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» Modelling and Simulation of Dynamic Systems 

˃ I/O models 

˃ State-space models 

˃ Linear state equations 

˃ Time invariant systems 

˃ Open Loop closed Loop systems 
 

» Laplace Transforms, Transfer Functions, Block 
Diagrams 
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1. Define system boundaries and specifications 

2. Specify system Inputs/Outputs (i.e. system variables) 

3. Understand and estimate the components of the 
system using models 

4. Draw the systems components diagram 

5. Write systems equations: 
˃ physical laws (constitutive),   

˃ continuity equation for through variables, e.g. equilibrium of forces at 
joints, current balance at nodes, …) 

˃ Cross variables (equations for velocity, voltage, pressure drop, …) 

6. Express system boundary conditions and response 
initial conditions using system variables.  
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» State variables are the minimal set of variables that 
describe the dynamic state of a system. 

 

» The state space represents the dynamics of an nth 
order system is defined n first-order differential 
equations – normally coupled. 

» Example of first order linear differential equation: 
𝑥 1 = 𝑥1 + 2𝑥2 
𝑥 2 = 3𝑥1 + 2𝑥2 

We call it coupled because you need the knowledge of one variable to 
find the other.  
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» A state vector x is a column vector of 𝑥1, 𝑥2, … 𝑥𝑛  
variables that describe the state of a dynamic system. 

» 𝑛 is the number of state variables and represents the 
order of the system. 

 

» Property 1: The transformation 𝒈 of 𝑥 𝑡0  to 𝑥 𝑡1  with 
respect to input 𝒖 𝑡0, 𝑡1  in the interval 𝑡0, 𝑡1 : 

𝑥 𝑡1 = 𝒈(𝑡0, 𝑡1, 𝑥 𝑡0 , 𝒖 𝑡0, 𝑡1         (1) 

 

Each excitation creates a trajectory – n trajectory will create state-space   
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» Property 2: System output 𝒚 𝑡1 is determined by the 
state 𝑥(𝑡1) and input (excitation) 𝑢(𝑡1) at any given 
time 𝑡1. Expressed as: 

𝑦 𝑡1 = 𝒉(𝑡1, 𝑥 𝑡1 , 𝒖 𝑡1 )        (2) 

 

In other words system output at time 𝑡1 depends on the 
following factors: 

1. Time 

2. State vector 

3. The input  Transformation ℎ has no 
memory 
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» A state model thus consists of n state equations (first-
order ordinary differential equations (time domain), 
which are coupled.  

» In the vector for expressed as: 

 
𝑥 = 𝑓 𝑥, 𝑢, 𝑡               3  
𝑦 = ℎ 𝑥, 𝑢, 𝑡               4  

 

» Example of first order linear differential equation: 
𝑥 1 = 𝑥1 + 2𝑥2 
𝑥 2 = 3𝑥1 + 2𝑥2 

We call it coupled because you need the knowledge of one variable to 
find the other.  

 

First order 
Differential  
Equation  

Algebraic  
Output  
equation 
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An nth order linear state model is given by the differential 
state equations as: 
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The algebraic output equations are thus: 

 

 

 

 

 

 

 

Where          are the output variables of the system 
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» The vector-matrix form of equations (5 and 6): 
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» State, output, order of a system, and system initial state 

» According to Newton’s second Law, the rectilinear motion of 
a mass (m) with respect to an input force u(t), the position x 
can be expressed as: 

 

 

 

» Developing the I/O and state models: 

 The I/O models: 

1. When x  to be the output : y=x   

 

2. When Output                       

 

 3. the two outputs                                            

11 

0or    )(
2

2

 uxmtu
dt

xd
m  (9) 

)(
2

2

tu
dt

yd
m 

xvy  )(tu
dt

dy
m 

xvyxy  21   and   

)(

)(

2

2

1

2

tu
dt

dy
m

tu
dt

yd
m







The state space model: 

1. Define the two state variables when                              
then: 

 

 

 

12 

dt

dx
xxx  21   ;  

1

221

   :equationoutput 

)(
1

   :equation State    the

xy

tu
m

xxx



 





























2

1

2

1

221

10

01

y

y
 :equationoutput 

)(
1

   :equation State    the

x

x

tu
m

xxx 

Vector Matrix 
Illustration 



The state space model: 

 

2. Define the two state variable when 

State equations:   

  

  

output equation:   

13 

)(
2

1
  and    6 121 xxxx 

)(
3

2

2

21

tu
m

x

xx









1
6

1
xy  then one state equation is given by one of the  

definitions itself, and the other state  equation is obtained by  
substituting the two definitions in into equation (9). 

)(
3

2

2

21

tu
m

x

xx









































2

1

2

1

3
10

0
6

1

y

y
 :equationoutput 

x

x Vector Matrix 
Illustration 

−2 × (−
1

6
) 



» State vector is the minimum set of variables that 
determines the dynamic state of a system. 

» State vectors are not unique  and may choices are possible 
for a given system 

» Output variables can be determined from any choice of 
state variable. 

» State variables may or may not have physical 
representation. 
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If 𝑥 = 𝑓 𝑥, 𝑢, 𝑡  and 𝑦 = ℎ 𝑥, 𝑢, 𝑡  are not explicitly time 
dependent pointing to the fact that equations (7 & 8):  

 

 

 

are constant. 
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Open Loop Systems 

 

 

 

 

» A good model of a process/plant allows us to work out 
the input values to achieve the desired output 

 

» The controller cannot compensate for any disturbances. 
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Closed Loop (Feedback) System 
 
 
 
 
 
» all the examples of early control systems involved some form of 

measurement of the output. 
» The output then is then fedback to be compared to the reference 

value. 
» Note: the controller now acts on the difference between the input 

and output values (scaled by the transducer). 
» if the transducers have unity gain i.e. amplify the signal by 1 

˃ the controller acts on the error signal. 
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» Transfer-function models  (Laplace transfer-functions) are 
based on the Laplace transform. 

» Means to represent dynamic models in Laplace domains 

» Frequency Domain models (frequency transfer functions) 
are special case of Laplace domain models, and are based 
on Fourier transform 

» They are interchangeable 

» Systems with single I/O can be represented uniquely by one 
transfer function 

» System with 2 or more I/O (input and output vectors) need 
several transfer functions 

» Only minimum knowledge of the theory of Laplace and 
Fourier transform is needed to use transfer functions for 
modelling 
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» The Laplace transform converts : 
˃ differentiation into a multiplication by the Laplace variable “s”. And 

˃ Integration into division by “s”. 

 

»  Fourier transform – special case of the Laplace transform 

 

By setting the    𝑠 = 𝑗𝜔 

 

Where 𝜔 is the frequency variable. 

 

» The preference of which domain to use depends on the 
nature of the problem, input, duration, and the measures. 

» Most functions used are in the for of 𝑡𝑛 𝑜𝑟 𝑒𝑡 𝑜𝑟 𝑠𝑖𝑛𝜔𝑡 so 
𝑓 𝑡 = 𝑦 
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Complex (non-real) variable 



» The Laplace transform, transforms from time domain to 
Laplace domain (complex frequency domain) 

» The Laplace transform is an integral transform defined 
as: 

 

𝑌 𝑠 =  𝑦 𝑡 exp −𝑠𝑡 𝑑𝑡   𝑜𝑟 𝑌 𝑠 = 𝐿𝑦(𝑡)

∞

0

 

𝑠 = 𝑗𝜔 Laplace variable and j is the complex number 

L: Laplace operator 

 

» The inverse of Laplace transform: 𝑦 𝑡 = 𝐿−1𝑌(𝑠) 

 

20 

(10) 

(11) 



The Laplace transform is linear so as: 

 

                                                                    

 

And  𝑌1 𝑠   𝑖𝑠 𝑡ℎ𝑒 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑦1(𝑡) 

 

In other words 𝐋 𝑦1(𝑡) = 𝑌1 𝑠   

If 𝑦 𝑡 =  𝑦1 𝑡 + 𝑦2 𝑡 ;   𝑡ℎ𝑒𝑛 𝑌 𝑠 = 𝑌1 𝑠 + 𝑌2(𝑠)  
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𝑖𝑓 𝑦 𝑡 = 𝑘. 𝑦(𝑡);    𝑡ℎ𝑒𝑛 𝑌 𝑠 = 𝑘. 𝑌 𝑠   𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑛𝑡 
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Based on equation (10): 

 

𝐿𝑦 =  𝑒−𝑠𝑡
𝑑𝑦

𝑑𝑡
𝑑𝑡

∞

0

= sY s − y(0) 

By continuously applying equation (11) we can achieve Laplace 
transform of the higher derivatives: 

 𝐿𝑦 = 𝑠𝐿 𝑦 𝑡 − 𝑦 0 = 𝑠 𝑠𝑌 𝑠 − 𝑦 0 − 𝑦 0  

 
∴ 𝐿𝑦 = 𝑠2𝐿 𝑦(𝑡) − 𝑠𝑦 0 − 𝑦 (0) 

And  

𝐿𝑦 = 𝑠3𝑌 𝑠 − 𝑠2𝑦 0 − 𝑠𝑦 0 − 𝑦(0)  

𝐿
𝑑𝑛𝑦

𝑑𝑡𝑛
= 𝑠𝑛𝑌 𝑠 − 𝑠𝑛−1𝑦 0 − 𝑠𝑛−2𝑦 0 − ⋯−

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
(0) 
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Initial condition 
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» The Laplace transform time integral  𝑦 𝜏 𝑑𝜏
𝑡

0
 is reached by 

the direction application of equation (10): 

 ie  𝑌 𝑠 =  𝑦 𝑡 exp −𝑠𝑡 𝑑𝑡   𝑜𝑟 𝑌 𝑠 = 𝐿𝑦(𝑡)
∞

0
 

 

 

 

Integrating by parts:  𝑢𝑑𝑣 = 𝑢𝑣 −  𝑣𝑑𝑢 results into: 

𝐿 𝑦 𝜏 𝑑𝜏 =

𝑡

0

−
1

𝑠
𝑒−𝑠𝑡 𝑦 𝜏 𝑑𝜏 

∞

0
−

𝑡

0

 −
1

𝑠
𝑒−𝑠𝑡𝑦 𝑡 𝑑𝑡

∞

0

 

= 0 − 0 +  
1

𝑠
𝑒−𝑠𝑡𝑦 𝑡 𝑑𝑡

∞

0
    𝐿  𝑦 𝜏 𝑑𝜏 =

1

𝑠
𝑌(𝑠)

𝑡

0
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(10) 

𝐿 𝑦 𝜏 𝑑𝜏 =  𝑒−𝑠𝑡
∞

0

 𝑦 𝜏 𝑑 𝜏𝑑𝑡

𝑡

0

=  −
1

𝑠

𝑑

𝑑𝑡
(𝑒−𝑠𝑡) 𝑦 𝜏 𝑑𝜏𝑑𝑡

𝑡

0

∞

0

𝑡

0
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» The Fourier transform is the process of converting from time 
domain to frequency domain: 

𝑌 𝑗𝜔 =  𝑦 𝑡 exp −𝑗𝜔𝑡 𝑑𝑡  𝑜𝑟 𝑌(𝑗𝜔 = 𝐹𝑦(𝑡)

∞

−∞

 

Where 𝑓 = cycle frequency  and  

𝜔 = 2𝜋 is the angular frequency variable 

 

Fourier inverse: 

𝑦 𝑡 =
1

2𝜋
 𝑌 𝑗𝜔 exp 𝑗𝜔𝑡  𝑜𝑟 𝑦 𝑡 = 𝐹−1𝑌(𝑗𝜔)

∞

−∞
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1st order system  I/O model: 

 output  𝑦 𝑡 : L 𝑦 𝑡 = 𝑌(𝑠)  

 input  𝑥 𝑡 : L 𝑥 𝑡 = 𝑋(𝑠) 

 
𝑑𝑦

𝑑𝑡
+ 2𝑦 𝑡 = 6𝑢(𝑡) 

Taking the Laplace Transform:  L 𝑦 = 𝑠𝑌 𝑠 − 𝑦 0  

 𝑠𝑌 𝑠 − 𝑦 0 + 2 𝑦 = 6𝑈 𝑠  

  𝑠 + 2 𝑌 𝑠 = 𝑦 0 + 6𝑈 𝑠  

  𝑌 𝑠 =
𝑦(0)

𝑠+2
+

6𝑈(𝑠)

𝑠+2
 

 

for a linear system, the total response is the sum of the responses to the initial 
conditions (the free response) and the input (the forced response) applied 
separately (superimposition). 
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Free response 

Forced response 



» can determine the Laplace transform of signals from its 
definition - rather use table of standard transforms. 

» Two basic functions are: 
 

˃ Unit impulse 𝛿 𝑡  

˃ Unit step H(t)= 
1,                   𝑡 ≥ 0
0,         𝑡 < 0           

              

 

looks like 

 

 

 

 

Corresponding Laplace transforms: 𝛿 𝑡 ↔ 1             unit impulse 

                                                                𝐻(𝑡) ↔
1

𝑠
          unit step 
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» Delayed time function: 𝑦 𝑡 − 𝜏 𝐻 𝑡 − 𝜏 ↔ 𝑒−𝑠𝜏𝑌 𝑠  
 

Note that the exponential function is important in solving LDE 

 

Exponential decay: 𝑒−𝑎𝑡𝐻 𝑡 ↔
1

𝑠+𝑎
 

 

For sine and cosine: 

 

𝑠𝑖𝑛𝜔𝑡 𝐻 𝑡 ↔
𝜔

𝑠2 + 𝜔2
 

 

𝑐𝑜𝑠𝜔𝑡 𝐻(𝑡) ↔
𝑠

𝑠2 + 𝜔2
 

 

 

 

27 



And various functions can be included  

 

 

 

 

 

and 

𝑡𝐻 𝑡 ↔
1

𝑠2
 

𝑡𝑛𝐻 𝑡 ↔
𝑛!

𝑠𝑛+1
 

𝑡𝑛𝑦 𝑡 𝐻 𝑡 ↔ −1 𝑛
𝑑𝑛

𝑑𝑠𝑛
𝑌 𝑠  

𝑡𝑒−𝑎𝑡𝐻(𝑡) ↔
1

(𝑠 + 𝑎)2
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𝑒−𝑎𝑡𝑦 𝑡 𝐻 𝑡 ↔ 𝑌 𝑠 + 𝑎  
 

𝑒−𝑎𝑡𝑠𝑖𝑛𝜔𝑡𝐻(𝑡) ↔
𝜔

𝑠 + 𝑎 2 + 𝜔2 

 

𝑒−𝑎𝑡𝑐𝑜𝑠𝜔𝑡𝐻(𝑡) ↔
(𝑠 + 𝑎)

(𝑠 + 𝑎)2+𝜔2 



» we are interested in the value at which a signal “settles 
down” i.e. the steady state or final value 

 
lim
𝑡→∞

𝑓(𝑡) 

Given by:         
lim
𝑡→∞

𝑓 𝑡 = lim
𝑠→∞

𝐹(𝑠) 

 

The theorem stands if only the limit exist (i.e. signalling 
reaching a steady state) 
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» Remember the 1st order LDE I/O example: 

If 𝑢 𝑡 = 0     ∀𝑡   ∴   𝑈 𝑠 = 0 

So 

𝑌 𝑠 =
𝑦(0)

𝑠+2
= 𝑦(0)

1

𝑠+2
           y(0) is a constant 

From the linearity problem and standard transform of exponential function: 

∴ 𝑦 𝑡 = 𝑦 0 𝑒−2𝑡𝐻(𝑡) 

Now consider 𝑦 0 = 0  𝑎𝑛𝑑 𝑢 𝑡 = 𝐻 𝑡  𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

∴ 𝑈 𝑠 =
1

𝑠
  (see slide 25)   

And     𝑌 𝑠 =
6

𝑠(𝑠+2)
=

3

𝑠
−

3

𝑠+2
            by partial fraction expansion: 

∴ 𝑦 𝑡 = 3𝐻 𝑡 − 3𝑒−2𝑡𝐻 𝑡 = 3𝐻(𝑡) 1 − 𝑒−2𝑡        
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» This response is called the (unit) step response. 

» The steady state or final value can be calculated: 

 
𝑦𝑠𝑠 = lim

𝑡→∞
𝑦 𝑡 = lim

𝑠→0
𝑌(𝑠) 

= lim
𝑠→0

𝑠 ×
6

𝑠(𝑠 + 2)
= 3 

 

 

 

Next week more on Transfer functions and dynamical systems. 
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