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The World of Deterministic and 
Probabilistic Events

 What is Deterministic?

 What is Probabilistic?
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Events
 An Event is a collection of outcomes of things that 

happen
Or
 A set of outcomes can cause an event (recall our 

discussions about input data)
 Events that happen with certainty are called 

Deterministic 
 Events that may or may not happen are associated 

with probability (Random)

Examples?
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Role of Systems Analyst

1. Understand and capture random behaviour
2. Interpret the natural and socio-economical occurrences 

into mathematical models
3. Use those models to describe current behaviour and 

predict the behaviour of the system 

Tell where and when do we use this? In your personal 
life or at work? 

Others (Experts) do it for you to make the world 
around you function
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Probability & Statistical Inference

 We are scratching the surface here

 I encourage you to read more about probability 
theory
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Probability 

The basic concept:
 Real-valued set function denoted by P(E)
 Assigns probability values between 0 and 1 for event E
 The sample space is S

P(E) is therefore called the probability of event E

Provided…
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Probability continued
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Probability Theorems

 Here we will discuss 2 out of 4 and I will leave the 
other 2 for you to investigate.

[Good starting point: R.V. Hogg and E. A. Tanis (2010)]

Theorem 1: The probability of an event occurring in a 
sample space is equal to 1 minus the probability of 
that event not occurring 

For an event E:  
)E(P1)E(P ′−=
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Theorem 2

 Theorem 2: If E is a subset of F then: 

)F(P)E(PFE ≤⊂   then 
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Conditional Probability

 Conditional probability is about the probability of an 
event E occurring provided that event F has occurred

It can be expressed as:

FE ∩

E F
S

Figure 3.1: Venn diagram showing conditional probability
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Conditional Probability continued
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Example

A manufacturer in China produces two brands of 
Volleyballs (indoor (i) and beach (b)) and sells each 
type in packs of 6. A random quality control exercise 
requires an operator to open a pack and test the balls 
for any defect. The operator will then report the 
number of defects and the type of the ball.

The sample space (type, number of defects) in this 
example will be: 

)}6,b(),5,b(),4,b(),3,b(),2,b(),1,b(),0,b(),6,i(),5,i(),4,i(),3,i(),2,i(),1,i(),0,i{(S =
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Example continued

Each incident (detected Volleyball type and number of 
defects) could be associated with a probability of 
occurrence.

005.0)6,i(P)5,i(P)4,i(P
01.0)3,i(P
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38.0)0,i(P

===
=
=
=
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So …

The probability that beach volleyball pack is selected 
and at most 2 of the ball to be defective is:

Why? See slide 7

43.0)}2,b(),1,b(),0,b{(P =
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Still on the example

The conditional probability for finding at most 1 
defective volleyball provided the inspected pack is an 
indoor volleyball pack can be expressed as:
– Event E shows the incidences of at most 1 defective 

ball:

– event F shows selection of an indoor pack: 

Therefore:

)}1,b(),0,b(),1,i(),0,i{(

)}6,i),...(1,i(),0,i{(

86.0
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48.0
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)FE(P)FE(P ===

∩
=



16

Random Events and Statistical Inference

I think a Statistician’s job is to:
1. Collect and analyse data for the purpose of 

understanding a trend and predicting behaviour
2. Determine pattern despite variability
3. Recognise pattern of a random behaviour, minimise 

the errors in their interpretation

Variability in data is the recipe for uncertainty
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A few concepts for my future Discrete 
Event Simulation Experts

1. Random Experiments: conducting a number of 
experiments in a specified length of time where the 
outcome is not certain. For example recording the 
time between arrivals of people at an airline check-in 
counter between 6:00 to 21:00. 

2. Sample Space: is a collection of outcomes of 
random events that took place in a specified time. 
For example, the recorded passenger processing 
times (in minutes) during the working hours at the 
same check-in counter (e.g. 6:03, 6:08, 6:15, 6:34… 
20:39, 20:52) 
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Concepts continued

3. Random Variables: values of outcomes observed 
during an experiment denoted by X (e.g. X1 = 6:03, 
X2 = 6:08, …Xn = 20:52). 

4. Random Sequence: a series of random values that 
would repeat itself in time. 

Let’s talk about Penalty Shoot Outs! And why top 
Goalkeepers can be good statisticians!
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Figure 3.2 A Clever Goalkeeper
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Figure 3.2: Random variable distribution for the penalty shooter 
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Concepts continued

5. Probability Mass Function (pmf): discrete random 
variables can assume positive countable (integer) random 
values. For example the number of people X that call a call 
centre between 9:00-10:00. 

A set of probabilities that is associated with a random variable 
X can create its pmf.  Thus if the possible values of a random 
variable X is given by the non-negative integers, then the 
probability mass function for every k in the range of X is given 
by the probabilities of:

∑ ==≥=
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Concepts continued

a. Cumulative Distribution Function (cdf):   gives the 
accumulated probability up to and including to the point that it 
has been calculated. It can be expressed as: 

b. Probability density function: is the derivative of the 
cumulative distribution function and is used to express the 
probability of an interval (values between two numbers) 
occurring. An example of interval is the time between calls that 
occur 9:00-10:00 in a call centre.

a)k(f)aX(P)a(F
ak
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Mean, Variance and Standard Deviation 

We use Mean, Variance and Standard Deviation to 
explain the randomness of random variables and the 
behaviour of distribution functions.
– Mean: is the arithmetic average of a large number of random 

observations.

– Variance: represents the variability of random observation.

– Standard Deviation: is the square root of the variance.
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Some of the Important Distribution 
Functions

For the purpose of Discrete Event Simulation we:
1. Use distribution functions to match the input with 

known functions
2. Use goodness-of-fit techniques to find the most 

fitting function
3. Implement statistical test (e.g. Kolgomorov-

Smironov or Chi Square) to help find most fitting 
function (min. error)

4. Use the distribution function to generate random 
numbers/variables for prediction 
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Uniform-Discrete Distribution
Imagine throwing a fair die several times and counting the number 

of times each number comes. 
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Figure 3.4: Uniform Discrete Event probability mass function (pmf)



25

Uniform-Discrete Distribution continued

The probability mass function (pmf) of random variable 
N given two integers a and b can be expressed as:
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Binomial Distribution

when you carry out an experiment that has two possible 
outcomes for n number of times.

X is the number of times that outcome k has occurred  
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Binomial Distribution Example

What is the likelihood of having 6 heads when tossing a 
fair coin 10 times?

20.0)5.0()5.0(
)!4(!6

!10)6(P 46 ==
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Poisson Distribution

Deals with the random number events that occur in a given time. 
For example; the  average number of people that may call a 
call centre. The random variable N therefore follows a Poisson 
distribution if there is a            so that the probability mass 
function can be expressed as: 
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Poisson continued
For example, if the number of calls to a call centre follows a 

Poisson distribution with mean value of      =9 per hour. The 
likelihood of 6 people calling between 12:00-13:00 would be 
9.1%.
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Figure 3.6: Poisson probability distribution function for a mean value of  λ

λ
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Exponential Distribution
 One of the most relevant models in continuous probability 

modelling, 

 The Exponential distribution has no memory. That means 
probability of an incident occurring is independent from the 
previous incident. 

 The random variable X follows an exponential distribution if its 
probability density function can de expressed as:
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Exponential Distribution Example
In a busy airport, aircrafts arrive based on a Poisson process with 

mean rate of 10 per hour on a single runway.  What is the 
probability of the runway waiting more than 8 minutes for the 
first aircraft to arrive?
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Exponential Distribution continued

β/1

f(x)

Figure 3.7: Probability density function for exponential distribution with mean of β
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Normal Distribution

The random variable X follows a Normal distribution with     as 
its mean value and      standard deviation when the 
probability density function can be expressed as:
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Normal Distribution continued

f(x)

µ

Figure 3.8: Probability density function for Normal distribution with mean of µ
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Triangular Distribution

A random variable follows a Triangular distribution if it has a 
minimum a, maximum b and most likely occurrence (mode) of 
m. The probability density function is then expressed as:
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Triangular Distribution continued
f(x)

Figure 3.9: Probability density function for Triangular distribution

a bm
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Today’s discussion

 Basics in Probability
 Statistical inference
 Key concepts in Discrete Event Simulation (DES)
 Relationship between DES and distribution functions
 A number of the distribution functions

Next Week Markov Process and Markovian Queues 
and to Chapter 4 of the course book Discrete Event 
Simulation Environment. 
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