
A. Mousavi 1

Mobile Information Device
Programming

(5)
Lecturer: Alireza Mousavi

School of Engineering & Design
www.brunel.ac.uk/~emstaam

A. Mousavi 2

MIDP User Interface (UI)
Architecture

Issues that are main concerns of programming UI in
mobile devices are:

• The screen size of mobile devices

• The text entry capabilities of a MIDP device

A. Mousavi 3

UI in J2ME

The UI architecture that is defined in J2SE is not
suitable for MIDP:

– The AWT and Swing libraries are designed for computers
and not for handheld devices – e.g. features like horizontal
scrolling

– The AWT and Swing Libraries are too large for the limited
computational and processing resources of a hand-held
device

A. Mousavi 4

MIDP UI Component
Model

• The MIDP UI components are defined in the:
javax.microedition.lcdui

• The MIDP UI components comprise the majority of
classes in this package

• Understanding the organisation of these UI
components is essential in developing MIDP
applications

A. Mousavi 5

Example

In the startApp() method you may have:

display = Display.getDisplay(this);
// Reference to a display object

display.setCurrent(form);
// Make this form the currently displayed entity

A. Mousavi 6

What Happens when an
AMS launches a MIDlet?

• It instantiates the Display class

• It associates the Display class with the MIDlet
instance

• Display can show 1 displayable at a time and we
have no control how they are displayed (device
dependent)

A. Mousavi 7

MIDP High-Level & Low-
Level API

MIDP UI architecture defines two levels of API:

– High-Level UI API

– Low-Level UI API

In order to develop High-Level and Low-Level UIs,
MIDP UI architecture defines all classes, interfaces
and exceptions.

A. Mousavi 8

High-Level & Low Level
UI API

“The two levels of UI API levels provide you with the
option to choose the correct interface detail for your
applications” (SUN Microsystems)

A. Mousavi 9

High-Level UI API

– This API provides an abstract and portable interface

– It is used by business applications

– This interface provides general UI controls and event-

handling mechanisms (SUN Microsystems)

– It provides less device reliant coding for UI developments

(portability issues)

A. Mousavi 10

Low-Level API

– Provides little GUI abstraction

– It is designed for drawing capabilities

– It contains the Canvas class and Graphics class

– It provides access to specified keystrokes

– The low-level access is more device specific (less portability)

A. Mousavi 11

High-Level LCDUI API
class hierarchy

javax.microedition.lcdui.*

Display Displayable CommandListener
<interface>

ItemCommandListener
<interface>

Screen Canvas
<abstract>

Choice
<interface>

ItemStateListener
<interface>

List TextBox Alert Form

Item
<abstract>

ChoiceGroup TextField Gauge DataFieldImageItem
Other Custom

Items

A. Mousavi 12

The Display class

• It manages the display for implementation

• The Display object represents device display

• There is only one Display instance in a MIDlet

• You cannot instantiate a Display object (why?)

• You need to call the method:

Example: display = Display.getDisplay (this); //refers to the running MIDlet [static]

• DestroyApp(boolean) method destroys the display

A. Mousavi 13

The Displayable class

• Is the abstract class that the Display object presents

• This class is a super class for all things that can be placed on a
display

• The class defines all the methods that ensure consistency and
functionality across all subclasses

• The Displayable has two subclasses:
– Screen: high-level UI
– Canvas: low-level UI

A. Mousavi 14

Event Handling

• Discussion about classes that facilitate event
processing

• We will first discuss the high-level (Screen) UI and
later the low-level (Canvas)

A. Mousavi 15

What is Event Handling

Event Handling is recognising :

– that an event i.e. button pressed, has been triggered and

– the action required e.g. help message appears

A. Mousavi 16

Steps to successfully
manage an event (Muchow 2002)

• The hardware should realise that a button has been
pressed or released (event trigger),

• The AMS needs to be notified of the event,

• The AMS will send the message to the MIDlet
containing information about the event, and

• The MIDlet will implement the code e.g. display a
message

A. Mousavi 17

CommandListener and
ItemStateListener

Before a MIDlet can recognise a message from the
AMS about an event, it must set up a “listener”

There are two listener interfaces in MIDP:

– CommandListener method: commandAction()

– ItemStateListener method: ItemStateChanged()

A. Mousavi 18

Command Objects

A Command is an object that holds information
about an event.

Three steps to implement a command

1. Create the Command

2. Add the command to the environment (Form, Text Box, etc.

3. Add a “listener” to the environment

A. Mousavi 19

Example – Command Object
Define a form, add command and listener

private Form myForm; // reference to a form
private Command cmExit; // reference to a command to exit the MIDlet
…
myForm = new Form(“Welcome”); // the form object
cmExit = new Command(“Exit”, Command.EXIT, 1); // Command object
…
myForm.addCommand(cmExit); // Add command to the form
myForm.setCommandListener(this); // Listen for events
…
public void commandAction(Command c, Displayable s){ // CommandAction method

if(Command = cmExit) {
DestroyApp(true);
notifyDestroyed();

}
}

A. Mousavi 20

Item Objects

An Item is a component that can be added to form.
It is another event-handling tool.

The item class contains a number of subclasses (see
slide 11)

A. Mousavi 21

Example Item Object

private Form fmMain; // reference to a form
private tfPhone; // reference to a text field
…
fmMain = new Form(“Phone No.”); // Form object
tfPhone = new TextField(“Phone Number: “, “ “, 10, TextField.PHONENUMBER); // TextField
…
fmMain.append(tfPhone); // add tfPhone to the form
fmMain.setItemStateListener(this); // listen to the events
…
public void itemStateChanged(Item item) {

If(item = = tfPhone) { // if the TextField has initiated this event …
…

}
}

A. Mousavi 22

Command & Command
Listener

A command object holds three parameters:

cmExit = new Command(“Exit”, Command.EXIT, 1)

Label (“String”)

Command Type (.BACK
.EXIT
.CANCEL
.HELP
.SCREEN
.OK
.STOP)

Priority (int)

A. Mousavi 23

Exercise

Create an application with an Exit Command.

	Mobile Information Device Programming(5)
	MIDP User Interface (UI) Architecture
	UI in J2ME
	MIDP UI Component Model
	Example
	What Happens when an AMS launches a MIDlet?
	MIDP High-Level & Low-Level API
	High-Level & Low Level UI API
	High-Level UI API
	Low-Level API
	High-Level LCDUI API class hierarchy
	The Display class
	The Displayable class
	Event Handling
	What is Event Handling
	Steps to successfully manage an event (Muchow 2002)
	CommandListener and ItemStateListener
	Command Objects
	Example – Command Object
	Item Objects
	Example Item Object
	Command & Command Listener
	Exercise

