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» Transfer Function

» Modelling of Dynamical Systems
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» Transfer function is a dynamical model represented in the
Laplace domain.

» In specific the transfer function G(s) of a linear, time
invariant, single-input single-output system is given by the
ration of the Laplace transformed output to the Laplace
transformed input;

Y(s)
U(s)

G(s) =

initial condition=0 (1)

Transier Function
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dv B
» The linear dynamical equation: 7 _V(t):_f(t)

dv
» Let M = 1000 kg and B = 50 Ns/m: AR 0.05v(t)=0.00%f(t)

» Taking Laplace Transforms and assuming zero initial conditions:

sV (s)+0.05V (s)=0.001F(s)
S0 0.001 Relates output velocity Y(s)
V(s) : XF (S) to input force U(s) or the
$+0.05 G(s) transfer function
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» Supposing that the Laplace transform of a particular input u(t) is infinite,
» Then the corresponding Laplace output y(t) will also be infinite,
» But the transfer function itself will be finite.

Consider a system described by LDE:

dny dn—ly du dm

Taking Laplace transforms and assuming that initial condition = 0, the transfer
function will be:

n n-1
" +a, ,;s" T+ ey s+a ) (S)

) (bm SRS bR SN bo)J(s) (3)
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Or:

Y(s) bg+bys+-bys™ (4)
U(s)  ag+ a;s+ - a,s®

G USN=

» The transfer function is defined only

»

> with respect to the Laplace transformed equation
> for zero initial conditions

It is extremely useful in building a model for a complex system in terms
of the individual models for its component parts.

> a TF (transfer function) is independent of actual input applied
> it characterizes the system itself.

Comntel



» The building blocks for a First order example

transfer function

. tput
input TF X
signal ™\ N\ A
U(s) ( b j Y(s)
- - -
/ s+a
direction of
signal flow

Block Disgram Representation 2




» Simple block diagram manipulation:
Consider a cascade connection

u(s) X(s) Y (s)
> Gy(s) > G,(s) >
Transfer function for Transfer function for
Equation 1 Equation 2

Then X(s) = G,(s)U(s) andY(s) = G,(s)X(s)
=Y (s) = G1(5)Go(s)U(s)
And then overall Transfer function is:

Y(s) _ G1(s5)Go(s)U(s)
Ues) U(s)

(5)

G(s) = = G1(5)G,(s)

Block Diagram Representaiion 2




» Parallel Connection

—— Gy(s)

Y4(s)
U(s) A Y (s)

Y, (S)

RAASS Gy(s)

Y(s) = Yi(s) + Ya(s)

And
Y1(s) = G1(s)U(s), Y2(s) = G,(s)U(s)
Therefore; G(s) = Gl(s)U(S;;C);Z(S)U(S) = G1(s) + G,(s) (6)

Block Diagram Representaiion 2




» Feedback connection

U(s) + . V(s) Y (s)
o

—>®—>G(S)

H(S) | =

Y(s) = G(s)V(s)
V(s) =U(s) — H(s)Y(s)

NRERN G ($)VAS) NG
S U(s) VS + H(S)G()V(s) 1+ G(s)H(s)

Block Disgram Representation 2
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Any transfer function is defined as the ratio of Output to Input
If the output and input are expressed in the frequency domain — the
frequency transfer function is represented by the Fourier Transform

function of the output to the input.

Frequency domain parameters are useful for the analysis, design, control
and testing of electro-mechanical systems

The signal waveform derived from such systems can be interpreted and
presented as a series of sinusoidal components

Freguency Domain Moeels V&



» Recall equations 2-4, time domain and Transfer Function in Laplace
domain (slides 5 & 6 )

» Response to a harmonic Input:
> If a harmonic (sinusoidal) input is given as:

u = ug(coswt + jsinwt) (7)
Once in steady state, the output will be harmonic as:
y = y,el®t = y,(coswt + jsinwt) (8)

By substituting equations 7 and 8 in equation 2 and cancelling e/®t on
both sides:

bm(jw)m+bm—1(jw)m_1+ *+Dbg
an(jw)*+an_1 (o) 1+ -+ay

yo = | Juo (9)

Frequency Transier Function &




» And with respect to equation 4:
Vo = G(jw)uy  (10)

deja)t

=\ etk
RN

Bear in mind:

Here the frequency transfer function (frequency response function) is given
by:

NN _ bo+bi(jw)+- b (o)™
G(]w) N G(S)l 0 apta;(Jw)++an(jo)m

Where s = jw

(11)

The angular frequency w = 2rntf  fis cyclic frequency (Hz)
the Laplace domain

: WK Ewy
G(jo) = 5o (12)

The Fourier transform operators: Y (jw) = E,(t) and U(jw) = F(t)

Response o harmenic input &



» Here we will discuss some dynamical systems that their behaviour can
be described with LDE.

Mechanical Systems

Newton Law — Conservation of energy (also briefly discussed in Lecture 1)
1. If net force on the body = 0 and the acceleration =0

Then the linear momentum is conserved:

ZFzma

2. Action and reaction are equal and opposite : Fg4 = —F,p

Medelling of Dynamieal Systems 2
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Variables are: Force and Displacement (Velocity)

fi(®) = ’K

Assuming linearity (i.e. Hook’s Law) — Laplace representation:

In a spring you have:

Stiffness constant

F, = KX(s)

The Damper function: fz(t) = Bdv = B%

\ Damper constant

Assuming Linearity, then ...

Modelling of Dynamical Systems /
Mechanical Eample

15



Fz(s) = BV(s) = BsX(s) forinitial condition IC=0
» Mass, the motion M by Newton’s Second Law:

Laplace representation: Fy,;(s) = MsV(s) = Ms?X(s) forIC=0

M is kinetic

M and K are associated with energy storage{K NN

And B with energy dissipation (recall previous lecture)

Modelling of Dynamical Systems /
Mechanical Eample

16



force f(t) A

T displacement x(t)
M R
equilibrium
fKé .LfB
K B
fff;’ffffffffl;lx—lffﬁ
Net force on mass upwards = F(8)—(F(s)+Fs(s))
Apply Newton 2" Law: F(s)-K X(s)-BsX(s)=Ms*X(s)
B

Or (s R jX(S)——F(S)

AN N
The transfer function: G(s) = X(s) N

F(s) s’+8s+k&

This represents a 2nd order LDE:
94X, 2& Eyp-210
dtZ M dt M

Example Mechanical System




When B=0 (no damping) :>dt2

Simple Harmonic Motion (SHM) when  f({t)=10,x(0)#0

Example Mechanical Systenm &




» In the case of rotational functions:

\ J
torque z(t)
)

angle 9(t)

RS

J is the moment of inertia (kgm?)

B is the linear rotational damping z;(t)=B %

For IC=0 =  173(s)=Bsds)
. t)=Kot) = . (s)=K ()
K is the torsional stiffness

net torque applied = rate of change of angular momentum =—(J—|=J—

d( d@) d2e
dt\ dt dt?

Assuming inertia is constant

Rotational Functions V&




» in terms of Laplace, net torque = Js?#(s)  assuming IC=0
net torque acting on J(s) = 7(s) — ((tx(s) + t5(s))

352 () = £(s)—K 6(s)—Bs 0(s) or (s +Bs+ j@(s)——r(s)

Rotational Functions



» Kirchhoff’s Laws conservation of energy:
» Key variables are Voltage and Current
KVL: ). Voltage round closed loop = 0
KCL : ). Current into a node = 0

The three factors of Resistor (R), Inductor (L), and Capacitor (C):

R: vg(t) = Rig(t) - Vgx(s) = RIz(s)
NN AN LC;—if — V. (s) = Lsl;(s) provided IC =0

SN %f i.dt - V.(s) = élc(s) provided IC = 0

Observe that multiplying by s represents differentiation, dividing by s
. : . (\ .
represents integration or in other words Sls the integrator.

Electrical Systems
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» Example \ v v
L R €
+

+ - HHRRN MMN—F
v.t)=u() R C *i(t)=y(t)

Apply KVL: Vs(s) — V.(s) — Vr(s) —V.(s) =0
2 Vs(s) = LsI(s) — RI(s) = —(s) = 0

Multiply by s: sV (s) — Ls?I(s) — sRI(s) — %I(s) 2\0
(LS2 + Rs + %) I(s) = sV, (s)

1
LSS N

Therefore the TF, G o =
erefore the TF, G(s) N 52+§s+

— 2" order system
G

Serfes RLE Clreuft )



» Fundamentals: Conservation of energy (magnetic field and Newton’s Law)

A DC Motor:
aéumr?g:]rte i () ang vel.  Basic relations:

Tm() <ig().4t) | Non-lineal
qux 4G algebraic
et) cot).4t) ) equations

back torque

e (
e.m.f. Tm

Therefore: 1,,(s) = kl,(s)p(s) and E(s) = kw(s)p(s)
Now consider a motor with a permanent magnetic field i.e. ¢ is constant

Therefore,
O AN I 0 AN ANV T R Ao R AN R4 AN e

The constant flux constraint results in a Linear algebraic equations

Electromechanical System &



» Consider the motor to be driving a mechanical load with J and B factors

The torque demand of load : 7,(s) = Js20(s) + BsO(s) = Jsw(s) + Bw(s)

But 7, (s) = 1,,(s) thus - (S + ?) w(s) = Ela(s) 15t order system

R, —armature resistance

w(t)

I\ [B D
I_ Tm (1)

V.()-E(S) _V,(8)-c.0(s)
R N\ R

a a

Then [ (s)=

l
So ( J B+_ 60(5) _V (S) if armature inductance L, is included then 2" order

EU@@ﬁff@m@@h@mﬁ@@ﬂ Example cont. 2



» Fluid Flow Systems

> Fundamentals: Conservation of energy (common sense and Bernoulli
theorem)

» Thermal Systems

> Fundamental: Conservation of energy (heat balance)

Further reacing
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