';

azitnuth angle

- &
iput #

Differential amplifier
and power amplifier

Potentiometer

Case Stuely
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» Consider a system described by a 1st order LDE:
2+ ay(t) = bu(t)
Adopting the Laplace transforms:

1
sY(s) —y(0) + a¥Y(s) = bU(s) = Y(s) = S+—ay(0) -

S + aU(S)

For stability, we consider the zero input response y,(t):

Yo(t) = y(0)e " H(t)

If a > 0 then the system is stable (the exponential term decays)
If a < 0 then the system is unstable (the exponential term increases)

If a = 0 the exponential term become 1, therefore the response is constant
— the system is marginally stable

Staloility &



Generally;
» a system is asymptotically stable if y,(t) = 0 ast — oo

i.e. the output response due to initial energy in the system decays to
zero as t becomes large.

» a system is marginally stable if for each set of initial conditions there is a
finite positive constant M such that:

lyo(t)| < M forallt =0
{in general, M depends on the initial conditions}
i.e. the output response is bounded in magnitude.

» a system is unstable if there are values of the initial conditions for which
lyo()| > 0 ast — o

i.e. the output response grows without bound for some values of
initial conditions.

Case stuely cont, &




For higher order systems:
» the free response is determined by the modes of the systems:
yo(t) = Cie7P1t 4+ C,e7P2t + ... 4 C,ePnt
where are the system poles (real or complex)
if a pole is real, the exponential term decays if the pole is negative.

» for complex conjugate poles; s = (w, + jwp/1 — (2

The response is oscillatory with an exponential term e$®nt

> if {>0 (real part of the pole is negative), exponential term decays =
system is stable

> if (<0 (real part of the pole is positive), exponential term grows unbounded
= system is unstable

> if (=0 exponential term =1 = system is marginally stable - constant
oscillations

Stability for higher erder systems 2




All higher order systems consist of combinations of the above terms

» if just a single exponential term grows unbounded = system is
unstable

Stability Theorem:

A system is stable if and only if all system poles lie in the left half of the s-
plane.

25

Stalility for higher oreer systems cont.
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The Routh-Hurwitz stability criterion is simple way to determine whether
a system is stable or not (i.e. whether non of the poles have positive real
parts).

It is achieved by examining the characteristic of polynomial without
solving the characteristic equation for its roots.

If the system is unstable the Routh-Hurwitz test will tell us the number of
poles that are on the right half of the s-plane

First step is to establish the Routh array.

Rowth-Hurwitz Staleility Crterion &



The Characteristic Equation (CE) can be expressed as:
a,s"+a,_ st 4+ a, 5"+ +ay,=0

» In order for the system to be stable, all the roots must lie on the left half
of the s-plane.

» The necessary condition for stability is that all the coefficients are present
and have the same sign.

» Sufficient conditions are obtained from the following table:

2" row
=z b b b 3 row
S 1 2 3
i cq cy C3 4t row
s h, Last row

Routh-Rurwitz Stalbility Criterion Cont. )&



» The first two rows are completed using the a,;, a,,_1, ..., a4, g
(coefficients)of the characteristic polynomial.

» Note the alternate coefficients in these two first rows. i.e. first row
la,, a,_,,...] and second row [a,,_1,a,_3, ... |

» Each subsequent row is calculated from elements of the two immediately
above rows, by cross-multiplying the elements of the two rows:

b _ n-1an—2—0nln-3
BN ’

An-1
b, = AN SIS N N
__ bjap_3—an_1by
ENSR 5 )
1
%S blan_s—an_1b3 N 1 an—l an—(2k+1)
Cz o ) or Cn_k— B, b b
by bpn—1 | On-1 n—(k+1)
And so on ...

Routh-Hurwitz Stalility Criterfon Comnt. &



Just to recap again, conditions for stability based on Routh-Hurwitz Criterion:

1. All the coefficients (a,, a,_1, ..., a,) of the characteristic equation
should be of same sign (positive or negative).

2. All the elements of the first column of the Routh array must be positive
or the same sign.

3. If the system is unstable, the number of unstable poles is given by the

number of successive sign changes in the elements of the first column of
the Routh array.

The Conclitions tor Stalility basee on Routlh- ).
Hurwitz Criterion




Example 1: Consider a closed-loop system with transfer function to be:

1
(s3-s2+25+1)

G(s) =

Without creating the Routh array we can see that the system is unstable since
condition 1 is not met. Because the coefficients of the CE are not of same
sign.

Example i &



Example 2: determine if the following system is stable:

Rs) * 1 C(8s)
>® "l ¢ >s(s+1)(s+2) N

Find the limits on K for stability for the following system.
The closed-loop Characteristic equationis 1+ G(s) =0

Tosay s3+3s2+25s+K=0
The Routh array:

3 1 v 0
s? 3 K 0
NN 0

3
sY K 0

For all the elements of the 1st column to be positive, we require 0 < K < 6

Example 2

pE



» Note: at either extreme value, the Routh array has a zero row - for this
example this represents roots on the imaginary axis.

» These roots can be found from the auxiliary equation formulated from
the elements in the row that precedes the row of zeros.

» For example K =6 the elements of s* row are zero. The auxiliary
equation is:

352 4+ 6 = 0 which gives the roots s = +jv/2.

Example 2 cont.
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