
A. Mousavi 1

Mobile Information Device
Programming

(11)
Lecturer: Alireza Mousavi

School of Engineering & Design
www.brunel.ac.uk/~emstaam

A. Mousavi 2

Lower-Level UI

• Provides free-hand graphical capabilities

• Ideal for specialised applications

• Games

A. Mousavi 3

Main Topics

• Canvas
– Blank sheet with specific height and width
– What ever is drawn on it becomes visible
– Provides methods for low-level event handling

• Graphics
– Graphics are used to draw on canvas
– Contains methods to draw lines, arcs, rectangles, text
– Contains methods to control colour and font attributes

A. Mousavi 4

Displayable Class Hierarchy

A. Mousavi 5

Creating Canvas
• You need to first create a subclass of Canvas
• Then set it as the current Displayable
Example:
class Mycanvas extends Canvas implements CommandListener {
private Command cmExit
…
cmExit = new Command(“Exit”, Command.EXIT, 1);
addCommand(cmExit)
setCommandListener(this);
…
protected void paint (Graphics g) {
… }
…
Mycanvas canvas = new Mycanvas(this)
Display.setCurrent(canvas);

A. Mousavi 6

Origins of Drawing on
Canvas

• System Coordinate: Top left-hand corner (0,0)

• The thickness of line or shape is 1 pixel (pen)

• Pixels are 1X1 rectangles

• Filling rule is [right down =

A. Mousavi 7

Drawing / Filling Pixels
Rule

Example 1: Fill the original point

(0,0)

(1,1)

End point

Start
(0,0)

(1,1)

(1,3)

Fill direction

Example 2: Draw a line starting (1,1) and ending (1,3)

(4,4)

(0,0)

(1,1)

(1,3)

Example 3: Draw a rectangle from (1,1) to (3,3)

(4,4)

A. Mousavi 8

Canvas Width & Height

• Methods to query Canvas Width and Height

int getWidth()
int getHeight()

If the height is for example 250 then every Canvas created will
have this height

A. Mousavi 9

Painting on Canvas

Mycanvas canvas = new Mycanvas(this)
Display.setCurrent(canvas);

• This declares a Canvas and requests it to be the
current displayable

• Just like displaying other components e.g. Form,
TextBox, etc.

• But there is a difference

A. Mousavi 10

paint() Method

• Displayable class defines paint() abstract method

• Both subclasses Screen and Canvas implement paint()
method

• The paint() method inside Canvas is abstract i.e. there is no
method body. It is to the subclass to implement this method

public abstract class Canvas extends Displayable
protected abstract void paint(Graphics g);

• In Screen subclass this is different – before leaving paint()
the paintContent() method is called

public abstract class Screen extends Displayable {
abstract void paintContent(Graphics g);

paint(Graphics g) {
…

paintContent(g); }

A. Mousavi 11

Painting Components

• The components on Canvas and Screen
(subclasses of Displayable) are made visible through
a call to: javax.microedition.lcdui.display.setCurrent(Displayable);

• The difference:

– Canvas: overrides the paint() method and write a code
(more control for programmer)

– Screen(Form, List, TextBox and Alert): the paint() and
paintContents() methods comprise the code to draw each
component

A. Mousavi 12

Canvas Example

The paint() method passes a reference to a Graphics object that
is used for drawing objects onto the Canvas

protected void paint(Graphics g){
g.drawString(“Hello World”, 0, 0, Graphics.TOP | Graphics.LEFT);

g.drawRect(5, 5, 10, 10);
…
}

A. Mousavi 13

Some Canvas paint() methods

Source: Core J2ME, J. W. Muchow, Sun microsystems

Does the implementation provide double bufferingboolean is DoubleBuffered()

Immediately process any pending paint requestsfinal void serviceRepaints()

Request that a specific area of the Canvas to be paintedfinal void repaint(int x, int y,
int width, int height)

Request the canvas to be paintedfinal void repaint()

Draw onto the Canvas using the Graphics Objectabstract void paint(Graphics g)

DescriptionMethod

A. Mousavi 14

Communication with Application
Manager

• When an Application makes a Canvas visible it calls
the showNotify() method

• The hideNotify() method removes the Canvas

Application manager has removed the canvas from displayvoid hideNotify ()

Application manager will be showing the canvas on the
display

void showNotify ()

DescriptionMethod

A. Mousavi 15

Intelligent use of showNotify() &
hideNotify() methods

protected void showNotify() {
// initialise variable
// start a thread
… }

protected void hideNotify(){
// reset variables
//stop a thread
…}

A. Mousavi 16

Canvas Event handling

There are two ways to interact with Canvas

• Commands

• Low-level Interface (key codes, game actions and
pointer events)

A. Mousavi 17

Commands

The four methods available:
• addCommand(the command)
• isShown()
• removeCommand(the command)
• setCommandListener(Commandlistener)

Just like Form, List and TextBox

A. Mousavi 18

Key Codes

• Key codes are numeric values that map directly to
specified keys on a mobile device

• The key codes are guaranteed to be available on any
MIDP

• It is normally the standard telephone keypad(0-9,*,#)

public static final int KEY_NUM0 = 48;
public static final int KEY_NUM1 = 49;

and so on

A. Mousavi 19

Key Code methods

Source: Core J2ME, J. W. Muchow, Sun microsystems

Text string representing the key codeString getKeyName(in keyCode)

Does the implementation support repeated
keys

boolean hasRepeatEvents()
Invoked when a key is repeated(device)void keyRepeated(int keyCode)

Invoked when a key is releasedvoid keyReleased(int keyCode)

Invoked when a key is pressedvoid keyPressed(int keyCode)

DescriptionMethod

A. Mousavi 20

Example 11-1 key code names

• Create an application that detects commands

• Prints key code name on canvas when the
corresponding key is pressed, keyPressed ()

• Send a message to consol showing the graphics area

A. Mousavi 21

Result

A. Mousavi 22

Notice

There are two methods for managing events:

1. commandAction(): As usual receives Command
object that generates the event – and the
Displayable object that the event was received

2. keyPressed(): Is called when a key code creates
an event – the code is converted into String and a
request is made to repaint the Canvas

A. Mousavi 23

Game Actions

• Game Actions are defined as set of constants by
MIDP

• Each game action is defined as a static integer
public static final int UP = 1;
public static final int LEFT= 2;
public static final int DOWN = 6;
…

• This facilitates event handling
• Each game action will be assigned a key code by the

implementation

A. Mousavi 24

Are you Worried!

• Some devices may have specified arrowed keys that
actions such as: UP, DOWN, LEFT, RIGHT and FIRE
are map to.

• Some devices do not so you
can use 2, 6, 4, 8 and 5
respectively!

A. Mousavi 25

Game Actions

Source: Core J2ME, J. W. Muchow, Sun microsystems

12CustomGAME_D

11CustomGAME_C

10CustomGAME_B

9CustomGAME_A

8FIREFIRE

5Move RIGHTRIGHT

2Move LEFTLEFT

6Move DOWNDOWN

1Move UPUP

Constant ValueDescriptionName

A. Mousavi 26

Game Action Methods

Get name for a key codeString getKeyName(int keyCode)

Get the game action for the key
code – if any

int getGameAction(int keyCode)

Define a key code for game actionint getKeyCode(int gameAction)

DescriptionMethod

Example:
int keyFire = getKeyCode(FIRE);
int keyLeft = getKeyCode(LEFT);

	Mobile Information Device Programming(11)
	Lower-Level UI
	Main Topics
	Displayable Class Hierarchy
	Creating Canvas
	Origins of Drawing on Canvas
	Drawing / Filling Pixels Rule
	Canvas Width & Height
	Painting on Canvas
	paint() Method
	Painting Components
	Canvas Example
	Some Canvas paint() methods
	Communication with Application Manager
	Intelligent use of showNotify() & hideNotify() methods
	Canvas Event handling
	Commands
	Key Codes
	Key Code methods
	Example 11-1 key code names
	Result
	Notice
	Game Actions
	Are you Worried!
	Game Actions
	Game Action Methods

