
A. Mousavi 1

Mobile Information Device
Programming

(17)

Lecturer: Alireza Mousavi
School of Engineering & Design
www.brunel.ac.uk/~emstaam

A. Mousavi 2

Topic

• Game API

• Designing a simple game canvas

• Multiple layers

Reading Sources:
Riggs, R. et al (2003), Programming wireless devices with J2ME, second edition, Sun Micro Systems
Knudsen J. (2003), Creating 2D Action Games with Game API – Sun Micro - Systems Developer notes
Datasheet – Games on the Java Platform for Mobile Information Device Profile – Sun Micro Systems

Developer notes
Developing Mobile Phone Applications with J2ME Technology (2004), Sun Micro Systems, Educational

Services
Sing Li and Knudsen, J. (2005), Beginning J2ME from novice to professional, 3rd edition, Apress.

A. Mousavi 3

Game API

• The game API is located in the javax.microedition.lcdui.game
package

• It consists of 6 classes GameCanvas, GameDeviceCaps, Layer,
LayerManager, Sprite, TiledLayer

• These classes:

• Make it possible to paint a screen within the body of a game,
instead of relying on the system’s input thread and painting

• Provide an efficient, capable and flexible layer API to facilitate the
build of complex screens

• Improved application performance
• Decreased application size

A. Mousavi 4

Game API Offers

1. Simplifies game development (familiar environment)

2. Reduction in size and complexity

3. Improve performance by using frequently used game
routines

A. Mousavi 5

javax.microedition.lcdui.game Package

DisplayDisplayable
<<abstract>>

Canvas
<<abstract>>

javax.microedition.lcdui

javax.microedition.lcdui.game GameCanvas
<<abstract>>Layer

<<abstract>>

Sprite TiledLayer
LayerManager

Developing Mobile Phone Applications with J2ME Technology (2004), Sun Micro Systems, Educational Services

A. Mousavi 6

GameCanvas Class

• The GameCanvas class is the backbone of lcdui.game package

• It is similar to the Canvas class

• Acts as the basic screen for a typical game application

• It contains methods to manage graphics (painting) and key actions

(state)

• It enables users to draw on display using paint() method

• With the methods in this class you can manage game

functionalities much more efficiently

A. Mousavi 7

GameCanvas Methods Functionality

The GameCanvas methods provide with the following
functionalities:

1. Game querying functions

2. Synchronous graphics functioning

A. Mousavi 8

GameCanvas Methods Features

GameCanvas bypasses the normal painting and key-event
mechanism – allowing the game applications to be contained in one
loop.

It allows you to do this by:
1. Using GetGraphics () method to directly access the Graphics object

2. Maintaining an internal off-screen buffer for the Graphics object

3. Updating the screen using flushGraphics() method – it is better way
than the repaint () method

4. Containing a better method to determine the key state (polling)
getKeyStates () instead of keyPressed () method

Canvas
GameCanvas

A. Mousavi 9

Game Loop Flowchart

Game State Update
<input & game logic>

Update screen
buffer contents

Flush screen
buffer to the

Display

User Input
(?)

Source: Riggs, R. et al (2003), Programming wireless devices with J2ME, second edition, Sun Micro Systems

A. Mousavi 10

Game Loop Example
Public Class FlyingObject extends GameCanvas implements Runnable {

public void run () {
Graphics g = getGraphics();
while (true) {
// while run is true
// update the game

int keystate = getKeyStates ();
// implement the function associated with the key
// update the graphics
flushGraphics(); // flush the buffer
// other functions
try {
Thread.sleep(100); // delay time
}
catch (InterruptedException ie) { }
}

}
}

A. Mousavi 11

Layer Classes

In order to improve the performance of mobile games and use the
resources more efficiently 4 classes have been included in the
javax.microedition.lcdui.game package:

1. Layer class

2. LayerManager class

3. TiledLayer class

4. Sprite class

A. Mousavi 12

The Layer class

The Layer class:

• represents one visual layer in a game application (visual entity)

• is the abstract parent of all layers

• it defines the basic attributes i.e. size, position and visibility

• each subclass of Layer defines a paint () method

• the subclasses are TiledLayer and Sprite

A. Mousavi 13

The LayerManager class

The LayerManager class:

• automates the rendering of multiple Layer classes making the
game pieces more manageable

• keeps track of all the layers on the screen

Example:
private LayerManager Mylayermanager; // declaring a layer manager
…
Mylayermanager = new LayerManager (); // creating a LayerManager object
Mylayermanager.append(backgrnsImage); // append the image to the LayerManager object

A. Mousavi 14

The TiledLayer class

• TiledLayer is suitable for designing game backgrounds
• It helps you achieve different looks by combining images
• Imagine the screen to be divided into rows and columns that are

covered with tiles containing a part of an image
• You need to create a separate image file that contains the image

or a combination of images (save in “res” directory)
• This image can then be loaded to create a TiledLayer,
Example:

TiledLayer (int column, int rows, Image img, int tileWidth, int tileHeight)

Image img = Image.createImage(“/backgrnd.png);
TiledLayer bcktile = new TiledLayer(8, 8, img, 16, 16);

A. Mousavi 15

The Sprite class

• Subclass of Layer class

• It is used to represent individual game pieces

• Sprite uses a sequence source image frames to assimilate
animation (it points a single image file)

Creating Sprite object:

1. An image object needs to be associated with Sprite object

2. First define an image object and then passing the parameter to
the Sprite object constructor

A. Mousavi 16

Sprite Object

// Create a Sprite Object
Image SubmarineImage = Image.createImage(“/sub.png”); // an image instantiated
submarine = new Sprite(SubmarineImage); // parameters passed to a Sprite object
submarine.setPosition (50, 150); // the position of the object on the screen

// add this to the LayerManager object

Mylayermanager.insert(submarine, 0);

A. Mousavi 17

Collision between Sprite objects

• Sometimes you may want to assimilate collision
• Basically two objects overlapping with one another
• You can create Sprite objects to detect collision on display

Using Sprite objects you can detect the elements collisions on the
display:

1. Sprite objects
2. Tiledlayer objects
3. Image objects

A. Mousavi 18

How to define collision
and the methods

/* the area defined by the collision rectangle --- pixel detection
The setting improves game performance Why? */
public void defineCollisionRectangle(int x, int y, int width, int height)

// check if two Sprite/Tiledlayer/Image objects have collided
public final boolean collidesWith(Sprite s, boolean pixelLevel)
public final boolean collidesWith(TiledLayer t, boolean pixelLevel)
public final boolean collidesWith(Image img, boolean pixelLevel)

A. Mousavi 19

Polling Example

public void run(){
Graphics g = getGraphics();

int keystroke = 0; // initialisation
int current x = 0; // initialisation
while (true) {
keystroke = getKeyStates () ; // find out which key is pressed (current state of the

keys called polling)
…
if ((keystroke & Left_PRESSED) != 0) {
Img.move(-5, 0) // if keystroke value is not zero and Left-Pressed move Img 5 pixles

to the left
}
…

A. Mousavi 20

Features of Game API

• Use of animation loop in GameCanvas

• Polling for key states through GamecCanvas

• Using LayerManager to create and maintain multiple layer

• Creation of Sprite and TileLayer objects

• Animation of Sprite, including changing frame sequences and
transformations

• Use of an animated tile in a TileLayer
Source: Sing Li et al 2005

A. Mousavi 21

Exercise 12-1 & 12-2

	Mobile Information Device Programming(17)
	Topic
	Game API
	Game API Offers
	javax.microedition.lcdui.game Package
	GameCanvas Class
	GameCanvas Methods Functionality
	GameCanvas Methods Features
	Game Loop Flowchart
	Game Loop Example
	Layer Classes
	The Layer class
	The LayerManager class
	The TiledLayer class
	The Sprite class
	Sprite Object
	Collision between Sprite objects
	How to define collision and the methods
	Polling Example
	Features of Game API
	Exercise 12-1 & 12-2

