Brunel

UNIVERSITY

WEST LONDON
School of Engineering and Design

MSc Programme

Course notes

INTRODUCTION TO SYSTEMS MODELLING & SIMULATION
Edition 3: October 2011
Alireza Mousavi

With Special Thanks to Alexander Komashie, Ali Moen-Taghavi and Vahid
Pezeshki

Electronics and Computer Engineering / Advanced Manufacturing and Enterprise
Engineering

School of Engineering and Design, Brunel University

A. Mousavi — Brunel University, UK 1

A. Mousavi — Brunel University, UK

Important Note to the Students

This course book is written in two parts, Part A and Part B. Part
A mainly covers the theoretical part of the module. Part B covers the
practical part of the module. So we may not exactly follow the
chapters and the subjects in the numerical sequence of 1, 2, 3... as

they appear in this book.

To maximise your learning experience and ensure that all the
materials discussed in the module are covered, in addition to this

book, I recommend the following further readings:
On Theory:
1. R. G. Askin and C. R. Standridge (1993); Modelling and Analysis

of Manufacturing Systems; John Wiley & Sons, Inc.

2. M. P. Groover (2001); Automation, Production Systems, and
Computer Integrated Manufacturing; Second Edition; International

Edition; Prentice Hall International, Inc.

3. G. L. Curry and R. M. Feldman (2011); Manufacturing Systems
Modeling and Analysis; Second Edition, Springer.

On Practice:

4. D. Kelton, R. Sadowski and N. B. Swets (2010), Simulation with
Arena 5th Int. Edition, McGraw-Hill.

A. Mousavi — Brunel University, UK 3

Table of Content

P A R T A e 10
CHAPTER ...ttt et beesnee s 10
INTRODUCTION TO SYSTEMS AND SYSTEMS ENGINEERING............... 10
1.1 System and System ENQINEEIING.......ccevviieieeiieiie et 11
1.1.1 The Mechanical SYStEMcccocoiiiiiiiiiiieee e, 13
1.1.2 The Adaptive SYStEMccccoeiieiicie et 15
1.1.3 The Viable SYStemccoiiii i 16

1.2 Data Modelling and Systems Performance Analysis..........c.ccccocevvenenne. 19
CHAPTER 2.ttt 22
An Introduction to Simulation Modelling............ccooeieiieii i, 22
2.1 What is SIMUIALION.......cuiiiiiiiiicee e 23
2.2 Importance and popularity of simulation.............ccccceeviiiieie e, 23
2.3 Types of SIMUIATIONcoooiiiiiiie s 25
2.4 Modelling and types of models.........c.cccoveiieiiiiiici e 26
2.5 Fundamental principles of sSimulation............ccccooviiiinniinice, 27
2.6 Steps to be taken for successful simulation projectc.ccccevveiiieennnenn 29
2.7 Simulation modelling appliCationscccveiveiiierii i 30
2.7.1 Manufacturing AppliCationccccveveiieiveieceece e 30

A. Mousavi — Brunel University, UK 4

2.7.2 Logistics and transport problems for simulation modelling and

ANAIYSIS e 39
2.7.3 Simulation of warehouse and distribution systems..............c.ccceue... 39
CRAPLET 3. 43
A Brief Introduction to Probability and Statistical Inferenceccccceevvinnne. 43
3.1 Our World of Deterministic and Probabilistic Events..............c.cc.cccevaie. 44
3.2 Probability and Statistical inferencecccocevveveiveviiecc i, 44
32,1 Probabilitycooiiiiiiieieee e 45
3.2.2 Random Events and Statistical inference..........ccccccoceveveinenennnn, 47

3.3 Some of the Important Distribution FUNCLIONSccceveiiieiieeieiienen, 50
3.4 MArKOV PrOCESS.....c.civiieiietiiiie ittt 55
341 MarkoV ChaiNS......cccveieieiiiiiiesie e 56
3.4.2 Markovian QUEUESc.ceuereeuerierireieeeesieeeesseessaeseesseesseessesneessens 59
CHAPTER 4.t Error! Bookmark not defined.
The Simulation Modelling EnVironment.............cccovve i 61
4.1 Steps for SIMUlAtion STUYccooviiiiiriiiie e 62
4.1.1 A model classification SCheme...........ccccooveviiiiiiiniiiicccee 64

4.2 INPUE DAt ANAIYSIS.oviiiiiiiiiiiiieieie e 66
4.2.1 Techniques for the Steady State Simulation.............cccccccovvviieennnenn 71

4.3 Simulation EXperiment DeSIgNccovveiirieiieieeie e 74
4.3.1 Response surfaces and metamodelsS..........cccevvveveiveresieneene s 75

A. Mousavi — Brunel University, UK 5

PART B e 79
(O T o) (= TSSO 79
Simulation Modelling with ARENA: An Introduction to Arena Software Packagg
5.1 Anintroduction to the Arena simulation software.............ccccccvvviernnnn, 80
5.2 Arena’s hierarchical StrUCtUIEcccocuveeiiiiee i 80
5.3 A quick tour of the Arena environmentccceveveeiineieiieniese e 82
5.4 Review Of DASIC CONCEPLS.......evvrieiiieiieriesiesie st 84
541 ENUEIES ..o 84
5.4.2 ATIDULES. ..o 84
543 Variablescoooiiiiiiiii s 85

9. 4.4 RESOUICESooviieiiiiie ittt 85
545 QUEUBS. ..ottt sttt ettt ettt ee e 86
546 TraNSPOITEIS ...vviiiiiieiiii ettt e e aee e 86
547 CONVEYOIS ...ttt ettt 87
5.4.8 Statistical aCCUMUIALOrScociiiiiiiiiiic e 87
549 Time PersiStent StatiSTICSc.cvvrereriiirisieeee e 88
5.4.10 Observed (Tally) StatiStiCSccccvvvevieiii e 88
5.4.11 COoUNTEN SEALISTICScveeeeeiecieeee e 89

5.5 The building bIOCKS IN Arena..........cccoiveiiiieiieiece e 89

A. Mousavi — Brunel University, UK 6

5.5.1 FIOWChArt MOTUIBS........oee oo 89

552 Data MOAUIESccooiiiiiiiiiiieieee e 91

5.6 Three (3) basic MOAUIES.........cccueiiiiiiieee e 91
5.6.1 Create MOUUIEocveriiiiiiieieire e 91
5.6.2 ProCess MOUUIEcceiiiiiiiieieee s 95
5.6.3 DiSP0Se MOUUIE........cceeiuiiieieece e 102

5.7 Model 5-1: Basics of modelling in Arena...........ccooeviieninennniciennen, 103
5.7.1 Building the model............c.ccoveiiiiiii e, 104
5.7.2 Before running the modelocveiiiiiiiiii e, 107
5.7.3 Running the model............cooiiiiiiii e, 110
574 Viewing the reSUILScceiieiicie e, 112
CHAPTER 6.ttt 117
Simulation and Modelling Using Arena, the Basic Process Panel...................... 117
6.1 INrOQUCTION ...t 118
6.2 The BasiC Process Panel ... 118
6.2.1 Decide MOAUIE.........ccoiiiiiiieee e 119
6.2.2 Batch Module...........cooooiiiiii 127
6.2.3 Separate Moduleccooiiiiiii 128
6.2.4 ASSIGN MOAUIEooiiiiiiie s 131
6.2.5 Record Module............ooeiiiiiiiiec e 132
6.2.6 ENtity MOCUIEocvveiiiie s 133

A. Mousavi — Brunel University, UK 7

6.2.7 QUEUE MOUIB.......ccviiiieiiie et 134

6.2.8 Resource Module ..o 136
6.2.9 Variable Moduleccooiiiii e, 137
6.2.10 Schedule MOdUIEcooeiiiiiici e 139
6.2.11 SEEMOUIE ... 141
CHAPTER 7 ..ottt st b e e a s 143
Simulation and Modelling Using Arena (3):......cccovreririeienenie et 143
Modelling a Typical Recycling and Reverse Logistics Problem........................ 143
7.1 INEFOTUCTION ...t 144
7.2 A Reverse Logistics Problem..........cccciiveiiieiiie i 145

7.3 Model 7.1: Modelling the Reverse Logistic Flow of an Electronic

Company 146
7.2.1 The modelling approach ..., 148
7.2.2 Building the model...........cccooveviiiiiii e 150
7.2.3 Running the model...........coooiiiiiii e, 170
7.24 Viewing the reSUltScccooviiiii i 172
7.3 Model 8.2: Enhancing the modelccoo i, 173
7.3.1 RESOUICE SEALESeevieeiiiieiiiesieeee et 174
7.4 Model 8.3: Adding animationscccoevevieiiieeiieie e 179
7.4.1 Changing entity PICTUIESc.coveieiiereeie e 182
7.4.2 AddiNg reSOUrCe PICTUIEScovvvieiiieieiie e 184

A. Mousavi — Brunel University, UK 8

7.4.3 Adding variables and plots............ccccevviieiienincc s 185

7.5 Model 7.4: Entity Transferscccoovvienieeiiiie e 187
7.5 1 SEALIONS. ..o 188
7.9.2 ROUES ..ottt s 190
7.5.3 Animation enhanCementcccceviiiiiiinieieeee e 195

A. Mousavi — Brunel University, UK 9

PART A

CHAPTER 1

INTRODUCTION TO SYSTEMS AND SYSTEMS
ENGINEERING

This Chapter Covers:

1. Definition of Systems
2. Systems Schools of Thought

3. Challenges that Systems Managers Face

A. Mousavi — Brunel University, UK

10

1.1 System and System Engineering

A system is a set of interacting elements that seek a common goal. It can
represent a transformation process in which it converts a set of inputs into a set of
outputs. The inputs and outputs of a system are the main interfaces between the
system and the outside world. The process within a system encompasses the totality of

constituent elements including objects and their relationships. (Figure 1.1)

INPUT PROCESS @

Figure 1.1: Schematic representation of a system

A system may represent ongoing processes, and at any time the state of one or
more objects within the system may change (state change). A system consists of a
number of different elements that normally follow a specific logic and discipline®. The
property and behaviour of these elements contribute to the property and behaviour of
the system as a whole and in an organised manner. So a system can be defined as a
collection of components which are interrelated in an organised way and work
together - e.g. people and/or machines- towards the accomplishment of certain logical
and purposeful end. This definition implies that a system must have the following

features:

1. An assembly of components: These components are the structural, operation,

and flow parts of the system which can be individually identified. System components

can also be identified as input, process, output, feedback control and constraints. The

! Although in modern systems and mathematics “Chaos” has become a fascinating subject.

A. Mousavi — Brunel University, UK 11

input and output in a system may sometimes also be referred to as the cause and

effect, respectively.

2. Components connected in an organised manner: This indicates that the

relationship between system components is important. Each component is related
directly or indirectly to every other component in the system and is affected by them.
Without relationships there will be no system.

3. A logical objective or purpose: For every output or effect, there exists a definite
set of inputs of causes that influence and produce the expected output.

4. Components which work together towards the common objective: It is the

totality of the components which together with their attributes and relationships,

constitute a particular system and provide the output for each given set of inputs.

In order to design or study the state of a system, a systems engineer should be

able to:

e Identify the components of the system that they are designing and/or

studying;

e Understand the role and the relationship between the components of the

system;

e Recognise and capture the logical relationship between the components

and the sets of inputs and outputs of the system; and

e Infer from the sets of inputs, outputs and the interrelationship between the
system components, the state of the system (if it is to be designed) or the

objectives of the system (if it already exits).

Systems Engineering therefore, not only requires theoretical knowledge but also
the ability to visualise things in their totality. So you could consider it to be a form of
Art!

Using the same analogy one could consider having the capability to design,
maintain and interpret the state of something using scientific means makes one a
Systems Engineer. A Mechanical Systems Engineer is an engineer that studies the

A. Mousavi — Brunel University, UK 12

relationship between mechanical entities and designs mechanical systems. An
electrical or electronics engineer has a strong appreciation for electrical or electronic
components and their interrelationship, so they can build complex control systems
that manage and predict the inputs and outputs of an electronic system. This analogy
can be extended to other systems e.g. manufacturing, financial, transport, aerospace

... In short all of us are in one way or another Systems Engineers!

There are three schools of thought in approaching systems. Some scholars
approached systems as a set of predefined interlinked components (Mechanical
Systems). The Organists challenged the static world view of Mechanists by
introducing human factors (Adaptive Systems). And finally, the modern Sustainable
Systems Theorists that try to explain the state of systems by understanding the more
complex interrelationships between the building blocks of the system and the systems

effect on its environment (Viable Systems).
1.1.1 The Mechanical System

From a Mechanists point of view, a system is the aggregation of interrelated parts
where the whole is equal to sum of parts. The constituents of a mechanical system are
standard parts with defined relationship between each component (e.g. bicycle, car,
computer etc). The emphasis here is on the performance of each part, in which they
follow pre-determined and repetitive set of rules and functions to fulfil specified

objective(s).

Other features of Mechanical systems are that they have minimal adaptability to
the changes that happen in their environments. They are designed as closed feedback
loops and any sudden changes to the environment may significantly impact their

performance and survival.

For example, a bicycle is a mechanical system that consists of a number of
components that are joined together for a specific purpose. A missing component of a

bicycle renders it as an incomplete bike or obsolete apparatus.

A. Mousavi — Brunel University, UK 13

Mechanical System

Algorithmic
commands

Repetitive

xamples:
Bicycle

computers
computer networks
furniture

Predetermined
Tasks

Stable
Environment

Minirmal
Adaptability

Figure 1.2: A schematic representation of a Mechanical System
Some analogy and food for thought...

+ Imagine how a computer would be if it does not get regular software or

hardware updates...

* Imagine if you leave a bike in the outdoors for a long time...

For a long time?, the Mechanists enjoyed and propagated their view of system
very successfully. But with better understanding of nature and theories of adaptation,
fuelled with advances in technology the first challenges to Machinists came from
biologists and later human relations theorists. The understanding of the principles of
natural selection and evolution of biological systems® will make a very useful read to
appreciate the foundations of adaptive systems. But in order to keep this chapter short
and straight to the point, we will only concentrate on industrial adaptive systems in

which human relationships and smart computing generates synergetic properties.

2 Probably from the dawn of civilisation, and later development of science and technology.

% Charles Darwin.

A. Mousavi — Brunel University, UK 14

1.1.2 The Adaptive System

The Organists challenged the Machinists, by arguing that respect for people social

and psychological needs will improve the effectiveness and efficiency of operations.

The organists describe a system as a set of interlinked elements with synergetic
properties. The whole can be greater than simply the sum of the constituents of the
system. The components of the system constantly or at defined intervals interact with
their environment (open architecture). They sense their surroundings and try to correct
their internal relationships to respond to the changes in their environments. Also they
are capable of adapting to the changes of their input signal and adapt their processes
to produce the expected output. Thus, adaptation and survival in complex situations

are the objectives that adaptive systems pursue.

Raw Material
E Process
nergy ...
9y Input
@Y
Open System > e
—~ fussumes harmen T
- PP Assumes harmony -
-~ |Fl‘;rrr||;||::_f_. of elements - there Survival
T ymay also be conflict
Responsivensss Crynarmizm -
Reactionary rather o B Feedback
than proactive Examplas: \\
Simpla Organic systams
L g Input § Cufput
Inetraction vilh Manufaciuring Systems rput iR
ety Control Systems
environment ” Process

Volatile

ervironment Stachastic vs Seme ntelligence
f Ceterministic
DOptimisation Customisation

]

Figure 1.3: An Adaptive System (Open Architecture)

A. Mousavi — Brunel University, UK 15

In the last 30 to 40 years successful companies have aspired and demonstrated
that they are highly dynamic and adaptive organisations. They have successfully
steered their ship in the stormy waters of economical, industrial, social and
technological changes. They most importantly have adapted to the ever changing

consumer (customer) needs and tastes.

Some analogy and food for thought...

Imagine a plant when sudden climate change occurs...

Imagine animals and what happens if their surrounding is not capable

of supplying them with sufficient food and shelter ...

The adaptive systems theorists managed to explain and design industrial systems
that were capable of capturing and interacting with the dynamism of their
environment. But their models are now falling short of interpreting and capturing the

more complex systems that have emerged in the interrelated world of 21* century.
1.1.3 The Viable System

You may consider the Viable Systems theorists as Holists. Holists describe
systems as interacting networks that in addition to their constituent elements govern
the complex interactions between functional, socio-economical, cultural and political
elements. These systems not only adapt to their environments but have the cerebral
capability to influence and change their environment to their advantage. Rather than
follow the trend, they have the ability to accurately predict the future and lead the
changes.

Viable systems emphasis is on: (a) aggressive prediction, (b) active learning and
(c) persistent monitoring and control of the environment. Viable systems aggressive
evolution and success is heavily dependent on enhancing their capacity and ability to
obtain data (Data acquisition) to utilise the information of the past, combine it with
the present data to understand the current state. Moreover, use the present and past
information to accurately predict the future. These system have substantial resources
to process information whilst actively monitoring their environment in real-time. They

are capable of not only adapting to changes but also influence and change the

A. Mousavi — Brunel University, UK 16

environment to their advantage. The so-called sustainability cycle, that requires

Creativity, Innovation and Reinvention at given times in their life cycles.

The highly creative and innovative nature of viable systems allows them to
expand and contract at the right times during the global socio-economical

fluctuations.

Viable System

Leam & adjust Socio-sconomic Highl
<1Dynam|slml> Dynamics ><Inte?actjirve
Examples: Highly
Enterprise Systems
Research and Development

Electronic Business
Continuous Modern Manufacturing Systems Influences
Change Surrounding

Highly

Neurocybemetic Complex

Systems

Highl Agile &)
(g,) o

« = Expandable & Contractable aff >

i
Ll

7

Figure 1.4: A schematic overview of a Viable System

Some analogy and food for thought...

* Humans can be considered one of the most successful viable systems...
* Electronic and Telecommunication consumer product developers ...
* Fashion industry...
My aim here is to make you start thinking about all industrial systems around
you. Make a distinction between them and find ways to categorise them into the type
of system they are. Ask the question whether these systems are suitable candidates for

evolving into viable systems. Suggest the necessary technologies and capabilities that

those particular systems need to acquire for it to evolve into a viable system. You as a

A. Mousavi — Brunel University, UK 17

systems engineer if given the opportunity design a viable system that can sustain itself
for its given life time.

Human body is a perfect example of a viable system, think about this ...

The Data Processing @ <——————= - Decision Making

and Storage Centre for
Real-time and

Historical Information

Communication Construct

5 Senses (Nervous System)

Adaptation + Viability = Prosperity

Data Processing

Communication Platform

Figure 1.5: Human Body as a Viable System

One could use this analogy to describe a possible architecture of a viable
industrial system.

A. Mousavi — Brunel University, UK 18

Decision Making

\ 4
Resource Utilisation & |Service & Production Product & Customer

Schedules Efficiency Process Quality Satisfaction

A

Data Processing Centre

\ 4
Data Modelling and System Performance Analysis

Data Acquisition Netw

\ 4

A
»
»
»
»

A

A 4

Shopfloor Data Acquisition Partners and Suppliers (supply | ["Customer Details and Demand

Equipment chain and logistics) (CRM)

Figure 1.6: The Information Architecture of a Viable Industrial System — SinglX
by A. Mousavi et al.

1.2 Data Modelling and Systems Performance Analysis

In this section we briefly discuss the importance of data collection and the science

of translating input data into meaningful information.

The process of preparing and translating input data into meaningful information
for systems performance analysis is called data modelling. There are various
techniques that can be used for this purpose. These techniques can be as simple as
logical And, OR and IF statements for binary system to complex data mining
techniques such as: Statistical Process Analysis, Genetic Programming, Fuzzy
Inference Analysis, Bayesian Belief Networks, etc. These analytical and physical
models allow system analysts to interpret a series of input data into system state.

Normally the input data are captured in a given time span.

A. Mousavi — Brunel University, UK 19

In the following chapters, we will describe Systems Modelling and Discrete Event
Simulation techniques as one of the most powerful mechanisms that is used to
translate collected data during a time span into performance analysis tool. Here you
just need to note that there is a mechanism and technique in acquiring information in

which it is then used for modelling purposes.

We have two types of information Historical and Real-time. The historical data is
collected over a period of time, validated and verified through statistical means and
presented for modelling purposes. For example, average time that an operator
processes a work that is assigned to her/him, or the average time it takes the computer
processor to implement an algorithm. This data is normally collected at different times
and for a period of time. By validating and verifying input data modellers can utilise
the information to produce Predictive data that is derived from historical data. For
example average number in a queue or waiting time can be estimated using the
information about average meantime between arrival of work at a work station and the
average processing time for that work station. Do not fret! This module is all about

this, or mainly about this!

With the advent of modern real-time data acquisition technologies and their
ubiquity, systems analysts are exploring the vast opportunities that access to real-time
data provides. We are now utilising real-time data inputs into quick response decision
management systems and also using Real-Time data to improve the quality of
previously gathered historical data. At this stage it may suffice to intrigue you and
conclude this chapter by Figure 1.7. This figure illustrates the relationship between
Data Acquisition systems, real-time data modellers and Discrete Event Simulation
packages. Combined together, the technologies produce one of the most sophisticated

systems performance analysis capabilities available to us.

A. Mousavi — Brunel University, UK 20

Post Simulation Post Simulation

Modellers
Layer T
DES Package
Pre Simulation Y
EventTracker
Layer

Manual, Automatic and Semi Automatic Data Acquisition Systems

Figure 1.7: A Schematic overview of Integration of Data Acquisition Systems

with Real-time Data Modellers, Simulation Packages and Post Simulation Modellers

A. Mousavi — Brunel University, UK

21

CHAPTER 2

An Introduction to Simulation Modelling

(Discrete Event Simulation)

This Chapter Covers:

Definition of simulation modelling

The potential advantages of simulation modelling
The types of simulation

Principles of simulation

Successful simulation project

I N

Application of simulation in industry

A. Mousavi — Brunel University, UK

22

2.1 What is simulation?

Simulation is the imitation of the operation of a real-world process or system over
time. In other words, Simulation is the process of designing a model of a real system
and conducting experiments with the model for the purpose of understanding the
behaviour of the system and evaluating various strategies for the operation of systems.
According to Schriber (1987) simulation involves the modelling of a process or
system in such a way that the model mimics the response of an actual system to

events that take place over time.

Simulation involves the generation of an artificial history of the system based on
historical observations and translating that artificial history to draw inferences

concerning the operating characteristics of the real system that it represents.

Simulation is used to describe and analyse the behaviour of a system, ask what-if
questions about the real system, and aid in the design or improvement of real systems.
Both existing and conceptual systems can be modelled using simulation.

In short, simulation reflects the behaviour of the real world in a small and simple

way.
2.2 Importance and popularity of simulation

The number of businesses using simulation is increasing rapidly. More managers
are realising the benefits of utilising simulation for more than just the one-time
remodelling of a facility. Rather, due to advances in software, managers are

incorporating simulation in their daily operations on an increasingly regular basis.

For most companies the benefits of using simulation go beyond simply providing
a look into the future. These benefits are mentioned by many authors (Banks et al.,
1996; Law and Kelton, 1991; Pegden et al., 1995; Schriber, 1991) and are included in
the following:

1. Choose correctly: Simulation allows you to test every aspect of a proposed

change or addition without committing resources.

A. Mousavi — Brunel University, UK 23

Compress and expand time: By compressing or expanding time, simulation

allows you to speed up or slow down phenomena so that you can investigate
them thoroughly. For example you can examine an entire shift in a matter of
minutes if you desire, or you can spend 2 hours examining all the events that

occurred during 1 minute of simulated activity.

Understand why: Managers often want to know why certain phenomena occur

in a real system. With simulation you determine the answer to the “why”
questions by reconstruction of the scene and examining the system to

determine why that phenomenon occurs.

Explore possibilities: One of the greatest advantages of using simulation

software is that once you have developed a valid simulation model you can
explore new policies, operation procedures, or methods without the expense

and disruption of experimenting on the real system.

Diagnose problems: The modern factory or service organisation is very

complex and it is impossible to consider all the interactions taking place in a
given moment. Simulation allows for better understanding of the interactions
among the variables that make up such complex system and subsequently
increases ones understanding of their important effects on the performance of

the overall system.

Identify constrain: Production bottlenecks give manufactures headaches. It is

easy to forget the bottlenecks are effect rather than a cause. However by using
simulation to perform bottleneck analysis, you can discover the cause of the

delays in work in process, information materials, or other processes.

Develop Understanding: Simulation studies aid in providing understanding

about how a system really operates rather than indicating someone’s

predictions about how a system may operate.

Visualise the plan: Depending on the software used, you may be able to view

your operations from various angles and levels of magnification and even in

three dimensions.

Build consensus: Using simulation to present design changes creates an

objectives opinion. You avoid having inferences made when you approve or

disapprove of designs, because you simply select the designs and

A. Mousavi — Brunel University, UK 24

10.

11.

12.

13.

14.

modifications that provide the most desirable results; whether it increases

production or reduces waiting times for a service.

Prepare for change: We all know that the future will bring change. Answering

all of the what-if questions is useful for both designing new systems and

redesigning existing systems.

Prudent investment: Since the cost of a change or modification to a system

after installation is so great, simulation is a wise investment. The typical cost
of a simulation study is substantially less than 1% of the total amount being

expended for implementation of a design or redesign.

Train the team: Simulation models can provide excellent training when

designed for that purpose. It can provide the team and individual members
with decision inputs to the simulation models as it progresses.

Specify requirements: Simulation can be used to specify requirements for a

system design. For example, the specifications for a particular type of machine
in a complex system to achieve a desired goal may be unknown. By simulating
different capabilities for the machine, the requirements can be established.

Capture complexity: By providing a platform for abstraction complex relation

between various elements of the system can be modelled and system

performance indicators measured based on valid assumption.

2.3 Types of Simulation

Simulations can be classified as iconic and symbolic. Flight or driving simulators

are examples of iconic simulation. Iconic simulation is not our concern in this book.

The Symbolic simulation models are those which the properties and

characteristics of the real-system are captured in mathematical and/or symbolic form.

The Symbolic simulations include:

Detailed information about system components
Closely conform to the unique aspects of the industrial system

Evaluate time-variant behaviour

A. Mousavi — Brunel University, UK 25

e Provide system specific quantities to measure performance
Here are the types of symbolic simulations:

e Static vs. Dynamic
e Continuous vs. Discrete

e Deterministic vs. Stochastic

Simulations can take many forms from spreadsheets to three dimensional
representations and projection of things moving in space. A simulation can be
stochastic or deterministic - it is important that the developer understands the
difference between these two types of simulation. Stochastic models consist of some
probabilistic element (uncertainty) in a process. Typical outputs are boundary
conditions, upper and lower limits and degree of certainty. If a model is stochastic it
needs to output confidence limits, so that the end user understands that the process
under scrutiny has elements of randomness and is an estimation. A determinist model
can also have uncertain outcomes. Be cautious of simulation outputs that do not state

their assumptions.
2.4 Modelling and types of models

A model is a representation of an actual system. Immediately, there is a concern
about the limit or boundaries of the model that supposedly represent the system. The

model should be complex enough to answer the questions raised, but not too complex.

There are different types of models: prescriptive models (e.g. Operational
Research), descriptive models (Simulation), and statistical models.

As part of descriptive models, discrete-event model, attempts to represent the
components of a system and their interactions to such an extent that objectives of the
study are met. Most mathematical, statistical and input-output models represent a
system’s inputs and outputs explicitly represent the internals of the model with
mathematical and statistical relationship. Discrete-event simulation models include a

detailed representation of the actual internals.

A. Mousavi — Brunel University, UK 26

Discrete-event models are dynamic; that is, the passage of time plays a crucial
role. Most mathematical and statistical models are static, in that they represent a
system at a fixed point in time. Consider the annual budget of a firm. The budget
resides in a spreadsheet. Changes can be made in the budget and the spreadsheet can

be recalculated, but the passage of time is not a critical issue.

The components that flow in a discrete system, such as people, equipment, orders
and raw materials, are called entities. There are many types of entities and each has a
set of characteristics or attributes. In simulation modelling, groupings of entities are
called files, sets, lists or chains. The goal of a discrete simulation model is to portray
the activities in which the entities engage and thereby learn something about the
system’s dynamic behaviour. The purpose of this book is for us to discuss this form of

descriptive simulation i.e. the Discrete Event Simulation.
2.5 Fundamental principles of simulation

Simulation Modelling is considered as a creative activity and may conform to the

following principles:

Principle 1: Conceptualisation: a model requires system knowledge, engineering

judgement and model-building tools. A modeller must understand the structure and
operating rules of a system and be able to extract the behaviour of the system without
including the unnecessary details. The crucial questions in model building is to focus
on what simplifying assumptions are reasonable to make, what components should be

included in the model and what interactions occur among the components.

Principle 2: The secret to being a good modeller is the ability to remodel. Model
building should be interactive and graphical because a model is not only defined and
developed but is continually refined, updated, modified and extended. An up-to-date

model provides the basis for future models.

Principle 3: The modelling process is evolutionary because the act of modelling
reveals important information. Information obtained during the modelling process
supports actions that make the model and its output measures more relevant and

accurate. The modelling process continues until additional detail or information is no

A. Mousavi — Brunel University, UK 27

longer necessary for problem resolution or a deadline is encountered. During this
evolutionary process, relationships between the system under study and the model are
continually defined and redefined. The resulting correspondence between the model
and the system not only establishes the model as a tool for problem solving but

provides system familiarity for the modellers and a training vehicle for future users.

Principle 4: The problem or problem statement is the primary controlling element
in model-based problem solving. A problem or objective(s) drives the development of
the model. Problem statements are defined from system needs and requirements. Data
from the system provide the input to the model. The availability and form of the data

help to specify the model boundaries and details.

The first step in model-based problem solving is to formulate the problem by
understanding its context, identifying project goals, specifying system performance
measures, setting specific modelling objectives and in general defining the system to

be modelled.

Principle 5: In modelling combined systems, the continuous aspects of the
problem should be considered first. The discrete aspects of the model — including
events, networks, algorithms, control procedures and advance logical capabilities —
should then be developed. The interfaces between discrete and continuous variable

should then be approached.

Combined discrete-event and continuous modelling constitutes a significant
advance in the field of simulation. There are distinct groups within the simulation
field for discrete-event simulation and continuous simulation. The disciplines
associated with discrete-event simulation are industrial engineering, computer
science, management science, operation research and business administration. People
who use continuous simulation are more typically electrical engineers, mechanical
engineers, chemical engineers, agricultural engineers and physicists. A large number
of problems are in reality a combination of discrete and continues phenomena and
should be modelled using a combined discrete-event/continuous approach. However
due to the type of problem, either a continuous or a discrete modelling approach is

normally employed.

A. Mousavi — Brunel University, UK 28

Principle 6: A model should be evaluated according to its usefulness. What

inferences can be made from it? And how it will address the dilemmas of modern

systems management and decision making? Simulation modelling is performed to

induce change. To achieve change, the results of the modelling and simulation effort

need to be put to use.

2.6 Steps to be taken for successful simulation project

The twelve steps crucial for successful design, implementation and completion of

a discrete event simulation project are:

10.

Problem definition: clearly defining the goals of the study. (Why are we

studying this problem? and what questions do we hope to answer?).

Project planning: being sure that we have the sufficient resources to do the job.

System definition: determining the boundaries and restrictions to be used in

defining the system (or process) and investigating how the system works.

Conceptual model formulation: developing a preliminary model either

graphically (e.g. block diagram) or descriptively to define the components,

descriptive variables, and interactions (logic) that constitutes the system.

Preliminary experimental design: what data need to be gathered from the

model, in what form, and to what extent.

Input data preparation: identifying and collecting the data required by the

model.

Model translation: formatting the model in an appropriate simulation

language.

Verification and validation: confirming that the model operates the way the

analyst intended (debugging) and that the output of the model is believable

and represents the output of the real system.

Final experiment design: designing an experiment that will yield the desired

information and determining how each of the test runs.

Experimentation: executing the simulation to generate the desired data and

perform a sensitivity analysis.

A. Mousavi — Brunel University, UK 29

11. Analysis and interpretation: drawing inferences from the data generated by the

simulation.

12. Implementation and documentation: putting the results to use, recording the

findings, and documenting the model and its use.

| suggest you carefully observe these steps in all your present and future

simulation projects. This also includes your assignments in this module.
2.7 Simulation modelling applications

In this section we discuss the application of simulation in a wide variety of
industrial sectors ranging from manufacturing, public and service industries. For

example, simulation projects are regularly used for analysis of:

e manufacturing processes and material handling applications,

e public sector e.g. health care, defence performance; or explaining a natural
phenomena,

e service industry e.g. transportation, logistics, computer systems performance,

communication systems, retail and supply chain management.

In following sections the focus will be on the application of simulation in

manufacturing, logistics and transport systems.
2.7.1 Manufacturing Application

Manufacturing and material handling systems provide a wealth of applications for
simulation. Simulation has been used to solve manufacturing problems for many

years. There are several reasons for this:

e Motivation for manufacturers to stay competitive,

¢ A high level of automation is applied to manufacturing,

¢ Initiatives that can be tested with minimal disruption to daily activities,

e Manufacturing systems can be well defined for modelling purposes,

e Manufacturing and material handling systems are usually too complex for

other analytic techniques.

A. Mousavi — Brunel University, UK 30

In a global economy, successful manufacturers are constantly changing the way
they do business in order to stay competitive. The questions that companies deal with

are:

When should the next piece of equipment be purchased?
How many people will be needed next month to meet the orders?
Can new orders be accepted without delaying other work?

How will the new plant operate five years from now?

o~ w0 DN PE

How can work-in-process inventory and cycle time be reduced while

increasing throughput?

Savolainen et al. (1995) indicate that simulation models are really formal
descriptions of real systems that are built for two main reasons. Firstly, to understand
conditions as they exist in the system; and secondly, to achieve a better system design

through performing ‘what-if” analysis.

Law and Kelton (1991) and Banks et al. (1997) give many benefits for simulation.
Perhaps the most important benefit is that it is the most cost effective way to explore

new initiatives and changes.
a. Manufacturing systems

Manufacturing is the process of making a finished product from raw material
using industrial machines. Examples include automobiles, air-planes, ships, home

appliances, computers, and furniture.

Firstly there are several issues that need to be addressed in managing a
manufacturing process. One major issue for manufacturing is competition.
Competitive pressures force manufactures to look for different ways of doing business
so they can continue to produce at a reasonable cost. Manufacturing and industrial
engineers are tasked with finding ways to improve operations through analysis.
Secondly, to manage change and to stay competitive, manufactures are changing their
operations constantly. The companies that manage change most effectively come out

on top.

A. Mousavi — Brunel University, UK 31

b. Guidelines for levels of detail in simulation modelling

Every model is an approximation of the real world. It is a given that a modeller
will leave out some details when building a model of the actual system. In the
simulation community, this concept is referred to as the level of abstraction. The
model will be an abstraction or approximation of the actual system. The important
point to note is that some details will be omitted from a model, and choosing the right

details to omit determines whether a simulation will be successful or not.

Simulation modellers often discuss the accuracy of their models in terms of a
percentage. The percentage is usually how close the models get to the results of the
actual system. To get from 95% accurate model to a 98% accurate model may take
more effort than it takes to build the original model. A good rule is that it is easier to
add detail later than it is to recoup time lost by adding unnecessary detail. Figure 2.1
below shows how details are added as the model approaches an acceptable level of

accuracy.

hodel Detail

MModel Validation Time

e
7

Figure 2.1: Model detail during validation [1]

The process of validation is an iterative one. The modeller adds new details to the
model, runs the model, and presents the results to the project team. If the results are

not sufficiently accurate, the project team identifies other details that should be

A. Mousavi — Brunel University, UK 32

included. The modeller adds these details, and the cycle starts anew. At some point,
the project team must agree that the model is “close enough” to provide useful

information, and the validation process leads to experimentation.
c. Components of manufacturing system

Even though there are many types of manufacturing systems that produce a wide
variety of products available today, but there are common elements that describe most
manufacturing operations. These common elements should be the basis for input data
used by a simulation model. Table 2.1 shows these common elements in

manufacturing systems.

Table 5.1: Manufacturing components [1]

Product Resource Demand Control
Parts/pieces Equipment layout Customer orders | Inventory control
Routings Number of Start date Shop floor control

machines
Process times Due date Station rules
Downtime
Setup times
Storage areas
Tools/fixtures

To build an accurate simulation model, the data in this table should be validated

and verified.

Product: Part, lots or products are entities being manufactured. Products may

move in manufacturing groups called lots that are made up of a number of pieces.

Resources: Resources are used to manufacture products. Resources include
machines and human beings as well as tools, fixtures, material handling systems,

storage areas and so on.

Demand: The demand on a manufacturing system is defined by customer orders.
Customers usually order specified quantities of products and want them delivered on a

particular date.

A. Mousavi — Brunel University, UK 33

Control: Computer-based control systems make decision about how product
should be routed, collect information about current status of product or maintain
proper inventory levels. These control systems interface with simulation in two ways.
First they can provide input data to be used in the simulation. Second these systems

often make operational decisions that should be represented in a simulation.

d. Downtime

Downtime is an aspect of manufacturing that is sometimes overlooked when
building a simulation. Downtime and failure can, however, have a significant effect
on the performance of manufacturing systems. Banks et al. (1996) state that there are

four options for handling downtime:

Ignore it
Do not model it explicitly but adjust processing time appropriately

use constant values for time-to-failure and time-to-repair

A w0 e

Use statistical distributions for time-to-failure and time-to-repair

Of the four options, using statistical distribution for time-to-failure and time-to-
repair is preferred. What this means to the manufacturer is that a sufficient number of
downtime data has to be collected to fit a statistical distributions with desirable

accuracy.

Events such as acts of nature, labour strikes and power failures can literally shut
down a manufacturing operation. Because they are not part of normal operation and
are very difficult to predict, catastrophic events can be ignored for most simulation

activities.
e. Rework and Re-entrancy

Re-entrant process flow occurs when a particular station or work cell must be
visited more than one time by the same part. Rework occurs when a part must be run
through a work cell because the prior processing step was not completed successfully.

Figure 2.2 shows the difference between rework and re-entrancy.

A. Mousavi — Brunel University, UK 34

Stz Jl—
T

Part Flow

EEWORK RE-ENTRANCY

Figure 2.2: Rework and re-entrancy [5]

By using simulation it is possible to determine the effects of rework and re-
entrancy on a system. Rework is typically given as a percent of the parts processed,
while re-entrancy is provided in the part routing as explicit steps where the same
machines must be used. In either case, the true effects on queuing and congestion can

be determined using simulation.
f. Handling Stochastic (Random) Events

One of the challenges for modelling most manufacturing systems is the presence
of random events. Random events in manufacturing systems can be associated with

variances in:

e Processing time

e Setup time

e Downtime time to fail and time to repair)
e Yield percentage

e Transportation time

e Shipment

For all random events it is important to represent the distribution of randomness
accurately in the simulation model. Choosing the right distribution is a very important
part of the simulation process. When a known distribution cannot be found for a set of
data, an empirical distribution can be used.

A. Mousavi — Brunel University, UK 35

g. Measures of Performance

The methods used to measure model performance should be the same as those
used in real system. Otherwise, it may be difficult to validate the model. With any of
the performance measure, it is important to collect the average as well as the
variability. Variability is usually indicated by the standard deviation, but maximum
and minimum are also helpful in measuring performance. The following statistics are
typically collected from manufacturing systems and should thus be provided by

models of such systems:

e Production Throughput

e Production Cycle time

e Queuing behind work stations

e Transportation of material on the shopfloor

e Work in process

e Ultilisation of resources (Equipment and labour)

e System specific performance measure (scrap rate, waiting time at a process)

It is important to note that optimising on one measure of performance can
adversely affect another measure of performance. For example, if WIP (work in
process) is reduced, equipment utilisation usually goes down. Understanding the
relationships between measures of performance can help in the experimentation phase

of a model.
h. Analysis

Using the performance measures described in the last section, model users
(analysts and engineers) experiment with a model to understand the behaviour of the
system under changing conditions. The issues often encountered in system analysis

include:

e Determining the bottleneck
e Determining required staffing levels
e Evaluating the scheduling of tasks

e Evaluating the control system

A. Mousavi — Brunel University, UK 36

e Recovery strategies for random events and surges
I. Business process simulations

Identifying the right area to change and improve is paramount to the overall
success of an organization. The dangers of implementing business process
improvement changes without a clear understanding of how the changes will impact
the entire process can be substantial. Therefore tools are needed to help managers
truly understand their business processes and appreciate the impact of modifications

to those processes on the overall performance of the company.

The Business Modelling method is a technique to model business processes.
Business models provide ways for expressing business processes or strategies in terms
of business activities and collaborative behavior so we can better understand the
business process and the participants in the process. Models are helpful for
documenting, for comprehending complexity and for communicating complexity. By
documenting business processes from various perspectives, business models can help
managers to understand their environment. This allows managers to clearly see where
a problems may lie, and give indications of how to improve them. Once the problem
areas are identified, the software can be used to change any parameter the user wishes.
Run the simulation once again and immediately see the impact of the change. In this
way, companies can change their business processes in a computer environment,

without risking costly setbacks of real world trial and errors.

Another factor that has contributed to the increasing usage of the business
modelling method is the increasing pace of change in business. There is not enough
time to try out new products in reality, and correcting mistakes, once they have

occurred, is often extremely costly.
Typical uses of business modelling and simulation can be in the following areas:

¢ Financial Planning, quantifying the impact of business decisions on balance
sheet and P&L.
e Risk Management, determining, measuring and managing the balance between

profitability and certain types of risks.

A. Mousavi — Brunel University, UK 37

e Forecasting, analysing historical data and using that to predict future scenarios
and trends.
e Business Process Modeling, mapping processes, tasks and process steps in a

visual representation to the resources required
Logistics, transportation, and distribution applications

In highly demanding modern economical systems there is a need for a
sophisticated and widespread provision of passenger and freight movements. Due to
the unprecedented need for global mobility, there is a requirement not only for various
modes of transport but also increasingly sophisticated interfaces between customers,

suppliers and manufacturing and service industries (Wright and Ashford, 1989).

For the past several decades, the design, analysis and control of transport systems
were carried out mostly by field engineers (civil, structural and traffic engineers) and
operations research (OR) scientists (Ashford and Covault, 1978; Hamzawi, 1986;
Ashford 1987). A large number of Logistics and Transportation (L&T) systems have
evolved over time and become fairly huge and complex. The primary goals of an L&T
business enterprise are to store, distribute and/or transport freight of varying size,
form and shape from its origin to its destination at the lowest cost in order to deliver
the right quantities at the right time to its customers who are geographically dispersed,
however he underlying logistics and transport systems that become extremely
complex and often require expensive administrative, information and decision support
systems (Ashford and Clark, 1975).

Major challenges face the analysts in applying simulation technologies to the

L&T domain. These can be broadly listed as follows:

e L&T networks are quite complex and involve a very large number of entities
and resources

e Existing simulation software do not support all the modelling/analysis
features required.

e There is unfamiliarity of simulation technology in logistics and transport

industry.

A. Mousavi — Brunel University, UK 38

2.7.2 Logistics and transport problems for simulation

modelling and analysis

In general, L&T problems appropriate for simulation studies are divided into

three major categories:

1. New design
2. Evaluation of alternative designs
3. Refinement and redesign of existing operations

Accordingly, simulation models in L&T domains are built for the following

purposes:

e Models for strategic planning
e Models for tactical planning

e Models for network/traffic control

« Off-line control

+ Real-time satellite/telecommunication control
e Models for scheduling and dispatching

* Off-line scheduling
+ Exception handling

* Real-time monitoring
2.7.3 Simulation of warehouse and distribution systems

A growing number of logistics firms utilise discrete-event simulation concepts to
model the various issues of large-scale logistics networks. In one extreme, a logistics
simulation model may be developed to investigate and improve the operations of a
warehouse; on the other extreme, it may involve modelling and analysis of the
operations of an entire supply chain. In most cases there is a common goal for
developing the simulation model which is to evaluate the performance of individual
value-adding resources, facilities and operations as well as the flow of goods between

the plants, warehouses and customers.

A. Mousavi — Brunel University, UK 39

The simulation models are developed to perform a variety of ‘what-if” scenarios
to accomplish the objectives of a logistics network management or its customer.

These include:

1. To evaluate strategic decisions

+ Warehouse location and allocation
+ Warehouse/distribution centre design

- Transportation mode analysis

2. To test tactical solutions

* Inventory management policies
+ Pull ordering between customers and plants
* Push ordering between warehouses

« Service levels

3. To identify operation problems on an ongoing basis

+ Change in transportation modes
+ Changes in warehouse operation parameters
+ Change in parts and finished products

« Customer demand fluctuation

A simulation model for a logistic network is usually developed to investigate the
impact of the variations associated with the production schedules, customer demand
and transportation delays. The simulation model must combine the behaviour of a
physical logistic network with the activities and operations of the various logistics
entities within the problem domain. In general the simulation model may emphasise
the internal logistics and operations of warehouse, or the pickup and delivery of
freight within a city or a zone, or the movement of physical goods across an entire

country or continent.

Often, logistics simulation models incorporate a geographic map showing the

physical relationships among plants, terminals/hubs, warehouses and customer

A. Mousavi — Brunel University, UK 40

locations are separately modelled at appropriate level of detail. These individual
models are then integrated with the underlying logistics network superimposed on a
geographic map. Often, a hierarchical modelling approach is preferred to represent the
logistics network as well as the operations at the individual nodes (a node may refer to
a plant, a customer or a warehouse). In this way the logistics user/designer can
visualise the movement of goods at the map level as well as the operation at the plant

or warehouse level.

Depending on the level of detail specified to generate the desired results, the
simulation/analyst may decide to represent some or all of the entities, resources and

activities in a logistics system.

In majority of cases, simulation models are developed to find the best locations
for warehouses, analyse transportation modes between plants, and flow of material
and customers. The input data required for these models include the following:

e Number of plants

e Number and location of warehouses

e Number of customers

e Customer demand to warehouse

e Part numbers produced at different plants
e Bill of materials

e Transportation times

e Between plants and warehouses

e Between warehouses and customers

It should be mentioned that customer demand, transportation times and so on, are
stochastic in nature and vary over time. Accordingly, these data elements correspond
to probability distribution generated using the information collected over long periods

of time.
References
[1] Handbook of Simulation, Edited by Jerry Banks. (ISBN 0-471-13403-1), 1998,

John Wiley & Sons, Inc.

A. Mousavi — Brunel University, UK 41

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Manufacturing Systems Design and Analysis. By B. Wu (ISBN 0-412-40840-6),
1992, Chapman & Hall

Handbook of Simulation, Edited by Jerry Banks. (ISBN 0-471-13403-1) , 1998,
John Wiley & Sons, Inc.

Manufacturing Systems Design and Analysis. By B. Wu (ISBN 0-412-40840-6),
1992, Chapman & Hall

Positioning of modelling approaches, methods and tools. By Savolainen T., D.
Beeckmann, P. Groumpos and H. Jagdev (Computers in industry, Vol. 25, pp.
255-262 , 1995)

Set management: minimising synchronisation delays of prefabricated parts
before assembly. Mittler, M., M. Prum, and O. Gihr (Association for computing
machinery, pp. 829-836 , 1995)

Transportation Engineering: Planning and design. Wright P. H. , Ashford N. J.
Wiley, (2002)

Level of service design concept for airport passengers,. Ashford N.J.
(Transportation planning and technology, Vol. 12, 1987)

The mathematical form of travel time factors. Ashford N. J. , Covault D. O.
(Highway Research Record 283, Washington D.C. , 1978)

Management and planning of airport gate capacity. Hamzawi S. G.
(Transportation planning and technology, vol. 11. No. 3., 1986)

Business Process Modeling, Simulation, and Design. By Manuel Laguna, Johan
Marklund, Laguna. (ISBN 0-131-09979-5), 2004 , Prentice Hall.

A. Mousavi — Brunel University, UK 42

Chapter 3

A Brief Introduction to Probability and Statistical Inference

This Chapter Covers:

Basic probability and statistical inference
Random variables and Distribution Functions
Some of the most relevant distribution functions

Introduction to Markov Chains

o~ D

Basic Queuing Model

Note: In this course I am expecting that you have some basic background in
statistics and probability. If you do not, for the purpose of maximising your

learning experience | suggest you study a book or two on these two subjects.

To maximise your learning experience for this chapter, I recommend the

following readings:

1. G. L. Curry and R. M. Feldman (2011); Manufacturing Systems Modeling
and Analysis; Second Edition, Springer

2. R. G. Askin and C. R. Standridge (1993); Modelling and Analysis of
Manufacturing Systems; John Wiley & Sons, Inc.

3. D. A Santos (2011); Probability — An Introduction; Jones and Bartlett
Publishers, Sudbury, Massachusetts. [The book starts from origins
probability].

4. R. V. Hogg and E. A. Tanis (2010), Probability and Statistical Inference,
Eighth Edition; Pearson.

A. Mousavi — Brunel University, UK 43

3.1 Our World of Deterministic and Probabilistic Events

Before we start discussing probability and its application in systems analysis, we
need to differentiate between Deterministic and Probabilistic events.

As the word deterministic implies, events that are determined are the type of
events that will occur with 100% probability! Oops — | thought we were not talking
about probability yet! May be | better rephrase the title of this section or may be the

title of this chapter should be: “Our world of Probabilistic events”.

In the real world what ever occurs as an event is a collection of outcomes of
things that happen. In other words a set of outcomes can cause an event (go back to
Chapter 1 where we talk about input data). The type of events that happen with
certainty are called deterministic events. For example after night comes day and after
day comes night. However, in our real world of complex socio-economical
development, things happen or may not happen with a degree of probability. People,
machines and systems behaviour in majority of cases is random. For example,
machines may suddenly breakdown during a working shift; or the number of
customers arriving at a fast food restaurant at lunch time is different every day of the

week. A professional football player may score or miss a penalty....

As systems analysts, we need to be able to understand and capture this random
behaviour. By capturing randomness in nature and socio-economical events, | mean
interpret them into mathematical constructs so that we can build models. Use those

models to describe the behaviour and also to predict the behaviour of the systems.
3.2 Probability and Statistical inference

In this section we will briefly touch on the basics and the surface of probability
theory and you are advised to enrich your knowledge by further reading the references
I have mentioned earlier. | hope this short introduction would encourage you to read
more about probability theory.

A. Mousavi — Brunel University, UK 44

3.2.1 Probability
a. Basic Concept of Probability

Probability is a real-valued set function denoted by P(E), that assigns a
probability value between 0 and 1 for event E in the sample space S. P(E) is therefore

called the probability of event E. Provided that the following properties is satisfied:
P(S)=1

P(E)=0
if E1.Ey,E3,..E, are eventswherei = j,and E; mEj =¢then

P(E1UE2 UEn)= P(El)-l- P(E2)+P(En)

Here we will point to one of the fundamental theorems (theorem 1 and 2) of
probability and leave the other 4 for you to research. A good starting point would be
the book by (R. V. Hogg and E. A. Tanis (2010).

Theorem 1: for a given event E, P(A)=1-P(A").

This theorem implies that the probability of an event occurring in a sample space
is equal to 1 minus the probability of that event not occurring. Tossing a fair coin
where the sample space is S = {H, T}, P(S) =1 so P(H) = 1-P(T) = 1/2.

From this theorem we can also deduce that P(¢) =0, because P(¢)=1—-P(S).
Theorem 2: if E < F,thenP(E) < P(F).
b. The Conditional Probability

As the name implies conditional probability is about the probability of event E

occurring provided that event F has occurred. It can therefore be expressed as:

A. Mousavi — Brunel University, UK 45

EnF

Figure 3.1: Venn diagram showing conditional probability

P(ENnF)

P(E|F)= o(F)

or P(ENF)=P(E|F).P(F) or P(EnF)=P(F|E).P(E)

P(F)=0
Example: A manufacturer in China produces two brands of Volleyballs (indoor (i)
and beach (b)) and sells each type in packs of 6. A random quality control exercise
requires an operator to open a pack and test the balls for any defect. The operator will

then report the number of defects and the type of the ball.

The sample space (type, no. of defects) in this example will be:

S ={(10),(1,1),(1,2),(1,3),(14),(15),(16),(b0),(b.1),(b,2),(b;3),(b4),(b,5),(b6)}

Each incident (detected Volleyball type and number of defects) could be
associated with a probability of occurrence.

P(i0)=0.38 P(b0)=0.35
P(i1)=0.1 P(b,1) =0.06
P(i,2)=0.05 P(b,2) =0.02
P(i,3)=0.01 P(b,3)=0.01
P(i4)=P(i5)=P(i6)=0.005 P(b4)=P(b5)=P(b6)=0.005

The probability that beach volleyball pack is selected and at most 2 of the balls to

be defective is:

P{(b0),(b1),(b,2)}=0.43

A. Mousavi — Brunel University, UK 46

Imagine a pack has been selected and we find out that it contains indoor
volleyballs. We have not yet checked of there are any defects in this pack. In order to
find out whether at most 1 ball is defective, we need to describe two events. Event E
shows the incidences of at most 1 defective ball i.e. {(i0),(i1),(b0),(b1)} and

event F shows selection of an indoor pack i.e. {(i0),(i,1),...(i6)}. Therefore the

conditional probability for finding at most 1 defective volleyball provided the

inspected pack is an indoor volleyball pack can be expressed as:

P(ENF) P{(i0),(i 1)} 048
P(F) P{(i0),(i1),(i.2),(i3)(i4)(i5)(i6)} 0555

P(E|F)=

3.2.2 Random Events and Statistical inference

A statistician’s job is to collect data and analyse that data for the benefit of
understanding a trend and predicting behaviour. In the real world even though the
conditions for measurements may remain the same, but results could vary. The
science of statistics is to determine the pattern despite variability. Statistics is all about
recognising the pattern of a random behaviour, minimise the errors in their
interpretation of the data with respect to the noise (anomalies in the data). The

variability in data is the recipe for uncertainty.

The best thing to do now is to introduce a few concepts that you need to get

familiar with and know to be able to become a discrete event simulation expert.

Random Experiments: conducting a number of experiments in a specified length
of time where the outcome is not certain. Recording the time between arrivals of

people at an airline check-in counter between 6:00 to 21:00 is a good example.

Sample Space: is a collection of outcomes of random events that took place in a
specified time. For example, the recorded passenger processing times in minutes
during the working hours at the same check-in counter (e.g. 6:03, 6:08, 6:15, 6:34...
20:39, 20:52).

Random variables: values of outcomes observed during an experiment denoted
by X (e.g. X1 =6:03, X, =6:08, ...X,, = 20:52).

A. Mousavi — Brunel University, UK 47

Random Variable Distribution: could be described as a series of random values

that would repeat itself in time.

Have you ever wondered why goal keepers dive in the wrong direction when
trying to save penalties*? Who says there is no Maths in sports! The reason is very
simple; the professional goal keeper conducts a statistical inference. Before the
match, a good/professional goal keeper would watch 100 penalties that the opposition
star has taken. He or she realises that the opposition penalty taker has directed 80
(repeated occurrence) of the 100 penalties to the goal keepers’ right hand side and
only 20 (repeated occurrence) to the left. If you were the goal keeper how would you
dive (left or right) if this penalty taker steps behind the ball? I bet you are wondering
which players would be better penalty takers — the ones who make this prediction
difficult! But How?

BLeft 100 BFrequency of
90 Occurrence
. 80
70
e 60
mRight 50
40
30
20 A
10 4
0 4
& & 0 "
o4 Q;é‘\ 1 2 3 4 5 6
Figure 3.2 a: Random variable Figure 3.3 b: Draw the random variable
distribution for the penalty shooter distribution expected from a fair Die

Probability Mass Function: discrete random variables can assume positive
countable (integer) random values. For example the number of people X that call a

call centre between 9:00-10:00. A set of probabilities that is associated with a random

* 1 should apologise if you are not interested in football and its rules. But | feel compelled here to
explain the penalty rule: A penalty is taken on referee’s instruction (by blowing into his whistle). The
goalkeeper can only dive when the player touches the ball with his foot; therefore, he/she has little time
guess the direction of the penalty kick. A keeper therefore, normally makes an instant decision on the
direction of his/her dive. So it is normally random and based on the keeper’s experience and

preferences. Imagine if | had to explain the off-side rule here!

A. Mousavi — Brunel University, UK 48

variable X can create its probability mass function. Thus if the possible values of a
random variable X is given by the non-negative integers, then the probability mass

function for every k in the range of X is given by the probabilities of:

fy =P(X =k) fork=012,...
suchthat P(X =k)>0 andY>P(X =k)=1
k

Continuous random values can assume any real value, so instead of being
countable they can be in a continuous range, for example the length of time T that an

operator answers a telephone call in a call centre.

The cumulative distribution function gives the accumulated probability up to and

including to the point that it has been calculated. It can be expressed as:

F(a)=P(X <a)= > f(k) forall real number a
k<a

The probability density function is thus the derivative of the cumulative
distribution function and is used to express the probability of an interval (values
between two numbers) occurring. An example of interval is the time between calls

that occur 9:00-10:00 in a call centre.

dFy (a)

fx(a)= ™

In order to better explain the randomness of random variable and the behaviour of
a distribution function we use measures such as mean, variance and standard

deviation.

Mean: is the arithmetic average of a large number of random observations.

u=E(X)= Xxt(x)=ugf(uj)+uyf(uy)+...+u f(uy)

xeS

where uj f(uj) is the product of distant (u;) to its weight (moment).

Variance: represents the variability of random observation.

A. Mousavi — Brunel University, UK 49

52 = E(X 2)— ﬂz
Standard Variation: is the square root of the variance o = Voo .

3.3 Some of the Important Distribution Functions

In discrete event simulation and modelling we use distribution functions to match
the input with the known functions. Using goodness-of-fit techniques we will then try
the find the most fitting function that best matches the collected data. By conducting
statistical test (e.g. Kolgomorov-Smironov or Chi square tests) we find the most
appropriate distribution. We will then use that distribution to generate random
numbers/variables for prediction purposes. In this section we will briefly discuss some
of the most common probability density functions that you will be encountering and
using for your discrete event simulation projects. Note that the reason for mentioning
these commonly used distributions here is for their application in standard discrete

event simulation software packages (for example Arena™).

If you would like to
research further in their mathematical construct and origins, | advise you to study the

reference books mentioned at the beginning of the chapter.

Uniform-Discrete: Imagine throwing a fair die several times (Figure 3.2b) and
counting the number of times each number comes. In long term you will observe that
the number of times each side shows as about 1/6 of the total throws. How would a

lottery numbers uniform discrete event probability mass function would look like?

mDiscrete Uniform
pmf

1/6 1

Figure 3.4: Uniform Discrete Event probability mass function (pmf)

A. Mousavi — Brunel University, UK 50

The probability mass function (pmf) of random variable N given two integers a

and b can be expressed as:

fork =a,a+1,..b

P(X =k)= (k)=

a+b
HN)=75
V(N):(b—a+1f-4
12

In simulation software packages you can also have non-uniform discrete event
probability function and you can use it for example in defining the percentage of
different job types enter a system, batch sizes, disassembly of an artefact and other
things. By the way how would a non-uniform discrete event distribution probability

mass function or cumulative distribution function would look like?

Bernouli: concerns experiments with two possible outcomes, for example tossing

a coin (k=0 for Tail and k=1 for Head). The random variable N would have a

Bernouli distribution provided:

X =)= 100={] T
E(N)=p

V(N)=p(1-p)

P(X =1)=p

P(X=0)=1-p

O<pxl

Binomial: is when you carry out an experiment that has two possible outcomes
for n number of times.
n!

HX:m):fW):Eqﬁfiﬁpﬁl—pw_kfmk:Ome

E(N)=np
V(N)=np(1-p)

X is the number of times that outcome k has occurred.

A. Mousavi — Brunel University, UK 51

For example, what is the likelihood of having 6 heads when tossing a fair coin 10

times?

10!

_ 6 4 _
_6!(4!)(0.5) (0.5)* =0.20

P(6)
Geometric: is when you wish to calculate the probability mass function of

number of trials X that needs to take place for an outcome to occur (success). This is

again for events with two possible outcomes (occurring or not occurring).

P(X =k)=f(k)=p(1-p)<T fork=12,...
E(N)=1/p
v(n)=1=P

p2

W Geometric pmf 35

1/2 4
2/5 -
1/3 1
1/5 1

1 2 3 4 5 6 ..

Figure 3.5: Geometric probability mass function

Poisson: deals with the random number events that occur in a given time. For
example; the average number of people that may call a call centre is 4 =9 people.
The random variable N therefore follows a Poisson distribution if thereisa 4 >0 so
that the probability mass function can be expressed as:

ﬂke_i

k!

P(X =k)=f(k)= fork =012...

E(N)=V(N)=21

A. Mousavi — Brunel University, UK 52

For example, if the number of calls to a call centre follows a Poisson distribution
with mean value of A =9 per hour. The likelihood of 6 people calling between 12:00-
13:00 would be 9.1%.

3/5
1/2
2/5
1/3
1/5

W Poisson pmf

1 2 3 4 5 6

Figure 3.6: Poisson probability distribution function for a mean value of 4

Exponential: One of the most relevant models in continuous probability
modelling, the Exponential distribution has no memory. That means probability of an
incident occurring is independent from the previous incident. The random variable X

follows an exponential distribution if its probability density function can de expressed

as:
le_X/ﬁ for x >0
f(x)=1p8
0 otherwise

where the parameter of distribution =1/ 1
P(X >x)=e X8

E(X)=8=1/2

V(X)=p% =114

Random arrival times of customers and the breakdown of electronic equipment
are some of the common application of this distribution and continuous random

variable generations.

For example, in a busy airport, aircrafts arrive based on a Poisson process with
mean rate of 10 per hour on a single runway. What is the probability of the runway

waiting more than 8 minutes for the first aircraft to arrive?

A. Mousavi — Brunel University, UK 53

f=60/10=6

f(x)=1/6e"(x/6)

P(X >8)=e"(8/6) _0 26
f(x)

J/ﬁK

Figure 3.7: Probability density function for exponential distribution with mean g

Normal: The random variable X follows a Normal distribution with x as its

mean value and o standard deviation when the probability density function can be

expressed as:

1 (v N2 2
Sy
E(X)=u
V(X)=0o

f(x) A

U

Figure 3.8: Probability density function for Normal distribution with mean of u

A. Mousavi — Brunel University, UK 54

Triangular: A random variable follows a Triangular distribution if it has a
minimum a, maximum b and most likely occurrence (mode) of m. The probability

density function is then expressed as:

Ax-a) fora<x<m
(m-a)(b-a)
f(x) = 20=X) form< x <b
(b-m)(b-a)
0 otherwise
xe[ab]

E(X)=(a+m+b)/3
V(X)=(a?+m?+b% -ma—ab-mb)/18

() |

a]
m

Figure 3.9: Probability density function for Triangular distribution

3.4 Markov Process

The purpose of introducing Markov Chains at this stage is for you to appreciate
one of the most important subjects in Discrete Event Simulation projects and model,

the Queuing principles.

Markov processes are powerful tools for describing and analysing dynamic
systems that are probability based. Markov processes constitute the fundamental
theory underlying the concept of queuing systems. Each queuing system can be
mapped onto an instance of a Markov process and then mathematically evaluated in

terms of this process.

A. Mousavi — Brunel University, UK 55

Markov processes are a special type of stochastic processes. Earlier we discussed

what a stochastic process is (i.e. random behaviour within a state space, within a time

spec). A stochastic processes X; :teTand T < N, =[0,] s therefore a Markov
process if for all tg =0,t5 <t; <ty <..<t, <t,, 1 and all seS the cumulative

density function of X ,; is dependent on the last value X; and not on earlier

values of X, ,...X¢, ;. A Markov process is therefore a conditional probability:

P(Xtn11 <Sn+1|Xt, =S Xt_q =Sn-1-Xtg =50)=P(X¢, 4 ’5n+1‘xtn Sn)

Thus a stochastic process with Markov property is a Markov Process. A good
example of this is the difference between a Dice game in which the result of the next
throw is absolutely independent from previous throw (stochastic process); whilst
playing the second card in a card game like Trumps, is normally dependent on the

previously played card.
3.4.1 Markov Chains

Markov processes can be homogenous (time independent) or non-homogenous
(time dependent). Parameters of Markov processes can be discrete or continuous.
Both Discrete-parameter (Set T to be discrete) or Continuous-parameter (Set T to be
continuous) Markov processes may have discrete or continuous state spaces. Markov
processes with discrete state spaces are usually called Markov Chains.

a. Discrete Time Markov Chains

A given stochastic process of (Xg,X1,X2,...,;Xp41,...}at consecutive points of

observation 0,1,2,...,n+1 constitute a Discrete Time Markov Chain provided that the

conditional probability mass function is defined as:
P(Xnt1= Sn+1‘xn =Sn,Xn-1 =Sn—1,X0 =50) =P(Xpi1 = Sn+l|X = Sn)

Where P(Xp-1 =Sps1|Xn =Sp)is the conditional probability mass function of

transition from state s, to Sy at time step n+1.

A. Mousavi — Brunel University, UK 56

pu(l)(n)z P(Xn+1 =Sp41 = j|xn= Sh =|)

When one continues the Markov Chain, its evolution from state s to s, is step by
step and according to a transition probability. There are many applications for Markov
chains such as genetic programming and many other dynamic and evolutionary
processes in which the probability of state transition is known. The one-step transition

probabilities are usually summarized in a non-negative, stochastic transition matrix P:

Poo Po1 Pon
P_Pl_[p, 1= Pio P11 P1n--
J 20

The elements of each row sums up to 1.

A Discrete Time Markov Chain state transition can be expressed in the diagram

below:

1/2

. << D
O O o

Q7

1/4

The one-step transition matrix can therefore be written as:

o1_[075 025
05 05

To conclude this section lets do a simple example.

The probabilities of weather conditions, given the weather on the preceding day,

can be represented by the state transition matrix:

A. Mousavi — Brunel University, UK 57

ol _ { Poo pm} _ {0-9 0-1}
Pio Pua] [05 05

State 0 = sunny and State 1 = Rainy.

Reading the matrix, the probability of a day being sunny and the following to be
sunny is 0.9. The probability of sunny to rainy will be the remaining 0.1. Can you

decipher the second row?

If on day O the weather is sunny, then X 0 (1 0)meaning the day is sunny then

100% and rainy 0%.

To predict weather in day 1:

01
5} =(1x0.9+0x05 1x0.1+0x0.5)=(0.9 0.1)

XM =xp=(1 0)[0'9
05

Day 2

09 01
x(2) = xMp = x()p2 _ (0.9 0.1){05 Os}z(.Qx.Q-ﬁ-.lx.S 9x.1+.1x.5)=(.86 14)

The general rule for n days will be as:

X(”) — X(n+1)p

x (N) — x (0)pn

In long run this terrain when number of n goes to infinity the steady state will be

(pp P1)=(0.833 0.167) in other words if you want to bet on a day to be sunny in

the future you better put your money on a sunny day!

b. Continuous Markov Chains

A given stochastic process X; :t eT constitutes a Continuous Markov Chain for
all arbitraryt; e N™, 0=ty <t; <t, <..<t, <ty,1 and taking its values from state

space Vs; e S the conditional probability mass function will be:

A. Mousavi — Brunel University, UK 58

P(Xt,+1 = Sn+1|Xt,, =Sn Xt -1 =Sn-1-+Xtg =50)=P(X, +1 =Sn+1|Xt, =5n)
Have another look at the Discrete Markov Chain conditional probability mass
function and compare it to the Continuous one. The difference is the time factor.

3.4.2 Markovian Queues

All of us have experienced queues, especially the ones who are not privileged or
considered as an immediate priority by the service provider. Queues represent waiting
to be served either by a person or a machine. Queues form because there is difference
between arrival rates and processing time. If the world around us was a deterministic
one, then service providers would have been able to design their production or service
processes in a way that no queues will form and no waiting time incurred. For
example if the arrival time between two jobs 2 minutes and the processing time 1.5
minutes there would be no queues. But if the time between arrivals was random
between 1 minute to 5 minutes and the processing time fixed, at times you would
observe queues forming. We will try (or have tried this already in the lab) using the
simulation software having a single resource (machine or a person), one queue and a

random inter-arrival.

Therefore to measure the numbers of jobs in a queue or the waiting times, there
are three key data that need to be known denoted by (A/B/m). The A indicates the
distribution of inter-arrivals (e.g. Poisson for number or Exponential for time between
arrivals). The B indicates in distribution of the processing time and the m is the
number of servers (in Arena software package defined as resources). The Markovian
queues are then described as M/M/1 for random arrival rates, random processing times
with a single server queues. M/M/c denotes random arrival rates, random processing

time with c servers.

If A4 is the average arrival rate and u is the average processing time for c server

then the utilisation factor can be estimated as: p = i.
LC

Assuming that the probability of n parts being at the workstation at time t to be

pi(n),for a steady state situation will then be p;(n)= pi,5(n). Thus, table 3.1 shows

the queuing results for an M/M/1 situation.

A. Mousavi — Brunel University, UK 59

Table 3.1: M/M/1 queuing results, for a more complete table on M/M/c, | suggest
you see: R. G. Askin and C. R. Standridge (1993); Modelling and Analysis of
Manufacturing Systems, Wiley & Sons.

Notation M/M/1
Probability of O jobs at the p(0) 1-p
workstation
Expected no. of Jobs waiting in Ly 2
P
Queue —
-p
Expected no. of jobs at workstation L o)
1-p
Expected Queuing Time Wy Yol
#(1-p)
Expected Throughput time W 1
“(1-p)

Note that queues also have rules, First-Come-First-Serve (FCFS) or priority
rules such as Last Come First Serve (LCFS), Lower Value First (LVF), Higher Value
First (HVF) and so on and so forth. We will examine these rules when using a
simulation software package and assigning priorities to entities that are served by the

servers.
To end this chapter we bring a simple example of an M/M/1 system.

Example: A security and metal detection machine at an airport has a service rate

that follows an Exponential distribution with =10 passengers per minute.
Passengers arrive at the machine with an Exponential rate of 4 =8 per minute. The

queuing rule is FCFS. Find the expected machine utilisation, passenger throughput

time and average waiting time.

Solution: We treat this as a single station process therefore:

Machine Utilisation: p = A 8
cu 10
Probability that themachine would beidle: p(0)=1-0.8=0.2
Throughput time: W = ! = ! =0.5min
ull—p) 10(1-0.8)
Waiting time: W, = 08 =0.4min

A. Mousavi — Brunel University, UK 60

CHAPTER 4

The Simulation Modelling Environment

This Chapter Covers:

The steps to a successful simulation project
Simulation input and output data analysis
The main techniques of experimental design

e e

The approaches to model verification, validation and testing

A. Mousavi — Brunel University, UK

61

4.1 Steps for simulation study

Simulation, particularly discrete event simulation (DES) is used as a problem
solving technique. Discrete event simulation literature has been substantially
developed since inception of digital computers. In the last fifty years of its history,
modelling has been developed from theoretical process into decision support tool.
There are two reasons for the success of discrete event simulation in day to day
problem solving. Firstly, advances in computing technology; and secondly, restricted
budgets and the affordability of computer hardware and processor time. These factors

make simulation projects very cost-effective to commission and complete [1].

As a result, simulation provides huge support for a wide variety of purposes
including, training, interaction, visualisation, hardware testing, and decision support

in real-time.

According to Shannon, digital computer simulation is the process of designing a
model of a system and conducting experiments with this model on a digital computer
for a specific purpose of experimentation. Digital computer simulation can be divided
into three categories; (1) Monte Carlo, (2) Continuous, and (3) Discrete event.
Monte Carlo simulation is a method by which an inherently non-probabilistic problem
is solved by a stochastic process; the explicit representation of time is not required. In
a continuous simulation, the variables within the simulation are continuous functions,
e.g. a system of differential equations. If value changes to program variables occur at
precise points in simulation time (i.e. the variables are “piecewise linear”), the
simulation is discrete event. Also, Nance (1987) states that three related forms of
simulation are commonly used in the literature. A combined simulation refers
generally to a simulation that has both discrete event and continuous components.
Hybrid simulation refers to the use of an analytical sub-model within a discrete event
model. Finally, gaming can have discrete event, continuous, and/or Monte Carlo
modelling components. The focus of this chapter is limited to discrete event

simulation. [1]

Investigation in modelling methodology has persisted some 35 years, beginning
with the General Simulation Program of Tocher in 1958 [2] and continuing in the

A. Mousavi — Brunel University, UK 62

writings of Lackner [3], Kiviat [4], Nance [1] and Zeigler [5] to cite the most

prominent.

A simulation involves modelling a system. A system is a part of the world which
we choose to consider as containing a collection of components each characterised by
a selected set of data items and patterns, and by actions which may involve itself a
component and other components. The system may be real or imaginary and may
receive input from, and/or produce output for, its environment. Simulation modelling
is a fundamental discipline that affects wide variety of scientific fields from

engineering to social sciences.

According to Nance (1987), a model is comprised of objects and the relationships
among objects. An object is anything characterised by one or more attributes to
which values are assigned. The values assigned to attributes may conform to an
attribute typing similar to that of conventional high level programming languages.

Within a discrete event simulation, there are two concepts of time and state that
are of paramount importance. Nance (1987) identifies the following primitives which
permit precise delineation of the relationship between these fundamental concepts
(see Figure 4.1):

e Aninstant is a value of system time at which the value of at least one attribute
of an object can be altered.

e Aninterval is the duration between two successive instants.

e A span is the contiguous succession of one or more intervals.

e The state of an object is the enumeration of all attribute values of that object

at a particular instant.

A. Mousavi — Brunel University, UK 63

} Proceas |

Objoct Activity

Activity
— ﬁ’l’.’tl‘ﬂ.t!.l' E—

lemc
-

Event Evenit Exvmit FBaent

Figure 4.1: Event, Activity and Process

These definitions provide the basis for some widely used (and, historically, just as

widely misused) simulation concepts:

e An activity is the state of an object over an interval.

e Anevent is a change in an object state, occurring at an instant, and initiates an
activity precluded prior to that instant. An event is said to be determined if
the only condition on event occurrence can be expressed strictly as a function
of time. Otherwise, the event is contingent.

e An object activity is the state of an object between two events describing
successive state changes for that object.

e A process is the succession of states of an object over a span (or the

contiguous succession of one or more activities).

In other words, modelling is the process of describing a system (producing a
model of that system) with the goal of experimenting with that model to gain some
insight into the behaviour of the system. The model itself is a collection of interacting

objects, these objects being described by attributes.

4.1.1 A model classification scheme

In modelling, understanding the concept of model is very important because of
different forms that models may take. Therefore, describing the characteristic

properties is difficult to formulate. Figure 4.2, shows a model classification that

A. Mousavi — Brunel University, UK 64

provides four main dimensions. The classification scheme for models adopted from
Balci (1987) [6].

Lincor!Non Brcor

StahleAT rmtahle

PeobehifstY/Tictcem ¥ tic
Teaemicn t'ELcady State

Autopom ous™ oo tonom oane

ANALYTIOAL NUMEBERIOAL @ | ~~~~—~°~ &nimetne Techrioue
PRESCRIPTIVE TESCRIPTIVE | T TTT77 Sie oy raferiine
| STATIC OYNAMIO | ———————— Tempnrol Nut ere
| PIIYSICAL ARSTRACT | ———————— Mndd Represerdiuiinm

Figure 4.2: A Classification Scheme for Discrete Event Simulation (DES)
Models [6]

The first dimension characterises the model representation. An abstract model is
one in which symbols constitute the model. A verbal or written description in English
is an abstract model. A mathematical model is described in the symbology of
mathematics and is a form of abstract model. A simulation model is built in terms of
logic and mathematical equations and is considered an abstract model. The second
dimension characterises the study objective underlying the model. A descriptive
model describes the behaviour of a system without any value judgement on the quality

of such behaviour.

A third dimension relates to the presence of temporal properties in the model. A
static model is one which describes relationships that do not change with respect to
time. Static models may be abstract or physical. An architectural model of a house is a
static physical model. An equation relating the area and volume of a polygon is a
static mathematical model. A dynamic model is one which describes time-varying
relationships. A wind tunnel which shows the aerodynamic characteristics of proposed
aircraft design is a dynamic physical model. The equations of motion of the planets

around the sun constitute a dynamic mathematical model.

The fourth dimension identifies a solution technique. An analytical model is one

which provides closed-form solutions using formal reasoning techniques, e.g.

A. Mousavi — Brunel University, UK 65

mathematical deduction. A numerical model is one which may be solved by applying

computational procedures.

Discrete event simulation models are considered in the class of abstract, dynamic,

descriptive, and numerical models.

Discrete event simulation models may be defined with various combinations of
the following characteristics: (1) a linear model is one which describes relationships
in linear from, and a nonlinear model describes nonlinear relationships; (2) a stable
model is one which tends to return to its initial condition after being disturbed, while
an unstable model is one which may not return to its initial condition after being
disturbed; (3) a steady-state model is one whose behaviour in one time period is of the
same nature as any other time period, while a transient model is one whose behaviour
changes with respect to time; (4) a probabilistic (stochastic) model is a model in
which at least one state change is a function of one or more random variables,
otherwise, the model is deterministic, and (5) an autonomous model is one in which
no input is required (or permitted) from the environment, other than at model
initiation, while a model that permits input to be received from its environment at

times other than model initiation is a non autonomous model.
4.2 Input Data Analysis

One of the primary reasons for using simulation is that the model of the real-
world system is too complicated to study using the stochastic processes models.
Examples of such random inputs include arrivals of orders to a job shop, times
between arrivals to a service facility, times between machine breakdowns, and so on.
The major sources of complexity are the interrelationship between different elements
within the system and how they process the input to achieve the desired output, so-
called the prevailing logic. Each simulation model input has a correspondent both in

the real-world system and in the simulation program, as shown in figure 4.3 [7].

A. Mousavi — Brunel University, UK 66

Real world process Simulation Models Simulation Programme
or phenomenon Random Input Random Variate
Generator
. .. A] A
Simulation input Random Variate ;
modelling Programming

Figure 4.3: Role of input distributions [Adopted from J Banks].

A random input variable to a simulation model can be viewed as a stochastic
process. A stochastic process is often defined as a collection of random variables
{X(t), tin T}, where T is called the index set of the process and t usually represents
time. In the discrete-event simulation context the index set is typically taken to be the
non-negative integrates, so the stochastic process itself is referred to as being discrete-
time. For such a process we can use the simpler notation {Xx, k£ = 1, 2...}. Notice that
subscript K dictates the order of the variables but not the specific time of occurrence
(i.e. X2 occurs some time after X1 and some time before X3, not necessarily at equal
time intervals. Here each Xk is a distinct occurrence of the same general random

phenomenon X with probability distribution function Fk (x) = Pr {Xx< = x}.

Perhaps the most fundamental assumption to be made about a process is the
dimensionality of X as univariate versus multivariate. If each random variable X
represents a single quantity such as the service time of a customer, the process is
called univariate; X« would be the service time of the kth customer to arrive at the
system. If, instead, X represents a number of quantities such as the amounts for
different items within a single order, the process is called multivariate; here Xk = {Ax,
B, ...tcould present the amounts of items A, B, and so on, on the kth order submitted
to an inventory system. In general, whenever a multivariate process is considered, the
assumptions concerning the interrelationships of random variables become more

complicated due to the increased dimensionality.

Discrete-event simulation models typically have stochastic components that
mimic the probabilistic nature of the system under consideration. Successful input
modelling requires a close match between the input model and the true underlying
probabilistic mechanism associated with the system. The input data analysis is to

model an element (e.g., arrival process, service times) in a discrete-event simulation

A. Mousavi — Brunel University, UK 67

given a data set collected on the element of interest. This stage performs intensive
error checking on the input data, including external, policy, random and deterministic
variables. System simulation experiment is to learn about its behaviour. Careful
planning, or designing, of simulation experiments is generally a great help to save
time and effort by providing efficient ways to estimate the effects of changes in the
model's inputs and on its outputs. Statistical experimental-design methods are mostly
used in the context of simulation experiments. Simulation modelling and the

consequent system analysis mainly discuss:

1. Performance Evaluation and What-If Analysis: The ‘what-if' analysis is at the

very heart of simulation models.

2. Sensitivity Estimation: Users must be provided with affordable techniques for

sensitivity analysis if they are to understand which relationships or changes to
parameters have the highest effect on the system.

3. Optimisation: Traditional optimisation techniques require gradient estimation.
As with sensitivity analysis, the current approach for optimisation requires
intensive simulation to construct an approximate surface response function.

4. Gradient Estimation Applications: There are a number of applications which

measure sensitivity information, (i.e., the gradient, Hessian, etc.), Local
information, Structural properties, Response surface generation, Goal-seeking
problem, Optimisation, What-if Problem, and Meta-modelling.

5. Report Generating: Report generation is a critical link in the communication

process between the model and the end user.

To perform statistical analysis of the simulation output we need to establish some
conditions, e.g. output data must be a covariance stationary process (e.g. the data

collected over n simulation runs).

a. Stationary Process (strictly stationary): A stationary process (or strictly

stationary process) is a stochastic process whose probability distribution at a fixed
time or position {X (t), t € T} is the same for all times or positions. As a result,
parameters such as the mean and variance also do not change over time or position.
This can well be used in Economics and Process Analysis where a trend in a time

series is observable. For example, an operator conducting a task in a period of time

A. Mousavi — Brunel University, UK 68

with a specified variance and mean or mean time between arrivals at a check-in boot

in an airport.

b. First Order Stationary: A stochastic process is a first order stationary if

expected of X (t) remains the same for all t. For example in economics time series, a
process is first order stationary when we remove any kinds of trend by some

mechanisms such as differencing.

If we let xy; represent a given value at time t;, then we define a first-order

stationary as one that satisfies the following equation:

fi () = fx (Xea+2)

The physical significance of this equation is that our density function, fx (Xa), IS

completely independent of t; and thus any time shift, z. [8]

The most important result of this statement, and the identifying characteristic of
any first-order stationary process, is the fact that the mean is a constant, independent
of any time shift. Below we show the result for a random process, X, that is a discrete-

time signal, x[n].
X = my[n]

E[X[n]

constant (independent of n)

c. Second Order Stationary: A random process is classified as second-order

stationary if its second-order probability density function does not vary over any time
shift applied to both values. In other words, for values xi; and X, then we will have the

following be equal for an arbitrary time shift z.

f(Xe1, Xt2) =Fx(Xt1+7,Xt2+7)

From this equation we see that the absolute time does not affect our functions,
rather it only really depends on the time difference between the two variables. Looked

at another way, this equation can be described as:

A. Mousavi — Brunel University, UK 69

Pr{X(t1) <x1, X(t2) <x2] = Pr[X(t1+7) <x1,X(ta+1) <xo]

These random processes are often referred to as strict sense stationary (SSS) when
all of the distribution functions of the process are unchanged regardless of the time

shift applied to them.

For a second-order stationary process, we need to look at the autocorrelation
function to see its most important property. Since we have already stated that a
second-order stationary process depends only on the time difference, then all of these

types of processes have the following property:

Re(tt+7) = E[X(t+2)] = Rex(2)

d. Covariance Stationary: A covariance stationary process is a stochastic process
{X (t), t e T} having finite second moments, i.e. expected of [X (t)] be finite. Clearly,
any stationary process with finite second moment is covariance stationary. A

stationary process may have no finite moment whatsoever.
Consider the following two extreme stochastic processes:

- A sequence Yy, Y1 ..., of independent identically distributed, random-value
sequence is a stationary process if its common distribution has a finite variance then

the process is covariance stationary.

- Let Z be a single random variable with known distribution function, and set Zo =
Z; = ...Z. Note that in a realisation of this process, the first element, Z, may be
random but after that there is no randomness. The process {Z;, i = 0, 1, 2, ..} is

stationary if Z has a finite variance.

Output data in simulation fall between these two types of process. Simulation
outputs are identical and mildly correlated (depends on e.g. in a queuing system how
large is the traffic intensity p). An example could be the delay process of the

customers in a queuing system.

A. Mousavi — Brunel University, UK 70

4.2.1 Techniques for the Steady State Simulation

Unlike in queuing theory where steady state results for some models are easily
obtainable, the steady state simulation is not an easy task. The opposite is true for

obtaining results for the transient period (i.e., the warm-up period).

Gathering steady state simulation output requires statistical assurance that the
simulation model reaches the steady state. The main difficulty is to obtain
independent simulation runs with exclusion of the transient period. The two
techniques commonly used for steady state simulation are the Method of Batch

means, and the Independent Replication.

None of these two methods is superior to the other in all cases. Their performance
depends on the magnitude of the traffic intensity. The other available technique is the
Regenerative Method, which is mostly used for its theoretical nice properties;
however it is rarely applied in actual simulation for obtaining the steady state output

numerical results.

+ Quene Size

A Cycle Time
Fegenerative Method

Suppose you have a regenerative simulation consisting of m cycles of size ny, n,,

...nm, respectively. The cycle sums is:
yi = 2Xij/ nj, the sumis over j=1, 2, .., n; (size of cycles)
The overall estimate is:
Estimate = 2y;/ 2'n;, the sums are over i=1, 2, .., m (number of cycles)
The 100(1-0/2)% confidence interval using the Z-table (or T-table, for m less

than, say 30), is:

A. Mousavi — Brunel University, UK 71

Estimate #Z. S/ (n. m*) where, n = ¥'n; /m, the sum is over i=1, 2, ..,m and the

variance is: > = X (y; - n; . Estimate)?/(m-1), the sum is over i=1, 2, ..,m

The Batch Means method involves only one very long simulation run which is
suitably subdivided into an initial transient period and n batches. Each of the batches
IS then treated as an independent run of the simulation experiment while no
observation is made during the transient period which is treated as warm-up interval.
Choosing a large batch interval size would effectively lead to independent batches and
hence, independent runs of the simulation, however since number of batches are few
one cannot invoke the central limit theorem to construct the needed confidence
interval. On the other hand, choosing a small batch interval size would effectively
lead to significant correlation between successive batches therefore cannot apply the

results in constructing an accurate confidence interval.

& Steady State Queus
Size Aerage

iammi-up Period

1 2 2. n
Method of Batch Means

Suppose you have n equal batches of m observations. The means of each batch is:
mean; = X'x;j/ m, the sumis over j=1, 2, .., m (number of observations)
The overall estimate is:
Estimate = Zmean;/n, the sumis over i=1, 2, ..,n (number of batches)

The 100(1-0/2)% confidence interval using the Z-table (or T-table, for n less than,
say 30), is:

Estimate +Z. S where the variance is: $° = > (mean; - Estimate)?/(n-1), the

sum is over i=1, 2, ..,n.

A. Mousavi — Brunel University, UK 72

The Independent Replications method is the most popular for systems with short
transient period. This method requires independent runs of the simulation experiment
different initial random seeds for the simulators' random number generator. Due to
extraordinary conditions of systems at start of a simulation run e.g. systems being
empty and the short period of simulation a transient period is defined. For each
independent replications of the simulation run the results of the transient period is
removed from the analysis. For the observed intervals after the transient period data is
collected and processed for the point estimates of the performance measure and for its

subsequent confidence interval.

+ Steady State Queus
Size Awerage
Ea
3 L
2
1
Warm-up Periods N
>
Time

mMethod of Independent Replications

Suppose you have n replications with of m observations each. The means of each
replication is:

mean; = XX/ m, the sumis over j=1, 2, ..,m (number of observations)
The overall estimate is:
Estimate = Zmean; / n, the sum is over i =1, 2, ..,n (number of replications)

The 100(1-0/2)% confidence interval using the Z-table (or T-table, for n less than,
say 30), is:

Estimate + Z. S where the variance is: S = ' (mean; - Estimate)?/(n-1), the sum

isoveri=1,2,..,n.

The primary purpose of most simulation studies is the approximation of
prescribed system parameters with the objective of identifying parameter values that

A. Mousavi — Brunel University, UK 73

optimise some system performance measures. If some input processes driving a
simulation are random, the output data are also random and runs of the simulation
result in estimates of performance measures. A simulation run does not usually
produce independent, identically distributed observations; therefore, “classical”

statistical techniques are not directly applicable to the analysis of simulation output.
4.3 Simulation Experiment Design

In experimental-design terminology, the input parameters and structural
assumptions composing a model are called factors, and the output performance
measures are called responses. The decision as to which parameters and structural
assumptions are considered fixed aspects of a model and which are experimental
factors depends on the goals of the study rather than on the inherent from of the
model. Factors can be either quantitative or qualitative. Quantitative factors naturally
assume numerical values, while qualitative factors typically represent structural

assumptions that are not naturally quantified.

We can also classify factors in simulation experiments as being controllable or
uncontrollable, depending on whether they represent action options to managers of the
corresponding real-world system. In a mathematical modelling activity such as
simulation we do get to control everything, regardless of actual real-world
controllability.

In simulation, experimental design provides a way of deciding before the runs are
made which particular configurations to simulate so that the desired information can

be obtained with the least amount of simulating.
There are some advantages through simulation experiments:

1. We have the opportunity to control factors such as customer arrival rates that
are in reality uncontrollable. Thus, we can investigate many more kids of

contingencies than we could in a physical experiment with the system.

2. Another aspect of enhanced control over simulation experiments stems from
the deterministic nature of random-number generations. In simulation

experiments, we can control the basic source of variability, unlike the

A. Mousavi — Brunel University, UK 74

situation in physical experiments. Thus, we might be able to use variance-

reduction techniques to sharpen our conclusions.

3. In most physical experiments it is prudent to randomise treatments (factor
combinations) and run orders (the sequence in which the treatments are
applied) to protect against systematic variation contributed by experimental
conditions, such as steady rise in ambient laboratory temperature during a

sequence of biological experiments that are not thermally isolated.

If a model has only one factor, the experimental design is conceptually simple: we
just run simulation at various values of the factor, or levels, perhaps forming a
confidence interval for the expected response at each of the factor levels. For
guantitative factors, a graph of the response as a function of the factor level may be
useful. In the case of terminating simulations, we would make some number n of
independent replications at each factor level. At the minimum there would be two

factor levels, thus needing 2n replications.
4.3.1 Response surfaces and metamodels

A simulation model can be thought of as a mechanism that runs input parameters
into output performance measures. In a sense simulation is just a function, which may
be vector-valued or stochastic. The explicit form of this function is also unknown,
since we are going through the trouble of simulating instead of merely plugging
numbers into some formula. There are some models that develop simple formulas that
approximate this function. This approximate function could then be used as a proxy
for the full-blown simulation itself in order to get at least a rough idea of what would
happen for a large number of input-parameter combinations. This ability is especially
helpful if the simulation is very large and costly, precluding exploration of all but a

few input parameter combinations.

For example, the simulation of an inventory model; we take s as input the reorder-
point parameter and the order size parameter d, and produced as output the average
total cost per month, a random variable. We could thus in principal define the:

Average total cost per month = R(s,d)

A. Mousavi — Brunel University, UK 75

For some function R that is stochastic, unknown, and probably pretty messy;
indeed, it is the whole simulation program itself that evaluates R for numerical input

values of s and d.

Gradient estimation: One of the goals of simulation is to find how changes in the

input parameters affect the output performance measures. If the parameters vary
continuously, we are essentially asking a question about the partial derivatives of the
expected response function with respect to the input parameters. The vector of these
partial derivatives is called the gradient of the expected response function, and is
dimensionally equal to the number of input parameters considered. The gradient is
interesting in its own right, since it gives the sensitivity of the simulation’s expected
response to small changes in the input parameters. It is also an important ingredient in
many mathematical programming methods that we might try to use to find optimal
values of the input parameters, since many such methods rely on the partial

derivatives to determine a direction in which to research for the optimum.

As a simple example, consider an M/M/1 queue operating in steady state, with
arrival rate A and service rate w; we assume that the traffic densitytobep =A/w < I
. The first “M” stands for the arrival process (interarrival times) are independent and
identically distributed and is also exponential (Markovian). The second “M” stands
for the service time distribution and the “1” stands for a single server single Queue
situation. In this model, the steady state expected delay in queue of a customer is

analytically known and is given by:

d(A/w)=1/W?-2w [7]

4.4 Validation, Verification and Testing

A simulation study is normally conducted for problem solving, conducting “what
if” scenarios and training. It consists of complex processes of field data collection,
formulation, analysis, modelling, and experimentation. A typical simulation requires
an overall knowledge in diverse disciplines such as operations research, computer

science, statistics and manufacturing processes engineering. A successful simulation

A. Mousavi — Brunel University, UK 76

study may be a credible solution that is accepted and used by senior management and

key decision makers.

Model verification is substantiating that the model is transformed from one form
into another, as intended, with sufficient accuracy. This requires an accurate

modelling construct that handles the transition from one state into another.

Model validation is to demonstrate that the model behaves with satisfactory
accuracy consistent with the study objectives. Model validation deals with building
the appropriate model accounting for the nature of activities in the system, the
relationship between various resources and the flow of material within the system.
Model verification and validation revolves around assessment of the accuracy model

compared with performance of the real system.

Model testing is ascertaining whether inaccuracies or errors exist in the model. In
model testing, the model is subjected to test data or test cases to determine if it
functions properly. Test failed implies the failure of the model, not the test. A test is
devised and testing is conducted to perform either validation or verification or both.
Some tests are devised to evaluate the behavioural accuracy (i.e., validity) of the
model, and some tests are intended to judge the accuracy of model transformation

from one state into another (verification).

In this chapter the steps for a successful simulation project were described. Also
techniques for experimental design and simulation output analysis were discussed.
The chapter was concluded by explaining the approaches to model verification,

validation and testing.

References

[1] Nance, R.E. and Overstreet, C.M. (1987). “Diagnostic Assistance Using Digraph
Representations of Discrete Event Simulation Model Specifications”, Transactions

of the Society for Computer Simulation, VVol.4, No.1, pp. 33-57, January.

A. Mousavi — Brunel University, UK 77

[2] Tocher, K.D. (1979). Keynote Address, In: Proceedings of the 1979 Winter
Simulation Conference, pp. 640-654, San Diego, CA, December 3-5.

[3] Lackner, M.R. (1962), “Toward a General Simulation Capability”, In:
Proceedings of the AFIPS Spring Joint Computer Conference, pp. 1-14, San
Francisco, CA, May 1-3.

[4] Kiviat, P.J. (1963). “Introduction to Digital Simulation,” Applied Research
Laboratory 90.17-019(1), United States Steel Corporation, April 15 (stamped date).

[5] Zeigler, B.P. (1976). Theory of Modelling and Simulation, John Wiley and Sons,
New York, NY.

[6] Balci, O. (1987). CS 4150: Modelling and Simulation Class Notes, Department of
Computer Science, Virginia Tech, Blacksburg, VA, pp. 10-13, Spring.

[7] Banks, Jerry (1998): Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practices, John Wiley and Sons, New York, NY.

[8] www.cnx.org/content/m10684/latest

A. Mousavi — Brunel University, UK 78

PART B

Chapter 5

Simulation Modelling with ARENA: An Introduction to

Arena Software Package

This Chapter Covers:

1. The Arena simulation software environment
2. The modelling approaches used in Arena

3. The key concepts and terminologies in Arena
4. The building blocks in Arena

5. Building and running a simple simulation example.

Note: D. Kelton, R. Sadowski and N. B. Swets (2010), Simulation with
Arena 5th Int. Edition, McGraw-Hill. And the Arena Simulation Software
help files.

A. Mousavi — Brunel University, UK 79

5.1 An introduction to the Arena simulation software

In this chapter you will be introduced to simulation software called
Arena™. In this and the next two chapters, you will learn how to use Arena
for basic process modelling and we will follow a specific example to
demonstrate the facilities and capabilities of Arena discrete event simulation

tool.

There are several simulation modelling software packages that are
available in the market today. Some of the other common ones besides Arena
are, SIMULS8, WITNESS, AutoMOD, ED, ANYLOGIC and SIMUL. The
minimum requirement for running the examples in this and the next two

chapters of the book will be the academic version of the software tool Arena.

Arena provides an integrated environment for building simulation models
for a wide variety of applications. It integrates all the functionalities required
for a successful simulation including: Input and output data analysis, Model

logic construction and Animation.
5.2 Arena’s hierarchical structure

The flexibility provided by Arena is shown by its hierarchical structure
shown in figure 5.1. Within a single graphical user interface, Arena provides a
means of high level modelling using user-created templates whilst at the same
time supporting the ultimate flexibility of user-written programmes in visual
basic and C/C++. Between these two, the user has the flexibility of combining
modules from different panels to obtain a unique and accurate solution to a

given problem.

In the next section we will take a tour of Arena environment in order to
become familiar with its menus and commands. Along with this chapter you

are also advised to read chapter three of the reference text (Kelton et al, 2010).

A. Mousavi — Brunel University, UK 80

Inasingle
__________ graphical user
| Modelling | interface
| Level | consistent at
e any level of
+ modelling
Lower

Figure 5.1: Arena’s Hierarchical Structure (Adopted from
Kelton et al, 2004, chapter 1, pp 13)

A. Mousavi — Brunel University, UK 81

5.3 A quick tour of the Arena environment

A snap shot of the Arena simulation environment is shown in figure 5.2. As
shown, the main part of the screen is the model window which is split into two views:
the flowchart view and the spreadsheet view. By default, Arena displays both views
with the spreadsheet view below the flowchart view. If you do not see the two views
on your screen, click on View on the menu bar and select split screen. Repeat the

above process to turn off split screen.

The flowchart view accommodates the model’s graphics including the process
flowchart, animations and other drawing elements. The spreadsheet view if active
displays model data in any selected module. It provides an easy way to enter and edit
model data and set relevant parameters. Most model data can be entered and edited
through the flowchart view but the spreadsheet view gives access to many more data

at the same time, arranged in a way convenient for editing.

To the left of the Arena window is the project bar, which hosts various panels
containing the objects which are used as building blocks in Arena models. Figure 5.2
shows the basic process panel displayed. Above that are buttons for the advanced
process and advanced transfer panels. Arena displays only one panel at a time.
Clicking on the advanced process button will hide the basic process panel and display
the modules in the advanced process panels.

A. Mousavi — Brunel University, UK 82

%t Arena - [Model 03-01]

B Fle Edit Yiew Tools Arange Object Run Window Help - 8%
NEE BE | &R B =PI BIE=IR R A R R P]] Toolbars
NSO OA|E-2AL B S-B- 6F melibks DB | F AR /
Gl o W — o R0 E A
Project Bar = =
< Advanced Transier H
<» Advanced Process Model 3-1 MOdeI WIndOW
OE;““ Pmél = A Simple Processing System FIOWChart VIeW
B,
Create Dispase
Part Arrives to \ Drilling Cent Ls Syst
LT riling Center i Leaves Syster
o < n \ :
Process Decide !
5 Drilling Center Queue: Number Waiting
Batch Separate
Q
C] Cl Drill Press: Number Bugy
irssigy Record 2
5 [s | o
Entity Queue 0 Time (Minutes) 20
Resource Variable < s _L-Model Window
Status Bar —— Spreadsheet View
[l Repons
—_—t
I T—— -
—
For Help, press F1 (664, 2958)

Figure 5.2: A snapshot of the Arena Simulation environment

In order to remove a panel, right click anywhere in the panel and select detach.
Similarly, you can add a panel by right clicking in the project bar, selecting attach
then the name of the panel from the displayed dialogue. You may want to attach and

detach a few panels now.

Above the model window are the tools bars. These are mainly shortcuts to the

menu items just as in most windows applications.

Once you become familiar with the Arena modelling environment, the next
question is probably, how do we build a model in this environment? Well, before you
learn how, there are a few things you need to look at such as some of the basic
terminologies that are used in simulation in general and Arena in particular, what the
building blocks are and some description of the most basic building blocks. We will
start with a quick review of some of the basic concepts and terminologies in the next

section.

A. Mousavi — Brunel University, UK 83

5.4 Review of basic concepts

In chapter 3 we explained what simulation is and presented some major concepts
such as systems, types of systems, models, types of models etc. In the next few
subsections, we will briefly explain the key concepts or terminologies that you will be
encountering as we go through the rest of this course. We will be looking at Entities,
Attributes, Variables, Resources, Queues, Stations, Routes, Transporters, Conveyors,
Statistical Accumulators, Time Persistent Statistics, Observed Statistics and Tally

Statistics.
5.4.1 Entities

In every simulation model, entities are objects that undergo processes and move
along the system. Kelton et al (2010) describe entities as the dynamic objects in the
simulation. Thus they are usually created, move around for a while, and then are
disposed of as they leave the system. They further noted that in as much as all entities
have to be created, it is possible to have entities that are not disposed but keep

circulating in the model or system.

For example entities in a manufacturing system may be raw materials or products.
Entities in a bank system may be customers. In a hospital the entities may be patients

and so on.

In any case however, entities represent the “real” things in a simulation. There
can be in a typical system, especially if there are different types of parts that are

processed in the modelled system.
5.4.2 Attributes

Attributes are common characteristics of entities but with specific values that can
differ from one entity to another. For example, in a hospital system all patients may
have an attribute called Arrival Time but the exact value of this arrival time attribute
for each patient will depend on the time that patient arrived into the system.

The key thing to note about attributes is that, their values are tied to a specific
entity or group of entities and would always remain the same until updated at some

A. Mousavi — Brunel University, UK 84

point in the process. In a typical system, we can define as many attributes as we need
for our entities. Arena however, has some default attributes such as Entity Type,

Entity Picture, and Entity Sequence etc which are very helpful when building a model.

5.4.3 Variables

Variables are used to store information or values that describe or reflect some
characteristics of your system, irrespective of the number, state or type of entities

around. The information variables are available to all entities and not specific to any.

There are two types of variables in Arena: Built-in variables and User-defined
variables. Some examples of Arena’s built-in variables are Work-In-Process (WIP),
current simulation time, current number in queue etc. User-defined variables depend

on the system modeller and needs to be built into the model.

Entities can access and change the value of variables but they do not take up the
values as they do with an attribute. Note however that the value of a variable may be
assigned to an attribute at anytime. For example if you are interested in knowing the
day of the week on which a product arrives into your system, you may have an
attribute called Arrival Day and a variable called DayOfWeek. DayOfWeek will be
incremented by 1 after every 24 hours of simulation time and would vary from 1
through 7 for each day of the week. Hence each time a product arrives you can assign

its Arrival Day attribute with the following expression:
Arrival Day = DayOfWeek

In this way if the product arrived when the variable DayOfWeek is 2 then the
product’s (entity’s) Arrival Day value will be 2.

5.4.4 Resources

Resources are facilities or persons in a system that provides services to the system
entities. Resources usually have capacities and entities seize units of the resource
when they are available and must be released when processing is over. It is possible
for an entity to seize various units of different resources at the same time. An

example of this is for an entity patient to require the resources: doctor, bed and a

A. Mousavi — Brunel University, UK 85

nurse at the same time. Resources may be defined individually or as a set for

modelling purposes.

It must also be noted that a resource can also serve one or more than one dynamic
entity at the same time depending on its capacity. Entities will always wait in a queue

when a required resource is not available.

Resources may be machines in a manufacturing simulation, cashiers in a banking
simulation or Doctor in a hospital simulation. The term “Seize” is used to describe an
entity taking up a resource. When the entity gives up the resource after processing is
complete, it is said to have “Released " the resource.

5.4.5 Queues

Entities normally compete with each other for resources. When the resource
required is not available, the entities need a place to wait until the required unit of the

resource is available for them to seize. This waiting place is called a Queue.

In Arena, queues have names and can also have capacities to represent, for
example, limited floor space for a buffer or storage. There are a number of rules that
determine how a resource serves entities waiting in a queue. Arena by default applies
the First-Come-First-Served (FCFS), or First-In-First-Out (FIFO) rule to all queues.
Other queuing rules are: Last In-First-Out (LIFO), Lowest Attribute Value First
(LVF), Highest Attribute Value First (HVF) or other criteria which might influence

the way entities can be served in the queue.

5.4.6 Transporters

In Arena, Transporters may be referred to as moveable resources. These are used
for moving entities from point to point in the system. This puts a constraint on the
number of entities what can be transferred at one time. The number of entities
transferred will depend on the number of Transporters available and their capacities.
Kelton et al 2004 refer to entity transfer using Transporters as resource constrained
transfer. Some examples of Transporters are AGVs, trucks, fork lifts, cranks, carts
etc. (figure 6.3).

A. Mousavi — Brunel University, UK 86

.
& Wl

Figure 5.3: Picture of a Fork Lift, an example of a
Transporter

(Source of photo: Www.rollsscaf'fold.com)

5.4.7 Conveyors

Conveyors are similar to Transporters in that they are also used to transfer entities
in the system. Conveyors however, are devices that move entities from one station to
another in one direction only, such as escalators and horizontal (roller or belt)

unidirectional conveyors (figure 5.4).

Figure 5.4: Picture of a Conveyor belt moving boxes
(Source of photo: www.fotosearch.com)

5.4.8 Statistical accumulators

The statistical accumulators are types of variables that “watch” (observe) what
goes on during a simulation run. They are “passive” elements in the model, they do
not participate but just observe. Most of them are built into Arena and are used
automatically but they may also be user-defined for special cases. Some examples of

statistical accumulators are:

Number of parts produced so far

Total of waiting time spent in queue so far
No. of parts that have gone through the queue
Maximum time in queue we’ve seen so far
Total of times spent in system

Maximum time in system we’ve seen so far
Area so far under queue-length curve Q(t)

A. Mousavi — Brunel University, UK 87

e Maximum of Q(t) so far

e Area so far under server-busy curve B(t)

All of the above need to be initialized to O at the start of the simulation. As the
simulation progresses, Arena updates all of them and at the end of the simulation run,

it uses them to calculate the output performance measures.
5.4.9 Time persistent statistics

Time Persistent Statistics are those that result from taking the (time) average,
minimum and maximum of a plot of some attribute or variable during the simulation,
where the x-axis is continuous time. Time persistent statistics are also known as

continuous-time statistics.

A classic example of a Time Persistent Statistics is number in queue (queue
length). A queue of infinite capacity may theoretically have any number of entities
from one to infinity in queue. Finding the time average for this value takes into
consideration the duration of time for which the queue was at a particular level and
not just a simple average. Figure 5.5 shows a time persistent plot of the number of
entities in a queue. Note that at time “A”, the number in queue went down to 1 and
remained at that level till time “B”. Tally statistics on the other hand are not time

dependent as discussed in the next subsection.

10.0

Number in Queue

00 | =

n.o

Time (minutes) 60.0

Figure 5.5: Time Persistent Plot for Number in a Queue
5.4.10 Observed (Tally) statistics

Tally statistics, sometimes called discrete-time statistics are those that result from
taking the average, minimum, or maximum of a list of numbers. An example of this is

the average and maximum total time in system. These statistics are observed at

A. Mousavi — Brunel University, UK 88

discrete time intervals and are not continuous. Considering a queue at any process,
whilst the number of entities in the queue is time persistent statistic, the time spent in
queue is tally statistics. The difference is that, whilst the number in queue may remain
at some value say 1 over a period of time, you can only tell how long an entity spent
in a queue only after the entity has left the queue and occurs at a specific instant in the

simulation period.
5.4.11 Counter statistics

Counter statistics are accumulated sums of a specified statistics. They are usually
simple counts of how many times something happened during the simulation. An
example of counter statistics is to count the number of entities that have entered a
process. Counter statistics could also be accumulations of numbers that are not equal
to 1, such as accumulating the wait time for each entity at a particular process to
obtain the total waiting time at that process. This is a sum of all individual wait time

and not an average.
5.5 The building blocks in Arena

Simulation models normally represent complex systems and are sometimes
complex to build. It is therefore important to understand what pieces are put together
and how, particularly in Arena. The main building blocks in Arena are the flowchart
and data modules. We will look at these in detail before the first simulation model is
built.

5.5.1 Flowchart modules

According to Kelton et al (2010), you can think of flowchart modules as being
nodes or places through which entities flow, or where entities originate or leave the
model. These modules mainly describe the dynamic process of the model. The
modules are normally contained in their respective panels and displayed in the project
bar as mentioned earlier. To place any flowchart module in the model window, click
on the flowchart module once, hold down the mouse button and drag the module

where you want it in the model window as shown in figure 6.6.

A. Mousavi — Brunel University, UK 89

The panels typically contain a collection of flowchart modules suitable for some
aspect of modelling. The Basic Process Panel contains the following flowchart
modules; Create, Dispose, Process, Decide, Batch, Separate, Assign and Record.
These are suitable for building basic high level models. A close look at each of the
flowchart modules reveals that it has a distinctive shape which is suggestive of what it
does. There are many other kinds of flowchart modules in all the panels differing in
shape and colour but clearly labelled in words to suggest their functionalities. You
may want to open the various panels and examine the various collections of flowchart

modules they contain.

A flowchart module may be edited by double-clicking on it once it is placed in
the flowchart view in the model window. This brings up a dialog box in which all data
specific to the particular module could be entered. An alternative way for editing a
flowchart module is to click to select it and Arena will always display a row of data in
the spreadsheet view that is specific to the selected module. If there are more than one
of the same kind of module in your model, Arena will display all of them as rows in

the spreadsheet view.

Drag and drop flowchart module

=l A L
} movanced Transfer e S
ovanced Prosess R T NS
Basic Proces cremte 1 } ouble-click flowchart madule to open dialogue
E 2 x| .
' MName: Entity Type: o
|Creale1 j |Enlily1 j
Time Between Arrivals
Type: Yalue: Units:
|F|andom [Expo) j |1 |Hours j
Entities per Arrival: I aw Arriveals: First Creation:
|1 [Iririte |oo
oK | Cancel | Help
<
Hame |Entity Type Type Value| Units |Entities per Arrival| Max Arrivals|First Creation
Cresate 1 Ertity 1 Random (Expo) 1 1 Infinite:
Resource vand Select the flowchart module by clicking and Arena displays module parameters in
< Flow Proces
@ REaiE spreadsheet view.

Figure 5.6: Placing a module in the model window and ways to edit data

A. Mousavi — Brunel University, UK 90

5.5.2 Data modules

Data modules are primarily used to define the characteristics of various system
elements such as queues, resources, variables and entities. They are also used to create
variables and expressions. Some data modules in the basic process panel are Entity,
Queue, Resource, Variable, Schedule and Set. Refer to the reference text for further

discussion on data modules.

To define a data module, click once on the module's icon in the Project bar to
activate its spreadsheet. Double-click in the designated space to add a new row. (Each
row in the spreadsheet represents a separate module.) Then edit the data as you would

in a standard worksheet.

Data and flowchart modules differ in several ways. First, data modules exist only
in spreadsheet form, while flowchart modules exist both as an object in the model
workspace and as a row in the spreadsheet. Second, data modules can be added or
deleted via the spreadsheet, while flowchart modules can only be added or deleted by

placing the object or removing the object from the model workspace.
5.6 Three (3) basic modules

With only three modules in Arena, you can build and run a very simple
simulation model. These modules are the Create, Process and Dispose modules found
in the Basic Process Panel. We want to introduce you to these basic modules before
we start to do some basic modelling. We present a very detailed treatment of these
modules and different ways in which they may be used in a simulation model. Similar
treatment of all other modules in the Basic Process Panel and others in the Advanced
Process and Advanced Transfer Panels are presented in chapter 7 where we introduce

the module by module approach to learning Arena.
5.6.1 Create module

The main purpose of the Create Module is to provide a starting point for entities
in a simulation model. In other words, this module is used to create entities into the

simulation model. Entities can be created in four (4) major ways:

A. Mousavi — Brunel University, UK 91

According to a random (Expo) distribution
According to a predefined schedule
According to a constant value (rate)
According to an expression

Eall el

Figure 5.7 shows the module shape and its dialog. The Name field represents a
unique identifier or name that should be given to the module. This name is displayed
on the module shape. It is helpful to use names that are descriptive of the type of

entities that the module creates for example, “create parts”, create products”, “create

patients”, and “create customers” etc.

Create @ E|

\ M ame: E ntity Type:

Create 1 >
Create 1 w | |Entity 1 -

4 [Create <] [Entity =

Time Between Arrivals
Type: Walue: Uitz
|Fian|:||:um [Expo] ﬂ |H|:uurs ﬂ
Entitiez per Arrival: b & Arriveals: First Creation:

Riandom (Expo] |1 Infinite |0.0

Schedule

Constant (] 4 | Cancel | Help

E wpression

Figure 5.7: Create module and its dialog

The Entity Type field is the name that would be given to the entities that would be
created from this particular instance of the module. This could be for example Parts,
Customers, Patients, Part 1, Customer 1, Product 1 etc. Arena sets this value to Entity
1 by default.

The group of fields labelled Time Between Arrivals determine the way in which
and the rate at which the entities are created. When Type is Random (Expo) then the
Value field represents the mean value of the exponential distribution and Units
represents the time units in Hours, Minutes, Seconds or Days. As can be seen from the

insert in figure 5.7, Random (Expo) is just one method of creating entities.

A. Mousavi — Brunel University, UK 92

When you select the option Schedule in the Type field the dialog changes to the
view shown in figure 5.8. Arena now gives you the option to specify a schedule name.
To use this type of entity creation, you should have already defined a schedule in your
module (we will discuss the subject of schedule later). The number of entities

therefore created, and the rate of arrival would depend on the details of your schedule.

& 2 %]
Mame: Entity Tupe:
|Ereate 1 ﬂ |Entit_l,l 1 j
Time Betweet Armivals
Type: Schedule Mame:
|Schedule ﬂ |5|:hedule 1 ﬂ
Entitiez per Arrival: b ax Arrivals:
1 (Infinite
(] | Cancel Help

Figure 5.8: Create dialog with schedule option

When Type is Constant, the dialog view is the same as in figure 5.7. The Value
field may be for example 30 and the Units minutes. This means that Arena should
create 1 entity (i.e. if the Entities per Arrival field is 1) every 30 minutes starting from
time 0.0 (i.e. if First Create Time is 0.0).

When Type is Expression, the dialog view remains as in figure 5.7 except that the
Value field changes to Expression and Arena gives you a drop down list of standard
expressions to choose from or to specify your own expression using the Arena’s

expression builder (figure 5.9). For example you could build the expression
DayOfWeekx5

Where DayOfWeek is a variable that varies from 1 through 7 depending of which
day of the week it is. Thus on Sunday,

DayOfWeek = 1

Hence DayOfWeekx5 = 1x5 =5

A. Mousavi — Brunel University, UK 93

Therefore Arena will create entities every Sminutes assuming units is minutes.
Similarly, if DayOfWeek = 2 for Monday then

DayOfWeekx5 = 2x5 =10

Therefore Arena will create entities every 10minutes and so on.

The Entities per Arrival field refers to number of entities that will enter the
system at a given time with each arrival. This may also be a single value or specified

as an expression.

The Maximum Arrivals field also refers to the maximum number of entities that
this module will generate. When this value is reached, the creation of new entities by
this module ceases. The value of this field may also be an expression as described

above.

Finally we have the field First Creation which refers to the time for the first
entity to arrive into the system. When Type is Schedule then this field does not apply

because the start of creation will be determined by the schedule.

i x|

Expression Type:

+|- Basic Process Wariables ~
—I- Random Distributions

Beta

Continuous Probability

Dizcrate Probability

k-Erlang

Expaonential

Gamma

Johkzan

Lognormal

Marmal b’

S]] o] el el] sl a] 0] <

Current Expression:
DapOfweek s

oK | Cancel | Help

Figure 5.9: Arena’s expression builder

A. Mousavi — Brunel University, UK 94

5.6.2 Process module

The Process Module is the main processing method in the simulation model. With
module shape and dialog as shown in figure 5.10, the Process Module can be used for
both standard and “submodel” processes. When the process type is Standard as shown
in figure 5.10, there are four possible actions that can be taken. The first option is a
delay. When modelling a process that does not require the use of a resource, then this

may be an appropriate option.

The next option of Seize Delay is used when the process is such that an entity has
to seize one or more resources, delay them but will not release them until a later time
in the simulation period. When this option is selected Arena displays a different
dialog view as in figure 5.11 with an option to add resources. It can be seen from the
Resource dialog in figure 5.11 that the Type field may be either a Resource or a Set of
resources. When there is only one resource available for the process, then the type
would be resource and the Resource Name field would be the name of the resource for

example Machine, Doctor, Nurse, Cashier etc.

A. Mousavi — Brunel University, UK 95

Process E| E|

I arne: Type:
Process 1 e |F'ru:u:ess'| j |Standard ﬂ
i Logic
Action: ﬂ
|Dela_l,l j
|Standard
Standard
:| Submodel
| |
|Value Added |
Value Added
Non-Value Added
Seize Delay Transfer
Seize Delay Releaze . L Wit
Dielay Release Delay Type: Units: Allocatiorn Other
|Triangular ﬂ |HDurs ﬂ |\-"a|ue Added j l
—lMinimum: Walue [Moszt Likely): [ERT o
|5 [15
- Iv Repart Statistics
| Triangular]
Corgtant ak. | Cancel | Help
M ormal
T nangular
Idniform
E wpression

Figure 5.10: Process Module and its Dialog

On the other hand when there is a group (or a defined set) of resources available
to the entity, then the type field should be Set. Selecting the type, Set changes the
resource dialog view to figure 5.12. The Set Name field is requires a unique name or
identifier since there may be more than just one resource set in a real model. The
Selection Rule field contains options such as Cyclical, Random, Preferred Order,
Specific Member, Largest Remaining Capacity or Smallest Number Busy. If you have
for example four (4) machines in a work area that do the same thing, you may want to
use them one after the other (cyclically) or just at random whenever a new entity
arrives at the process. However, if you have a senior nurse amongst a group of nurses,
who is the only one to decide on a patients condition, then when that patient (or
entity) arrives he or she needs to first see that specific member of the group (or set of
nurses). Therefore an appropriate selection rule will be the Specific Member option.
There is in fact not a right or wrong selection here. It only depends upon what

situation you are trying to model.

A. Mousavi — Brunel University, UK 96

Process @El

Mame: Type:

IF'chess‘l j IStandard j
~ Logic

Action; Frioity:

Seize Delay x| |Medium(2) |

Resources:

Rezource, Besource 1,1

<End of list»

Type: LI

Delay Type: I [Hesource
ITriangulal ~| [IResource %> Set
Minirum: Resource Name: Quantity:

|.5 [IResource1 LI [1

¥ Feport Statistics

Figure 5.11: Adding a resource to the process module

The Save Attribute field is requires an attribute name that would be used to store
the index number into the set of the member that is chosen. This attribute can later be
referenced with the Specific Member selection rule. This applies only when Selection
Rule is other than Specific Member. It does not apply when Selection Rule is Specific
Member. If Action is specified as Delay Release, the value specified defines which
member (the index number) of the set to be released. If no attribute is specified, the

entity will release the member of the set that was last seized.

The Quantity field thus refers to the number of resources of a given name or from
a given set that will be seized or released. For sets, this value specifies only the
number of a selected resource that will be seized or released (based on the resource’s

capacity), not the number of members of a set to be seized or released.

A. Mousavi — Brunel University, UK 97

R 2 x]]
Type:
|SEt j
Set Mame: Cluantity:
|Set 1 =
Selection Rule: Save Attnbute:
/ l ||:_I,u:|i|:a| j | j
Cyclical J
(] 4 | Cancel | Help |
R andorn

Prefered Order

Specific Member

Largest Femaining Capacity
Smallest Mumber Busy

Figure 5.12: Resource dialog with type Set selected.

When the Action Seize Delay was selected as shown in figure 5.11, Arena added
another field labelled Priority. This requires the priority value of the entity waiting at
this module for the specified resource(s). It is used when one or more entities from
other modules are waiting for the same resource(s). A classic example of using this
option is when a Doctor sees both a minor category of patients and emergency
patients. You may have one process module for the minor category patients’ process
and another module for the emergency patients and make sure they seize the same
resource, the doctor. Now in order to let the emergency patients have the Doctor
whenever they need him or her, you set the priority in the emergency patient process
module to high (1) and that for the minor category patient process to medium (2).
Note that this field does not apply when Action is Delay or Delay Release, or when
the process Type is Submodel. We have so far been looking at the Delay and Seize

Delay Actions. The next we want to consider is the Seize Delay Release Action.

The Seize Delay Release Action means that a resource(s) will be allocated (or
seized) followed by a process delay and then the allocated resource(s) will be
released. The fields required for this action are the same as having a Seize Delay
action as in figure 5.11. This is the most common action in most discrete event
systems for example machines processing parts, cashiers serving customers, doctor
seeing a patient etc. Note that for a patient however the action on a bed resource
would rather be a Seize Delay since he or she would release the bed resource only

when about to leave the system after discharge thus later on in the process.

A. Mousavi — Brunel University, UK 98

Finally, we look at the Action of Delay Release. This normally indicates that a
resource(s) has previously been allocated and that the entity will simply delay and
release the specified resource(s). Note that all the Actions described above apply only
when Type is Standard.

Before we finish with the Standard Process Type, let’s look at the set of fields to
the bottom of the dialog box. As shown in figure 5.10, the “Delay Type” refers to a
list of standard probability distributions that you can select from to describe the nature
of your process delay in this module. There is also the option to build your own
expression using the Arena Expression builder (see figure 5.9 and corresponding
section). Any type of expression you select in the list, Arena will provide all the
necessary fields to specify its parameters. For example selecting a triangular
distribution in figure 5.10, Arena provides the fields for the minimum value, modal
(most likely) value and the maximum value. For more on the statistical distributions

used in Arena, refer to Kelton et al, 2010.

The other important field on this dialog is Allocation. This determines how the
processing time and process costs will be allocated to the entity. The process may be
considered to be value added, non-value added, transfer, wait or other and the
associated cost will be added to the appropriate category for the entity and process. By
definition, a value added process or time is that which transforms a product or service,
causing it to be worth more, for example the process spraying a car in the
manufacturing system. Thus if on the other hand the process or time spent does not
add any value to the product then it is a non-value added process or time. The time
spent in moving the product around the system is allocated as transfer and that during
which the entity has to wait for another step of event to be allocated as wait. If the
description of the time allocation does not fit any of the above then this may be

assigned the allocation other.

A. Mousavi — Brunel University, UK 99

. ?]x]]
Frocess 1 T M arne: Type:

|Process 1 j |Submodel j

Edit Submodel

Cut

Copy
Duplicate

Bring To Front
Send To Back ‘0 defing the submodel logic: To cloze the submodel view:

fight-click on the Process module shape Right-click, in the submodel window and
ind zelect the Edit Submodel meru item. zelect the Cloze Submodel menwu item,
vwindow will appear where pou may

Properties lefine submodel logic for the process.

v Feport Statistics

(] Cancel Help

Figure 5.13: Process Module dialog with Type Submodel selected.

Now, going back to the Type field, you will realise that we have only been
dealing with the standard process type till now. We will now look at the submodel
Type. Submodel indicates that the logic will be hierarchically defined in a "submodel”
that can include any number of logic modules. It is important to note that all the logic
that would be defined in the submodel should be understood as taking place within the

process that is represented by this particular instance of the process module.

When the Type Submodel is selected, the dialog view changes completely to what
is shown in figure 5.13. Notice the change in the module shape (a small downward
arrow at the top right corner of the module shape) to indicate that this is a submodel

process.

Arena displays the new dialog view with two pieces of information, one on how
to define the submodel logic and the other on how to close the submodel. To begin
your submodel, you first have to click the OK button to accept the submodel Type
selection and to close the dialog box. Now right click the module shape and select

“Edit Submodel” from the menu list that pops up as in figure 5.13. This will open a

A. Mousavi — Brunel University, UK 100

blank model window for the submodel with an Entry point and an Exit point as shown
in figure 5.14. In this environment, should be able to hierarchically define a submodel

that can include any number of logic modules.

Gl uf o W — o |0 CE R M

L] o]
SAdvanced Transfer
<Advanced Process
<» Basic Pracess
<> Flow Process
Lo} Reports
“ls Mavigate

M Top-Level Model
I Process 1 (Submoded)

Fntrv Fxit

Figure 5.14: Process Module Submodel editing environment.

G uf s B | — o | IR 05 06w | M

=il ~
<rAdvanced Transfer
<rAdvanced Pracess
<> _Basic Pracess

Decide Update variable

0 {0

Machine e

Split for process Process

= . 5
] <§D|5pose o sora Close Submodel
e Repeat Last Action
E] . Find
g Flu;vgzr::gese)
. o . Paste
Figure 5.15: Process Module Submodel editing environment Select Al

View
Run

As shown in figure 5.15, we have defined the logic between the entry and exit

points of our submodel. In this case we decided to update a variable, split the

A. Mousavi — Brunel University, UK 101

incoming parts and send a percentage to scrap and then allow the rest to through the
machine process. Remember that all of these are going on within the same process
module of Type Submodel. Now to leave this environment, right-click any where in
the model view and select “Close Submodel” from the menu that pops up as shown in
figure 5.15 above. This takes you back to the Process 1 module shape as in figure
5.13 and you can then continue to build your main model in the usual way by adding
the required modules. You can always go back to your Process 1 submodel by
following the same procedure as above at anytime.

You might have realised that one option that is common to both the Standard
Type process dialog and Submodel Type process dialog as shown in figures 5.10 and
5.13 respectively is the Report Statistics check box. This option mainly specifies
whether or not statistics will automatically be collected and stored in the report
database for this process. Checking the box enables statistics collection and vice
versa. Arena by default will check this option each time you add a new process

module.
5.6.3 Dispose module

The Dispose Module (figure 5.16) is intended to be the exit point of the model
where all entities leave the system. The Name field is the unique identifier for the
module. The Record Entity Statistics check box determines whether or not the
incoming entity’s statistics will be recorded. Statistics include value added time, non-
value added time, wait time, transfer time, other time, total time, value added cost,

non-value added cost, wait cost, transfer cost, other cost, and total cost.

Dispose Ej g|

Name: Lrispoze 1
| Digpioze 1 ﬂ 0

[v Record Entity Statistics

] Caricel | Help |

A. Mousavi — Brunel Oniversity, UK 102

Figure 5.16: Dispose Module and its Dialog

Arena uses this module to calculate how many entities have left the system
(Number out) and how many are currently in process (Work-In-Process, WIP).
Entities that have been put into temporary batches must be split before being disposed
else Arena will give an error when the entity is being disposed of. Similarly, all
entities must release any previously seized resources before being disposed. The
effect of unreleased resources is an accumulation of waiting entities at the process

where that resource is needed.
5.7 Model 5-1: Basics of modelling in Arena

With a good understanding of flowchart and data modules as the building blocks
in Arena, you are now ready to build your first simulation model.

If you think of simulation as a journey towards reality, you can start from
anywhere so long as you are aiming to capture what happens in the real world. The
closer you get to it the better. In chapter 3, we looked at the major concepts in
simulation modelling including the concepts of systems. We realised that the key
things in the definition of a system are its scope and level. These refer to the

boundaries and levels of detail of the system, Stuart, 1998.

To start with, consider the simple single process system shown in figure 6.17. It
starts with parts entering the hypothetical system, going through a process and then
exiting the system. We need only three flowchart modules in Arena to model the logic

of this system.

To do this we have to first create the arriving parts, send them off to the
processing area where they will take some time as they are being worked upon. After

the process, the parts are then sent out of the system through the exit point.

Entrance »| Machine shop o Exit
\\\ ,,
N A. Mousavi — Brunel University, UK -~ 103

-~ _.---~"" System boundary

Figure 6.17: A simple representation of a single process system
5.7.1 Building the model

To create entities or parts in Arena, we use the Create flowchart module. Drag
and drop a Create flow chart module into your model window flowchart view and
double click the module to display the property dialogue box. Fill in the required

information as shown in the figure 5.18.

Partz Amive to a ﬂi
" Systemn 1
1 Marme: Entity Type:
n L] n
|F'arts Arive to Spztemn ﬂ |F'art ﬂ
Time Between &mivals
Type: Walle: Linits;
|Handu:um [Expa) ﬂ |5 |Minutes ﬂ
Entities per Aurival: b & Arriveals: First Creation:
[1 [Irfinite 0.0
QK ‘ Cancel | Help ‘

Figure 5.18: The Create Property Dialogue Box for Model 5.1

The module name, Parts Arrive to System is mainly for identification purposes. It
will uniquely identify this instance of the Create module within the model. It is very
helpful as with other modules to make the name descriptive of the process for which it
represents for ease of identification and clarification. The Entity Type is specified as
Part to show that what come into the system are parts. This could be Patients in a
healthcare system or Customers in banking or other business systems. Note that once
the Create Module is selected, Arena displays the alternative view in the spreadsheet

view for the selected module as shown in figure 5.19.

A. Mousavi — Brunel University, UK 104

Hame

Enitity Typel

Type 1nfall|-e| Units Entities per Arrival| Max Arrivals|First Creation

1 Parts Arrive ta System Part

|Random (Expo) j E Minutes 1 Infinite: oo

Schedue
Constant
Expression

Figure 5.19: The Create module spreadsheet view

In a similar way, add a process module to your create module. Arena should

automatically connect these two modules for you if you have your auto-connect

option on. Double-click the module and update its data as shown in figure 5.20. Refer

to section 5.6.2 for a detailed treatment of the process module the different ways in

which it may be used.

Finally, add a Dispose Module to your model and double-click on it to open its

dialog box as shown in figure 5.21. Ensure that the Record Entity Statistics box is

checked so that Arena collects statistics on the entities before they are disposed of.

M arme: Type:
|Machining process ﬂ |Standard ﬂ
Logic
Actian: Priority:
Seize Delay Releaze j |Medium[2] j
FResources:
Fesource, Machine 1.1 Add...
<End of lizt>
Edit...
Delete
Delay Type: Irits: Allozation:
|Triangular j |H|:|urs ﬂ |H-"alue Added j
b imiruirn: Walue [Most Likely): bl ainnLanm;
|5 5
[v Repart Statistics
(] 4 | Cancel | Help

The completed model should now look as shown in figure 5.22.

A.

Mousavi — Brunel University, UK 105

o

wtachining
pracess

Resources @

Type:

I Resource LI

Resource Name: Quantity:
IMachine 1 LI

[ok | concel | Hep

Figure 5.20: The Process module dialog box

Dispose

Euit =ystem

[v Record Entity Statistics

] | Caricel | Help |

Figure 5.21: Dispose module dialog box

Part= Amive in \
System I" "

hachine Process Esit =ystem

Figure 6.22: The completed model

A. Mousavi — Brunel University, UK 106

5.7.2 Before running the model

Before running the model, we need to set the run conditions. That is to tell Arena
how long to run for, what kinds of statistics to collect and what king of report to
generate etc. This is done in the run setup dialog by selecting setup from the run

menu.

There are five (5) tabs in this dialog thus, Reports, Run Control, Run Speed,
Project Parameters and Replication Parameters. At this stage we will only briefly
look at two of the tabs, Replication Parameters and Project Parameters.

Run Setup E|
Fun Speed I Riun Contral I Repartz]
Project Parameters Replication Parameters l Array Sizes]
T e Initizlize Between Replications
|‘|| ¥ Statistics W System
Start Date and Time:
i [
Warm-up Period: Time Units:
|U.U |H0urs ﬂ
Feplication Length: Time Units:
|‘I 0o | Hairs ﬂ
Hours Per Day: Base Time Units:
|2-’1 |H0urs j
Teminating Condition:
ak. | Cancel | | Help |

Figure 5.23: Run Setup dialog with Replication Parameters tab displayed

The dialog is shown in figure 5.23 with the Replication Parameters tab displayed.
The first item to the top left of the display if “Number of Replications”. This is the
Number of simulation runs to execute. For example, if your model runs for 100 hours
and the “Number of Replications” is set to 10, then Arena will execute your 100 hour
run over and over again for 10 times. This helps generate sufficient data for
statistically valid analysis. This value must always be an integer greater than or equal

to 1.

A. Mousavi — Brunel University, UK 107

“Initialize Between Replications” refers to whether or not Arena should empty
system and statistics and start afresh after each replication. If the statistics option is
checked, then Arena will empty all the statistical accumulators after each replication
and start collecting fresh statistics. Similarly, if the system option is checked, Arena
empties the system, getting rid of all entities and starting again each time. When
modelling a banking system where each replication is for example 24 hours long, then
it may be a good option to initialize the system since there will not be customers in the
bank before the start of any working day.

The “Date and Time” field is basically for associating a specific calendar date and
time to with the simulation start time of zero. If this field is not specified, Arena will
start from midnight of the current date. For example, if the current date and time on
the computer clock is "Feb 10, 2015 08:45:32", then the Start Date and Time will be
automatically set to "Feb 10, 2015 00:00:00".

When the system being modelled is continuous, it would be useful to specify a
“Warm-Up Period”. This is the time period after the beginning of the run at which
statistics are to be cleared. This value should be a real value greater than or equal to
0.0 time units. If the warm-up period is larger than the replication length, the warm-up

time will be ignored and no statistics will be cleared.

The “Replication Length” is simply how long a simulation run should last and is
the time used to evaluate the system. This value may be a real value greater or equal
to 0.0. If no value is specified, the simulation model will run infinitely unless stopped
by some other means. Other methods of stopping a simulation run are by specifying
the maximum batches on a Create type module, specifying a terminating condition (as
described below) or defining a limit on a counter, as specified in a Statistic module or

Counters element.

The “Hours Per Day” field refers to the number of hours the model runs in each
day. This value depends upon the number of hours the real system operates in a day.
The default value for this field is 24 hours per day but can be any expression greater
than 0. Note that the number of hours per day specified will affect the number of slots
shown on the graphical schedule editor for any resource, arrival or other schedules.

This field is useful to exclude a part of the day from statistics when your entire facility

A. Mousavi — Brunel University, UK 108

shuts down for part of each day. For example, if your facility works only 2 shifts (16
hours), if you leave hours per day at its default of 24, all of the statistics will be based
on 24 hours even though activity only occurs during 16 hours. Hence, the average
utilization for a fully utilised resource is 16/24 = 67%. If you specify hours per day at
16 hours, that same statistic would report as 16/16 = 100% utilised.

“Terminating Condition” defines a particular condition for stopping the
simulation. This specification of an expression or condition is evaluated throughout
the simulation run and brings the simulation process to a stop as soon as the condition
is met. This is one method, besides specifying a replication length, for terminating the

simulation.

Arena needs to use a uniform unit for all time values collected in the simulation.
This is done with the setting of the “Base Time Units” field. This is the time units for
reporting, status bar, simulation time (TNOW) and animated plots. All time delays,

replication length, and warm-up period times will be converted to this base time unit.

“Time Units” defines the units of time used for the warm-up period and
replication length. These are used to convert the warm-up period and simulation run

length to the base time unit specified.

Now set your “Replication Length” field to 100 as shown in figure 5.24 and leave
the rest at their default settings.

A. Mousavi — Brunel University, UK 109

. x|

Fun Speed] Fiun Contral] Reparts]
Froject Parameters l Replication Parameters] Anray Sizes]
Project Title:

|Uninamed Project

Analyst Mame:
|KEIMASHIE ALEXAMDER

Project Description:

Statiztice Collection

[Costing [V Queues [Transporters
[Ertities [Processes [Comveyors
[v Resources [Stations [Activity Areas
[Tanks
0K | Cancel ‘ | Help |

Figure 5.24: Run Setup dialog with Project Parameters tab displayed

The other tab we will look at is the Project Parameters tab. This tab provides
general information about the simulation project such as “Project Title”, “Analyst
Name” and “Project description” as shown in figure 6.24. Additionally, it also enables
you to choose which types of statistics may be collected. As shown, the entities,
resources, and queues boxes have been checked hence Arena would only collect

statistics on these objects during the simulation.
5.7.3 Running the model

Running the models in Arena is rather easy. This is done by clicking the Go
button on the Standard toolbar as shown in figure 5.25. Alternatively, you may run the
model by clicking Go in the Run menu or by pressing the F5 function key on the key
board. The option Check Model in the Run menu, the F4 key or the check () sign on
the Run Interaction toolbar may be used to check the model for errors before running.
However, if you begin to run the model without checking for errors, Arena will

automatically do the checking before running the model. If there is an error in your

A. Mousavi — Brunel University, UK 110

model, Arena will give a message with some possible reasons to help you fix the
error. At times you may find it necessary to speedup the run. This can be done by
using the Fast (Fast Forward) button as shown. Note however that when running in

fast mode there will be no animations.

Go >lr H M [} < Ston

Figure 5.25: The run, fast and stop buttons

Once the model is without errors, it will begin to run and you can watch the
entities moving from module to module as shown in figure 5.26. Notice that each of
the modules has an animated counter. That to the right end of the Create module
keeps track of the number of entities leaving that module. The counter below the
process module keeps track of the number of entities in process at this module and the
counter to the right end of the dispose module keeps track of how many entities have

left the system through this module. Arena uses all of these variables to calculate its

< Euit =ystem
F | I

Figure 5.26: The running model

statistics.

Farfairg::-le I } —a_ hchine Process
il

You can choose to stop the run at any time using the Stop button shown in figure
5.25. If you do not stop the run, Arena will continue forever unless you have a
terminating condition specified in one way or another. In our case we specified only
one replication with length of 100 hours so the simulation will surely stop after 100

hours and by default, Arena will display the dialog shown in figure 5.27.

A. Mousavi — Brunel University, UK 111

Parts Amive in \

Systemn I
[

RN

hachine Process

é Exit =ywstem
1

P\ The simulation has run to completion,
el WWould wou like ko see the results?

Figure 5.27: End of simulation run

5.7.4 Viewing the results

The dialog in figure 5.27 gives you the option to view the model report (this could

be changed in the setup to display the report without prompting). Clicking yes will
display either the view in figure 5.28 or 5.29 depending on which report type you

have selected to display in run setup dialog. Let us now have a look at some parts of

Arena’s reports.

A. Mousavi — Brunel University, UK

112

B ModelZ.out - Notepad Q@@
File Edit Format ‘iew Help

~

AREMA Simulation Results
KOMASHIE ALEXANDER - License: 1952000412
summary for replication 1 of 1
Pru%'ect: mModel 6.1 Run execution date : 8/17/2008
Analyst: KOMASHIE ALEXANDER model revision date: 8/17/2008
replication ended at time 1 100.0 Hours
Base Time Units: Hours
TALLY VARIABLES
Identifier Average Half width minimum Maximum observations
Machine Process.vATimePerentity 1.04309 (Insuf) L 63635 1.4664 88
Machine Process.waitTimePerEntity 2.7263 CInsuf) . 00000 7.0002 83
machine process.TotalTimererentiTy 3.7702 (Tnsuf) LG2386 7.0436 88
Part.vaTime 1.0439 CInsuf) . 53935 1.4664 83
Part. NvATIme . 00000 (Insuf) . 00000 . 00000 88
Part.waitTime 2.7263 (Tnsuf) Melalolo]s) 7. o002 88
Part.TranTime L 00000 (Insuf) L 00000 L Q0000 83
Part.otherTime . 00000 (Insuf) . 00Q00 . Q0000 88
part.TotalTime 3.7702 (Insuf) LG2386 7.9436 13
Machine Process.qQueue.waitingTime 2.7628 (Insuf) L 00000 7.0002 89
DISCRETE-CHANGE VARIABLES
Identifier average Half width minimum maximum Final value
Part.wIpP 3.4676 {Insuf) Qo000 .0000 G, 0000
Machine 1.Mumbergusy L 91878 (Insuf) L 00000 1. 0000 1.0000
Mmachine 1.numberscheduled 1. 0000 (Insuf) 1.0000 1.0000 1.0000
Machine l.utilization L O1ETE CInsuf) L 00000 1. 0000 1.0000
Machine Process.Queue. NumberInQueus 2.5488 CInsuf) . 00000 7.0000 5.0000
QUTPUTZ

Identifier value
Machine Process Accum va Time 91,867
Machine Process Number oOut B38.000
Mmachine process wumber In 94.000
machine Process Accum wait Time 236.91
Part. NumberIn 94000
Part. Numberout 35.000
Machine 1.NMumberseized 89,000
Machine 1.scheduledutilization . 91878
SysTem, Numberout 85.000

w

Figure 5.28: Summary report from simulation run

If you’ve been building the model along with us then just click on the “yes”
button on the dialog to open the report. If the default report type has not been changed
then Arena will display the “Category Overview” report as shown in figure 5.29. To
change the report type, go back to the model, click on the “Run” menu and select
Setup. Click on the Reports tab and then pull down the “Default Report” field. The
second in the list (Category Overview) and the last (SIMAN Summary Report (.out

file)) are the ones we are considering here.

The summary report is normally divided into different categories (e.g. tallies,
discrete-change variables, counters and outputs), each one providing a specific type of
statistic.

“Tally Variables” display the tallies recorded in your model. Tally statistics

include entity and process costs and times.

“Discrete-Change Variables” include any statistic in the model that is time-

weighted. (Time-weighted statistics "weight" the value of the variable by the amount

A. Mousavi — Brunel University, UK 113

of time it remained at that value.) Included in this category are Resource Number
Busy, Number Scheduled and Utilisation as well as Number in Queue statistics. These

are also referred to as Time Persistent Statistics.

The “Outputs” section displays statistics for the final value of a given variable the
model. Included in this category are costs of resource, total process costs and times

and work in process information.

The “Counters” section displays statistics for any counters identified in your
model. The number of entities into and out of the system is included in this category.

Note that there may be more or less categories of statistics depending on the types

defined in your model.

The “Half Width” column shown in the report is the 95% Confidence Interval
range around the average. This is included to help you determine the reliability of the
results from your replication. This column may either be a value (real number), said to

be “Insufficient” or “Correlated”.

“Insufficient” means that there is insufficient data to accurately calculate the half
width of the variable. This is because the formula used to calculate half width requires
the samples to be normally distributed. That assumption may be violated if there is a
small number (fewer than 320) of samples are recorded in the category. Running the

simulation for a longer period of time should correct this.

“Correlated” also means that the data collected for the variable are not
independently distributed. The formula used to calculate half width also requires the
samples to be independently distributed. Data that is correlated (the value of one
observation strongly influences the value of the next observation) results in an invalid
confidence interval calculation. Running the simulation for a longer period of time

should correct this as well.

If a value is returned in the Half Width category, this value may be interpreted by
saying "in 95% of repeated trials, the sample mean would be reported as within the
interval sample mean + half width". The half width can be reduced by running the
simulation for a longer period of time.

A. Mousavi — Brunel University, UK 114

hUser Specified

hAgents and Trunks

@ Contact Times and Counts
g Tanks

) Mumber Walting
Machine Process. (ueue
= Resource
) Usags
Instantaneous Utiization

Zlxl S & F = < 1 of3 » M # " Crystalege
< Advanced Transfer .
Preview 1
< Adwanced Process
- Model 6.1 ~
< Bagic Process = Entik
y . 5 . CATViewW
< Flow Process - Time 16:17:42 Cﬂtﬁ‘gﬂl'} Overview
< Blocks + WA Time
(o Reports Ce- BVA Time Model 6.1
— + - Wait Time
G Activity Areas
Category Overview - Transfer Time
& # Other Time Replications: 1 Time Units: ~ Hours
hcat.sgury by Replication ¥ Total Time .
pEntities %1 Other Key Performance Indicators
hFrequencles = Gueus
@ Processes = Time: System Average
hQueues = Waiting Time N her Out ag
fgpResources Machine Process.Queue UMBEr L
i Transfers = Other

+ Mumber Busy

+ Mumber Scheduled
+ Scheduled Utiization
+ Total Mumber Seized

Figure 5.29: Category overview report from simulation run

The “Category Overview” report has more detailed information than the
“Summary Report”. As shown in figure 5.29, this displays a summary of the key
performance indicators on the first page. It is however organized into the following
sections: Key Performance Indicators, Activity Area, Conveyor, Entity, Process,
Queue, Resource, Transporters, Station, Tank, and user specified. The statistics

reported are a summary of values across all replications.

The information displayed in this report varies based on the number of
replications executed and the type of statistic you decide to collect. It may be
observed in the report tree structure that Arena makes available statistics only on
Entities, Queues and Resources. This is because those are the only objects we
specified for statistics collection as shown in the Run Setup dialog in figure 5.24.
Notice also that Arena however displays all the various report categories in the report

panel in the project bar.

To view any item in the report, you only need to click on the item in the Reports
Panel or select the item in the reports tree structure. For example to view statistics on
the entities in the model we clicked on the “Entity” item in the tree structure and it

displayed statistics shown in figure 5.30 below.

A. Mousavi — Brunel University, UK 115

x|

Figure 6.30: Category overview report showing Entity statistics

The explanations for the various columns of the report are the same as presented
under the summary reports. Thus Half Width column for example may either have a

value (real number), said to “Insufficient” or “Correlated” as explained above.

This chapter was mainly to introduce you to the fundamentals of building a
simulation model using the Arena simulation software. The material covered here
includes an introduction to the Arena software and its hierarchical structure, a tour of
the Arena environment and some basic concepts and terminologies. We also
explained that the building blocks in every Arena model are flowchart modules and
data modules. The three basic flowchart modules in Arena were discussed in detail to
prepare you for the simple modelling problem that followed. Finally in section 6.7 we
looked at the basics of modelling in Arena by considering step by step, a simple three

module system.

In the next chapter, we will continue to present detailed description of all the
modules found in Arena’s “Basic Process Panel”. This will help you understand the
various uses of the modules and to help you solve future modelling problems in Arena

more easily.

A. Mousavi — Brunel University, UK 116

~

&G & Fl=m M4 2 of3 > M #h “Crystalege
Lol Advanced Transfer -
Preview I
< Advanced Process Mol b1
=] odel 6.
< Basic Process 5
< Flows Process =1 Time 16.26:23 Category Overview
< Blocks WA Time:
Renorts +- A Time |
© - £ - Walt Time Model 6.1
h.ﬂctlwty Areas .
} #| Transfer Time
e Cateqory Overviaw) Other Time Replications: 1 Tirne Units: Hours
%Categnry by Replication 4 Tatal Time
Entities H- Other =
@y Frequencies - Queus |Fnt“’y
fpProcesses ¥ Time
LELES -
&Q + Other Time
{2 Resources =l Resource
aTransFars = Usage
g User Specified + Instantaneous Utilization VA Time hinirmum
g Aaents and Trunks - humber Busy Puerage Haf idth Value
g Contact Times and Counts +I- Number Scheduled Entity 1 1.0438 {Insufiicient 0.5393
g Tanks +I- Scheduled Utilization
+]- Total Number Seized WA Time hinirmum
Fuerage Halt Wiidth alue
Entity 1 0.00 (Insuiicient) 0.00
Wait Time hlinimum
Fuerage Half Wiicth alue
Entity 1 27263 {Insufiicient 0.00
Transfer Time Minimum
Furerage Half Wiidth Value
Entity 1 0.00 iInsufiicient) 0.o0
Other Time Minimum
Fuerage Halt Wiidth alue
Entity 1 0.00 (Insufiicient) 0.00
i Navigate <

v

CHAPTER 6

Simulation and Modelling Using Arena, the Basic Process

Panel

This chapter covers:

1. The flowchart and data modules in the basic process panel.

2. Modelling basic systems

A. Mousavi — Brunel University, UK 117

6.1 Introduction

In chapter 5, we introduced you to the Arena simulation software and took you
through the fundamentals of modelling using this software.

For quite a while now | have trained students in the use of discrete event
simulation using Arena. Our observation is that Arena is indeed a powerful and
flexible tool, but students usually find it difficult to grasp the fullness of its power and
to be able to use the tool for solving problems. This is the motivation for writing this

chapter on the module by module approach to learning simulation with Arena.

It is anticipated that apart from teaching the student all possible uses of all
modules in the Basic Process panel, this will also serve as a quick reference for

students in solving problems that require the use of some of these modules.

Note that the Create, Dispose and Process Modules have been discussed in
chapter 6 and are therefore not included in this chapter even though they are part of

the Basic Process panel.

6.2 The Basic Process Panel

The Basic Process panel contains the most common modelling constructs that are
very accessible, easy to use and with reasonable flexibility. This panel contains eight
(8) flowchart modules and six (6) data modules. These modules are shown in table 7.1

below.

Table 6.1: Basic Process Panel Modules

Flowchart Modules Data Modules
1 Create Entity
2 Dispose Queue
3 Process Resources
4 Decide Variable
5 Batch Schedule
6 Separate Set
7 Assign
8 Record

A. Mousavi — Brunel University, UK 118

6.2.1 Decide Module

The Decide Module allows for decision-making processes in the system. It
includes options to make decisions based on one or more conditions (e.g., if entity
type is Gold Card) or based on one or more probabilities (e.g., 75% true; 25% false).
Conditions can be based on attribute values (e.g., Priority), variable values (e.g.,
Number Denied), the entity type, or an expression (e.g., NQ (ProcessA.Queue)). The

module shape and dialog are shown in figure 6.1.

Decide 1 Marme: Type:
|Decide 1 j |2-wa}l by Chahce j
F T 01007 Z-way by Chance
EEEB U]) 2-way by Condition
|5I:I j = M-way by Chance

M-way by Condition

0k | Cancel Help

Figure 6.1: Decide Module shape and dialog

Note that the Name field in this module dialog serves the same purpose as we
have already described in previous modules. Arena provides four (4) options in the
Type field as shown. Thus the decision types possible with this module are 2-way by
Chance, 2-way by Condition, N-way by Chance and N-way by Condition. Before we
look at these options in detail, it should be noted that the Decide Module has basically
two exit points. The first which is to the right end of the module shape is the “True”
exit whilst the second which is at the bottom end of the module shape is the “False” or
“Else” exit. These are the only exits available when Type is either 2-way by Chance or
2-way by Condition. When Type is N-way by Chance or N-way by Condition, the will
always be a number of a number of “True” exit points equal to the number of chance
values or conditions specified. All of these will be lined up vertically at the right end
of the module shape as shown in figure 6.2, but there will only be one “False” or

“Else” exit which will always be the exit at the bottom end of the module shape. We

A. Mousavi — Brunel University, UK 119

will now look at each of these options in detail to understand how and when to apply

them.

The 2-way by Chance Type is the basic and default option for Arena. This has the
dialog view shown in figure 6.1. An example of this is to say that 50% of all entities
that enter this module require inspection whilst the remaining 50% don’t. You specify
this by assigning the value 50 to the Percent True field as shown and this will tell
Arena to send 50% of all entities that come into the module through the “True” exit
and everything else goes out through the “False” or “Else” exit. Note that the Percent

True value can be anything from 0 to 100.

The Type N-way by Chance is similar to the above except that you have to means
of specifying more than just one chance or probability. When this is selected, the
dialog view changes to that shown in figure 6.2. Clicking on the “Add” button on the
Decide dialog displays the Conditions dialog in which the chance or probability value
can be specified. Notice that there are three (3) exit points to the right of the module
shape equal to the number of percentages or conditions specified. Thus counting from
top, 10% of entities will leave through the first exit, 50% through the second exit,
15% through the third exit and 100 minus 75 (i.e. 10 +50 +15) will leave through the

“False” or “Else” exit at the bottom of the module shape.

De (e E /,f:i'--:\
M ame: Type: - a’J Decide 1
Decide 1 ﬂ |N-wa}' by Chance ﬂ \"‘*"‘::—;.:/—E
Percentages: :
Add...
15 :
<End of lists Ed..
D elete | _
Percent True (0-100):
10 LI %
0K | Cancel | Hep

Figure 6.2: Decide Module shape and dialog with N-way by Chance

A. Mousavi — Brunel University, UK 120

When the decide Type is 2-way by Condition, the resulting dialog view is as
shown in figure 6.3. In the If field, Arena displays a list of items with which a
condition can be created. The list includes Variables, Attribute, Entity Type and
Expression. When you select Entity Type in the If field, Arena would make all entity
types defined in your model available in the Name field list for you to select from as
shown in figure 7.3. If you select “Product A” then Arena will use the condition that
“If Entity Type is named “Product A” then send it through the “True” exit, else send it
through the “False” or “Else” exit.

Decide
M ame: Type:
Decide 1 | | 2-way by Condition + |
If: M amed:

|Entit_l,l Type j |F'n:n:|uu:t A

Y ariable dray [10] Product &
Y ariable Amay [20] Product B
Attribuke Product C
Entity Type Product D
E wprezsion

| F, | Cancel | Help |

Figure 6.3: Decide Module dialog with 2-way by Condition

Selecting Variable in the If field, changes the dialog’s view since additional
parameters have to be specified. This view is shown in figure 6.4. This is exactly the
same as when you select Attribute in the same field. Arena makes all variables or
attributes defined in your model available in the Named field list for you to select
from. There is also a means of specifying an evaluator (i.e. >, <, =, etc). The Value

field requires an expression that will be either compared to the attribute or variable.

A. Mousavi — Brunel University, UK 121

M ame: Type;

|Decide 1 j |2-wa}l by I:Dnditianj
IE: M arned: 3
|'ariable | [ariable 1 |

Walue:

|1

0k | Cancel | Help |

Figure 6.4: Decide Module dialog with 2-way by Condition — Variable view

When the condition is based on a Variable Array (1D), a Row field is added as in
figure 7.5. 1D means a one dimensional array which may be specified as Variablel
(10), where “variablel” is the name of the variable and “10” is the array size. An
example of this is having 10 different components in your system and wanting to keep
track of the number of each component that has entered a process. One approach will
be to define 10 different variables for each component type (i.e. from 1 through 10).
An easier approach will be to use a one dimensional array (see the section on the
Variable data module to learn how to define variables and arrays in Arena). We may
define our variable array as “NumberOfCompents (10)”. With this Arena will create
10 separate storage places (as 10 separate rows) for the number of components of
each of the 10 components in your system. To use this in your model, you may use the

following assign statements;
NumberOfComponents(ComponentType) = NumberOfComponents(ComponentType) + 1

Where ComponentType is a predefined attribute of the entities ranging from 1
through 10 depending of what type of component the entity represents (i.e.
ComponentType = 1 for component 1, 2, for component 2 , 3 for component 3 etc) .
When an entity arrives at the above statement, Arena will check the value of its
ComponentType attribute and substitute that value in the above statement. For

example if the ComponentType is 5, the expression becomes:

A. Mousavi — Brunel University, UK 122

NumberOfComponents(5) = NumberOfComponents(5) + 1

Arena will thus check row number 5 of the “NumberOfComponents” array, add 1
to that value and use the result as the new value for that same row in the array. The
same steps would be carried out for any value of “ComponentType” hence with one
statement you can update the number of components for each component type

irrespective of which component arrives at which time.

Note however that assignments as above are done in the Assign Module. We will

talk about in section 6.2.7.

Let’s now look at another example of using one dimensional variable array in a
Decide Module as in figure 6.5. We have selected the one dimensional array named
“NumberOfComponents” and row number equal to “ComponentType”. Our desired
evaluator is “greater than or equal to” (>=) and the test value is 300. This will instruct
Arena to check if the wvalue of the one dimensional array named
NumberOfComponents at row number “ComponentType” is greater than or equal to
300. If this condition is true, then Arena will send the entity out through the “True”
exit otherwise it is sent through the “False” or “Else” exit. Remember that
“ComponentType” can be any integer from 1 through 10. What will happen in this
module during the simulation run is that, an entity would be allowed to proceed in one
direction (through the “True” exit) so long as the number of its component type is less
than 300. As soon as it riches 300, Arena redirects all following entities of that type to

a different exit (“False” or “Else” exit possibly to a different process).

A. Mousavi — Brunel University, UK 123

Mame: Type:

|Deu:iu:|e'| j |2-wa_l,l by Eu:unditiu:unﬂ
If: Mamed: Fow: |
|Variable Aray 1 Dj |NumbeerEnmpDne ﬂ |I:nm|:n:|nentT = v
W alue:

koo

(] 4 | Cancel Help

Figure 6.5: Decide Module dialog with 2-way by Condition — Variable Array
(1D) view

The Variable Array (2D) option is very similar to Variable Array (1D). The only
difference is that it has an extra dimension to its array definition as shown in figure
7.6. Whilst Variable Array (1D) has only rows, Variable Array (2D) has rows and
columns. These are defined as “Variablel (Row, Column)” or “Variablel (1, 1)

meaning row 1 column 1 of the Variablel two dimensional array.

To illustrate the use of this, consider figure 6.7. Assume a system that receives
orders from customers with each order involving 10 different component types. In
other to keep track of how many components of each type is in each order you may
want to use the 2D variable array as shown. If there are for example 20 orders, then

the variable array may be defined as:
NumberOfComponents (20, 10)
The values of the array may be assessed by using dynamic arguments like:

NumberOfComponents (OrderNumber, ComponentType)

A. Mousavi — Brunel University, UK 124

Decide 2 [X]

M ame: Type:
Decide 1 | | 2-may by Condition ~ |
If: MNamed: Fow: Colurnrn: S
|Wariable Anay (20 = | [ariable 1 ~|]1 1 [>= =]
W alue:
1
ak | Cancel | Help ‘

Figure 6.6: Decide Module dialog with 2-way by Condition — Variable Array
(2D) view

Notice again that “OrderNumber” and “ComponentType” have to be pre-assigned
attributes and both must have integer values.

Therefore, the condition specified in figure 7.7 requires checking if the value of
the two dimensional array named NumberOfComponents at row number

“OrderNumber” and column number “ComponentType” is greater than or equal to
300.

Decide
M ame: Type:
Decide 1 | |2way by Condition |
IF: Mamed: R Colurnn: Is:
|"»-"aria|:u|e.-’-".rra_l,l [EDﬂ |NumbeerEDmpDneﬂ|n:|erNurnI:uer |Eu:umpu:unent |>= ﬂ
W alue:
300

(] | Cancel | Help |

Figure 6.7: Decide Module dialog with 2-way by Condition — Variable Array
(2D) example

A. Mousavi — Brunel University, UK 125

When the condition is Expression, Arena displays the view in figure 7.8. With
this, the value must also include the evaluator (e.g., Colour<>Red, <> means not
equal to) and that will be evaluated as a single expression to determine if it is true or
false.

Mame: Type:

|Decide 1 j |2-wa_l,l b Ennditiunj
If:

E =pression -

Walue:

i

Qk | Cancel | Help ‘

Figure 6.8: Decide Module dialog with 2-way by Condition — Expression view

The N-way by Condition option can be treated in the same way as we did the N-
way by Chance. As shown in figure 6.9, the only difference is that we are now using

multiple conditions instead of the multiple probabilities we used in N-way by Chance.

Notice here again that the number of exit points as shown on the module shape
corresponds to the number of conditions specified in the dialog. The If field could also
be any of the items shown in the list in figure 6.3. You can specify as many conditions

as necessary by clicking on the “Add” button to display the “Conditions” dialog.

A. Mousavi — Brunel University, UK 126

Decide 1 7 x |
- Type:

Decide 1 ;I IN-wa_l,l by Ennditinr;l

Conditionz:

Entity Tupe, Product &
E ntity Type, Product B
Entity Type, Product C

<End af lizts
Delete
Conditions @
If: Named:
IEntity Type j IProducl d lj
[ok | cCoel | Hep

Figure 6.9: Decide Module dialog with N-way by Condition

6.2.2 Batch Module

The Batch Module is used for grouping or batching entities within the simulation
model. Entities can be permanently or temporarily grouped in the simulation.
Temporary batches must later be split using the Separate module (Section 6.2.3).
Figure 6.10 shows the Batch Module shape and dialog box.

M armne:; Type:
Batch 1 i IEach 1 ;I I Permanent LI
" Batch Size: Save Critenon:
10 | Last -]
Fule: First |
I.-i‘-.n_l,l E ritity ;I Ig:':JTIucl
ITI Canicel | Help |
By Attribute

Figure 6.10: Batch Module shape and dialog

A. Mousavi — Brunel University, UK 127

Arena requires the same parameters whether batches are permanent or temporary.
Batches may be formed with any specified number of entering entities or may be
matched together based on an attribute. When the batching Rule is by Attribute, the
dialog view changes to what is shown in figure 6.11. Arena then adds an “Attributes”
filed with a drop down list from which you can select. Entities arriving at the Batch
module are placed in a queue until the required number of entities has accumulated.
Once accumulated, a new representative entity is created. The batch size may be an
integer or any expressions that evaluates to an integer.

The Save Criterion field is a method for assigning representative entity’s user-

defined attribute values.

Batch @ E|

M ame: Type:

|Batu:h1 j |F'ermanent ﬂ

Batch Size: Save Criterior;

i |Last |

Fule: Attribute Mame:

|By Attribute | thibute 1 |
ITI Cancel | Help |

Figure 6.11: Batch Module dialog batch By Attribute Rule
6.2.3 Separate Module

This module can be used in only two ways. That is to either duplicate an
incoming entity into multiple entities or to split a previously batched entity. The
module shape and dialogue is as shown in figure 6.12. When “Type” is “Duplicate
Original”, Arena allows you to make duplicate or no copies of the incoming entity.
That is no duplicate copies will be created when “# of Duplicates” is less than or
equal to zero. Note otherwise that the total number of entities exiting the module will
always be “# of Duplicates” plus one. The “Percent Cost to Duplicate (0-100)” field
is best explained with the following example from the Arena help file.

A. Mousavi — Brunel University, UK 128

If Cost to Duplicates is 50 and # of Duplicates is 2, 25% of the incoming entity’s
cost and time values will be allocated to each of the duplicates and the remaining 50%
of the incoming entity’s costs and times will be allocated to the original. Similarly, if
the Cost to Duplicates is 90 and the # of Duplicates is 3, each duplicate will be
allocated 30% of the incoming entities costs and times, while the remaining 10% will

be retained by the original incoming entity.

When “Type” is “Split Existing Batch”, the temporary representative entity that
was formed is disposed and the original entities that formed the group are recovered.
Note that to use this option, you might have previously created a temporary batch
using the Batch module (section 6.1.2) else Arena will find nothing to split. The
entities after splitting proceed sequentially from the module in the same order in
which they originally were added to the batch. With the split batch option, Arena
provides the “Member Attributes” field as shown in figure 6.12 (b). This field
determines what attribute values of the representative entity should be passed on to
the original entities after the batch is split. The three options as shown are to retain the
original entity values, thus before they were batched, to retain all the values of the
representative entity and to retain selected values. For the third option, Arena provides

extra dialogs as shown in figure 6.12 (c) to enable you selected the specific attributes.

A. Mousavi — Brunel University, UK 129

Split E wigting Batch

i Separate
Separate 1 e N —
I fuiicak ISEF"E"‘E"tE 1 ;I IDupIicate Original ;I
Percent Cost to Duplicates [0-100]; # of Duplicates:
|50 z

(@)

Ok, I Cancel Help

Separate
Mame: Type:
ISeparate 1 ﬂ I Split Existing Batch ;I
Member Attributes:
IHetain Original Entity W alues ;I (b)
| Retain Original Entity Values |

Retain Original Entity Values
Take All Representative Values
T ake Specific Representative Values

0k | Cancel | Help I

Name:

(©)

[Separate 1 v |SptExisting Batch
Member Attributes:
[Take Speciic Representative Values |

Attributes:

Attribute Name:
[atibute 1]

<End of list> LJ
_E |

0K | Cancel | Hep |

Figure 6.12: Separate Module shape and dialog

A. Mousavi — Brunel University, UK 130

6.2.4 Assign Module

The purpose of this module is to assign new values to variables, entity attributes,
entity types, entity pictures, or other system variables. Multiple assignments can be
made with a single Assign module. This module can be used anywhere in the model

where it is required define or reassign a new value to variables or attributes.

Figure 6.13 shows the module shape and dialog. Clicking on the “Add” button
displays the “Assignments” dialog in which the values of the attributes or variables
may be assigned. Notice that the “Type” field of the assignment dialog provides a list
of all the possible assignments that can be made with the module. You may want to
experiment with all of these types to find out how to use them. As in other modules,

the “New Value” field can be a constant value or an expression.

Note that if there are multiple assignments, Arena performs the assignments in the
order in which they appear in the list hence. This is important when assigning a value

to a variable and using that variable in an expression within the same Assign module.

M arne:
Azzign 1 -
Rssign 1 | J
Azsignments;
Attrbute, Arrval Time, THOW add..
Edi... |
1 [T 114
Type: Attribute Name:
___luibute | |Arival Time v
New Value:
[TNOW
Variable Array [10] Ok | Canes Hep
Wariable Arrap [201]
Attribute
Entity Type
E ntity Picture
Other

Figure 6.13: Assign Module shape and dialog

A. Mousavi — Brunel University, UK 131

6.2.5 Record Module

The Record module is used to collect statistics in the simulation model. The
module shape and dialog are shown in figure 6.14. The main part of the dialog is the
“Type” field. As shown, there are five types of records; count, entity statistics, time

interval, time between and expression. We will briefly explain these record types.

Count: use this type when you only need to count the number of entities going
through the record module. Arena will increase this statistics by the value specified in
the “Value” field each time an entity enters the module. A negative value will
decrease the count. This can therefore be used to count the number of entities leaving

a process or going into a process.

Entity Statistics: these statistics include VA Cost, NVA Cost, Wait Cost, Transfer
Cost, Other Cost, Total Cost, VA Time, NVA Time, Wait Time, Transfer Time, Other
Time and Total Time. Using this record type will keep record these statistics each

time an entity enters the module.

Time Interval: this type helps record the time spent by an entity in a process or in
the system. When using Time Interval to collect interval statistics, an attribute is
required to hold the value of the start time of the required interval. For example to
determine the time spent by an entity in a process, set the attribute to the current
simulation time, TNOW (using the assign module), before the entity enters the
process and then record the time interval after the process using the attributes value as
the start time of the interval. What Arena does is to subtract the attributes value from

the current simulation time at which the entity enters the record module.

Time Between: this option is used to track and record the time between entities
entering the record module. An example of this would be to track the rate at which
parts are entering into a process by putting the record module with type Time Between

just before the process.

Expression: this is generally used to record the value of a specified expression.
Each time an entity enters the record module, the expression would be evaluated and

the result recorded for the entity.

A. Mousavi — Brunel University, UK 132

You should realise that depending on which type you select, Arena provides more
or less fields for you to specify the corresponding parameters. It would be good to try

experimenting with all of these types to become familiar with their parameters.

E ntity Statistic:

Time Interval

Time Bebween

E wpression /\

i
*. H 2]

I arne; Type:
|Heu:-:|r|:| 4 ﬂ |E|:|unt ﬂ
Walue:
|1 [Record into Set
' Record 4 . Counter M ame:
|Hec:-:nru:| 4 ﬂ
(] | Cancel Help

Figure 6.14: Record Module shape and dialog
6.2.6 Entity Module

The Entity Module is a data module. It is used to define the various types of entity
in the model and their initial picture and cost and time values. The module and its
parameters are shown in figure 6.15. When the Entity Module is selected by clicking
on the icon shown, Arena typically displays all Entities that have been defined in the
model and the initial values of every parameter. For example there are four Entities
(Entity 1, Entity 2, Entity 3 and Entity 4) defined in the model from which figure 6.15
was taken Arena has a default list of Entity pictures that is displayed each time you
click on the any row in the “Initial Picture” column. Initial costing information and
holding costs are also defined for the entities. Each time you create an entity using the
Create Module, Arena automatically updates this module by adding the last entity
created to the list but you can also directly create a new entity here by double clicking

the space just below the last row.

A. Mousavi — Brunel University, UK 133

Initial Picture

-

Picture Airplar
Ficture Bike
Ficture Blue B
Ficture Blue P
E Ficture Boat
Ficture Box
Enkity Ficture Disket

Entity Type| Initial Picture |Holding Cost / Hour|Initial VA Cost|Initial HVA Cost|Initial Waiting Cost|Initial Tran Cost|Initial Other Cost‘ Report Statistics
1 Enrtity 1 Picture Report 0.0 oo 0.0 0.0 0.0 0.0 Ird
2 Entity 2 Picture Report (0.0 on oo ujis} oo oo Ird
B Entity 3 Picture Report 0.0 oo 0.0 0.0 0.0 0.0 Ird
4 riity 4 IPic‘ture.Repor‘t oo on oo ujis} oo oo Ird

Double-click here to add a new row

Figure 6.15: Entity Data Module Spreadsheet view

6.2.7 Queue Module

This is also a data module. It is used to define all Queues in the model and to
change the ranking rule for members of a specified queue. The default ranking rule for
all queues is First-In-First-Out (FIFO) unless otherwise specified in this module.
There is an additional field that allows the queue to be defined as shared (not available
in Arena Basic Edition). A shared queue is one that may be used in multiple places

within the simulation model and can only be used for seizing resources.

You may add new Queues to this module by double-clicking below the last row.
By default Arena gives the names Queue 1, Queue 2, Queue 3 and so on to the
queues. However each time you add a process to your model that requires a resource
Arena will automatically add its queue to the Queue data module with the name
“ProcessName.Queue” (where “ProcessName” is the name of the specific process
module). Similarly, if you define a queue in any flowchart module for example in a
Seize Module, Arena will also add this to the list of queues in your Queue data

module.

An important part of the Queue spreadsheet view shown in figure 6.16 is the
“Type” column. As shown, the type of queue may be FIFO, Last-In-First-Out (LIFO),
Lowest Attribute Value (LAV) or Highest Attribute Value (HAV).

A. Mousavi — Brunel University, UK 134

FIFO and LIFO may be self explanatory. An example of using LAV may be when
you are processing about four orders in your system at the same time and would like
to give priority to the earlier orders. You may define an Attribute called
“OrderNumber” which may have values of 1,2,3,4 etc up to the number of orders in
your system. Now if you change your “Type” column to LAV, Arena adds another
column called “Attribute Name” in which you can select the attribute whose value
you want to use for your selection rule. In our case this is called “OrderNumber”.
Each time an entity enters “Machine Process.Queue” queue, Arena will check its
“OrderNumber” attribute and will put those with the smallest value ahead of the
queue. In this way you will be able to get the earliest orders through much quicker.
Using the HAV “Type” is just the reverse of LAV.

| Type
|First I First Cut j

=

Last In First Out
Lowvest Attribute Walue

fJueue Highest Attribute alue
Hame | |_| Type | Shared |Report Statistics
1 fachine Process Cueus First In First Cut r I~
2 Geue 2 First In First Out r W
3 Gueue 3 First In First Cut r I~
4 Gueue 4 First In First Out r W
Double-click here to add & nesw row,

Figure 6.16: The Queue Data Module Spreadsheet view

Hame Type Attribute Hame | Shared |Re|mrt Statistics
1 achine Process Gueus w fLovwast Attribute Value OrderMumber r I
2 GlueLe 2 First In First Cut Attribte 1 r I
3 GueLe 3 First In First Out Aftribte 1 r Il
4 Glueue 4 First In First Cut Attribute 1 r Ird

Double-click here to addd & nes row.

Figure 6.17: The Queue Data Module Spreadsheet view with Type LAV

A. Mousavi — Brunel University, UK 135

6.2.8 Resource Module

This data module defines all the resources in the simulation model, and their
costing information and availability. All resources may either have a fixed capacity
that does not vary over the simulation run or may be based on a schedule defined in
the schedule module. All the resource states and failure patterns may also be defined
in this module. The Resource Module icon and spreadsheet view are shown in figure
6.18.

By default, Arena sets the “Type” column to “Fixed Capacity”. This means that
the resource will remain at the capacity specified in the “Capacity” column
throughout the simulation. There is however a more flexible option as shown in the
“Type” drop down menu in figure 6.18. If “Type” is set to “Based on Schedule”,
Arena adds two new columns for the “Schedule Name” and “Schedule Rule” as
shown in figure 6.19. The former is the name of a specific schedule which Arena will
apply to the specified resource and the latter is an instruction telling Arena what to do
when the resource capacity change (decrease) is about to occur whilst the resource is
busy. The three applicable rules Wait, Ignore, and Preempt as shown.

| Type

@ |Fixed Capacity j

city

Based on Schedule

Resource f:>

Hame Type |Ca|)acity| Busy / Hour |ldle [Hour| Per Use | StateSet Hame Failures |Report Statistics
1 schine 1 Fixed Capacity 1 oo oo o0 0 rowws v
2 Machine 2 Fixed Capacity 1 oo u] 0.0 0 rowws 2
3 Machine 3 Fixed Capacity 1 oo u] 0.0 0 rowws 2
4 Machine 4 Fixed Capacity 1 oo u] 0.0 0 rowws 2
Double-click here to add & new rowe.

Figure 6.18: Resource Data Module Spreadsheet view

The Wait option will wait until the on-going process is completed and the entities
release their units of the resource before starting the actual capacity decrease. Thus if
for example a staff is supposed to go on break for 1 hour from 12 to 1pm but a

customer arrives at 11:58am, this rule requires that the staff will wait and attend to the

A. Mousavi — Brunel University, UK 136

customer completely but still take his or her full break afterwards. That is if the staff

finishes with the customer at 12:15pm then his or her break will last until 1:15pm.

With Ignore, the resource starts the time duration of the schedule change or
failure immediately, but allows the busy resource to finish processing the current

entity before effecting the capacity change.

The Preempt option interrupts the currently-processing entity, changes the
resource capacity and starts the time duration of the schedule change or failure
immediately. The resource will resume processing the preempted entity as soon as the
resource becomes available (after schedule change/failure).

Schedule Rule

Hame Type Capacity | Schedule Hame |Schetlule Rule|Busy / Hour |ldle | Hour
1 Maching 1 Bazed on Schedule faching 1 Schecduls Maching 1 Scheduls j it an oo
2 Machine 2 Fixed Capacity 1 1 Wizt oo oo
3 Machine 3 Fixed Capacity 1 1 Wizt oo oo
4 Machine 4 Fixed Capacity 1 1 Wizt oo oo
Double-click here to add & nesw row.

Figure 6.19: Resource Data Module Spreadsheet view with Schedule

6.2.9 Variable Module

This data module, shown in figure 6.20, is used to define a variable’s dimensions
and initial values. Values of Variables can be referenced in other modules (e.g. the
Decide Module, section 6.2.1), can be reassigned with the Assign Module, and can be

used in any expression.

The three methods for manually editing the Initial Values of a Variable Module
are the standard spreadsheet interface, the module dialog and by the two-dimensional
spreadsheet interface.

To use the standard spreadsheet interface, first click on the module icon, then in

the module spreadsheet, right-click on the Initial Values cell and select the Edit via

A. Mousavi — Brunel University, UK 137

spreadsheet... menu item. If the variable is defined as a two-dimensional array, Arena
will automatically provide cells corresponding to the specified numbers of rows and

columns.

To use the two-dimensional (2D) spreadsheet interface, just click on the Initial
Values cell in the module spreadsheet to display the spread sheet view. Note that to
see a two-dimensional spreadsheet view, you need to define the number of rows and

columns of the variable as shown for variable 4 in figure 6.20 (a).

To use the module dialog, select the module icon as before, then in the module
spreadsheet, right-click on any cell and select the Edit via dialog... menu item. This
displays the dialog view shown in figure 6.20 (b). Click on the “Add” button to add a
new value for the variable. The values for two-dimensional arrays should be entered
one column at a time. Array elements not explicitly assigned are assumed to have the

last entered value.

Ordinary Variable (e.g. Variable 1, 2)

E 0.0

=
|

Wariable
i
Hame | Rows | Columns Clear Option | Initial Values|Report Statisticsl
1 “ariable 1 Syatem 0 rovs r
2 “ariahle 2 Syatem 0 rovys r
3 “ariahle 3 3 System 0 rovws r
4 “ariable 4 3 3 System = r
Double-click here to add a new rovw.

1D Variable Array (e.g. Variable 3)

x|
1 0.0
2 0.0
3 0.0

2D Variable Array (e.g. Variable 4)

A. Mousavi — Brunel University, UK 138

Initial ¥alues

| | [Report Statiztics

Clear Option:
| System j
Initial ¥ alues:
Add...
<End of lizt:
Edi...
Delete

] | Caricel | Help |

(b)

Figure 6.20: Variable Data Module Spreadsheet view with snapshots of array

Views

6.2.10 Schedule Module

The Schedule data module is normally used in conjunction with the Resource
Module to define the availability of resources or with the Create Module to define an
arrival schedule. A schedule may also be used and referenced to factor time delays
based on the simulation time. This module is only used for duration formatted
schedules. Calendar formatted schedules are defined by selecting the Calendar
Schedules, Time Patterns command from the Edit menu. Figure 7.21 shows the

A. Mousavi — Brunel University, UK 139

module icon and its spreadsheet view. As shown, the “Type” column can be capacity,
arrival or other. Capacity schedules are used for resources whilst arrival schedules are
used for scheduling arriving entities into the model. The “other” option is used for
scheduling miscellaneous time delays or factors. Now to define the schedule itself,
click on the durations cell to display the graphical schedule editor. Figure 6.21 (b)
shows an example of a resource scheduled to have capacity of 1 for 12 hours and
capacity of 2 for the next 12 hours of the day. It is important to note here that the
number of hours available in a day as displayed in the schedule editor depends on the

value given for the hours per day in the Run Setup dialog (see section 5.7.2).

E |Durati|:|n - |

iDuration

Schedule @)
Hame |Format Ty|:|e| Type | Time Units | Scale Factor |Durations
1 fachine 1 Schedule Duration Capaciy Haur s 1.0 0 rovws
2 Schedule 2 Duration Capacity Hour = 1.0 m
3 Schedule 3 Duration Capacity Hour s 1.0 m
4 Schedule 4 Duration Capaciy Hoaur = 1.0 m
Double-click here to add & new row

Arrival
ther

[l Schedule 1

=] =]

Walue << Dap1 00:00:00 - Dap 2 05:00:00 by 1 hour >>
2

(b)

a}

Day1 0:00:00 16:00:00 Day 2
00:00:00 00:00:00

Options. Clear f i | LCancel Help

Timne Slot 18 Dap1 17:00:00 - 12:00:00 Yalue = 2

Figure 6.21: Schedule Data Module Spreadsheet view

A. Mousavi — Brunel University, UK 140

6.2.11 Set Module

The final module we will look at in the basic process panel is the Set module.
This data module’s icon and spreadsheet view are shown in figure 6.22 below. It is
mainly used to define various types of sets, including resource, counter, tally, entity
type and entity picture. Resource sets can also be used in the Process (and Seize,
Release, Enter and Leave of the Advanced Process and Advanced Transfer panels)
modules. The types of sets that may be defined in this module are shown in the pop-
up menu shown in figure 6.22. Counter and Tally sets can be used in the Record
module. Other types of sets for example, Queue sets can also be defined but not in this
module. To do these use the Advanced Set module in the Advanced Process Panel.

Resource
Counter

Tally

@ Ent'rt':.f Type

Sef Resource

Resource Hame|
1 Machire 1

2 Machine 2

'ﬂachine 3 El

Double-click here to add a neww row .

L

7\
Hame | Type Members
1 MachinesSet Resource 0 rovys
2 Set 2 Resource m
3 Zet 3 Resource m
4 et 4 IHesuurce m
Diouble-click here to add a ness Fowe.

Figure 6.22: Set Data Module Spreadsheet view

In this chapter, we have been focusing on explaining in detail the main functions

of all the flowchart and data modules in the basic process panel.

If you have understood the material in this chapter, you should become

considerably familiar with the Decide, Batch, Separate, Assign and Record flowchart

A. Mousavi — Brunel University, UK 141

Modules and the Entity, Queue, Resource, Variable, Schedule and Set data Modules.
With these and the Create, Process and Dispose Modules discussed in chapter 6, you

should be able to build models with considerable detail after a couple of examples.

There are several other Modules in the Advanced Process and Advanced Transfer
panels. In the next chapter, we will take you through the process of modelling a
reverse logistics system. This will further provide more examples of the use of some
of the modules treated in this chapter and also introduce you to some new modules

and concepts in Arena.

A. Mousavi — Brunel University, UK 142

CHAPTER 7

Simulation and Modelling Using Arena (3):

Modelling a Typical Recycling and Reverse Logistics

Problem

This chapter covers:

1. Issues surrounding systems modelling.

2. Developing a modelling approach for a typical simulation problem, an

example in Reverse Logistics
3. Building and running a complete simulation model.

4. Reporting and analysing the results of a simulation run.

A. Mousavi — Brunel University, UK 143

7.1 Introduction

We have so far laid enough foundation for tackling a real simulation problem.
Since the objective of this course is to help you understand the use of simulation for
modelling and analysing systems. Step by step we will now go through an example
together.

It is important to realise that Arena’s modelling concepts are always the same
irrespective of the kind of system you are modelling. The only difference is that you
need to understand how to interpret the elements of your particular system in order to

know the modelling features you can use in Arena’.

For example an entity in Arena is a generic concept. You need to understand that
if you are modelling a banking system then your entities may be customers, data or
financial transactions (or physical money). If you are modelling a manufacturing
system, your entities may be parts, or if you are modelling a healthcare system, your
entities may be patients. And since we are going to be modelling the return of
products in our Reverse Logistics system, our entities will be returned products.

In section 7.2 | will present the problem definition and define the limits of our
model. We will then continue to develop a modelling approach to our problem,
defining what modules we may need and how much detail we intend to capture in our
model. This will then lead us to building running and viewing the results of our basic

model.

In section 7.2 we will enhance the model by remodelling the resources more

realistically taking into account failures, schedules and resource states.

Section 7.3 adds further enhancements to the model for display purpose,

introducing entity pictures, resource pictures, variables and plots. We will finally end

> | am not really biased over Arena. If you would like to use any other Discrete Event Simulation

software package feel free to do so. The principles are the same.

A. Mousavi — Brunel University, UK 144

the chapter with section 7.4 where we model entity transfers with the concepts of

Stations and Routes and further enhance the model’s animations.

7.2 A Reverse Logistics Problem

Dekker et al (2004) [1] observed that business activities of IBM, one of the major

players in the electronic industry, involve several types of “reverse” product flows.

They identified the following elements of the reverse logistic flow of IBM’s business

market;

1. Main sources of return items

Products returned from expiring lease contracts — accounts for 35% of

IBM’s hardware sales

IBM product Take-Back programmes in several countries in North

America.
Customers return used products for free or small fee

“Reverse” stream of new products which include retailers overstock

and cancelled orders.

Return of rotable (replaceable) spare parts — defective parts replaced in

a customer’s machine are sent back for repairs and possible reuse.

2. Strategy

IBM setup a dedicated business unit in 1998 responsible for managing

all product returns worldwide.

The goal was to manage the recyclability and reusability of returned

items to maximise the total value recovered.

Operates 25 facilities worldwide where returns are collected, inspected

and assigned to an appropriate recovery option.

3. Process

i. Remarkable equipment may be refurbished and put back into the market.

A. Mousavi — Brunel University, UK 145

ii. For this purpose, IBM operates nine (9) refurbishment centres worldwide,

each dedicated to a specific product range.
Iii. Remanufactured equipment are normally internet or public auctioned.

iv. Equipment that does not yield sufficient value as a whole is sent to a
dismantling centre in order to recover valuable components such as hard-discs,

cards, boards etc which can be reused

v. The remaining return equipment is broken down into recyclable material

fractions and sold to external recyclers.

vi. In 2000, IBM reported the processing of 51,000t of used equipment, of which

only a residual of 3.2% was landfilled.

7.3 Model 7.1: Modelling the Reverse Logistic Flow of an

Electronic Company

Please note: The concept of this problem formulation is based on an illustrative
case presented in Dekker et al (2004) (p.66-67). The system presented here is
completely imaginary and has no relation with the operations of any real company.
The aim here is to help you appreciate the issues involved in modelling a reverse

logistics system.
Problem formulation

This system describes the operations of a refurbishment facility of an electronic

firm as shown in figure 7.1.

The units that are returned to this facility are named Products A through D. All
the products are collected and sorted at a separate facility outside the scope of this
model. Product A arrives at a rate described by an exponential distribution with a
mean of 6 (all time in minutes). These Products are transferred upon arrival to the
Product A prep area where they are prepared for inspection. The prep process follows
a TRIA (5, 7, 10) distribution. The product is then transferred to the inspection area.

A. Mousavi — Brunel University, UK 146

Products B, C, D follow a similar process to Product A — but with different arrival
rates and preparation (Prep) times, as indicated in figure 7.1. After their Prep

processes, these Products are also sent to the inspection area.

Product A
TRIA(3,4,5)
Product B
TRIA(6,7,10)
Product C
WEIB(8.9,10.5)
Product A Product A Product D
' Prep TRIA(2,8,15) Back to
TRIA(G5,7, 10) market
Refurbishment
for resale —>
Product B Product B
Prep
TRIA(3,5,10)
Inspection Recovered
Product C E;gguct C components
> TRIA (3,5, 9)
Inspection Times 40%
Product D Dismantling
Product D Prep Product A 15% for recycling
> TRIA (6, 7,9) TRIA(1,2,3)
Product B 60%
TRIA(2,3,4) TRIA(15,25,45)
Product C
WEIB(2.5,5.3) >
Product D Recycling
TRIA(6,7,8)

Figure 7.1 Returned products testing and refurbishment process

At the inspection area functional checks are performed on the products to check if
they could be reused. The total process time for this operation depends on the product
type: TRIA (1,2,3) for Product A, TRIA (2,3,4) for Product B, WEIB (2.5, 5.3) for
Product C, TRIA (6,7,8) for Product D. After inspection 30% of Products are sent for
refurbishment, 20% are sent for remanufacturing which is outside the scope of this
model, 35% are sent for dismantling and subsequent recycling and the remaining 15%

are rejected and disposed for recycling.

At the refurbishment area, products that are still salvageable are repaired using
additional supply of parts and then returned into the market. The processing times in
this area are TRIA (3,4,5), TRIA (6,7,10), WEIB (8.9,10.5) and TRIA (2,8,15) for
Products A, B, C, and D respectively. Upon arriving in this area, the products have to
wait for an appropriate part to be available. The parts are supplied in batches of 4 and

come at the rate of twice a day.

A. Mousavi — Brunel University, UK 147

At the dismantling area, all products are separated into individual components
with those in good condition (40%) recovered for remanufacturing and the rest
disposed for recycling. The dismantling process takes TRIA (15, 25, 45) and is

irrespective of product type.

We want to collect statistics in each area on resource utilisation, number in queue,
time in queue, and the cycle time (or total time in system) for refurbished parts,
recovered components, and recycled parts. We will run the simulation for four

consecutive 8-hour shifts, or 1,920 minutes.
7.2.1 The modelling approach

It must be repeated at this stage that using Arena to build a model is only one
component of a simulation project. For a refresher of the discussion on the entire
simulation project see chapters 4 to 6 of this book. The point to note here is that in the
real world, there will not be a readily defined problem with data available or supplied
as our example. In the real world often this information does not exist in the company
and should painstakingly be collected. In fact input data collection, validation and

verification can take up to 70% of the total simulation project time and effort.

The focus of this section is on the approach to developing and modelling a typical
system. This is the stage where you as a modeller after understanding the problem and
clearly stating your goals have to define your system, collect and analyse the data you
require to specify your input parameters. At this stage you need to take a global view
of your system and develop the best way to represent it. To do this you may need to
segment your system into stations or sub models and decide on which Arena modules

you might require.

Kelton et al (2010), recommend as a general approach when creating models to
stay at the highest level possible for as long as you can until it is necessary to drop to
a lower level. In this model, we will be using modules mainly from the Basic Process
Panel and introduce new ones from other panels as we enhance the model. When you
become familiar with Arena, you will find it important to stick to the advice of only

highest level modules whenever possible.

A. Mousavi — Brunel University, UK 148

In chapter 5, we described the hierarchical structure of Arena that allows the
combination of modelling constructs from any level into a single simulation model.
We have so far built very simple models using modules from only the Basic process
panel. In this chapter we are going to introduce new modelling concepts that will

require the use of the Advance process and Advanced Transfer panels.

Assuming all previous steps have been carried out, we will now break our system
down into identifiable sections convenient for efficient modelling. The main aspects
of our model will therefore be to

e Create arrival of products

e Send products through prep process

e Send products through inspection process

e Decide where each product goes after inspection

e Send part to refurbishment

e Send another part to Dismantling

e Dispose remaining part to Recycling

e Dispose to market after refurbishment

e Split products into components after dismantling

e Dispose recovered components after dismantling

e Dispose after dismantling to recycling

To do the above, we will require the following modules:

Create (4)

Assign (4)
Process (7)
Decide (2)

Record (3)

A. Mousavi — Brunel University, UK 149

Separate (1)

Dispose (3)

Each Create module will represent the arrival of each Product type. Each Assign
module will also be used to assign Attributes to each product type. Four Process
modules will represent the Prep process for each product type, one for the Inspection
process, one for Refurbishment process and the last for the dismantling process. One
Decide module will be used after the inspection process to split the products for
refurbishment, dismantling and recycling. The other Decide module will be used to
separate recovered components from those to be recycled after dismantling. Before
each stream of products is disposed, we will use a Record module to collect statistics
on time they spent in the system. Finally the three Dispose modules will be used to

dispose products to market, recovered components and recycling.

Remember that arrival rates and Prep times are unique for each product type as
shown in figure 7.1. We will use two attribute called Inspection time and
Refurbishment time to assign the different times spent at the inspection and
refurbishment processes for the various products types. The time for the dismantling
process is constant for all products. We will call our resources Prep A through D,
Inspector, RefTechnician and DisTechnician respectively for the Prep processes,

inspection, refurbishment and dismantling. We are now ready to build our model.
7.2.2 Building the model

Start Arena and open a new model window (If you are unable to do this, refer to
section 3.1 of Kelton et al (2010)). Place the required flowchart modules as mentioned

above in the flowchart view of the model window.

Your model window should now look somewhat like figure 7.2. It was explained
in chapter 5, how to place modules in the flowchart view by dragging and dropping.
As you drag and drop your modules, Arena should be connecting them automatically
if you have the auto-connect option on. To turn this off and on, select the objects

menu and click on auto-connect.

A. Mousavi — Brunel University, UK 150

We also explained that double clicking any module in the flowchart view will
display the module’s dialog in which its parameters can be updated. Remember that
Arena simultaneously displays similar data for the selected module in the spreadsheet
view showing the parameters of all modules of the same kind within the current

model.

Create 1

e il

'_‘—-[Hessign 1 }’- Process 1

Create 2 Feszign 2 Process 2

:‘T’
N

1
Process &

Create 3 Hzign 3 Procass 3

:T‘
=

TTT

Create 4 Process 4

Fezign 4

:‘-T’
ZaEEN

Process 6
Record 1 Digpose 1
Decide 1 1

=

’ S
1 Decide 2
Process 7 Separate 1 - Lecordhé Dispose 2

| 1
Record 3 y—<< Dispose 2

Figure 7.2: Modules placed in Model Window

Let us start by updating the Create modules, so double click the Create 1 module
to display its dialog. Set its name to Create Product A and Entity type to Product A.
In the time between arrivals area, set the type to Random (Expo) with a mean value of
8 and select minutes for the Units. Let us assume for now that the products arrive in
singles so we set the Entities per Arrival to 1. Leave the Max Arrivals to the default
setting of Infinite and zero for the First Creation. After all that, your create dialog

should look like figure 7.3.

A. Mousavi — Brunel University, UK 151

Create Product }._
i

Create 21X,

M ame: E ntity T ype:
IEreate Product & j IF'ru:u:qu:t A j
Time Between Arrivals
Type: Walue: [tz
IHandDm [Expal ﬂ IB IMinutes j
Entities per Arrival: b ax Arrivals: First Creation:
|1 | nfirite 0.0
0k | Cancel | Help

Figure 7.3: Completed Product A Create dialog box

Similarly, the Create Modules for Products B, C and D are shown in figure 8.4

Create |E| |E|

below.

f—————

Create Product ;-_

/

Create Frc--:luct\
l: —

/

M amne: Entity Type:
IEreate Froduct B ;I IF'ru:u:Iuct B LI
Time Between Amivals
Type: " alue:; I nitz:
IHandDm [Expa] ;I |3U IMinutes LI
Entitiez per Arrival: b & Arrivals: Firzt Creation;
|1 |Infinite |00
(] | Cancel | Help |

M ame: Entity Type:
IEreate Product C ;I IF'n:u:Iu-:t C LI
Time Between Arrvalz
Type: " alue: I riks:
IHandDm [Expa] ;I |1U IMinutes LI
Entitiez per Arrival: bl aw Aurrivealz: First Creation:
| |Irfinite j0o
] | Caricel | Help

. Mousavi — Brunel University, UK

152

i 2 x|

M amne: Entity Type:
—\ |Ereate Product D ﬂ |F'r|:u:|uct] j
Create Product
" EDm ’ [" Time Between Arrivalz
i Type: " alue:; I nitz:
|F|anu:||:|m [Expa] j |2|:| |Minutes j
Entitiez per Arrival: b aw Aurrivalz: First Creation:
I Irfirite 0.0
(] 4 | Cancel | Help

Figure 7.3: Completed Products A, B and C Create dialog boxes

Note that the main purpose of the Create Module is to provide a starting
point for entities in a simulation model. For further details, refer to chapter 6.
The above instances therefore are the starting points for all the products that
come into our system. In the Create Modules, we specified the Entity Types to
be Products A through D. This is not the only information we need about each
product. We may also want to know what time the products arrived in our
system, how much time that product will spend at inspection area etc. The
information that are specific to each product are known as Attributes and are

assigned to the entities by the Assign Module which we will discuss next.

We want to know the arrival time for each product. We also would like to
know how much time that product spends at the inspection and refurbishment
processes. For these, we define the following attributes, Arrival Time,
Inspection Time and Refurbishment Time. Let’s now open each of the Assign
Modules and enter the information required. Double click the Assign 1 Module

and enter information as shown in figure 7.4.

A. Mousavi — Brunel University, UK 153

zign Product

=sign Procuct |, (1] (2 x|
n as

MName:

|Assign Froduct & Attributes ;I
Azzignments:

Attribute, Arrival Time, THOW

i Add...
Attribute, Inspection Time, TRIA[1,2.3] —l

Attribute, Refurbizhment Time, TRIA [3,4.5)

<End of list> Edi.. |
Delete |

Assignments |E||X|
Type: Adtribute M arme:
| atibute | [rival Time -]
Mew Value:
| THDW
kK | Cancel Help
Figure 7.4: Assigning attributes to Product A
==ign Product |
B Atributes I
Assign 7%
Mame:
IAssign Froduct B Attributes LI
Aszsignments:
Attribute, Arrival Time, THOW Add...
Attribute, Inspection Time, TRIA [2.3.4) 4'
Atribute, Refurbishment Time, TR1A (6,710 .
<End of list> LI
Delete |
Assignments |E| |z|
Type: Abtribute Mame:
| attribute | [awival Time =]
Mew W alue:
| T
aK | Cancel Help
sign Product Assign |1”§|
C Atrbutes
Marne:
IAssign Product C Attributes LI
Aszignments:
ke, Arrival Time, THOW Add.. |
Attrbute, Inzpection Time, WEIB [2.55.3)
Attnbute, Fefubizhment Time, WEIB [8.9,1 Edit |
<End of list>
Delste |
Assignments |i| |£|
Type: Aftribute M ame:
IAttribute ;I |Anival Tirne LI
MHew Walue:
|THDW
QK. | Cancel Help
A

. Mousavi — Brunel University, UK 154

G 9
“ezign Product hssig (e |
I D Aetributes 18N 7%

i M armne:
|Assign Product D Attributes j
ALzzignmentz:
Attribute, Arrival Time, THOW Add..
Attribute, Inspection Time, TRIA [8.7.8]
Attribute, Fefurbishment Time, TRIA (28,75 Edit
<End of list:
Delete
Assignments ? @
Tupe: Attribute M arne:
|Attlibute j |Anival Time j
Mew Walue:
[TNDwW
Qk | Cancel Help

Figure 7.5: Completed Products A, B and C Assign dialog boxes

New assignments are added by clicking on the “Add” button which displays the
assignments dialog as shown above. This module is used for assigning new values to
variables, entity attributes, entity types, entity pictures, or other system variables.
Multiple assignments can be made with a single Assign module. Following the above
steps assign the corresponding attributes to Products B, C and D as shown in figure
7.5. TNOW is a standard Arena reserved variable that provides the current simulation
time.

The next thing is to edit our Process Modules to update their parameters. We will start
with the four Prep Processes. Double click on the Process 1 module to open its
dialog. The completed dialog is given in figure 7.6.

A. Mousavi — Brunel University, UK 155

—

Product A

1 Process >
e [7Y
M armne:; Type:
IF'ru:u:Iu-:t.-ﬁ. Process ﬂ IStandard LI
— Logic
Action;: Pricrity:
Seize Delay Release ﬂ IMedium[E] LI
Resources:
Resource, Prep &, 1 Add...
<End of lizty
Edit... |
Delete |
Delay Type: [tz Allozation:
ITrianguIar ;I IMinutes ﬂ I"v"alue Added LI
b irvirrwarn: Walue [Most Likely]: b airnum;
|5 |7 |10
v FReport Statiztics Resources @[g_l
Type:
|Resource LI
Resource Name: Quantity:
IPrepA l.l I1

0K | Cancel | Hep

Figure 7.6: Completed Products A Prep Process dialog

We named a module Product A Process. We also used a standard process as you
can see. We selected the Seize-Delay-Release action combination. This is because the
products will normally seize the Prep A resource, delay the resource for the duration
of the prep process and then release the resource before moving on to the next step in
the process logic. The prep time for product A was given in the problem definition as
a triangular distribution with parameters 5, 7 and 10. The time unit is minutes and the
time allocation is value added. Leave the report statistics option checked so that Arena
will provide reports on this process module.

A. Mousavi — Brunel University, UK 156

New Resources are added by clicking on the “Add” button which displays the
Resources dialog as shown above. This module is the main processing method is the
simulation. It could contain a submodel by selecting the submodel option in the type
combo box and perform various actions of seizing, delaying and releasing resources

when the standard option is selected. For further details, on this refer to chapter 6.

In a similar procedure as above, update the remaining Prep Process modules. The

completed modules are shown below.

o

Product B
Process

[ET Type:
Froduct B Process ;I IStandard ﬂ
— Logic
Action: Friority:
Seize Delay Releaze ;I IMedium[E] ;I
Rezources:
Resowrce, Prep B, 1 Add...
<End af lisk>
Edi... |
Delete |
Delay Type: Uitz Allocation;
ITrianguIar ;I IMinutes ;I I"»-’alue Added ﬂ
ke irirniam; Walue [Most Likely]: b airnam:
|3 |5 |10
¥ Fepaort Statistics Resources El
Type:
IResoufce ;I
Resource Name: Quantity:
IPtepB LI 1

0K | Cancel | Hep

Figure 7.7: Completed Products B Prep Process dialog

A. Mousavi — Brunel University, UK 157

Product C
Process

|

Jame:

Type:

Praduct C Process

;I I Standard

— Logic
Action: Pricrity:
Seize Delay Release LI IMedium[:Z] d
Reszources:
Rezowrce, Prep C, 1 Add...
<End of lizkr
Edit... |
Delete |
Delay Type: Uitz Allocation;
ITrianguIar LI IMinutes ;I I"-.r"alue Added j
b irirnuim: Walue [Most Likely]: b airnum:
E |5 E
v Feport Statiztics Resources ? X
Type:
|F!esource ;]
Resource Name: Quantity:
|PrepC ~|
0K | Cancel | Hep
Figure 7.8: Completed Products C Prep Process dialog
A. Mousavi — Brunel University, UK 158

Product D . .
o ;"'O;'ess . Hame: Type:
Froduct D Process ;I IStandard ﬂ
0
— Logic
Action: Friority:
Seize Delay Releaze ;I IMedium[E] ;I
Rezources:
Fesource, Prep D, 1 Add...
<End of lizt>
Edit... |
Delete |
Delay Type: U ikz: Allocation:
ITrianguIar ;I IMinutes ;I I"Jalue Added ;I
ke irirnam: Walue Mozt Likely]: b awirnLam:
|6 7 |3
¥ Fepaort Statistics . . co—— [EJEJ
Type:
IResource ;I
Resource Name: Quantity:
|Prep D ~| N
0K | Cancel Help

Figure 7.9 Completed Products D Prep Process dialog

The inspection process is very similar to the Prep processes except that it uses an

expression for the delay instead of the triangular distribution type we have been using

so far. This is the reason why we defined the inspection time attribute in the assign

module. When you choose the delay type to be an expression, you can define any

expression (sums or differences, products or rations of variables and attributes) and

Arena will evaluate that and use the resulting value as the process time for the entity

(product). In this case we only wanted to use a value we had pre-assigned to the

entity’s inspection time attribute.

The completed module is shown in figure 7.10.

A. Mousavi — Brunel University, UK

159

S

J Inpspemion .
rocess —_—
ess ?)X
i
Mame: Type:
IInspe-:tiu:un Process ;I IStandard j
— Logic
Action: Pricrity:
Seize Delay Release LI IMedium[:Z] d
Reszources:
Rezource, Inspectar, 1 Add. .
<End of lizkr
Edit... |
Delete |
Delay Type: Uitz Allocation;
IE:-cpressiDn LI IMinutes ;I I"-.r"alue Added j
E xprezzion:
IInspectiDn Time j
v Feport Statiztics Resources @@
Type:
IResouu:e LI
Resource Name: Quantity:
[Inspector Z| |1

0K | Cancel Help

Figure 7.10: Completed Inspection Process dialog

Decisions or choices in Arena are modelled using the Decide Module. The
problem definition states that following inspection, 30% of products are sent for
refurbishment, 55% for dismantling and 15% for recycling. The Decide Module
includes options for making decisions based on one more conditions or based on one
or more probabilities. Since we have values given for the percentages, we will use the

options based on personalities which Arena refers to as by chance.

Now double-click on the Decide 1 Module to display its dialogue. Since we have
three possible outcome, we will select the N-way by chance option from type combo
box in the decide dialog. The Add button displays another dialog in which you specify

A. Mousavi — Brunel University, UK 160

the probability value. We will specify two values of 30% and 55%. Arena will
automatically work out the difference and send the remaining 15% to another exit
point. Notice that Arena provides a number of exit points from the Decide Module
that is equal to the number of conditions you specify. The completed module is shown
in figure 7.11.

—a & Inspection Outcom:

M ame: Type:
|nzpection Outcome ;I IN-wa_l,l by Chance ;I
Percentages:
Add...
]
<End of lisk:

Edit...

Delete

Conditions

Percent True (0-100):

B =l

N

0K | Cancel

HE

Help

Figure 7.11: Completed Decide Module dialog

The next step in our process logic is to update the Process 6 Module. This is very
similar to the inspection process module presented above except that we use the
attribute Refurbishment Time instead of Inspection Time. The module name also
changes to Refurbishment process and the resource to RefTechnician. The completed
dialog should appear as shown below.

A. Mousavi — Brunel University, UK 161

e B P rocess |E||E|

Refurbishment
Process ¢ Mame: Type:
' IHefurbishment Frocess ;I IStandard ﬂ
— Logic
Action: Friority:
Seize Delay Releaze ;I IMedium[E] ;I
Rezources:
Rezowrce, RefT echnician, 1 Add.
<End af lisk>
Edit... |
Delete |
Delay Type: U ikz: Allocation:
IE:-:pressiu:un ;I IMinutes ;I IVaIue.ﬁ.dded ;I
E wpression:
IHefurbishment Time d
v R b Statizh —y
¥ Fepaort Statistics P — Izll
Type:
IResowce LI
Resource Name: Quantity:
|RefTechnician >N
0K | Cancel Help

Figure 7.12: Completed Refurbishment Process dialog

Repeat the above steps to complete the Process 7 Module. Check with the

completed dialog in figure 7.13 below.

A. Mousavi — Brunel University, UK

162

——

Dismantling
9 Process

Figure 7.13: Completed Dismantling Process dialog

v ame: Tupe:
Dizmantling Process ;I IStandard ﬂ
— Logic
Action: Friority:
Seize Delay Releaze ;I IMedium[E] ;I
Rezources:
Rezource, DisT echnician, 1 Add...
<End of lizt>
Edit... |
Delete |
Delay Type: U ikz: Allocation:
ITrianguIar ;I IMinutes ;I I"Jalue Added ;I
ke irirnam: Walue Mozt Likely]: b awirnLam:
|15 |25 |45
¥ Fepaort Statistics .
Resources @
Type:
IResource LI
Resource Name: Quantity:
|DisTechnician >l
ok | Cancel Help

At the end of the dismantling process, the products will be turned into

components. From the problem definition we realise that the number of components

in each product varies and is represented by a triangular distribution of parameters, 6,

9 and 12. This is akin to assuming that there are a random number of components in

each product. We model this by using a Separate Module from the Basic Process

panel.

Now double click on the Separate 1 Module to open its dialog box. Enter

Components in the “Name” and leave the “Type” field to the default value (i.e.

Duplicate Original). Also leave the “Percent Cost to Duplicate” field to its default

value. The last thing is to enter the value TRIA (6,9,12) in the “Number to Duplicate”

field. The completed dialog should be as shown in figure 8.14. You should realise that

A. Mousavi — Brunel University, UK

163

the purpose of using this Separate Module is just to multiply the number of
components leaving the dismantling process. That is you why you will observe that

both exits of the module have been put together.

Separate
i
W j M armne: Tupe:
"'———I- |Eumpu:unent$ j |Duplicate Original j
Percent Cosgt to Duplicates [0-100]: # of Duplicates:
(50 % [TRI& (6. 9.12)

] | Cancel Help

Figure 7.14: Completed Separate Module shape and dialog

There is another decision to be made after the dismantling process where 40% of
components are recovered for remanufacturing and the remaining 60% sent to
recycling. We will use another Decide Module and complete it as shown in figure

7.15. This has fewer values to specify since it’s only 2-way by chance.

P
.
4
&7
_#" Recovered ! h

—* <%, Components
R
R
T
R
[

Name: Type:
|Hecovered Components j |2-wa_l.J by Chance j
Percent True [0-100]):
40 vl =z
Ok | Cancel | Help

Figure 7.15: Completed Decide Module dialog

A. Mousavi — Brunel University, UK 164

Having defined all the operations, we now need to update the Record and Dispose

modules to finish.

Figure 7.16 shows the completed record dialog for recording the cycle times of
products that have been refurbished products. In order to determine the cycle time
which is the time from when the products arrive into our system to when they exit
from the system, we use the Time Interval type from the record module. This is the
main reason why we defined the Arrival Time attribute soon after the products were
created. In this module, we selected the Arrival Time attribute as the reference for
computing the cycle time (time interval). Arena makes this attribute available in the
drop down list under Attribute Name in the record dialog because we had previously
defined it. The cycle times observed for the entities will be recorded into a tally called
“Record Refurbished”.

Fill in the remaining record modules in the same way as above but with the names
Record Recovered Components and Record Recycled. Notice that Arena

automatically uses the module name you supply as the tally name.

Fecord]
Refurbizhed §° M arne: T_','FIEZ
|Hec:-:nru:| R efurbizhed ﬂ |Time | nkerval j
Attribute Mame:
|.ﬁ.rrival Tirne ﬂ [Becord into Set
Tally Mame:
|Fiec-:ur|:| R efurbizhed ﬂ
k. | Cancel Help

Figure 7.16: Completed Refurbished Products Record dialog

The final set of modules we have to fill in is the Dispose Modules. This module is

intended as the ending point for entities in a simulation model. Entity statistics may be

A. Mousavi — Brunel University, UK 165

recorded before the entity is disposed. Arena records entity statistics only when you
check the box for Record Entity Statistics on the dispose dialog. Figure 8.17 shows
the dispose dialog for products that are sent to the Market after refurbishment. The
remaining modules are updated in the same way with the names send to
remanufacturing for the recovered components and send to recycling for the rejected

components.

£

Mame:

‘ |Sen|:| b b ark et j

_..ij“Send to Market

[v Record Entity Statistics

k. Cancel | Help |

Figure 7.17: Completed Dispose dialog for refurbished products

The model can be run now but before we do so, there are a few things we need to
specify as to how the model should run. One of these is to tell Arena when to stop the
simulation. Without this the simulation will run forever because Arena doesn’t know
when to stop. This and other parameters necessary for the runtime behaviour of your
simulation and information on generated report can be established by selecting
“setup” from Arena’s “run” menu. We will have a look at only two of the five tabs on
the run setup dialog. Figure 7.18 shows the run setup dialog with the Project

Parameters tab selected.

A. Mousavi — Brunel University, UK 166

Run Speed] Run Control] Reports l
Praject Parameters] Replication Parameters | Anay Sizes |

Project Title:
|,.f_-._ Rewverse Logistics System Model

Analyzt Mame:
|Prince Brown

Project Description:

This model represent the operations of one of the refurbizhment units
of a major IT company.

Statistics Collection

[Costing v Queues [Transporters
™ Entities [V Processes [Conveyors
V¥ Resources [~ Stations [T Activity Areas
[Tanks
QK | Cancel | Apply | Help |

Figure 7.18: Project parameters in Run Setup dialog

This tab allows you to specify project information such as title, analyst name and
project description. It also allows you to specify what aspects of your model you want
to collect statistics on. We have checked resources, queues and processes for statistics
collections. There will therefore be no statistics generated on all the other components

of the model in the report that will be generated after the run.

A. Mousavi — Brunel University, UK 167

f x|

Run Speed] Fiun Contral] Reports]
Project Parameters Replic:ation Parameters l Anay Sizes]
Number of Replications: Initialize Between Replications
|1 [¥ Statistics ¥ System
Start Date and Tirme:
i]
wharm-up Period: Time Units:
|U.U |Hnurs j
Replication Length: Time Units:
|32 |H|:|urs ﬂ
Haurz Per Day: Baze Time Units:
|24 |Minutes ﬂ
Terminating Condition:
|

0k | Cancel | | Help |

Figure 7.19: Replication parameters in Run Setup dialog

The other tab we will look at in the run setup dialog is the “Replication
parameters” tab. This is displayed in figure 7.19 this is where we specify the run
length for the simulation. Based on our system description, we have set the replication
length to 32 hours (four consecutive 8-hour shifts). We also changed the base time
units to minutes and left the remaining fields at the default setting.

There are four different types of products coming into our system and it would be
nice to differentiate between them in the animation (the pictures that represent the
products). We will do this by assigning different pictures to their entities using the
entity data module. Bring up the Basic Process panel and click on the Entity data
module. The first two columns of your spreadsheet view with the entity data module
selected will look like figure 7.20. Arena automatically assigns an initial picture to
every entity you create. In this case Arena assigns the Picture.Report picture to all the
products which make them look the same during the simulation run.

A. Mousavi — Brunel University, UK 168

@ Entity Type Initial Picture

Enkity Prociuct &, Picture Report
Product B Ficture Report
Product C Picture Report
Product D Ficture Report

B W k| —

Figure 7.20: Entity spreadsheet view with default initial pictures

Now when you click on the initial picture cell of the Product A, Arena gives you
a drop down list of all entity pictures that are currently available for use. You can
select different pictures from the list to represent each of your products. We used red,
yellow, green and blow balls respectively to represent products A through D. See
figure 7.21.

Entity Type | Initial Picture
Prociuct & Picture.Red Ball
Product B Picture ellow Ball
Procuct Picture Green Ball
Product D Picture Blue Ball

B W] k| —

Figure 7.21: Entity spreadsheet view with updated initial pictures

After all these, your completed model should look somewhat like figure 7.22.

A. Mousavi — Brunel University, UK 169

—

i \ AZTEN PIoNcT Prochicts
Credte Proicta ."..SWIJIQS l Process
i
]
o \ Azzkn Prodict ProchictB
et Procts b Atres l | Process
i 4|
]
Ispection
\ Process
I o Azzkp Prodect Prodhct s
Crede ProictS © Atibres Process -
i
i
Creae pm"ctn\ Azzhp Prodct ProdhctD
I D Atrbaes ==
i

Retuibls ime vt Record _{E
Process J|f|=mmlmc| Srh Raket
i
]
! Record
Send
Pecous redl
b‘ﬁ:m‘ln'“‘ RemannGctig
i
Recond 2o
| Fecikd Feczihg
i

Inspection O viome

—

Dlmanting u

Fecow el

Figure 7.22: The complete model
7.2.3 Running the model

Arena cannot run a model with errors; hence the next task before running the
model is to check for the errors in the model. This can be done by clicking on the
check button (+) on the Run Interaction toolbar, the check model command from the
Run menu or by using the F4 key on the keyboard. If the model is without an error,
Arena displays the message box in figure 7.23 otherwise you will receive an error
message with find and edit buttons that will help you locate and fix the error. If there
are no errors in your model, then you can run your simulation by clicking on the Go
button (*) on the standard toolbar or just by pressing the F5 key on the keyboard or

by selecting the Go command from the Run menu.

A. Mousavi — Brunel University, UK 170

! '1 Mo errors or warnings in model
L

Figure 7.23: Arena message for successful model check

Figure 7.24 below is a snap shot from the running model®.

e

\ P10 PrOONCTS,
Creae pm-mnl [a4 ro J Frodicta, Process
5
|
\ #szig) Prodect B
Creae nmmmnl [s rod]) Prodict Process
[x) SEEEEE
|
-
Inspection
\ Frocess
feign Prodicts Productc:
Gk mecl AWEVES J: Process f
1
1
\ feigy Prodict D
Creae FrodictD ProdictD
I Alirbvies]_|_ = JE—
11

REMDEEImE It Record
Procers Wﬁe“mkleu «S""""Em“
1

Inspection Ovicoms A SASEE S
il
econd Recoue red sl
/1 DEmaiting (ul oo red Compore 1 Compoke ks Remannchrg
5 —|| compoiert
‘ B

Pocs;

il 111 ‘
ﬁﬁewm Reohd || — «semn Reopliig
T

Figure 7.24: Snap shot of running model

®\f you are running example 7.1 using Arena's academic/demo version you realise that a warning/error
will pop up after a while declaring that "you have exceeded 150 entities" allowed for the
academic/demo version of Arena. This is due to the fact that the model is generating too many entities
i.e. exceeding the allowance for the demo version. The reason for this error could be due to the parts
waiting behind resources to be processed or too many entities being generated. Do not worry - by
changing the time between arrivals or reducing the processing time you can solve this at this stage.
Later on you will be using the Balking example to monitor the number of entities behind queues and
will be able to troubleshoot this sort of problem.

[This was intentional for you to experience this sort of error in Arena]

However, your individual assignments are designed in a way that you should not have this issue at all.
Therefore, if you encounter this error whilst completing your individual assignment; this means that
there is a mistake in your model. You need to detect and resolve this mistake in your modelling
approach.

A. Mousavi — Brunel University, UK 171

7.2.4 Viewing the results

For detailed discussions on the various parts of the Arena report refer to section
5.7.4. Notice here that Arena provides on the report view, the name of the project,
number of replications simulated and the time units for all time values in the report.
This time unit is taken from the “Base Time Unit” field on the “Replication

Parameters” tab in the “Run Setup” dialog.

Figure 7.25 shows the Queue Summary data displayed in the simulation report.
The report displays all Queues in the model and the time spent by products waiting in
each Queue and the number of Entities waiting at each time. If you look at the average
values for the waiting time in queue and number waiting in queue, you will notice that
the dismantling process has a much longer waiting time and queue length than the
other processes. This is obviously a source of concern; either the process doesn’t

have enough capacity to handle its work or there is a great deal of variability at this

process.
Preview l
—|- & Reverse Loqgistics Syste
+-Process | .
4] Queus 15:46:03 Category Overview
+- Resource
User Specified .
e e |A Reverse Logistics System Model
Replications: 1 Time Units: Minutes
|Queue
Time
Wiaiting Time hinimum Maimum
Parerage Half Wridth alue alue
Dismantling Process.Queue 72629 {Insufficient) 0.00 1476.05
Inspection Process.Queue 26.8914 (Correlated) 0.00 711417
Product A Process.Gueus 14.8869 {Insufiicienty 0.0n 887732
Product B Process.Queue 0.7297 {Insufficient) 0.00 59013
Product C Process.Queue 4.4349 {Insufficient) 0.00 228183
Product O Process.Queue 1.90149 (Insufficient) 0.00 14.6856
Refurhishment Process.Queus 41091 {Insufficient) 0.00 3.74503
Other
Mumber YWaiting hinimum Maimum
Parerage Half tfidth Value Value
Dismantling Process.Queue 13232 (Correlated) 0.00 263.00
Inspection Process.Queus 81541 (Correlated) 0.00 23.0000
Product A Process.Queue 210486 (Correlated) 0.00 14.0000
Product B Process.Queue 0.02584436 {Insufficient) 0.00 1.0000

Figure 7.25: Simulation report displaying queue summary data

A. Mousavi — Brunel University, UK 172

Remember again that having a result from your simulation model is not the end of
the simulation process. Ideally, the next step assuming that your model has been
successfully verified will be to validate the model by comparing the results with
similar measures in the actual system. Simulation experts even admit for many

reasons that true model validation is almost impossible.

Some reasons are that validation implies that the simulation behaves just like the
real system, which may not even exist so it’s impossible to tell. Even if the system
exists, it may not be possible to capture all its complexities in the model hence there is
bound to be some variation between model and real system data. An idealistic goal in
validation is to ensure that the simulation is good enough so that it can be used to

make decisions about the system.

Obviously, the difficulty in validation grows with the complexity of the system
being modelled. Thus with our current model, it is pretty easy to validate by just cross

checking with information given in the problem description.

Let us therefore assume that as part of this validation process you showed the
above results to your manager or client with all the assumptions of running the model
for 24 hours a day and only one resource at each process with no breaks during the 24
hours. Your manager’s first response is that your assumptions were wrong and makes

some suggestions for enhancing the model.

The next step will therefore be to enhance our model by making the necessary
changes based on the new information received. This is the subject for the next

section on Enhancing the Model.
7.3 Model 8.2: Enhancing the model

Your manager realises that the system actually operates two shifts a day and he
suggests having three (3) technicians for the dismantling process during the first shift

and four (4) for the second shift to see the impact on the queue at that process.

The manager also noted that there is a failure problem at the inspection process.
An inspection device required by the inspector periodically breaks down. Historical

data on these failures have shown that the mean uptime (time from the end of one

A. Mousavi — Brunel University, UK 173

failure to onset of the next failure) is exponentially distributed with a mean of 180
minutes. The time to repair also follows an exponential distribution with a mean of 10

minutes.

In the next few sections, we will incorporate the above changes into our model

with the introduction of some new Arena concepts.

7.3.1 Resource States

The need to model the failure and availability of resources requires an
understanding of the concepts of Resource States and Schedules in Arena. We will

explain the concept of States in this section and the Schedules in the next section.

Arena automatically defines four Resourced States namely, ldle, Busy, Inactive
and Failed. Thus throughout the simulation period a resource can only be in one of
these States. Arena keeps track of the time each resource in the system was in each of
these States in order to report the required statistics. A resource is said to be Idle if
none of its units has been seized by any entity. That is to say the resource is totally
free, doing nothing. On the other hand, as soon as an entity seizes the resource its state
is changed to Busy, because it is no more free. When the resource is not available to
be used, for example a bank staff on break, Arena will set its state to Inactive. This is
the case when a resource’s capacity is reduced to zero (0). Finally, the state of the
resource would be changed to Failed when he it is not available because of a

breakdown.

When a failure occurs, Arena will make the entire resource unavailable and none

of its defined capacity can be seized by any entity.

a. Resource schedules

Our initial assumption that the system works 24 hours a day was obviously not
right. We will begin to implement the new changes by changing the “Hours per Day”
field in the “Run Setup” dialog to 16 hours (Arena will prompt you that some
calendar-related features require the hours per day to be 24. Ignore this) to correspond
to the two 8 hour shifts in a day. We will also change the “Replication Length” to 10
and the “Time Units” to Days.

A. Mousavi — Brunel University, UK 174

To schedule a resource means to define its availability. In Arena, you may start
defining a resource’s availability either in the Resource or Schedule data module. If
you start in one, Arena will automatically make the name of the schedule available in
the other. For more discussions on the Resource and Schedule data modules, refer to

section 6.1.8 and 6.1.10 respectively.

If you built model 7-1 then open it now and click on the Resource data module in
the Basic Process panel. This should display all the resources within the model in the
spreadsheet view. We will schedule the dismantling process resource to have capacity
of 3 for the first 8 hours and a capacity of 4 for the last 8 hours. Before that, change
the “Type” column for the DisTechnician to “Based on Schedule”, enter Dismantling
Schedule for the “Schedule Name” and select Ignore for the “Schedule Rule” column.
Your spreadsheet view should be looking as in figure 7.26 bellow. Recall that when
the schedule rule is Ignore, the resource’s capacity is decreased at the set time but the
work being done on the current entity will be completed. Note also that these are not
the only columns in this view. There are others as would be seen later.

Hame | Tvpe Capacity | Schedule Hame Schedule Rule
1 Prep & Fixed Capacity 1 j 1 Wit
2 Prep B Fized Capacity 1 1 Wit
3 Prep C ived Capacity 1 1 Wiait
4 Prep D Capacity 1 1 Wit
5 Inspectar Fixed Capacity 1 1 Wit
5] RefTechnician Fized Capacity 1 1 Wit
7 DisTechnician Baszed on Schedule Dismantling Schedule Dismantling Schedule Ignore
Double-click here to add & new: rowe.

Figure 7.26: DisTechnician resource based on Schedule

We now need to define the details of the schedule. This could be done by using
the spreadsheet schedule editor or by using a dialog option. We will be focusing on

the former for now.

Select the Schedule data module in the Basic Process panel to display the
Schedule spreadsheet view in the bottom of the screen. Double-click in the
spreadsheet view to open a new schedule called Schedule 1 by default. Click in the
“Name” field and select Dismantling Schedule from the drop down list. You will have
the view shown in figure 7.27.

A. Mousavi — Brunel University, UK 175

Hame Format Ty|le| Type Time Units | Scale Fact0r| [Iurations|
1 Diztnartling Schedule Duration j Capacity Hours 1.0 0 rowys |

Double-click here to add a newy rovw.

Figure 7.27: The Schedule module spreadsheet view

Click again on the Durations field for that row and to display the Graphical
Schedule Editor. The horizontal axis represents the simulation time. Notice that it
displays only 16 hours in a day as we specified in the Run Setup dialog. The vertical
axis also represents the resource capacity. This is filled in simply by clicking a
required capacity and dragging horizontally over the period required. You also erase
your selection by clicking on the zero capacity line and dragging horizontally. Figure
7.28 shows the editor filled in for capacity of 3 for the first 8 hours and 4 for the last 8
hours.

%l Dismantling Schedule

2|

Capacity << Dap 1 00:00:00-Day 2 14:00:00 by 1 hour >

]

Dayp1 08:00:00 Day2 08:00:00
00 00; 00 00; 0o 0o
Options. .. | Clear | Ok | Cancel Help
Tirne Slat 7 Day 1 06:00:00 - 07:00:00 Capacity =3

Figure 8.28: The Graphical Schedule Editor

A. Mousavi — Brunel University, UK 176

b. Resource failures

Resource failures are defined in much the same way as we defined the resource
schedules except that it does not provide a graphical interface. As mentioned in
section 7.2.2 above, the complete resource data module’s spreadsheet view is shown

in figure 7.29.

Hame Type Capaeity Schedule Hame Schedule Rule|Busy /Hour|ldle / HourlPer Use‘ StateSet Name‘ Failures|Report Statistics
Prep & Fixed Capacity st 0.0 0.0 0.0 O rovs

it 0.0 0o 0o 0 rowes
Wait 0.0 (1) (1) 0 rowes
et 0.0 00 00 0 roees
Wit 0o oo oo 0 rovws
Wait 0.0 0o 0o 0 roves
izmantling Schedule lgnore 0o 0.0 0.0 0 roves

=]

Prep B Fixed Capacity

o

Prep C Fixed Capacity

=

Prep D Fixed Capacity

@

Inzpector Fixed Capacity

RetTechnicisn Fixed Capacity il

[S RS S E KU ety

AAAAA[AA

[m

izTechnician |Elased on Schedule Dismantling Schedule

Daouble-click here to add & new row

Figure 7.29: Complete resource spreadsheet view

We want to define the failure of the Inspector resource so click on the
corresponding field for that resource in the “Failure” column to display its failures
spreadsheet view. This displays the view shown in figure 7.30. Enter Inspector
Failure in the “Failure Name” field and select Wait for the “Failure Rule”. We choose
Wait because when failure occurs, the device will complete work on the current entity
(or product) before being taken out of service for repairs.

Failures

Failure Hame Failure Rule
1 'nspednr Failure w [vait

Double-click here to add a new rove.

Figure 7.30: Resource failure spreadsheet view

The parameters for the failure are specified in the Failure Data Module. This
module is found in the Advanced Process Panel. Click on the “Name” field and select
Inspector Failure. Change the “Type” field to Time and the “Up Time” and “Down
Time” values to EXPO(180) and EXPO(5) respectively. Set both time units to
minutes. Your final view should look like figure 7.31.

A. Mousavi — Brunel University, UK 177

=

Failure

Hame Type Up Time Up Time Units Down Time Down Time Units| Uptime in this State only|
1 Inspector Failure Time EXPO(150) Minutes HPOCS) Minutes

4

Diouble-click here to add a new: row.

Figure 7.31: Failure Data Module spreadsheet view
c. Model results

Table 7.1 shows a comparison of the Average Waiting Time in Queue and
Average Number in Queue for Model 7-1 and Model 7-2. Recall also, the changes
made to Model 7-1 as summarised in table 7.2. The impact of these changes is quite
obvious. Generally, all differences may be attributed to the increase in the run length
from 32 hours (in Model 7-1) to 160 hours (i.e. 16 hours x 10 days in Model 7-2).
Particularly however, differences in results at the dismantling and inspection
processes will be understood to be due to the increase in capacity and modelling of
failure at those processes respectively.

We realise that the waiting time in queue at the dismantling process had reduced
after the capacity was increased in Model 7-2. This does make sense since now more
products can be dismantled than in the previous model. On the other hand, the waiting
time in queue at the inspection process increased in the new model. This may also be
well explained by the fact that the Inspector resource was not always available due to

periodic failure.

A. Mousavi — Brunel University, UK 178

Table 7.1: Queue data for Model 8-1 and Model 8-2

Result Model 8-1 Model 8-2

Average Waiting Time in Queue
Dismantling Process

Inspection Process 726.29 504.94
Product A Process 26.89 39.23
Product B Process 14.89 38.23
Product C Process 0.73 0.75
Product D Process 0.43 3.66
Refurbishment Process 1.90 2.41
410 14.11
Average Number Waiting in Queue
Dismantling Process 132.32 69.88
Inspection Process 8.15 12.09
Product A Process 2.10 5.04
Product B Process 0.02 0.02
Product C Process 0.43 0.36
Product D Process 0.10 0.12
Refurbishment Process 0.36 1.72

Table 7.2: Difference in parameters for Model 7-1 and Model 7-2

Parameters Model 7-1 Model 7-2
Hours per Day 24 16 (2 8hour shifts)
Replication Length 32 10 days
Failure at process None Inspection
Resource capacities: (shift 1), 4(shift 2)
DisTechnician 1 1
Inspector 1 1
Prep A 1 1
Prep B 1 1
Prep C 1 1
Prep D 1 1
RefTechnician 1

7.4 Model 8.3: Adding animations

An important part of a simulation model is the visual display. For presentation
purposes, it is useful to make your model’s animation look more like the real system
before showing the model to decision makers. You may also find the animations very
useful for the purpose of model verification (i.e. ensuring the model is working as

expected). It helps to easily detect errors in the model logic.

A. Mousavi — Brunel University, UK 179

In this section, we will modify Model 7-2 into Model 7-3 by adding animations
for entities, resources and some dynamic plots. We will design the animations in a
different environment from the model logic. Our complete animation captured during

runtime is shown in figure 7.32.

Your final animation may not look exactly like ours since we will not take you
through every detail of how we did it but just the main steps and leave you to try

figuring out the rest yourself.

Number in Dismantling Queue

Refurbishment tham b Dhat- Markect " "f/w
e -
H Hum ber Durt- Réemna nufacharing

1394

2
o“"&n
I % i e Dt Reisiplirmgy
nspection
Product & Prep 3040
)
E Dismantling
o® Product B Prep o
L) T
n““ﬂn n»‘-‘en&
002" P
Product C Prep ‘,e‘**
i &‘_‘0
. 00‘3"@
o%
P
et Product D Prep

=

Figure 7.32: Final animation of Model 7-3

To start with, open Model 7-2 and scroll down to a blank Model Window. You
may want to copy our style by laying an ellipse over a square as we deed. To do this
make sure you have your “Draw” tool bar displayed. If not, right-click on any toolbar
and choose “Draw” from the pop-up list. It looks like figure 7.33 bellow. Now try
drawing the shapes using the “Polygon” and “Ellipse” buttons and changing the “Line
Styles” and “Fill Patterns”.

A. Mousavi — Brunel University, UK 180

\\éf}emé‘}{:ﬁlﬁ ﬁv&viv ‘&v ETT’

Figure 7.33: Arena’s “Draw” toolbar

Before we start talking about entities and resources, let’s quickly look at how to
animate the queues in the model. You might have noticed by now that Arena
automatically animates queues whenever you use a module that has an in-built queue
for example the process module. When we want to animate the entire system as
shown in figure 7.32, we need to be able to move the queues wherever we wish.
Fortunately, Arena makes it possible to cut the queue objects from the modules and
paste them where needed. That’s exactly what we did as shown in figure 7.34. We cut
the queue from the Product A Process module and pasted in our animation the way

we want it.

| Number in Dismantling Queue

Proinct A

Refurbishment

Proceis

H
Inspection
Product & Prep /\

imber DUt Recycling
4
Product B P Dismantling
roduc rep
/ |
|

/ Product C Prep /
m / Product D Prep

_ A Produsia
Proces s

Figure 7.34: Queue animation by cutting and pasting

A. Mousavi — Brunel University, UK 181

Once you paste your queue where needed, you may change its shape, length and
orientation by clicking and dragging its handles. You may also make changes to its
parameters by editing its dialog when you double click on it. This dialog is shown in
figure 7.35.

Queue RIX

|dentifier:;
|F'r-:u:|uu:t & Process. Queud j |

Type

" Pairt v Colar. .

T [Botate

ine -
k. | Cancel | Help |

Figure 8.35: The Queue dialog

7.4.1 Changing entity pictures

We create and edit entity pictures in Arena’s entity picture placement window
accessed by selecting “Entity Pictures” from the Edit menu. A snap shot of this
window is shown in figure 7.36 bellow. The left side of the window represents all the
entity pictures currently available for use in a model whilst the right side represents

one of Arena’s picture library files (machines.backup.plb).

The “Add” button allows you to create your own entity picture. It basically
provides a blank picture space for you and double-clicking this would then open a
picture editor where you may create your entity picture. The “Copy” button also
makes a copy of an existing picture which you make changes to, and yet preserve the
original. The “Delete” button will only remove a selected entity picture from the list.
What we have done is to represent our products A through D with coloured balls with
the corresponding letters on them. To do this, we copied the existing balls in the list,

double-clicked to open the picture editor and placed the letters on top of the balls.

A. Mousavi — Brunel University, UK 182

Walue: |PiCtulE..‘5.

[

Ficture [D: |Shape.EircIe.BIue

&dd

Copy

Delete |

Y
o Picture. A
. Picture. Blue

o Picture_ B

. Picture. Red

YizLalization

Picture.C

Size Factor: |1 [

Figure 8.36: The Entity Picture Placement window

o]

Current Librany:

machines. backup.plb

&dd

Copy

i
A dl

Delete

(B
s
[
A

Open

Save. .

1.

Cancel ‘

Help

The corresponding buttons on the right hand side have the same functionality and

entity pictures may be moved between both sides by clicking on the entity picture to

move on one side and the destination location on the other side and then using the

arrow buttons («,2*) to perform the move.

Arena Provides a picture ID and value or name which we changed to Product “A”

etc. The names you specify here would be made available in the list of available

pictures when you are assigning pictures in the Assign Module. You may also do the

assignment by changing the initial picture in the Entity data Module to the name you

gave to your entity. Now try to create your entities and assign them before we be

begin to look at resource pictures.

A. Mousavi — Brunel University, UK

183

7.4.2 Adding resource pictures

In order to add a resource picture to your animation in the “Animate” toolbar first
click on the Resource button (**#). The Resource Picture Placement window (figure
7.37) will be displayed. This is similar to the entity picture placement widow we just
discussed and the buttons have similar functionality. Recall our discussion in section
7.2.1 on the resource states. Arena allows you here to specify four different resource
pictures to represent each of the four possible resource states (Idle, Busy, Inactive and
Failed).

Arena will always make the list of all resources in your model available when you
click on the identifier combo box as shown. Notice that you can move pictures from
the library on your left to the states list by using the arrow buttons as in the entity

placement window discussed.

g::> R efT echrician

| dertifier: |Inspectu:ur ﬂ Current Library:
J machines. backup. plb
-

State: ||'2"E

Picture ID: |Machine

o s Idle Qﬁgd
Copy
Delete ‘ % Busy Delete
Inactive ﬁ 2F
M

= Failed

Ul D T B

Yisualization
Size Factor; |1.98052 I [V Seize frea
- | =l

ar | Cancel ‘ Help |

Figure 7.37: The Resource Picture Placement window

A. Mousavi — Brunel University, UK 184

When you accept the resource picture by clicking the OK button, your pointer
will be turned into a cross hair. Position this cross hair in the position where you want
your resource to appear and click. This places the new resource in your animation.
You may then drag its corner handles to resize it and click on it to change its position.

In the same way, add animations for all your resources arranging them in your

animation environment as we did or in your own way.
7.4.3 Adding variables and plots

To complete this current model, we will now add some variables and plots to our
animation. As shown in figure 7.32, we will add variables for the number of products
going out into the market after refurbishment, number out to remanufacturing and
number out to recycling. We will also add a plot for the number in queue at the

dismantling process.

The Dispose module keeps track of the numbers of products going out and has a
default animation of these variables next to the module shapes. Copy these variable
animations from each of the three Dispose modules and paste them in your animation
environment as we did if figure 7.32. You may resize the variable by highlighting it
and dragging its handles. You may also reformat the text by double clicking on the
variable to display its Variables dialog. An alternative and more general approach is
to click the “Variable” button () on the “Animate” toolbar to open the “Variable”

widow as shown in figure 8.38.

A. Mousavi — Brunel University, UK 185

Expreszion:

Yariable
Send to ncling. WumberQut
Praduct D Process WAT ime - Expresszion:
Froduct D Process W aitT ime - -
Recovered Componentz. Humberd |Senu:| to Recyaling Numberbut J

Recovered Components Mumberd |4 _
Refurbishment Process Numberln -~ < prmat:

il

Refurbishment Process HumberQu i -
Refurbizhment Process VA Time J Area...
Fefurbishment Process. W aitTime [Bord
Send to Market MumberJut - order...
Send to Recycling MumberOut Transparent Background =
Send to Remanufacturing. Murnber[% Alignment Mo Border
T Left * Right Fart
Title
[Usze Tite

| [[[
|
k. | Cancel | Help

Figure 7.38: The Variable window

When you click on the expression field, Arena displays a list of all the
expressions in your model that you may animate. You may also create your own
expression by right-clicking the field and selecting the “Build Expression” option.

This will open a new window where you may build the expression you desire.

Finally, let’s add a plot for the number of products in queue at the dismantling
process. Click the “Plot” button (£) on the “Animate” toolbar to display the plot
window shown in figure 7.39. Clicking the “Add” button further opens the “Plot
Expression” window which allows you to select or build the expression (s) you wish
to plot. In our case we selected the number in queue for the dismantling process (i.e.

NQ (Dismantling Process.Queue)) as shown.

We set the maximum to 60 hoping that the queue length will not be more than
that. We set the “History Points” to 5000 and the time “Time Range” for our display

to 9600 base time units (minutes in our model, check this in Run Setup dialog). When

A. Mousavi — Brunel University, UK 186

you are done, click the OK button and with the cross hair pointer, click the desired

location in your animation environment to display your plot (See figure 7.32).

E xpressions:
HADzmantling Process. Queue] add.. 1 ‘L'_lj
i 0
Edit... i i
Delete Area
Time Fange: Boarder. .
EO00.0
Fill Area...
Refresh Border E spreszion Synchronization
* Mone " None Iv Sunchronize Min and Masx:
- i i
e : Buundl_ngBo:-t Initial Minirmurm; — ritial b asinum:
12 8 Ais |DEI |EEID
" 3/ _ : :
" Ful [Fill drea [¥ Auto Scale
I Tranzparent Background
Title Az Labels
[UseTitlle % %Labels
| = =1 =] W -Labels
| ‘ Fant... |
0k, | Cancel ‘ Help ‘

Plot Expression i
Expression:
lNQ[DismantIing Process.Queue) LI ,\/\/\
Minimum: M aximum
0.0 |60.0
History Points: (‘%‘
i

* Non-Steppec

o]

Cancel | Help

Figure 7.39: The Plot window

7.5 Model 7.4: Entity Transfers

We have so far been gradually building our imaginary reverse logistic model by

trying to make it more and more realistic. Up until now, we have assumed that entities

(or products) in our model move from point to point without time delay. That is to say

they disappear from one point and appear at the other point. Well this obviously does

not happen in any real world system but that is what happens when you connect your

modules with the connector.

In this section, we will introduce two new Arena concepts that would enable us to

model entity transfers more realistically by specifying the time it takes to transfer

entities from point to point in the system. After discussing these new concepts of

Stations and Transfers, we will then add further enhancements to Model 8-3 to create

Model 8-4.

A. Mousavi — Brunel University, UK

187

Let’s assume here again that all entities take 5 minutes to move between various

processes irrespective of the difference in distances.

7.5.1 Stations

Stations in Arena correspond to physical or logical locations in a system where
processing occurs. Thus in our current example, all the Prep Processes, Inspection,
Dismantling and Refurbishment locations may be referred to as stations. Stations may
also be used to represent locations for product arrivals and departures as will be seen
in this example. Each station in a model is assigned a unique name that can be

referenced from any point in the model as a destination for entity transfer.

Arena provides a special flowchart module called Station for modelling this
concept. This module may be used to define a single station as well as a set of

stations. In this example however, we will only present the single station application.

Recall from section 7.2.1 that we initially divided the entire modelling problem
into the following steps:

6. Create arrival of products

7. Send products through prep process

8. Send products through inspection process

9. Decide where each product goes after inspection

10. Send part to refurbishment

11. Send another part to Dismantling

12. Dispose remaining part to Recycling

13. Dispose to market after refurbishment

14. Split products into components after dismantling

15. Dispose recovered components after dismantling

16. Dispose after dismantling to recycling

A. Mousavi — Brunel University, UK 188

From these we have derived the following stations to facilitate the transfer of

entities in our model:

1. Product A arrival station
2. Product B arrival station
3. Product C arrival station
4. Product D arrival station
5. Prep A station

6. Prep B station

7. Prep C station

8. Prep D station

9. Inspection station

10. Refurbishment station
11. Dismantling station

12. market station

13. Remanufacturing station

14. Recycling station

With these we will be able to send any entity (or product) in to system to any of
the stations by using the Route module and specifying the unique identifier (Name) of

the station.

The Station Module shape and dialog is shown in figure 8.40 below.

A. Mousavi — Brunel University, UK 189

Producl & |
Aniual Sallon

M ame: Station Type:

|F'r-:u:|u|:t & furfveal Station | Station j
Station M ame:

|F'r-:u:|u|:t.-“-‘-. j

Parent Activity Area: Agzociated Interzection;

| [=] | [~

—| v Report Statiztics

Producth

FroductC

ProductD] | Caricel Help
Recucling

R efurbishiment
R emanufacturing

Figure 7.40: Station Module shape and dialog
7.5.2 Routes

The Route module transfers an entity to a specified station, or the next station in
the station visitation sequence defined for the entity. A delay time to transfer to the

next station may be defined.

When an entity enters the Route module, its Station attribute (Entity.Station) is set
to the destination station. The entity is then sent to the destination station, using the

route time specified.

The Route Module shape and dialog are shown in figure 7.41 below. The
module’s “Name”, “Route Time” and “Units” fields are similar to those already
discussed in other modules. When you click on the “Destination Type” field, Arena
gives you a drop-down list of various ways of specifying destinations as can be seen
in the figure. In this example, we will only use the Station option and this requires that

we specify the name of the station in the “Station Name” field.

A. Mousavi — Brunel University, UK 190

- Route PIX]

M ame:
|Hn:-ute to Prep A ﬂ
Route Time: Units:
|5 ﬂ |I'v1inutes ﬂ
Dezstination Type: Station Mame:
|Stati|:|n j |F'rep A, ﬂ

| Station j <: :| ITI Cancel | Help |

By Sequence
Attribute
E wpression

Figure 7.41: Route Module shape and dialog

Let us update Model 7-3. Note that Station and Route modules are found in the
“Advanced Transfer Panel” in Arena. If you don’t this panel, then attach it now by
going to File Attach and the file
AdvancedTransfer.tpo

menu, Template panel, look for

Now open Model 7-3 and let’s begin to modify it. Remove the connectors after
each of the Assign Modules and add a Station and a Route Module to each. Before we
begin to define our stations, you should note that our addition of stations and routes
will affect both the model and the animation. For example if we want the animation to
show the products arriving at some point before being sent to the Prep areas, then we
should define that point as a station which we call in this case “Product A Arrival
Station” for all product “As”. Now double-click on the station module you have added
to update its parameters. We gave this module the name “Product A arrival Station”,
set the “Station Name” field to “ProductA” and left all other fields to their default
values. In a similar way, double —click on the route module and set its “Name” field to
“Route to Prep A”, “Route Time” field to 5, “Units” field to “Minutes”, “Destination
Type” field to Station (default value) and “Station Name” to Prep A. Your completed

station and route modules should look like figure 7.42.

A. Mousavi — Brunel University, UK 191

saon __[2[x/ [
ame; Station Type: |Fh:uute to Prep A j
|F'n:u:|uu:t A Arrival Station | Station j Foute Time: I rits:
Station Mame: |5 j | Minutes j
|Products = Destination T ype: Station M ame:
Parent Activity Area: Azznciated |ntersection: -
|Stat||:|n j |PTEF' A j
| []] [
[v Beport Statistics el | Loz | bl |

(] Cancel Help |

Figure 7.42: Station and Route dialogues for Product A

Continue to update the station and route modules you have added to the
remaining assign modules as above. Remember use the product letters (B, C, and D)
respectively in place of A when updating the remaining modules. When you are done

with this part of your model, it should be looking like figure 7.43.

\
5 Arzlgn Producl Frosuc] &
Creak Fm-du:l.l.'..,l'—'] Hll=r }—._ Al Sialon | Fouk o Prep A

]
. | Aassign Product Froducl B

E Alkibuik s l Anmval Salon floule lo Frep &

]

“\ Axslgn Praducl GO el Rodlke ko Prep
Creak Fm-duclclr’,r—- EIBINELES }_.—- =) E e e

"l srrlgn Produel Froduczl D
Creak Produc) I:l’.., D A IMbuks }—— Anmua Slalon Foalk ko Frep D
i

Figure 7.43: Product Arrival stations

o

Creak Producl B

.

A. Mousavi — Brunel University, UK 192

We will next look at the Prep areas. We want to define each Prep area as a station
since they are different physical locations. Hence we define four stations for Prep A
through D. However, since all the products will go to the same inspection station after
their Prep processes, we require only one route module to send all of them there. To
start with, add a station module each to each of the product A through D processes
and one route module to the right of the process modules. Update the station modules
as before with names Prep A Station etc and station names as Prep A, Prep B etc. The
only things we will change for the route module is the module name and destination
station name. Thus “Route to inspection” and “Inspection” respectively. This part of

your model when completed should look like figure 7.44.

| Prep & Stalon frEee

Process
[]
o | Prep B Slalon Prouel®
i Rtk ko
ripeclon
8| Prep czialen |——df FrOEIC
[]
W |Frep D Slalon | FrouelD

Process

Figure 7.44: Prep stations

All we have done so far is to break our model down at various locations and add a
station module to define the location and a route module to transfer the product from
that location to another after processing is finished.

Thus the resulting logic for the inspection, refurbishment, and dismantling
stations are shown in figures 7.45 and 7.46 respectively. What you should also note is
that, as your define your stations, Arena keeps a list of them and would give you a

drop down at any point you need to define a station or select a previously defined one.

A. Mousavi — Brunel University, UK 193

Rouk ko
Redrblzhmenl

rpecion rrpecion

—

Shalon Process I—— pezlon Oukome

Rouk ko

] Dlzmaniing

Rouk ko

Recyclirg
Figure 7.45: Inspection station
1zt B Roulk o et

]
Comporenk
4| DEmaniing Dismanting i
Shalon Frocess

Recouered
Comporenks

Rodile DIs ko
Recyclirg

) Roukk |
R markrisc Lrire

Figure 7.46: Refurbishment and Dismantling stations

You may realise by now that there are only three exit points in our model. That is
the products are either sent to market, sent for remanufacturing or to recycling. We
have again modelled these points as stations mainly for the sake of animation. We
want to be able to see where the exits are located in our animation and the products

moving there after processing. The logics for these are shown in figure 7.47.

o R o
Flarke | Slalon Petablshed —d{ﬂéﬁd I ke |
[}
JRemarknnc g Recond Zerel b
Shalon GEET] emarkniac hrirg
Comporents
L]
Recyclirg Fecon Serel ko
Shalon Recycled Recycling
[

Figure 7.47: Market, Remanufacturing and Recycling stations

A. Mousavi — Brunel University, UK 194

It may seem a lot of work adding all these station and transfer modules but it is
also very important to make the animations look as realistic as possible. In a real
project, it is more convincing for a client to see an animation that very closely depicts
his or her system. We will now begin to update the model’s animate in the next

section.
7.5.3 Animation enhancement

Station animation is quite straight forward. You will need the “Animate Transfer”
toolbar to be able to proceed. If it’s not displayed in your project bar then, right-click

on the toolbar and select the “Animate Transfer” icon from the pop-up list.

In order to animate a station, click on the station button (~) on the toolbar to
display the station dialog as shown in figure 7.48. Click again on the “Identifier” field
to display a list of all stations in your model, and then select the name of the particular
station you want to animate at this instance. Leave the “Auto Connect” options to the
default “None” value and click OK. You pointer will then turn into a cross hair. Click
the desired location in your animation environment to place the station. This will have
the shape shown in figure 7.47. Repeat this process to place animations of all the

stations in the model in your environment.

. T

Inspection P
M ark st |I:|Eﬂtlfll3r..
Prep & |Inspectu:uri j D
Prep B
P:EE C < ||_ Parking
Prep D .
Products, AL DB Colar...
ProductB i MNone
FroductC
ProductD *" Route
Rececling k. ™ Segment

" Distance

k. | Cancel Help

Figure 7.48: Animate Station dialog

A. Mousavi — Brunel University, UK 195

After placing all your stations, the next thing will be to connect them with the
route animations. Again this is quiet straight forward. Click on the route button (ﬁ) on
the “Animate Transfer” toolbar to display the route dialog shown in figure 8.49
below. For now let’s just leave all the parameters to the default settings and click OK.
With the resulting cross hair pointer, click on your starting station (e.g. Product A
arrival station) then mover your pointer to the finishing station (e.g. Prep A station)
and then click again. You should now see the path between the two stations which the
entity in transit will follow. Note that this path can be redirected by clicking several

points in a desired direction before finally clicking the finishing station.

Now, repeat the above process again to put a route between all your station
animations. Note that you only need a route between stations for which you have
specified an entity transfer in your model logic. It is also important to know that a
route from say station “A” to station “B” is different from that from station “B” to
station “A”. That is if there are entities moving in both directions then you have to

animate routes for both directions.

7=

Snap Mode
[+ Free Path
Q@ Lo [Rotate Cal
 Ares ! alar. .
[Flip

k. | Cancel | Help |

Figure 7.49: Animate Route dialog

When you have properly placed all your station and route animations then your
final animation view should be looking something like figure 7.50. Figure 7.51 shows

a run time snap shot of the completed model.

A. Mousavi — Brunel University, UK 196

Mumber in Dismantling Queus

A Reverse Logistic

System Model of an Kumber Gut- Market
Imaginary IT Company

with Stations and Routes — m

Madel 8-4 RefurhiShmBnt = — Humber Dut- Remanufacturing

==

Product A Prep u‘

) .
.02 Inspection -3
Product B Pre .~ Il Dismantling
0 =
Il
— Product C Prep
=7
A Product D Prep ﬂ
c
=
IS
b=
N =
)
=
=]
o
ad

Figure 7.50: Station and Route animations

Number in Dismantling Queue

wn
A Reverse Logistic
System Model of an Marm ber Dt Ma ket
oo

Imaginary IT Company
with Stations and Routes| - — ! e am
MDdEI B RefurblShment Hum ber Durt- Réma nufacharing
€ 17086
R béer Dt~ sty ling
|
Product & Prep 27310
E Inspection
se0”

Dismantling

n“oﬂ l % i
Product B Prep
3 %
Product C Prep %
Product D Prep ﬂ

Ic)

(]

Figure 7.51: Final running model

Be reminded again that there is more to simulation modelling than just using

Arena. In this chapter, we have tried to take you through some of the key stages of

A. Mousavi — Brunel University, UK 197

simulation but with more focus on the use of Arena. We identified a problem,
formulated the problem, developed a modelling approach and went through the
modelling process step by step. All the data required for this modelling work were
provided but bear in mind that this would not be the case in a real life problem. You
may have to identify what kind of data you will need to model your system and the

work out how to collect such data.

There are many more features and concepts in Arena that cannot feasibly be
covered in this course. However, if you have been following very closely and have
taken in all the material in the last three chapters, then you should able to build
models with considerable detail. | especially recommend that you follow the same line

and bring more features such as Transporters and Conveyors into your models.

What you may have to do is to practice more, read more of the reference text and
also consult the Arena help files in order to further develop your modelling skills.

In addition to this book 1 highly recommend my lecture notes on
http://people.brunel.ac.uk/~emstaam website with extensive examples both from this

book and other references. We also have some real world case studies on the site.
Chapter Reference

[1] Dekker, R., Flieschman, M., Inderfurth, K., and Van Wassenhove, L. (2004),

Reverse Logistics for closed-loop supply chains, Springer Verlag.

A. Mousavi — Brunel University, UK 198

http://people.brunel.ac.uk/~emstaam

