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MIDP User Interface (UI) 
Architecture

Issues that are main concerns of programming UI in 
mobile devices are: 

• The screen size of mobile devices

• The text entry capabilities of a MIDP device
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UI in J2ME

The UI architecture that is defined in J2SE is not 
suitable for MIDP:

– The AWT and Swing libraries are designed for computers 
and not for handheld devices – e.g. features like horizontal 
scrolling

– The AWT and Swing Libraries are too large for the limited 
computational and processing resources of a hand-held 
device 
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MIDP UI Component 
Model

• The MIDP UI components are defined in the:
javax.microedition.lcdui

• The MIDP UI components comprise the majority of 
classes in this package

• Understanding the organisation of these UI 
components is essential in developing MIDP 
applications
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Example

In the startApp( ) method you may have:

display = Display.getDisplay(this);
//  Reference to a display object

display.setCurrent(form);
// Make this form the currently displayed entity
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What Happens when an 
AMS launches a MIDlet?

• It instantiates the Display class

• It associates the Display class with the MIDlet 
instance

• Display can show 1 displayable at a time and we 
have no control how they are displayed (device 
dependent)
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MIDP High-Level & Low-
Level API

MIDP UI architecture defines two levels of API:

– High-Level UI API

– Low-Level UI API

In order to develop High-Level and Low-Level UIs, 
MIDP UI architecture defines all classes, interfaces 
and exceptions.



A. Mousavi 8

High-Level & Low Level 
UI API

“The two levels of UI API levels provide you with the 
option to choose the correct interface detail for your 
applications”  (SUN Microsystems)
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High-Level UI API

– This API provides an abstract and portable interface

– It is used by business applications

– This interface provides general UI controls and event-

handling mechanisms (SUN Microsystems)

– It provides less device reliant coding for UI developments 

(portability issues) 
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Low-Level API

– Provides little GUI abstraction

– It is designed for drawing capabilities

– It contains the Canvas class and Graphics class

– It provides access to specified keystrokes

– The low-level access is more device specific (less portability)
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High-Level LCDUI API 
class hierarchy

javax.microedition.lcdui.*

Display Displayable CommandListener
<interface>

ItemCommandListener
<interface>

Screen Canvas
<abstract>

Choice
<interface>

ItemStateListener
<interface>

List TextBox Alert Form

Item
<abstract>

ChoiceGroup TextField Gauge DataFieldImageItem
Other Custom

Items
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The Display class

• It manages the display for implementation

• The Display object represents device display

• There is only one Display instance in a MIDlet

• You cannot instantiate a Display object (why?)

• You need to call the method: 

Example: display = Display.getDisplay (this); //refers to the running MIDlet [static]

• DestroyApp(boolean) method destroys the display 
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The Displayable class

• Is the abstract class that the Display object presents

• This class is a super class for all things that can be placed on a 
display

• The class defines all the methods that ensure consistency and 
functionality across all subclasses

• The Displayable has two subclasses:
– Screen: high-level UI 
– Canvas: low-level UI
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Event Handling

• Discussion about classes that facilitate event 
processing

• We will first discuss the high-level (Screen) UI and 
later the low-level (Canvas)  
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What is Event Handling

Event Handling is recognising :

– that an event i.e. button pressed, has been triggered and

– the action required e.g. help message appears
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Steps to successfully 
manage an event (Muchow 2002)

• The hardware should realise that a button has been 
pressed or released (event trigger),

• The AMS needs to be notified of the event, 

• The AMS will send the message to the MIDlet 
containing information about the event, and

• The MIDlet will implement the code e.g. display a 
message
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CommandListener and 
ItemStateListener

Before a MIDlet can recognise a message from the 
AMS about an event, it must set up a “listener”

There are two listener interfaces in MIDP:

– CommandListener method: commandAction( )

– ItemStateListener method: ItemStateChanged( ) 
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Command Objects

A Command is an object that holds information 
about an event.

Three steps to implement a command

1. Create the Command

2. Add the command to the environment (Form, Text Box, etc.

3. Add a “listener” to the environment 
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Example – Command Object 
Define a form, add command and listener

private Form     myForm;  // reference to a form
private Command    cmExit; // reference to a command to exit the MIDlet
…
myForm = new Form(“Welcome”);  // the form object
cmExit = new Command(“Exit”, Command.EXIT, 1); // Command object
…
myForm.addCommand(cmExit); // Add command to the form
myForm.setCommandListener(this); // Listen for events 
…
public void commandAction(Command c, Displayable s){ // CommandAction method

if(Command = cmExit) {
DestroyApp(true);
notifyDestroyed( );

}
}
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Item Objects

An Item is a component that can be added to form. 
It is another event-handling tool. 

The item class contains a number of subclasses (see 
slide 11)
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Example Item Object

private Form fmMain;  // reference to a form
private tfPhone;  // reference to a text field
…
fmMain = new Form(“Phone No.”); // Form object
tfPhone = new TextField(“Phone Number: “, “   “, 10, TextField.PHONENUMBER); // TextField
…
fmMain.append(tfPhone);  // add tfPhone to the form
fmMain.setItemStateListener(this); // listen to the events
…
public void itemStateChanged(Item item) {

If(item = = tfPhone) { // if the TextField has initiated this event …
…

}
}
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Command & Command 
Listener

A command object holds three parameters:

cmExit = new Command(“Exit”,  Command.EXIT,  1)

Label (“String”)

Command Type (.BACK
.EXIT
.CANCEL
.HELP
.SCREEN
.OK
.STOP)

Priority (int )
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Exercise

Create an application with an Exit Command.
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