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» Modelling and Simulation of Dynamic Systems
> |/O models
> State-space models
> Linear state equations
> Time invariant systems

> Open Loop closed Loop systems

» Laplace Transforms, Transfer Functions, Block
Diagrams

Tockey's ciscussions



Define system boundaries and specifications
2. Specify system Inputs/Outputs (i.e. system variables)

Understand and estimate the components of the
system using models

Draw the systems components diagram
5. Write systems equations:

> physical laws (constitutive),

> continuity equation for through variables, e.g. equilibrium of forces at
joints, current balance at nodes, ...)

> Cross variables (equations for velocity, voltage, pressure drop, ...)

6. Express system boundary conditions and response
initial conditions using system variables.

Basic Steps Modelling Dynamic Systens )




» State variables are the minimal set of variables that
describe the dynamic state of a system.

» The state space represents the dynamics of an nth
order system is defined n first-order differential
equations — normally coupled.

» Example of first order linear differential equation:
AR
RS A A
We call it coupled because you need the knowledge of one variable to
find the other.

Statie-Space Models )




» A state vector x is a column vector of (x4, x5, ... X5,)
variables that describe the state of a dynamic system.

» n is the number of state variables and represents the
order of the system.

» Property 1: The transformation g of x(t,) to x(t;) with
respect to input u|ty, t] in the interval [t,, t1]:

x(t1) = g(to, t1, x(to), ulty, ty] (1)

Each excitation creates a trajectory — n trajectory will create state-space

Properties of Statie-Space )




» Property 2: System output y(t;)is determined by the
state x(t;) and input (excitation) u(t,) at any given
time t,. Expressed as:

y(t1) = h(ty, x(t;), u(t,)) (2)

In other words system output
following factors:
1. Time

2. State vector

time t; depends on the

3. Theinput Transformation h has no
memory

Properties of Statie-Space )



» A state model thus consists of n state equations (first-
order ordinary differential equations (time domain),

which are coupled. NN
» In the vector for expressed as: Differential

/ Equation
x = f(x,ut) (3)
AN, Algebraic
y = h(x,u,t) (4) SN
equation

» Example of first order linear differential equation:
321 =Ky + 2x2
.722 — 3x1 + 2x2

We call it coupled because you need the knowledge of one variable to
find the other.

State model ) &



An nth order linear state model is given by the differential
state equations as:

X, =8, X +a,X, +...+a,X, +bu +bu, +..+b u

B

X, =8, X +a,,X, +...+8,, X, +b,,u, +b,,u, +...+b, U

2n“™n 2r=r
(5)
X, =a,X+a,X +...+a X +b u +b u,+..+b U

. X ,
Where, X, =—, X, X,,...X, are the state variables and U ,
dt

Are the input variables.

Linear State Equaiion )




The algebraic output equations are thus:

Yy = CX X ik G X =y Uy + AU e+ dy U

1n“*n

Y, =Cp X +CooX, +..+Cy X+, U, +dy0U, +...4dy U

2n“*n 2rr

Yo =Co X +Cou X+ Co XU U+ d U

Where Yi.m are the output variables of the system

The Ouiput Eouation

(6)



» The vector-matrix form of equations (5 and 6):

X =AX +Bu (7)
y =Cx+Du (8)
AN X, | \ A
\ N 2 AT Y
X2 X2
a'21 a'22 a'2n
' a a a
_Xn \ _).(n \ | T nl nl 2n _|
_bll b12 bl _Cll C12 Cl dll d12 dl
b21 b22 b2 021 C22 C2 d21 d22 d2
B= NN D=

b, b b A AONEINNG

m

The Vector-Matris: of State Model 2




» State, output, order of a system, and system initial state

» According to Newton’s second Law, the rectilinear motion of
a mass (m) with respect to an input force u(t), the position x
can be expressed as:

2
m%zu(t) ormX—-u=0 (9)

» Developing the I/O and state models:
The 1/0 models: 2
1. When x to be the output : y=x = M dtzy =u(t)

: dy
2. When Output Y=V=X 2 ma—u(t)
2

md Ny
3. the two outputs y,=x and y,=v=X > dt?

m% = u(t)
Example i &




The state space model:

1. Define the two state variables when  x,
then:

Il
>
I
|

\ \ W
X, =X, theStateequation: X, = Eu(t)

outputequation: y =X,
. Al
X, =X, theStateequation: X, :Eu(t)

: Y, DRI
outputequation : = _
Y, 0 1 X, Vector Matrix

Illustration

Erample 1 Contfhued &



The state space model:

. \ 1,
2. Define the two state variable when x, =-6x and x, :_E(Xl)

State equations: % =72%
3
- u()
m
\ 1
OUtpUt equatlon: y X _g Xl then one state equation is given by one of the
definitions itself, and the other state equation is obtained by
)'(1 — —2X2 substituting the two definitions in into equation (9).
3
X, =—Uu(t)
m
outputequation :| 7' |= }/ YRR
Y, 0 }/ lllustration
N 1
Example 1 Contfhued ¢ 2*



»

»

»

»

State vector is the minimum set of variables that
determines the dynamic state of a system.

State vectors are not unique and may choices are possible
for a given system

Output variables can be determined from any choice of
state variable.

State variables may or may not have physical
representation.

Conclusions V&



If x = f(x,u,t) and y = h(x,u, t) are not explicitly time
dependent pointing to the fact that equations (7 & 8):

X=AX+Bu
y =Cx+Du

are constant.

Brier alvout stationary cynamic
systems

15



Open Loop Systems

disturbance disturbance

input _ + YY" |process |, Y output
— | nput | _lcontroller or
transducer plant

» A good model of a process/plant allows us to work out
the input values to achieve the desired output

» The controller cannot compensate for any disturbances.

Contrel ane Modelling of Open Loop )
Systtems



Closed Loop (Feedback) System disturbance disturbance

input + Ip +
. + + rocess | + output
— | INput controller»%—» or R
trans.|

Plant

measurement
transducer |-
or sensor

» all the examples of early control systems involved some form of
measurement of the output.

» The output then is then fedback to be compared to the reference
value.

» Note: the controller now acts on the difference between the input
and output values (scaled by the transducer).

» if the transducers have unity gain i.e. amplify the signal by 1
> the controller acts on the error signal.

Contrel ane Modelling of Open Loop )
Systtems




»

»

»

»

»

»

»

Transfer-function models (Laplace transfer-functions) are
based on the Laplace transform.

Means to represent dynamic models in Laplace domains

Frequency Domain models (frequency transfer functions)
are special case of Laplace domain models, and are based
on Fourier transform

They are interchangeable

Systems with single 1/O can be represented uniquely by one
transfer function

System with 2 or more |/O (input and output vectors) need
several transfer functions

Only minimum knowledge of the theory of Laplace and
Fourier transform is needed to use transfer functions for
modelling

Transfer-function & Fregueney Demalin &



» The Laplace transform converts :
> differentiation into a multiplication by the Laplace variable “s”. And
> Integration into division by “s”.

» Fourier transform — special case of the Laplace transform

By setting the M

Complex (non-real) variable

Where w is the frequency variable.

» The preference of which domain to use depends on the
nature of the problem, input, duration, and the measures.

» Most functions used are in the for of t™ or et or sinwt so

f(t) =y
Laplace & Fourier transiornm &




» The Laplace transform, transforms from time domain to
Laplace domain (complex frequency domain)

» The Laplace transform is an integral transform defined
as:

co

RIS j y(t) exp(—st)dt or Y(s) = Ly(t) (10)
0
s = jw Laplace variable and j is the complex number

L: Laplace operator

» The inverse of Laplace transform: y(t) = L71Y(s)  (11)

Laplace Transform Methods 2



The Laplace transform is linear so as:

if y(t) =k.y(t); thenY(s) =k.Y(s) where k is contant

And Y;(s) is the Laplace Transform of y,(t)

In other words L {y;(t)} = Y;(s)
If y(t) = y1(t) + y,(t); thenY(s) =Y;(s) + Yo(s)

Laplace Transtorm Methoes Cont.

(12)

b



Based on equation (10):

Initial condition

Ly = ] —dt = sY(s) — y(O)/

0
By continuously applying equation (11) we can achieve Laplace
transform of the higher derivatives:

Ly = sL{yt] — y(0) = s[s¥Y(s) —y(0

(13)

- y(0)

s~ Ly = s?Lly(6)] — sy(0) —/y(0) (14)
And

Ly = s3Y(s) — s2y(0) — sy(0) — y(0) R

dny— n s AN 'I ANEAREVARRY
LW SRRV EIAR @ Zy(()) @96)

Laplace Transferm of & Derfvative &




» The Laplace transform time integral foty(r)dr is reached by
the direction application of equation (10):

ie Y(s) = foooy(t) exp(—st)dt orY(s) = Ly(t) (10

00 Vi 00 t

AN Lfy(r)dr = J e‘“jy(r)d AN j (—%)%(e‘“)jy(r)drdt
0

0 0 0 0

Integrating by parts: [ udv = uv — [ vdu results into:

t t o'}
1 00 1
Ljy(r)dr =(—E>e‘5tjy(r)drl \ —j <—§)e‘5ty(t)dt
0 0 0

=0—0+ fooo G) e Sty(t)dt = L foty(r)dr = %Y(S) (17)

Laplace Transform of an Integral 2



» The Fourier transform is the process of converting from time
domain to frequency domain:

(0]

Y(jw) = j y(t) exp(—jwt)dt or Y(jw = Fy(t) (18)

— 00

Where f = cycle frequency and
w = 21 is the angular frequency variable

Fourier inverse:

y(t) = % f Y(jw) exp(jwt) or y(t) = F7Y(jw) 19

Fourfer Transform &




15t order system 1/O model:
output y(¢): L {y(t) = Y(s)}
input x(t): L{x(t)} = X(s)
% + 2y(t) = 6u(t)
Taking the Laplace Transform: Ly = sY(s) — y(0)

sY(s) —y(0) + 2(y) = 6U(s)
2>(s+ 2)Y(s) = y(0) + 6U(s)

y(0) , 6U(s)
9 Y(S) = DD + NS Forced response

Free response

for a linear system, the total response is the sum of the responses to the initial
conditions (the free response) and the input (the forced response) applied

separately (superimposition). ) N

Example, the principle of superimposition




» can determine the Laplace transform of signals from its
definition - rather use table of standard transforms.

» Two basic functions are:

> Unit impulse 6(t)

o 1; t 2 O
> =
Unit step H(t) {O, N
looks like
HO) |
1
o
0 t
Corresponding Laplace transforms: 6(t) < 1 unit impulse
H(t) & % unit step

Laplace Transtorms tor basic signals V&




» Delayed time function: y(t — t)H(t — 1) < e 5'Y(s)

Note that the exponential function is important in solving LDE

) RS AN
Exponential decay: e™*"H(t) < —

For sine and cosine;

sinwt H(t) <

s2 + w?

coswt H(t) <

s2 + w?

More on Laplace Transiorms

)=



And various functions can be included

e %y(tH(t) © Y(s + a)

e MsinwtH(t) <
(®) (s +a)? + w?

(s +a)
(s + a)?+w?

e McoswtH(t) &
and (t)

1
S
n!

t"H(t) <

Sn+1
7

d
t"y(OH@) o (D" == [Y(s)]

te T H(t) &

(s + a)?

Laplace Transteorms cont.

pE



» we are interested in the value at which a signal “settles
down” i.e. the steady state or final value

lim f(t)

t— oo
Given by:
tlim f(t) = lim F(s)
— 00 S—> 00

The theorem stands if only the limit exist (i.e. signalling
reaching a steady state)

Final Value Theorem

pE



» Remember the 15t order LDE I/O example:
AR A R A AN A R AN,

So

Y(s) = y(0 )S+—2 y(0) is a constant

From the linearity problem and standard transform of exponential function:
= y(0) = y(0)e 2t H(¢)

Now consider y(0) = 0 and u(t) = H(t) (the unit step function)

NN % (see slide 25)

And Y(s) = AlEHTHst by partial fraction expansion:
s(s+2) s s+2 YP P '
s~ y(t) = 3H(t) —3e 2tH(t) = 3H(t)(1 — e™2Y) ) \

Staneare transiernm talole



» This response is called the (unit) step response.
» The steady state or final value can be calculated:

Voo = lim y(t) = lim Y (s)
t—ooo s—0

_ 6
RN

Next week more on Transfer functions and dynamical systemes.

Example contihued V&




