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» More on Transfer Functions of Electromechanical systems 

 

» Properties of Transfer Functions 

 

» Transmissibility Function 

 

» Response Analysis (A prelude to Analytical and Numerical Solutions) 
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Recall Last week we discussed electrical (RLC) and mechanical (Force and 
Disposition), and electromechanical systems (force-current) fundamentals. 

 

» Impedance is a Transfer Function relevant to both mechanical and 
electrical systems (inverse of mobility). 

 

» Impedance extends the concept of resistance to AC 

       circuits, and has both magnitude and phase. 

 

» Note that resistance only has magnitude. 

 

» When a circuit is driven by DC there is no distinction between impedance 
and resistance (impedance with phase angle to be zero. 
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» Simple oscillator, single degree of  

Freedom mass spring damper 

 

 

 

TF:    𝐺 𝑗𝜔 =
1

𝑚𝑠2+𝑏𝑠+𝑘
      (1)  where 𝑠 = 𝑗𝜔 

 

 𝜔 = 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐾
𝑚  = system natural frequency 

 

Scenario 1: When  𝜔 ≪  𝑘
𝑚   , 𝑚𝑠2 and bs can be neglected with respect to k       system 

behaves as a simple spring 

Scenario 2: when 𝜔 ≫ 𝑘
𝑚 , bs and k  can be neglected in comparison to 𝑚𝑠2   system 

behaves like a mass element. 

Scenario 3: when 

𝑠 = 𝑗𝜔 = 𝑗 𝑘
𝑚   (𝑖. 𝑒. 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝜔 𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) then the 

transfer function G(jω)=1/bs  with s=jω 

m 

𝑣𝑖 

𝑓(𝑡) 

𝑏 𝑘 
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mass 

Damping constant 
stiffness 



» In mechanical systems, any type of force or motion variable can be used 
as the input or output variable of a transfer function. 
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Transfer Function In Laplace or Frequency Domain 

Dynamic Stiffness Force/Displacement  = 𝑍 × 𝑗𝜔 

Receptance  (flexibility) Displacement/force = Mobility/(jω) 

Mechanical Impedance    Z Force/velocity 

Mobility   M Velocity/force 

Dynamic Inertia Force/acceleration = Impedance/(jω) 

Acceleration Acceleration/force  = Mobility × 𝑗𝜔 

Force Transmissibility   𝑇𝑓 Transmitted force/applied force 

Motion Transmissibility     𝑇𝑚    Transmitted velocity/applied velocity 



» Across Variables: are measured across an element as the difference 
between the two ends (e.g. velocity, temperature, voltage, pressure) 

» Through Variables: are constant properties that flows  throughout the 
element (e.g. force, current, flow, heat transfer rates)  

» Pending the most appropriate representation of the state variable of an 
element, the element can be A-type or T-type (for example in 
Mechanical system mass is A-type and spring is T-type)  

 

Example A-Type : velocity 

Example of T-Type : force 

 

(Lecture note 1) 
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» Once the Transfer Functions of each component are known 

 

» The interconnection laws can be used to determine the overall transfer 
function of the interconnected system 

 

The two types of interconnections are: 

 

1. Series:  The connected elements’ through variable is common and the 
across variables add 

 

2. Parallel: The connected elements’ across variables are common and the 
through variables add. 

7 



𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦/𝑓𝑜𝑟𝑐𝑒 
𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 = 𝑓𝑜𝑟𝑐𝑒/𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

 

Interconnection Laws for Mechanical Impedance (Z) and Mobility (M) 

 Series                                                                      Parallel 
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A- Type T- Type 

𝑓 

𝑍1 𝑍2 

𝑣1 𝑣2 

𝑣 

𝑀1 𝑀2 
𝑍1 

𝑍2 

𝑓 

𝑓1 

𝑓2 

𝑣 

𝑀1 

𝑀2 

𝑣 = 𝑣1 + 𝑣2 
 
𝑣

𝑓
=
𝑣1
𝑓
+
𝑣2
𝑓

 

 
𝑀 = 𝑀1 +𝑀2 

1

𝑍
=
1

𝑍1
+
1

𝑍2
 

𝑓 = 𝑓1 + 𝑓2 
 
𝑓

𝑣
=
𝑓1
𝑣
+
𝑓2
𝑣

 

 
      Z= 𝑍1 + 𝑍2  
 
1

𝑀
=
1

𝑀1
+
1

𝑀2
 



Admittance (W) = Current (i) / Voltage (v) 

 

 

                   Series                                                                 Parallel 

𝑣 = 𝑣1 + 𝑣2                                                                   𝑖 = 𝑖1 + 𝑖2 

 
𝑣

𝑖
=
𝑣1

𝑖
+
𝑣2

𝑖
                                                                    

𝑖

𝑣
=
𝑖1

𝑣
=
𝑖2

𝑣
  

 

𝑍 = 𝑍1 + 𝑍2                                                                 𝑊 = 𝑊1 +𝑊2 

 
1

𝑊
=

1

𝑊1
+

1

𝑊2
                                                                 

1

𝑍
=

1

𝑍1
+
1

𝑍2
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» The basic (linear) transfer functions for the mass, spring and the damper 
are given as follows: 
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Element Time Domain Model Impedance Mobility 

Mass (M) 
𝑓 = 𝑚

𝑑𝑣

𝑑𝑡
 

𝑍𝑚 = 𝑚𝑠 𝑀𝑚 =
1

𝑚𝑠
 

Spring (k) 𝑑𝑓

𝑑𝑡
= 𝑘𝑣 𝑍𝑘 =

𝑘

𝑠
 𝑀𝑘 =

𝑠

𝑘
 

Damper (b) 𝑓 = 𝑘𝑣 𝑍𝑏 = 𝑏 
𝑀𝑏 =

1

𝑏
 



» The basic (linear) function for linear electrical elements (circuits): 
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Element Time Domain Model Impedance (Z) Admittance (W) 

Capacitor  (C) 
𝐶
𝑑𝑣

𝑑𝑡
= 𝑖 𝑍𝐶 =

1

𝐶𝑠
 

𝑊𝑖 = 𝐶𝑠 

Inductor (L) 
𝐿
𝑑𝑣

𝑑𝑡
= 𝑣 

𝑍𝐿 = 𝐿𝑠 
𝑊𝐿 =

1

𝐿𝑠
 

Resistor (R) 𝑅𝑖 = 𝑣 𝑍𝑅 = 𝑅 
𝑊𝑅 =

1

𝑅
 



» Ground Based Mechanical Oscillator 
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m 

𝑣 

𝑓(𝑡) 

𝑏 𝑘 

m 

𝑣 

𝑓(𝑡) 
𝑏 𝑘 

0 

𝑍𝑚 𝑍𝑘 𝑍𝑏 

0 

𝑓(𝑡) 

𝑣 

1 2 3 

Simple Oscillator Mechanical  
Representation 

𝑀 =
𝑉(𝑗𝜔)

𝐹(𝑗𝜔)
 

input 

output 

𝑍 =
𝐹(𝑗𝜔)

𝑉(𝑗𝜔)
 

input 

output 



imagine  

1. that a force is applied to such a system where IC=0 

2. And we measure the velocity 

3. If we move the mass exactly at the same velocity 

4. then the force generated will be identical to the original applied force 

5. i.e. mobility is the inverse of  impedance 

 

The overall impedance function (see figure 3): 

𝑍 𝑗𝜔 =
𝐹(𝑗𝜔)

𝑉(𝑗𝜔)
= 𝑍𝑚 + 𝑍𝑘 + 𝑍𝑏 = 𝑚𝑠 +

𝑘

𝑠
+ 𝑏| 

 

The mobility function  

𝑀 𝑗𝜔 =
𝑉(𝑗𝜔)

𝐹(𝑗𝜔)
=

𝑠

𝑚𝑠2 + 𝑏𝑠 + 𝑘
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s=jω 
=
𝑚𝑠2 + 𝑏𝑠 + 𝑘

𝑠
 s=jω | 

| 
s=jω 



imagine  

1. that a force is applied to such a system where IC=0 

2. And we measure the velocity 

3. If we move the mass exactly at the same velocity 

4. then the force generated will be identical to the original applied force 

5. i.e. mobility is the inverse of  impedance 

 

The overall impedance function (see figure 3): 

𝑍 𝑗𝜔 =
𝐹(𝑗𝜔)

𝑉(𝑗𝜔)
= 𝑍𝑚 + 𝑍𝑘 + 𝑍𝑏 = 𝑚𝑠 +

𝑘

𝑠
+ 𝑏| 

 

The mobility function  

𝑀 𝑗𝜔 =
𝑉(𝑗𝜔)

𝐹(𝑗𝜔)
=

𝑠

𝑚𝑠2 + 𝑏𝑠 + 𝑘
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s=jω 
=
𝑚𝑠2 + 𝑏𝑠 + 𝑘

𝑠
 s=jω | 

| 
s=jω 



» Transmissibility functions are transfer functions useful for: 
˃ Design and analysis of fixtures 

˃ Mounts 

˃ Machine support structures 

˃ Vehicle suspension design and other systems  

 

» Two types of force and motion transmissibility 

 

» Mass supported on a rigid foundation through a suspension 

 

 

 

 

 

 
» Further reading: C. W. de Silva, Modelling and Control of Engineering Systems (2009), 

Chapter 5 – also read Single Degree of freedom and Two Degree of freedom systems 
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Foundation 

Suspension 

 
Machine 
 

𝑓(𝑡) 

𝑓(𝑠) 

Inertia 
Force path 

Force transmissibility  𝑇𝑓 =
𝐹𝑠

𝐹
 

Motion Transmissibility   𝑇𝑚 =
𝑉𝑚

𝑉
=

𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑜𝑡𝑖𝑜𝑛 (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑜𝑚𝑎𝑖𝑛)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑚𝑜𝑡𝑖𝑜𝑛 (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑜𝑚𝑎𝑖𝑛)
 

Suspension 
force 

Applied 
force 



» The response of a dynamic system can be determined by solving the 
differential equation (Analytical) – subject to ICs 

 

» This can be achieved:  

1. Time domain (direct calculations) 

2. Laplace Transforms 

 

 

Consider the following time invariant differential equations: 

 

𝑎𝑛
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+⋯+ 𝑎0𝑦 = 𝑢          (1) 
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» The characteristics of a dynamic system does not depend on the input to 
the system 

» Therefore the natural behaviour (free response) for equation 1 can be 
calculated by: 

𝑎𝑛
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+⋯+ 𝑎0𝑦 = 0    (2) 

(homogeneous equations) 

 

The solution for linear system (𝑦ℎ) can be expressed as: 

𝑦ℎ = 𝑐𝑒
λ𝑡     (3) 

Where c is a constant and λ is complex number. 

Now apply equation 3 into 2, knowing that 
𝑑

𝑑𝑡
𝑒λ𝑡 = λ𝑒λ𝑡 

 

𝑎𝑛𝜆
𝑛 + 𝑎𝑛−1𝜆

𝑛−1 +⋯+ 𝑎0 = 0        (4)   Characteristic Equation (CE) 
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» The CE thus has n routes :   λ1… λ𝑛 

 

» The overall solution to equation 𝑎𝑛
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+⋯+ 𝑎0𝑦 = 0  

 

Becomes: 

 

𝑦ℎ = 𝑐1𝑒
λ1𝑡 + 𝑐2𝑒

λ2𝑡 +⋯𝑐𝑛𝑒
λ𝑛𝑡 

 

The c  are determined by the necessary n ICs. 

18 



» Consider a general transfer function: 𝐺 𝑠 = 𝐾
𝑁(𝑠)

𝐷(𝑠)
 

 

» Where N(s) and D(s) are polynomial functions in (s): 

 

 

 

 

» For causal systems 𝑛 ≥ 𝑚  i.e. proper system 

» Usually 𝑛 > 𝑚,   n is the order of the system 

» D(s) is the characteristic polynomial (CP)of G(s). 

» D(s)=0 is the is the characteristic equation (CE)  of G(s) 

» The roots of CE are the called the poles of the system 

» The roots of N(s)=0  are called the zeros of G(s), therefore:  

19 

N s  sm bm1sm1 bm2 sm2 K b1s b0

D s  sn an1sn1 an2 sn2 K a1s a0



𝐺 𝑠 = 𝐾
𝑁(𝑠)

𝐷(𝑠)
=
𝐾  (𝑠+𝑧𝑖)

𝑚
𝑖=1

 (𝑠+𝑝𝑗
𝑛
𝑗=1

=
𝐾 𝑠+𝑧1 𝑠+𝑧2 𝐾(𝑠+𝑧𝑚)

𝑠+𝑝1 𝑠+𝑝2 𝐾(𝑠+𝑝𝑛)
  

 

Where 𝑧𝑖  and 𝑝𝑖  are either real or occur in complex conjugate pairs 

 

The Poles of 𝐺 𝑠 :  −𝑝1, −𝑝2, K, −𝑝𝑛 

 

» Each of the 1st order factors (𝑠 + 𝑝𝑖) will give rise to a term 𝑐𝑖𝑒
−𝑝𝑖𝑡 in the 

system transient response. 

 𝑒−𝑝𝑖𝑡  is termed as the mode of G(s)  

 

if 𝑝𝑖 is complex  𝑝𝑖 = 𝜎𝑖 ± 𝑗𝜔 then 𝑐𝑖𝑒
−𝑝𝑖𝑡 = 𝑐𝑖𝑒

−𝜎𝑖𝑡𝑒𝑚𝑗𝜔𝑖𝑡   

Zeros of  𝐺 𝑠 :   −𝑧1, −𝑧2, 𝐾 − 𝑧𝑚 

» The zeros influence the magnitude of 𝑐𝑖 of each component 
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System transient 
response 



Given a situation: 𝐺 𝑠 =
𝐾(𝑠+𝑧)

(𝑠+𝑝1)(𝑠+𝑝2)
    and the input to be 𝑋 𝑠 =

𝐴

𝑠
 

Let 𝑝1 ≠ 𝑝2 then: 

𝑌 𝑠 =
𝐾𝐴(𝑠 + 𝑧)

𝑠(𝑠 + 𝑝1)(𝑠 + 𝑝2)
 

 

                                                       = 𝐾𝐴
𝑧

𝑝1𝑝2
 
1

𝑠
+
(1−𝑧 𝑝1 )

(𝑝2−𝑝1)
 
1

𝑠+𝑝1
+
(1−𝑧 𝑝2 )

(𝑝1−𝑝2)
 
1

𝑠+𝑝2
  

Or                         

                                  𝑦 𝑡 = 𝐾𝐴
𝑧

𝑝1𝑝2
 𝐻 𝑡 +

(1−𝑧 𝑝1 )

(𝑝2−𝑝2)
 𝑒−𝑝1𝑡 +

(1−𝑧 𝑝2 )

(𝑝1−𝑝2)
 𝑒−𝑝2𝑡   

 

As 𝑧 → 𝑝1, the magnitude 𝑐1 → 0           As 𝑧 → 𝑝2, the magnitude 𝑐2 → 0 

When 𝑧 = 𝑝1  𝑜𝑟 𝑧 = 𝑝2,  then pole zero condition and cancellation in the 
G(s) occurs 

A mode in the response is supressed (i.e. 𝐺 𝑠 =
𝐾(𝑠+𝑝1)

(𝑠+𝑝1)(𝑠+𝑝2)
=

𝐾

𝑠+𝑝2
  𝑜𝑟 

𝐾

𝑠+𝑝1
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Once pole-zero cancellations occur all the cancellations on G(s) are made we 
have: the minimal realisation of G(s). 

 

This is the minimum order representation of G(s). 

 

In our example 
𝐾

𝑠+𝑝2
  𝑎𝑛𝑑 

𝐾

𝑠+𝑝1
  are the minimal realisations 
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» The poles and zeros of G(s) are given by particular values for s. 

 

» s  is a complex variable expressed as: 

 
in the cartesian form    𝑠 = 𝜎 + 𝑗𝜔 

In polar form     𝑟𝑒𝑗𝜃            where  𝑟 = 𝜎2 + 𝜔2 

                                                  and       𝜃 = 𝑡𝑎𝑛−1 𝜔 𝜎  

 

A graphical representation of transient response is given by a plot of all pole 
and zero positions on a complex plane called the s - plane. 

 

- poles shown by ‘x’ 

- zeros shown by ‘o’ 
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» Find the system order, characteristic polynomial, characteristic equation, 
the system poles, the system zeros, the modes and draw the pole/zero 
plots for the following systems: 

Case 1                                        𝐺 𝑠 =
3

𝑠2+4𝑠+3
 

 

System order = order of the denominator polynomial = 2 

 

CP: 𝑠2 + 4𝑠 + 3      or   (s+1)(s+3) 

CE:  𝑠2 + 4𝑠 + 3=0     or  (s+1)(s+3)=0 

Poles:  (solution to CE, thus s= -1 , -3 

No zeros 

Modes:  𝑒−𝑡, 𝑒−3𝑡 

 

The pole/zero plot looks like: 
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-3 -1 

j
s - plane



Case 2:                               𝐺 𝑠 =
2(𝑠+2)

𝑠3+5𝑠2+11𝑠+15
=

2(𝑠+2)

(𝑠+3)(𝑠2+2𝑠+5)
 

 

system order = order of denominator polynomial = 3 

 

CP:  

CE:   

 

poles: (solution to CE)  𝑠 = −3 , −1 ± 𝑗2 

zeros: s = -2 

Modes: 𝑒−3𝑡 , 𝑒−(1±𝑗2) 

 

The pole/zero plot: 
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s3  5s2 11s 15  s  3  s2  2s  5 
s3  5s2 11s 15  0 or s  3  s2  2s  5  0



j

s - plane

-2 -1

+2j

-2j 

-3



» The relationship between the input and output of a first order differential 
equation:  

𝑎1
𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 𝑏0    

with the Laplace transform: 
𝑎1𝑋 𝑠 + 𝑎0𝑋 𝑠 = 𝑏0𝑌(𝑠) 

And the transfer function: 

𝐺 𝑠 =
𝑋(𝑠)

𝑌(𝑠)
=

𝑏0
𝑎1𝑠 + 𝑎0

  

 

∴ 𝐺 𝑠 =
𝑏0/𝑎0
𝑎1
𝑎0

𝑠 + 1
=

𝐺

𝜏𝑠 + 1
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Gain  (scales the response) 

Time constant 



» For simplicity let G=1 

 

» The pole-zero plot:  

 

 

 

» When a unit step input is applied to a first order system, then 𝑌 𝑠 = 1
𝑠   

 

» The output will then be: 

𝑋 𝑠 = 𝐺 𝑠 𝑌 𝑠 =
𝐺

𝑠(𝜏𝑠 + 1)
= 𝐺

1/𝜏

𝑠(𝑠 +
1
𝜏
)
 

By referring to the transform table : 
𝑎

𝑠(𝑠=𝑎)
  →   (1 − 𝑒−𝑎𝑡)  

 

Then the unit step response: 𝑥 = 𝐺 1 − 𝑒−
𝑡

𝜏  
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

j s - plane

-1/T−1/𝜏 



» 𝑥(𝑡) = 1 − 𝑒−
𝑡

𝜏 𝐻(𝑡) 

 

» The unit response looks like: 

 

 

 

 

 

 

 

» the commonly used measure of the speed of response is the time 
constant: 

 when 𝑡 = 𝜏, the exponential has decayed to 𝑒−1 = 0.368, of its initial value 

In other words the step response has reached 1-0.368=0.632 of its final value 
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0
0

0.632

1y(t)

tT 4T

output 

𝜏 4𝜏 



 

For a simple 1st order system , the time constant is τ 

 writing the transfer function in this form means T can be seen 
 directly 

 

From the pole-zero plot,  

» the system pole − 1 τ  must lie on the negative real axis for stability 

» the further to the left the system pole lies, the faster the response (the 
time constant is decreased) 
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» A simple example to illustrate the behaviour of the transfer function of a 
first order system when subject to a step input 

 

Consider a circuit which consists of a resistor (R) and a capacitor (C) in series. 
The input is v and the output is the potential difference 𝑣𝑐 across the 
capacitor, the differential equation: 

𝑣 = 𝑅𝐶
𝑑𝑣𝑐

𝑑𝑡
+ 𝑣𝑐  

When IC=0 

The Laplace transform:         𝑉 𝑠 = 𝑅𝐶𝑠𝑉𝑐 𝑠 + 𝑉𝑐 𝑠  

 

Transfer function:                    𝐺 𝑠 =
𝑉𝑐(𝑠)

𝑉(𝑠)
=

1

𝑅𝐶𝑠+1
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Consider a thermocouple with a transfer function linking voltage output V 
and temperature input: 

 

𝐺 𝑠 =
30 × 10−6

10𝑠 + 1
 

What is the response of the system when a step input of 120°C and the time 
to reach 95% of the steady state value? 

 

The transform of the output =  transfer function X transform of the input 
𝑉 𝑠 = 𝐺(𝑠) × 𝑖𝑛𝑝𝑢𝑡(𝑠) 

The temperature abruptly increased by 120°C, is 100/s 

𝑉 𝑠 =
30 × 10−6

10𝑠 + 1
×
100

𝑠
= 30 × 10−4

0.1

𝑠(𝑠 + 0.1)
 

 

The inverse transform:   𝑉 = 30 × 10−4 1 × 𝑒−0.1𝑡 V⃒𝑡→∞       
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𝑎

𝑠(𝑠 + 𝑎)
 



When 𝑡 → ∞ the exponential value = 0, the final value therefore: 

 ∴ 30 × 10−4 

Therefore the time to reach the 95% of this is given by; 

 

0.95 × 30 × 10−4 = 30 × 10−4(1 × 𝑒−0.1𝑡) 

So 0.05 = 𝑒−0.1𝑡  and ln 0.05 = −0.1𝑡  therefore t = 0.5 min. 
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