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» Transfer Function 

 

» Modelling of Dynamical Systems 
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» Transfer function is a dynamical model represented in the 
Laplace domain. 

» In specific the transfer function G(s) of a linear, time 
invariant, single-input single-output system is given by the 
ration of the Laplace transformed output to the Laplace 
transformed input;  

 

𝐺 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
    initial condition = 0 
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(1) 



 

 

 

 

 

» The linear dynamical equation: 

 

» Let M = 1000 kg and B = 50 Ns/m:  

 

» Taking Laplace Transforms and assuming zero initial conditions: 

 

So  
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force 
f(t)

mass, M

velocity 
v(t)

ffric(t) = B v(t)

dv

dt


B

M
v t 

1

M
f t 

dv

dt
 0.05v t  0.001f t 

sV s  0.05V s   0.001F s 

V s 
0.001

s 0.05
F s 

Relates output velocity Y(s) 
to input force U(s) or the 
G(s) transfer function 

u(t) 

y(t) 



» Supposing that the Laplace transform of a particular input u(t) is infinite, 

 

» Then the corresponding Laplace output y(t) will also be infinite, 

 

» But the transfer function itself will be finite. 

 

Consider a system described by LDE: 

𝑎𝑛
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛
+⋯𝑎0𝑦 = 𝑏0𝑢 + 𝑏1

𝑑𝑢

𝑑𝑡
+ ⋯+ 𝑏𝑚

𝑑𝑚𝑢

𝑑𝑡𝑚
 

 

Taking Laplace transforms and assuming that initial condition = 0, the transfer 
function will be: 

 

5 

(2) 

sn an1sn1  a1s a0 Y s 

 bm sm bm1sm1  b1s  b0 U s 
(3) 



Or: 

𝐺 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏0 + 𝑏1𝑠 + ⋯𝑏𝑚𝑠

𝑚

𝑎0 + 𝑎1𝑠 + ⋯𝑎𝑛𝑠
𝑛

 

 

» The transfer function is defined only 

˃ with respect to the Laplace transformed equation 

˃ for zero initial conditions 

 

» It is extremely useful in building a model for a complex system in terms 
of the individual models for its component parts. 

˃ a TF (transfer function) is independent of actual input applied 

˃ it characterizes the system itself. 
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(4) 



» The building blocks for a First order example 
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input 
signal

output 
signal

direction of 
signal flow

U(s) Y(s)b

s  a











transfer function 
TF



» Simple block diagram manipulation: 

Consider a cascade connection 

 

 

 

 

 

 

 

Then  𝑋 𝑠 = 𝐺1 𝑠 𝑈(𝑠)   and 𝑌 𝑠 = 𝐺2 𝑠 𝑋 𝑠  
∴ 𝑌 𝑠 = 𝐺1 𝑠 𝐺2 𝑠 𝑈(𝑠) 

And then overall Transfer function is: 

 

𝐺 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=
𝐺1(𝑠)𝐺2 𝑠 𝑈 𝑠

𝑈(𝑠) 
= 𝐺1(𝑠)𝐺2 𝑠  
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G1 s  G2 s 
U s  X s  Y s 

Transfer function for 
Equation 1 

Transfer function for 
Equation 2 

(5) 



» Parallel Connection 

 

 

 

 

 

 
𝑌 𝑠 = 𝑌1 𝑠 + 𝑌2 𝑠  

And 
𝑌1 𝑠 = 𝐺1 𝑠 𝑈 𝑠 ,    𝑌2 𝑠 = 𝐺2 𝑠 𝑈 𝑠  

 

Therefore;  𝐺 𝑠 =
𝐺1 𝑠 𝑈 𝑠 +𝐺2 𝑠 𝑈 𝑠

𝑈(𝑠)
= 𝐺1 𝑠 + 𝐺2(𝑠) 
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G1 s 

G2 s 

U s  Y s +

+

Y1 s 

Y2 s 

(6) 



» Feedback connection 

 

 

 

 

 

 
𝑌 𝑠 = 𝐺 𝑠 𝑉 𝑠  

 
𝑉 𝑠 = 𝑈 𝑠 − 𝐻(𝑠)𝑌(𝑠) 

 

∴  
𝑌(𝑠)

𝑈(𝑠)
=

𝐺 𝑠 𝑉(𝑠)

𝑉 𝑠 + 𝐻 𝑠 𝐺 𝑠 𝑉(𝑠)
=

𝐺(𝑠)

1 + 𝐺 𝑠 𝐻 𝑠
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+

-

U s  V s 
G s 

Y s 

H s 



» Any transfer function is defined as the ratio of Output to Input 

» If the output and input are expressed in the frequency domain – the 
frequency transfer function is represented by the Fourier Transform 
function of the output to the input. 

» Frequency domain parameters are useful for the analysis, design, control 
and testing of electro-mechanical systems 

» The signal waveform derived from such systems can be interpreted and 
presented as a series of sinusoidal components  
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» Recall equations 2-4,  time domain and Transfer Function in Laplace 
domain (slides 5 & 6 ) 

 

» Response to a harmonic Input: 
˃ If a harmonic (sinusoidal) input is given as: 

 
𝑢 = 𝑢0 𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡      7  

 
Once in steady state, the output will be harmonic as: 

 

𝑦 = 𝑦0𝑒
𝑗𝜔𝑡 = 𝑦0(𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡)   (8) 

 

By substituting equations 7 and 8 in equation 2 and cancelling 𝑒𝑗𝜔𝑡 on 
both sides: 

𝑦0 =
𝑏𝑚(𝑗𝜔)

𝑚+𝑏𝑚−1(𝑗𝜔)
𝑚−1+⋯+𝑏0

𝑎𝑛(𝑗𝜔)
𝑛+𝑎𝑛−1(𝑗𝜔)

𝑛−1+⋯+𝑎0
𝑢0    (9) 
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» And with respect to equation 4: 

𝑦0 = 𝐺 𝑗𝜔 𝑢0      (10) 

 

Bear in mind:             
𝑑𝑒𝑗𝜔𝑡

𝑑𝑡
= 𝑗𝜔𝑒𝑗𝜔𝑡 

 

Here the frequency transfer function (frequency response function) is given 
by: 

𝐺 𝑗𝜔 = 𝐺(𝑠) =
𝑏0+𝑏1(𝑗𝜔)+⋯𝑏𝑚(𝑗𝜔)

𝑚

𝑎0+𝑎1 𝑗𝜔 +⋯+𝑎𝑛(𝑗𝜔)
𝑛     (11) 

Where 𝑠 = 𝑗𝜔 

 

The angular frequency 𝜔 = 2𝜋𝑓       f is cyclic frequency (Hz) 

 the Laplace domain    

𝐺 𝑗𝜔 =
𝑌(𝑗𝜔)

𝑈(𝑗𝜔)
        (12) 

The Fourier transform operators:  𝑌 𝑗𝜔 = 𝐹𝑦 𝑡     𝑎𝑛𝑑  𝑈 𝑗𝜔 = 𝐹(𝑡) 
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» Here we will discuss some dynamical systems that their behaviour can 
be described with LDE. 

 

Mechanical Systems 

 

Newton Law – Conservation of energy (also briefly discussed in Lecture 1) 

 

1. If net force on the body = 0 and the acceleration = 0 

 

Then the linear momentum is conserved: 

 

 𝐹 = 𝑚𝑎 

2. Action and reaction are equal and opposite : 𝐹𝐵𝐴 = −𝐹𝐴𝐵 
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» Variables are: Force and Displacement (Velocity) 

» In a spring you have: 
𝑓𝑘 𝑡 = 𝐾𝑥 𝑡  

 

 

» Assuming linearity (i.e. Hook’s Law) – Laplace representation: 

 
𝐹𝑠 = 𝐾𝑋 𝑠  

 

» The Damper function: 𝑓𝐵 𝑡 = 𝐵𝑑𝑣 = 𝐵
𝑑𝑥

𝑑𝑡
 

 

Assuming Linearity, then … 
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Stiffness constant 

Damper constant 



𝐹𝐵 𝑠 = 𝐵𝑉 𝑠 = 𝐵𝑠𝑋(𝑠)  for initial condition IC=0 

» Mass, the motion M by Newton’s Second Law: 

 

Laplace representation: 𝐹𝑀 𝑠 = 𝑀𝑠𝑉 𝑠 = 𝑀𝑠
2𝑋(𝑠)  for IC=0 

 

M and K are associated with energy storage 
𝑀  𝑖𝑠 𝑘𝑖𝑛𝑒𝑡𝑖𝑐
𝐾 𝑖𝑠 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

 

 

And B with energy dissipation (recall previous lecture) 
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Net force on mass upwards = 

Apply Newton 2nd Law:  

 

Or   

 

The transfer function:  

 

This represents a 2nd order LDE: 
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equilibrium

K B

M

force f t 
displacement x t 

f
K

f
B

F s  FK s FB s  

F s K X s Bs X s  Ms 2 X s 

s2 
B

M
s 

K

M









X s  

1

M
F s 

G s  
X s 

F s 


1
M

s 2  B
M s  K

M

d 2x

dt 2


B

M

dx

dt


K

M
x t  

1

M
f t 



When B=0 (no damping) 

 

 

Simple Harmonic Motion (SHM) when  
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
d 2x

dt 2


K

M
x t  

1

M
f t 

f t   0, x 0   0



» In the case of rotational functions: 

 

 

 

 

J is the moment of inertia (𝑘𝑔𝑚2) 

B is the linear rotational damping 

 

For IC=0 

 

K is the torsional stiffness  

 

net torque applied = rate of change of angular momentum  

Assuming inertia is constant 
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K

B

J

torque  t 

angle  t 

B t  B
d

dt

 B s   Bs s 

K t   K  t   K s   K  s 


d

dt
J

d

dt









  J

d2

dt 2



» in terms of Laplace, net torque                         assuming IC=0 

 

 net torque acting on  𝐽 𝑠 = 𝜏 𝑠 − ((𝜏𝐾 𝑠 + 𝜏𝐵 𝑠 ) 

 

∴                                                             or  
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 Js2 s 

Js2  s   s K  s Bs s  s2 
B

J
s 

K

J









 s  

1

J
 s 



» Kirchhoff’s Laws conservation of energy: 

» Key variables are Voltage and Current 

KVL :   𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑜𝑢𝑛𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 = 0  

KCL  :   𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑡𝑜 𝑎 𝑛𝑜𝑑𝑒 = 0  

 

The three factors of Resistor (R), Inductor (L), and Capacitor (C): 

 

R:   𝑣𝑅 𝑡 = 𝑅𝑖𝑅 𝑡 → 𝑉𝑅 𝑠 = 𝑅𝐼𝑅 𝑠  

L:   𝑣𝐿 𝑡 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
→ 𝑉𝐿 𝑠 = 𝐿𝑠𝐼𝐿 𝑠      𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐼𝐶 = 0 

C:   𝑣𝑐 𝑡 =
1

𝐶
 𝑖𝑐𝑑𝑡 → 𝑉𝑐 𝑠 =

1

𝐶𝑠
𝐼𝑐 𝑠   𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐼𝐶 = 0   

 

Observe that multiplying by s represents differentiation, dividing by s 

represents integration or in other words 
1

𝑠
 is the integrator. 
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» Example 

 

 

 

 

Apply KVL:  𝑉𝑠 𝑠 − 𝑉𝐿 𝑠 − 𝑉𝑅 𝑠 − 𝑉𝑐 𝑠 = 0 

       ∴ 𝑉𝑠 𝑠 − 𝐿𝑠𝐼 𝑠 − 𝑅𝐼 𝑠 −
1

𝐶𝑠
𝑠 = 0 

 

Multiply by s:  𝑠𝑉 𝑠 − 𝐿𝑠2𝐼 𝑠 − 𝑠𝑅𝐼 𝑠 −
1

𝐶
𝐼 𝑠 = 0 

           𝐿𝑠2 + 𝑅𝑠 +
1

𝐶
𝐼 𝑠 = 𝑠𝑉𝑠 𝑠  

Therefore the TF,   𝐺 𝑠 =
𝐼(𝑠)

𝑉𝑠(𝑠)
=

1

𝐿
𝑠

𝑠2+
𝑅

𝐿
𝑠+
1

𝐿𝐶

      2nd order system 
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+

++-

L

+ - -

R C i t   y t vS t   u t 

vRvL vC



» Fundamentals: Conservation of energy (magnetic field and Newton’s Law) 

 

A DC Motor: 

 

 

 

 

 

Therefore: 𝜏𝑚 𝑠 = 𝑘𝐼𝑎 𝑠 𝜑 𝑠     𝑎𝑛𝑑   𝐸 𝑠 = 𝑘𝜔(𝑠)𝜑(𝑠) 

Now consider a motor with a permanent magnetic field i.e. 𝜑  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Therefore, 
𝜏𝑚 𝑠 = 𝑐𝐼𝑎 𝑠     𝑎𝑛𝑑   𝐸 𝑠 = 𝑐𝜔 𝑠      𝑤ℎ𝑒𝑟𝑒  𝑐 = 𝑘𝜑 

 

The constant flux constraint results in a Linear algebraic equations 
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armature 
current

mag. 
flux

back 
e.m.f.

ia t 

 t 

e t 

m t   ia t . t 

e t   t . t 







m

torque

Basic relations:

Non-linear 
algebraic 
equations

ang. vel. 




» Consider the motor to be driving a mechanical load with J and B factors 

 

The torque demand of load :  𝜏𝐿 𝑠 = 𝐽𝑠
2𝜃 𝑠 + 𝐵𝑠𝜃 𝑠 = 𝐽𝑠𝜔 𝑠 + 𝐵𝜔 𝑠  

 

But 𝜏𝐿 𝑠 = 𝜏𝑚(𝑠)    thus   ∴   𝑠 +
𝐵

𝐽
𝜔 𝑠 =

𝑐

𝐽
𝐼𝑎 𝑠         1

st order system 

 

 

 

 

 

Then 

 

So                                                                    if armature inductance            is included then 2nd order 

24 

BJ

va t 

ia t 

e t 

 t 

m t 

Ra  armature resistance

Ia s 
V

a
s E s 

R
a


V

a
s  c . s 

R
a

s 
1

J
B 

c 2

R
a



















 s 

c

JR
a

Va s  𝐿𝑎 



» Fluid Flow Systems  

 

˃ Fundamentals:  Conservation of energy (common sense and Bernoulli 
theorem) 

 

 

» Thermal Systems 

 

˃ Fundamental: Conservation of energy (heat balance) 

 

25 


