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More on Transfer Functions of Electromechanical systems
Properties of Transfer Functions
Transmissibility Function

Response Analysis (A prelude to Analytical and Numerical Solutions)
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Recall Last week we discussed electrical (RLC) and mechanical (Force and
Disposition), and electromechanical systems (force-current) fundamentals.

» Impedance is a Transfer Function relevant to both mechanical and
electrical systems (inverse of mobility).

A Im
» Impedance extends the concept of resistance to AC 5
circuits, and has both magnitude and phase. S N~ |
|Z] |
» Note that resistance only has magnitude. i’ , Re
R

» When a circuit is driven by DC there is no distinction between impedance
and resistance (impedance with phase angle to be zero.

TF Electromechanical systems )




»  Simple oscillator, single degree of ()
Freedom mass spring damper

mass

b ik \ A
TEAN\GGOR R s\ hwheres = \fw )
w = excitation frequency b L _) ko
vV K/m = system naturalfrequency Damping constant stiffness

Scenario 1: When w < +/*/m , ms? and bs can be neglected with respect to k = system
behaves as a simple spring

Scenario 2: when @ > +/¥/m, bs and k can be neglected in comparison to ms? = system
behaves like a mass element.
Scenario 3: when

s =jw = j\/*/m (i.e.excitation w very close to the natural frequency) then the
transfer function G(jw)=1/bs with s=jw

Properties of Transier Functions )




» In mechanical systems, any type of force or motion variable can be used
as the input or output variable of a transfer function.

Transfer Function In Laplace or Frequency Domain

Dynamic Stiffness Force/Displacement =Z X jw
Receptance (flexibility) Displacement/force = Mobility/(jw)
Mechanical Impedance Z Force/velocity

Mobility M Velocity/force

Dynamic Inertia Force/acceleration = Impedance/(jw)
Acceleration Acceleration/force = Mobility X jw
Force Transmissibility T Transmitted force/applied force
Motion Transmissibility T, Transmitted velocity/applied velocity

Mechanical Transtier Functions



» Across Variables: are measured across an element as the difference
between the two ends (e.g. velocity, temperature, voltage, pressure)

» Through Variables: are constant properties that flows throughout the
element (e.q. force, current, flow, heat transfer rates)

» Pending the most appropriate representation of the state variable of an
element, the element can be A-type or T-type (for example in
Mechanical system mass is A-type and spring is T-type)

Example A-Type : velocity

Example of T-Type : force

(Lecture note 1)

Recall A-Type and T-Type variables )



» Once the Transfer Functions of each component are known

» The interconnection laws can be used to determine the overall transfer
function of the interconnected system

The two types of interconnections are:

1. Series: The connected elements’ through variable is common and the
across variables add

2. Parallel: The connected elements’ across variables are common and the
through variables add.

Interconnection Laws ) &



Mobility = velocity/force

Impedance = force/velocity
T-Type  A-Type

Interconnection Laws for Mechanical Impedance (Z) and Mobility (M)

Series Parallel
f M,
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Interconnection Laws for Mechanical
Impecance anc Mol
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Admittance (W) = Current (i) / Voltage (v)

Series Parallel
v =0 + vy A AN
=2 =i
Z=27,+7Z, W =W, + W,
Inferconnection Laws for Electrical bE

Impecance and Acmittance




» The basic (linear) transfer functions for the mass, spring and the damper
are given as follows:

=ms

Mass (M) o m = _ 1
dt M = ms
Spring (k) af _k _S
E = kv Zk = E Mk k
Damper (b) f=kv Zy =Db M, = 1
b

Basic TF for Mechanical lmpecance
ane Molwility
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» The basic (linear) function for linear electrical elements (circuits):

m Time Domain Model Impedance (Z) Admittance (W)

Capacitor (C) _ 7 =Cs
dt B ¢~ Cs

Ind L dv /. =1L 1

nductor (L) @w_ B s W, = —

dt Ls

Resistor (R) Ri=v Zp =R 1

WR = E

Basic T for Electrical Impecance ance)
Admittance &



» Ground Based Mechanical Oscillator

f(®)

Zm Z Zp ()Tf(t)

b k
o IR
1 2 3
Simple Oscillator Mechanical
Representation 71 output
V / OUtpUt Z F(](U)
) R
A Fg’wi /V(]w)
é(//// input

input
Example use of impedance and mebility metheds fin &
freguency demain



imagine

that a force is applied to such a system where IC=0

And we measure the velocity

If we move the mass exactly at the same velocity

then the force generated will be identical to the original applied force

2 7

i.e. mobility is the inverse of impedance

The overall impedance function (see figure 3):

2
ARG NN N k WSS RE
Z(jw) = oS =Zm+ 2+ Zy =ms++b]| = N 0N

The mobility function

RN Vjw) S

F(jo) ms2+bs+k |s=jw

Esample cont. &
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f(®)
» Transmissibility functions are transfer functions useful for: l N
> Design and analysis of fixtures

> Mounts ARERRRRRY Machine
\ Inertia

> Machine support structures Force path !

> Vehicle suspension design and other systems |

Suspension

» Two types of force and motion transmissibility

Foundation
N \ . f(s)
» Mass supported on a rigid foundation through a suspension MM
force
A F
Force transmissibility Tr = )
) O A V. system motion (velocity in frequency domain
Motion Transmissibility T,,, = /= = Y . ( YL Y Y l.)
vV support motion (velocity in frequency domain)

»  Further reading: C. W. de Silva, Modelling and Control of Engineering Systems (2009),
Chapter 5 — also read Single Degree of freedom and Two Degree of freedom systems

Transmissiloility Functions
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» The response of a dynamic system can be determined by solving the
differential equation (Analytical) — subject to ICs

» This can be achieved:
1. Time domain (direct calculations)
2. Laplace Transforms

Consider the following time invariant differential equations:

d‘l’ly dn—ly
n gon F -1 gm=s

+--t+agy=u (1)

Response Analysis

b



» The characteristics of a dynamic system does not depend on the input to
the system

» Therefore the natural behaviour (free response) for equation 1 can be
calculated by:

dny dn—ly
an _dtn + a

el e+ @y =0 (2)

(homogeneous equations)
The solution for linear system (y;) can be expressed as:

VOARURNE
Where c is a constant and A is complex number.

Now apply equation 3 into 2, knowing that % e = pelM

a A"+ a, A"+ +ay=0 (4) Characteristic Equation (CE)

Homegeneous Selutfions )&




» The CE thus has nroutes: A; ... A,

dn dn—l
datn R

» The overall solution to equation a, + -+ agy=0

Becomes:
yi, = cieMt 4 cyetet 4 .o etnt

The ¢ are determined by the necessary n ICs.

Hemegeneous Selutions contal )
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N(s)
D(s)

Consider a general transfer function: G(s) = K

Where N(s) and D(s) are polynomial functions in (s):

N(s)=s"+b, ,s""+b, ,s"*+K +b,;s+b,

m

D(s)=s"+a,,s" " +a,,s"?+K +a,;s+a,

For causal systems n = m i.e. proper system

Usually n > m, n s the order of the system

D(s) is the characteristic polynomial (CP)of G(s).
D(s)=0is the is the characteristic equation (CE) of G(s)
The roots of CE are the called the poles of the system

The roots of N(s)=0 are called the zeros of G(s), therefore:

Properiies of TF - Response
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N(s) K12, (s+2;) _ K(s+21)(s+22)K(s+Zm)
D(s) [Ti=1(s+p; (s+p1)(s+p2)K(s+pn)

G(s) =K

Where z; and p; are either real or occur in complex conjugate pairs
The Poles of G(s): —pq1, —p2, K, —p,,

» Each of the 1t order factors (s + p;) will give rise to a term c;e"Pif in the
system transient response.

e~Pil is termed as the mode of G(s) DN
/ response
if p; iscomplex 2 p; =0; + jw then= c;e OiteMjwit

Zeros of G(s): —zy,—2,, K — 2z,
» The zeros influence the magnitude of ¢; of each component

Properties of T contihuee) V&



K(s+2z) . NN
TSNS and the input to be X(s) = \

Given a situation: G(s) =

Let p; # p, then:
KA(s + z)

R D

AN KA{ z 1+ (1_2/291) 1 O (1_2/192) 1 }
P1P2 S (P2—p1) S+p1 (P1—p2) S+b2

Or
Z (1_2/2?1) —pat (1_2/292) SN
ooy H(t AR AT 41 Tl %1 ASANAALEAA K (%)
y(t) R {p1pz ( ) \ (p2—-p2) 3 \ (p1—p2) X }
As z — p4, the magnitude ¢; = 0 As z = p,, the magnitude ¢, — 0

When z = p; or z = p,, then pole zero condition and cancellation in the
G(s) occurs

K(s+pq) MG W K
(s+p1)(s+p2) S+py S+p1

A mode in the response is supressed (i.e. G(s) =

Example &



Once pole-zero cancellations occur all the cancellations on G(s) are made we
have: the minimal realisation of G(s).

This is the minimum order representation of G(s).

and are the minimal realisations

In our example
S+p2 S+p1

Example Contel

)



» The poles and zeros of G(s) are given by particular values for s.

» S is a complex variable expressed as:

in the cartesian form s =0+ jw

In polar form  ref® where 7 = Vo2 + w?
and N =ttan T (@ g)

A graphical representation of transient response is given by a plot of all pole
and zero positions on a complex plane called the s - plane.

- poles shown by ‘X’
- zeros shown by ‘0’

Pole-Zero Plot and the s - plane 2




» Find the system order, characteristic polynomial, characteristic equation,
the system poles, the system zeros, the modes and draw the pole/zero
plots for the following systems:

Case 1 G(s) = 3

s244s+43

System order = order of the denominator polynomial = 2

CP:s% +4s+3 or (s+1)(s+3)

CE: s> +4s +3=0 or (s+1)(s+3)=0
Poles: (solution to CE, thus s=-1, -3
No zeros //
Modes: e ", e~

,e

w X

The pole/zero plot looks like:

Example



2(s+2) N 2(s+2)

Case 2: G(s) = =
(s) s3+552+11s+15  (s+3)(s%+2s+5)

system order = order of denominator polynomial = 3

CP: s°+58%+11s+15=(s+3)(s* +25 +5)
CE: s°+58°+115+15=0 or (s+3)(s*+25+5)=0

poles: (solutionto CE) s = =3 ,—1 £ j2

Zeros: s =-2 \ jo .‘+2j
NSRS ,
Modes: e 73t | e~(1£/2) .
: s - plane
\ H——— -
The pole/zero plot: Y 3
X - -1-2]

Example Contel
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» The relationship between the input and output of a first order differential

equation:
dx
TR A S VAN
L 0 0

with the Laplace transform:
a1X(S) + a()X(S) — b()Y(S)

And the transfer function:
X(s) N\ bg

Y(s) a;s+ag

GRS

Gain (scales the response)
boy/ay G

a, :TS+1
-

Time constant

G(S) =

First Oreler Systems

pE



» For simplicity let G=1

» The pole-zero plot: A jo s - plane

> )
o)

-1/t

» When a unit step input is applied to a first order system, then Y (s) = 1/

» The output will then be:

1/t
RSN IR NS R = G—1
s(s + ;)
By referring to the transform table : RN (1 —e™%)

'
Then the unit step response: x = G(l — e_?)

First Oreler Systems contel &



AR

» The unit response looks like:

output 1 . =_;
N1 RO VATS ST AR
0
4t t
» the commonly used measure of the speed of response is the time

constant:
when t = 7, the exponential has decayed to e ™! = 0.368, of its initial value
In other words the step response has reached 1-0.368=0.632 of its final value

First Oreler Systems contel V&




For a simple 1st order system , the time constantis t

writing the transfer function in this form means T can be seen
directly

From the pole-zero plot,
» the system pole — 1/; must lie on the negative real axis for stability

» the further to the left the system pole lies, the faster the response (the
time constant is decreased)

First Oreler Systenms contiel &




» A simple example to illustrate the behaviour of the transfer function of a
first order system when subject to a step input

Consider a circuit which consists of a resistor (R) and a capacitor (C) in series.
The input is v and the output is the potential difference v. across the
capacitor, the differential equation:

v=RC%+vc
dt

When IC=0
The Laplace transform: V(s) = RC.V.(s) + V.(s)

Ve(s) 1
V(s) RCs+1

Transfer function: G(s) =

Example &



Consider a thermocouple with a transfer function linking voltage output V
and temperature input:

30 x 107°

10s + 1
What is the response of the system when a step input of 120°C and the time
to reach 95% of the steady state value?

G(s) =

The transform of the output = transfer function X transform of the input
V(s) = G(s) X input(s)
The temperature abruptly increased by 120°C, is 100/s

MK
R I (s +0.0) ./ _e

........
.....

The inverse transform: ¥V = 30 x 107%(1 x e~ %1V |t—>oo >

Example &



When t — oo the exponential value = 0, the final value therefore:

~30x 1074
Therefore the time to reach the 95% of this is given by;

0.95 % 30 X 107% = 30 x 1074(1 x e 01¢)
S0 0.05 = e™%! and In 0.05 = —0.1¢t therefore t = 0.5 min.

Example contel
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