
An External Replication on the Effects of Test-driven
Development Using a Multi-site Blind Analysis Approach

Davide Fucci
M-Group, University of Oulu

Oulu, Finland
davide.fucci@oulu.fi

Giuseppe Scanniello
University of Basilicata

Potenza, Italy
giuseppe.scanniello@unibas.it

Simone Romano
University of Basilicata

Potenza, Italy
simone.romano@unibas.it

Martin Shepperd
Brunel University

London, United Kingdom
martin.shepperd@brunel.ac.uk

Boyce Sigweni
Brunel University

London, United Kingdom
boyce.sigweni@brunel.ac.uk

Fernando Uyaguari
Universidad Politécnica de

Madrid
Madrid, Spain

f.uyaguari@alumnos.upm.com

Burak Turhan
M-Group, University of Oulu

Oulu, Finland
burak.turhan@oulu.fi

Natalia Juristo
M-Group, University of Oulu
Universidad Politécnica de

Madrid
natalia.juristo@oulu.fi

Markku Oivo
M-Group, University of Oulu

Oulu, Finland
markku.oivo@oulu.fi

ABSTRACT
Context: Test-driven development (TDD) is an agile prac-
tice claimed to improve the quality of a software product,
as well as the productivity of its developers. A previous
study (i.e., baseline experiment) at the University of Oulu
(Finland) compared TDD to a test-last development (TLD)
approach through a randomized controlled trial. The results
failed to support the claims. Goal: We want to validate
the original study results by replicating it at the Univer-
sity of Basilicata (Italy), using a different design. Method:
We replicated the baseline experiment, using a crossover de-
sign, with 21 graduate students. We kept the settings and
context as close as possible to the baseline experiment. In
order to limit researchers bias, we involved two other sites
(UPM, Spain, and Brunel, UK) to conduct blind analysis of
the data. Results: The Kruskal-Wallis tests did not show
any significant difference between TDD and TLD in terms
of testing effort (p-value = .27), external code quality (p-
value = .82), and developers’ productivity (p-value = .83).
Nevertheless, our data revealed a difference based on the or-
der in which TDD and TLD were applied, though no carry
over effect. Conclusions: We verify the baseline study re-
sults, yet our results raises concerns regarding the selection
of experimental objects, particularly with respect to their in-
teraction with the order in which of treatments are applied.

We recommend future studies to survey the tasks used in
experiments evaluating TDD. Finally, to lower the cost of
replication studies and reduce researchers’ bias, we encour-
age other research groups to adopt similar multi-site blind
analysis approach described in this paper.

Keywords
test-driven development, external experiment replication, blind
analysis

1. INTRODUCTION
Test-driven development (TDD) is an agile practice [4], in

which unit tests are written before production code, com-
pelling the developer to focus on the correct behavior of the
intend feature from an early stage. The developer writes
just enough production code to make the unit test pass, and
refactors it afterwards [4].

A TDD cycle is composed of three, iterative phases.
Red: Write a unit test; the unit test fails.
Green: Write production code; the unit test passes.
Blue: Refactor the code [11]; the unit test passes.
The SE research community has taken an interest in inves-
tigating the effects of TDD on several outcomes, including
testing effort, external software quality and developers’ pro-
ductivity. In particular, there is a plethora of controlled
experiments (e.g., [10, 18, 27, 28]), aggregated in secondary
studies (e.g., [32, 36, 39]), which report mostly inconclusive,
or inconsistent results. A number of experiments were car-
ried out at the University of Oulu [13, 16]—including repli-
cation studies [14,15]—investigating the same outcomes. In
order to understand the reliability of the findings in [13]
(i.e., baseline experiment), we carried out a close, exter-
nal replication [24] at the University of Basilicata, Potenza
(Italy). Authors GS and SR conducted the experiment us-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESEM '16, September 08 - 09, 2016, Ciudad Real, Spain
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4427-2/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2961111.2962592

ing the protocol devised by the original experimenters (i.e.,
authors DF, BT and MO), but with a different design—i.e.,
crossover. In order to limit the possible threat to validity due
to researchers’ bias [26], the data analysis was done in dif-
ferent sites. The data was extracted at one site (i.e., UPM,
Madrid) and analyzed at another site (i.e., Brunel Univer-
sity, London). Both sites’ researchers were not aware of the
experiment goal. Through this replication we checked the
validity of the results presented in the baseline experiment,
and expanded them by analyzing the impact of the changes
made to the experiment design and settings.

The paper is organized as follows: in Section 2, we present
a summary of the previous studies regarding TDD, and the
salient literature about external replication and blind anal-
ysis. In Section 3, we describe the baseline experiment. In
Section 4, we present the goals, changes in context, data
analysis strategy, and results of the replication. The threats
to validity are discussed in Section 5. In Section 6, we discuss
results and compare them to those of the baseline experi-
ment. Final remarks and future work conclude the paper.

2. BACKGROUND
In this section, we report the results of the secondary stud-

ies investigating the effects of TDD on developers’ produc-
tivity and external quality. In order to position our work,
we report a brief review about external replication and blind
analysis for software engineering.

2.1 Previous studies on TDD
The systematic review reported by Turhan et al. [41] in-

cludes 32 primary studies, published between 2000 and 2008,
in which TDD is compared to different, more traditional de-
velopment approaches. The primary studies vary in type
(i.e., controlled experiment, pilot studies, and industrial use),
and were classified according to the experience of the par-
ticipants, the level of details reported for the constructs,
and the scale of the study. When taking into account all
the studies, the authors suggest that TDD improves exter-
nal quality. However, this result does not hold once only the
rigorous primary studies are taken into account. The results
regarding productivity vary across the type of primary stud-
ies, from positive, to negative, to inconclusive. Nevertheless,
the controlled experiments show improvements due to the
use of TDD. The meta-analysis by Rafique and Mǐsić [36]
includes 27 primary studies published until 2011. The re-
sults, based on effects sizes [12], do not show solid evidence
either in support, or against, TDD. Interestingly, when con-
sidering the academic context (i.e., the same as the baseline
study, and this replication), TDD improves external qual-
ity of 24% with respect to a waterfall approach;1 however,
its effects are detrimental (-13%) when compared to an it-
erative test-last (ITL) approach (i.e., a similar approach is
used by the control groups in the baseline study and this
replication). Conversely, TDD increases productivity—27%
vis-à-vis ITL, and 7% vis-à-vis waterfall development. The
authors recommend the use of an ITL-based approach to be
compared against TDD in order to remove the extra testing
effort required by, for example, a waterfall approach. Munir
et al.’s systematic review [32] covered the 2000-2011 decade,
and included 41 primary studies categorized by rigor and

1Using waterfall, the system is tested once it is considered
completely developed.

relevance according to the framework presented in [22]. The
results are inconclusive when the primary studies are con-
sidered together; however the nine high-rigor, high-relevance
studies show that TDD improves external quality, while pro-
ductivity is not affected. The 21 studies in the same cate-
gory of the baseline experiment and this replication (i.e.,
low-relevance due to its academic context, but high-rigor
due level of control) are inconclusive with respect to both
outcomes. None of the secondary studies survey the effects
of TDD on testing effort.

2.2 External replications in SE
The software engineering community has been readily em-

bracing replications (e.g., [9, 25, 38]). There are two im-
portant factors characterizing a replication: procedure (i.e.,
followed experimental steps) and researcher (i.e., who con-
ducted the replication). As for the procedure, the kinds of
replications range in between conceptual and close [38]. A
replication is conceptual if the research questions are the
same as the baseline experiment, but the experimental pro-
cedures are completely different. A replication is close if the
baseline experiment and the replication share the same pro-
cedure [38]. As for the researcher, we distinguish between
internal and external. An internal replication is conducted
by the same group of researchers as the baseline experiment
[30], while an external replication is performed by different
experimenters. da Silva et al. systematic review [9] showed
that the majority of replications between 1994 and 2010 were
internal. Alongside, internal replications tend to report posi-
tive results not only in SE [7], but also in other disciplines [1].
Therefore, external replications should be preferable as they
are less affected by experimenters’ biases [24, 38]. More re-
cently, Gómez et al. [19] propose a different classification, in
which the study presented in this paper occurs to be an op-
erational replication. In particular, following Gómez et al.,
we consider this to be a changed-experimenter replication,
because at least two treatments and one response variable
are retained, and the researchers are different with respect
to the baseline study. Independently from the classification
for types of replications, there are two primary motivations
to perform replications: (i) they are necessary to solve prob-
lems and to collect evidence because they bring credibility
to a given research and (ii) they are valuable because they
provide evidence on the benefits of a software engineering
practice thus allowing industrial stakeholders to use this in-
formation to support adoption decisions [2, 19,35].

2.3 Blind analysis
Another strategy to minimize the possibility of bias in ex-

perimental results is blind analysis [40]. Clearly for blind
analysis to be effective it requires a minimum of two re-
searchers, one who carries out the experiment (or simply
experimenter) and another who conducts data analysis (or
simply analyst). The main idea is that, by relabeling (or
anonymizing) the different treatments, the analyst is no
longer aware of which is the new (or known experimented)
technique/approach, nor which are the results from bench-
marks. Searching for a test or procedure that yields statis-
tical significance is less straightforward. It is more difficult
for the analyst to have a view as to what results are “inter-
esting.” This kind of analysis is almost unknown in software
engineering (e.g., [37,40], unlike other disciplines (e.g., [3]).

3. BASELINE EXPERIMENT (UOULU)
We provide the context for the replication by reporting the

key information about the baseline experiment. We followed
the recommendations in [6]. The baseline study [13] itself
reports a replication of a previous study by Erdogmus et
al. [10]2. Both studies were structured in two parts. The first
part covered a controlled experiment to assess the impact of
TDD3 on testing effort, productivity and external quality.
The experiment compared TDD to a control composed of
developers applying test-last development (TLD) method,
while working on a single task. The TLD developers followed
an approach in which unit tests are written only after some
production code (e.g., the code necessary for a feature of
the task) was present. They were asked to work on small
chunks of the task, rather than utilize a waterfall approach;
accordingly the task was designed to support this way of
working. The second part reported a correlational study
investigating the relationship between testing effort and the
other two outcomes.4 In this paper, we report a replication
of the first phase of Fucci et al.’s study [13].

3.1 Research Questions and Hypotheses
The research questions driving the part of the baseline

study replicated in this paper were:
Do test-first developers write more tests than test-last de-

velopers?
Do test-first developers produce solutions with higher ex-

ternal quality than test-last developers?
Are test-first developers more productive than test-last de-

velopers?
The independent variable (IV) was, therefore, development
approach (i.e., TDD or TLD), whereas the dependent vari-
ables (DV) were: testing effort (TESTS), software exter-
nal quality (QLTY), and developers’ productivity (PROD).
Note that, following from the research questions, the hy-
potheses were formulated as directional for consistency with
Erdogmus et al., but analyzed as non-directional since the
existing body of knowledge regarding the postulated impact
of TDD does not suggest a specific direction of the effect.
The UOULU’s three causal research hypotheses were for-
mulated according to the research questions. Table 1 re-
ports the original hypotheses, as well as their outcomes. [13].
Some of the participants in the original study used pair-
programming (PP) along with TDD or TLD. Therefore,
the original study included an additional hypothesis deal-
ing with the possible interactions between the practices un-
der study, and PP as nuisance factor. In our replication,
participants worked individually; therefore such additional
hypothesis was not taken into account.

3.2 Sample and participants
The sample in the original study was composed of 58 par-

ticipants (33 graduate and 25 undergraduate), enrolled at
the department of Information Processing Science, Univer-

2Acknowledging Erdogmus et al. [10] as the first study in
our family of experiments, we use the terms original study or
baseline study interchangebly based on context for referring
to Fucci et al. [13] within the scope of this paper.
3The baseline experiment refers to it as test-first for consis-
tency with the Erdogmus et al.
4The rationale for it is based on the conjecture that TDD
developers produce more unit tests, hence a positive correla-
tion between TESTS and QLTY or PROD was expected.

sity of Oulu, and attending the Fall 2012 course Software
Quality and Testing. The participants were sampled by con-
venience. Before the experiment, a pre-questionnaire was
administered to the participants in order to grasp their expe-
rience. Fifteen participants reported to have professional ex-
perience varying between three months and ten years, with
an average of 2.6 years. All the participants, before the
study, received 20 hours of training in unit testing in Java,
using JUnit as a framework and Eclipse as the IDE. The
training was completely practice oriented and required the
participants to solve a variety of programming katas5 using
TDD. The participants were informed about their partici-
pation to the experiment; however, the research questions
were not disclosed to them in advance. Some of the par-
ticipants used pair-programming: 11 pairs were formed; the
remaining 36 participants worked individually. In the final
design seven pairs and 20 individuals were allocated to the
TDD group; four pairs and 16 individuals were allocated to
the TLD group. Hence, the design was unbalanced.

3.3 Object
The baseline experiment utilized a single experimental ob-

ject: the Bowling Scorekeeper (BSK) kata. The task re-
quired to participants to implement an API for calculating
the score of a player in a bowling game. The development
of a GUI was not required. The task was divided into 13
user stories of incremental difficulty, each building on the
results of the previous one. An example, in terms of in-
put and expected output, accompanied the description of
each user story. An Eclipse project, containing a stub of the
expected API signature (51 Java SLOC); also an example
JUnit test (9 Java SLOC) was provided together with the
task description. The task was administered electronically
at the beginning of the experiment sessions.

3.4 Metrics
The relevant metrics for this study are TEST , QLTY ,

and PROD. TEST is defined as the number of JUnit assert
statements within the unit test suite written by the partic-
ipants while tackling the task. Therefore, TEST ∈ [0,∞].
QLTY represents how well, on average, the implementation
of each user story matches that user story’s requirements
according to a pre-defined set of acceptance tests developed
by the authors. PROD represents the portion of the task
correctly implemented. Both QLTY and PROD were cal-
culated based on an acceptance test suite developed by the
researchers, and hidden to the participants. In particular,
QLTY is computed as follows:

QLTY =

#TUS∑
i=1

QLTYi

#TUS
× 100, (1)

where #TUS represents how many user stories a participant
tackled. A user story is considered tackled if at least one
assert in any of the acceptance tests associated with that
user story passes. Hence, #TUS is formally defined as:

#TUS =

n∑
i=0

{
1 #ASSERTi(PASS) > 0

0 otherwise
(2)

5A code kata is a programming exercise used to practice a
technique or language.

Table 1: UOULU hypotheses and outcomes (from [13])

Name H0 H1 Outcome H0

1T TEST (TDD) = TEST (TLD) TEST (TDD) > TEST (TLD) Failed to reject
1Q QLTY (TDD) = QLTY (TLD) QLTY (TDD) > QLTY (TLD) Failed to reject
1P PROD(TDD) = PROD(TLD) PROD(TDD) > PROD(TLD) Failed to reject

For the BSK task, n = 13. The quality of the i-th user story,
QLTYi, is defined as:

QLTYi =
#ASSERTi(PASS)

#ASSERTi(ALL)
. (3)

From Formulas 1-3, QLTY ∈ [0, 100]. The metric for PROD
was calculated as follows:

PROD =
#ASSERT (PASS)

#ASSERT (ALL)
× 100, (4)

in other words PROD represents the percentage of assert
statements in the acceptance test suite passed. From For-
mula 4, PROD ∈ [0, 100].

3.5 Design, Context and Execution
The baseline experiment was designed as one factor (i.e.,

development approach), with two treatments (i.e., TDD and
TLD) [45]. No blocking was applied; nevertheless the effect
of a nuisance factor, pair-programming, was assessed after-
the-fact. At the beginning of the experiment session, the
participants were randomly assigned to either groups (TDD
or TLD). The sample was not stratified before the assign-
ment to the groups. The researchers distributed the ma-
terial (i.e., hard and soft copies of the experimental task,
and Eclipse template) to each group accordingly. The only
difference between the two groups was whether the task re-
quired to be implemented using TDD or TLD. The session
lasted for three hours, after which the participants returned
the Eclipse project used to develop their solutions. These
artifacts were later used to extract the metrics.

3.6 Summary of results
The results of the original study are reported in Table 1.

Mann-Whitney U-test [21] was used to test hypotheses 1T,
1Q and 1P. The null-hypothesis was failed to be rejected
in each case. The effect size, reported as Pearson’s r [34],
are small; respectively .16, .04 and .11. The conclusion of
the original study is that TDD does not affect testing effort,
external software quality, and developers’ productivity when
compared to TLD.

4. EXTERNAL REPLICATION (UNIBAS)

4.1 Motivations
The replication was carried out following the guidelines

reported in [23]. We wanted to validate the results of the
UOULU regarding TDD in an academic context; in order to
do that we changed the design of the experiment. We moved
from a simple randomized trial to a balanced crossover de-
sign. This has the advantages of reducing the influence of
confounding covariates (e.g., participant’s skills), and requir-
ing less participants with respect to non-crossover designs to
achieve the same power. Conversely, crossover designs might
suffer from the order in which the treatments are applied, or

from carry-over and learning effects [43]. Using the experi-
ment definition template in Wohlin et al. [45], this replica-
tion is defined as follows:
“Analyze the practice of TDD, for the purpose of evaluating
its impact, compared to a test-last development approach,
with respect to testing effort, external software quality and
developers’ productivity, from the point of view of the re-
searcher, in the context of an academic course about software
development practices.”

4.2 Interaction between researchers
The interaction between the baseline experimenters

(UOULU: authors DF, BT, and MO) and the replication
ones (UNIBAS: authors GS and SR) followed the guidelines
proposed in [24]. The interaction was started by UOULU.
An initial meeting between UNIBAS and UOULU happened
face-to-face, the baseline experiment (e.g., its motivation,
design choice, and results) and the possibilities for a repli-
cation were discussed. Subsequently, a series of meetings
(i.e., adaptation meetings [24]) was carried out via telco to
discuss important points such as: where to sample the par-
ticipants from, the participants’ type, the time frame avail-
able for the training and the experiment, the schedule of
the replication, and the physical settings in which the repli-
cation would take place. The design (see Section 4.7) pro-
posed for this replication seemed to fit the settings. The
finals decision regarding the replication design was made at
this stage. After the meetings it was clear that the context
would be close to the UOULU one, with two main differ-
ences. The UNIBAS settings allowed a) all the participants
to work individually (i.e., without pair-programming) due
to the larger availability of computer rooms; b) because of
the new design, an additional task should be used. The
expected impact of the changes (see Section 4.3) were also
discussed at this stage. The practicalities—e.g., the training
material, the specific experimental tasks, questionnaires for
the participants—were defined via email discussions. Dur-
ing the execution of the experiment no major inquiries or
clarifications were necessary. Finally, after the the analysis
of the data was made available (see Section 4.8), there was a
final combination meeting [24] via telco. Rather than focus
strictly on the results, this meeting reviewed the changes on
replication condition and mapped them onto the results.

4.3 Changes to original settings
With respect to UOULU, there were changes in the ex-

perimental protocol [19].
Experimental Design: the overall design was kept as one
factor, two treatment but a second measurement—corresponding
to the second task—was added, which resulted in a balanced
crossover design. A balanced crossover design is a type of
repeated measure design—i.e., the measures are taken sev-
eral times for the same participant—in which a participant
is randomly assigned to a sequence of treatments rather than
a single one. That is, a participant will be assigned either to
the sequence TDD+TLD, or to TLD+TDD. The expected

Table 2: UNIBAS hypotheses and outcomes

Name H0 H1

R1T TEST (TDD) = TEST (TLD) TEST (TDD) 6= TEST (TLD)
R1Q QLTY (TDD) = QLTY (TLD) QLTY (TDD) 6= QLTY (TLD)
R1P PROD(TDD) = PROD(TLD) PROD(TDD) 6= PROD(TLD)

impact of this change is to improve the reliability of the re-
sults, i.e., a crossover design removes the within-participant
difference since each participant serves as its own control. In
particular, our concern regarded the participants’ program-
ming skill-set as a possible confounding covariate [17, 31].
A second change in the experimental design was done. In
particular, UOULU had to include an additional nuisance
factor, pair-programming, due to its settings. The effects
of the nuisance factor were managed by an ad-hoc analysis.
The settings of UNIBAS removed the need to control for
such factor entirely. The expected impact of this change is
that we can exclude the possibility that the results were due
to the interaction with the nuisance factor.
Experimental Objects: following from the change in the
experimental design, a change in the experimental objects’
population was needed. We added a second object, MarsRover
Api (MRA)—an experimental task, assessed by the authors
as complex as the original one. This was a necessary change
to implement the crossover design. In fact, using the same
task for the second measurement would pose a significant
threat to the internal validity of the experiment due to learn-
ing effects. In other words, there was the risk that the par-
ticipants would perform better not because of the treatment
but simply because they learned the task’s solution during
the first measurement. Given the changes described in this
section, we consider this to be a close replication [38].

4.4 Research Questions and Hypothesis
As described in section 4.3, the research questions tackled

in this replication are the same as the UOULU experiment.
Nevertheless, their direction was changed accordingly. In
particular, no expectation about the direction of the results
is present. The research questions are formulated as follows:
RQ1 : Is there a difference between the number of tests writ-
ten by TDD developers and TLD developers?
RQ2 : Is there a difference between the external code quality
of TDD developers and TLD developers?
RQ3 : Is there a difference between the productivity of TDD
developers and TLD developers?
Table 2 reports the research hypothesis investigated in this
replication, where TEST is number of tests, QLTY is ex-
ternal quality, and PROD is developers’ productivity.

4.5 Sample and Participants
The participants in UNIBAS were sampled by convenience

among the students enrolled in the Informative System (IS)
course of the Master program in Computer Science at the
University of Basilicata. Students participated in the exper-
iment on a voluntary basis. Although they were informed
about their participation to the experiment, our research
questions were not disclosed to them. We also informed par-
ticipants that data were treated anonymously, and disclosed
in aggregated form. Out of the 23 participants enrolled in
the IS course, 21 decided to take part in the experiment. The
course had elements regarding software testing, software de-
velopment process, software maintenance, agile development
techniques with a focus on TDD, regression testing, and

refactoring. The participants had sufficient level of techni-
cal maturity and knowledge of software design, development,
and refactoring. Their prior knowledge could be considered
homogeneous. The participants had passed all the exams
related to the following courses: Procedural Programming,
Object-Oriented Programming I and II, Software Engineer-
ing I, Web Technologies, and Databases. In these courses,
participants gained significant experience with C/C++, C#,
and Java. The results of a pre-questionnaire administered
before the experiment to the participants, showed that they
had an average experience of 4.5 years in object oriented
programming in academia (standard deviation 1.1 years).
One participant declared ten years of professional experi-
ence in software development; three declared four, three and
two years experience as professional developers; two partici-
pants declared one year of professional experience, while the
remaining had none. The participants’ average experience
with unit testing was a little over one and a half years. The
replication was conducted as an optional exercise of IS. Be-
fore the replication, the IS course was accompanied by four
lab sessions of three hours each. During these lab sessions,
students improved their knowledge on how to use the Eclipse
IDE to develop unit tests with Java and JUnit, the refac-
toring tools included in the IDE, and TDD development.
The participants were required to use TDD to solve several
code katas of increasing difficulty throughout these lab ses-
sions. We also asked students to work on home assignments
to further practice the contents presented in the lab sessions.
The topics, focusing on TDD, and material used during the
training (i.e., slides, practice tasks, pre-questionnaire) was
the same used for the UOULU experiment and translated
into the Italian language.6

4.6 Objects
Two experimental tasks, one for each measurement, were

used in this replication due to the changes in the experi-
mental design. The first task was MarsRover API (MRA).
It required to develop the API which allows to move a vehi-
cle on a two-dimensional grid. It was algorithmic in nature,
and several edge cases needed to be handled. The require-
ments were described as 11 user stories, which were later
used for the acceptance test suite necessary to calculate the
metrics. The participants were given a template project of
the task to get started. It included the class containing the
signature (8 LOC) and a stub of a JUnit test class (9 LOC).
The second object was BSK, also used for UOULU.

4.7 Design, Context and Execution
The design is shown in Table 3. The experiment took

place in two different days: April 15th (i.e., Day 1) and
April 22nd 2015 (i.e., Day 2). We randomly assigned the
participants to a sequence of treatments. Sequence A im-
plemented MRA during Day 1 using TDD, and BSK during
Day 2 using TLD. On the other hand, Sequence B imple-
mented MRA during Day 1 with TLD, and BSK during Day
2 using TDD. In this design the treatments are switched
within the sequence so that all the participants are given
all the treatment yielding a balanced design. This not only
removes within participants variance, but also controls for
learning effects, as the participants do not apply the the
treatments to the same task. The control group is formed by
the participants applying TLD (Sequence A, Task BSK and

6DF is the author of the material and native Italian speaker.

Table 4: UOULU and UNIBAS settings

Characteristic Baseline UNIBAS
Participant type 33 graduate, 25 undergraduate 21 graduate students
Participant Unit 11 pairs, 36 individuals 21 individuals
Environment Software quality and testing course Informative system
Participant Stratification None None
Programming Environment Java, Eclipse, JUnit Java, Eclipse, JUnit
Experiment Task Bowling Scorekeeper Mars Rover API and Bowling Scorekeeper
Task Type Fine grained, incremental difficulty Fine grained, incremental difficulty
Time to Complete the Task Single lab session (3 hours) Two lab sessions (3 hours each)
Experiment Design Parallel one factor, two treatments Balanced crossover design
Experiment groups TLD vs. TDD TLD vs. TDD
Control / Treatment size 20 (4 pairs, 16 individuals) / 27 (7 pairs, 20 individuals) 21/21
Variables TEST , PROD, QLTY , SUBJ TEST , PROD, QLTY

Table 3: Replication design

TASK
Day 1 (MRA) Day 2 (BSK)

SEQUENCE
A TDD TLD
B TLD TDD

Sequence B, Task MRA). The experimental group is formed
by the participants applying TDD (Sequence A, Task MRA
and Sequence B, Task BSK). Consistently with UOULU,
development approach is the independent variable (IV). It
is a nominal variable and assumes values: TLD and TDD.
The instructions given to participants in both groups on how
to apply the treatments during the experiment sessions were
the same as UOULU. The dependent variables (DV): testing
effort (TEST), external quality (QLTY), and productivity
(PROD) are calculated as the UOULU experiment, using
the same acceptance test suite for BSK. A new acceptance
test suite was developed to measure QLTY , and PROD for
MRA. The context of the experimental sessions was the same
as UOULU. Therefore, Java was the language used to solve
the task, Eclipse was the IDE, three hours were allocated
for the session. Just before the experiment, the experiment
supervisors highlighted the study goal without providing de-
tails on its hypotheses. The experimental tasks were carried
out under controlled conditions. GS and SR monitored the
participants to prevent their communication with each other
in the laboratory trials. The experiment supervisors were
the same at each trial. We suggested the participants to im-
plement the stories in the order with which they appear in
the given documentation. We allowed all the participants to
use Internet to accomplish the tasks because actual devel-
opers usually exploit this medium as support for their daily
work activities. We clearly forbid the participants to use
of the Internet to communicate with each another. Table 4
compared the settings of both experiments.

4.8 Blind analysis
In order to reduce possible researcher bias [26], we used a

two-step protocol for blind analysis: 1) blind data extraction
(UPM); 2) blind statistical analysis (BRUNEL). In 1), the
source code produced during the experiment was given to a
third party (i.e., author FU) to extract the metrics for the
constructs of interest using the formulas reported in Section
3.4. FU used the same artifacts—i.e., metrics extraction
form, and acceptance test suite—utilized for the data ex-
traction in UOULU, as well as the acceptance test suite for
the new task. He was aware of neither the experimental mo-

tivations, hypotheses, nor design. When extracting the data,
one artifact was discarded because it did not contained the
source code necessary to executed the acceptance test suite.
The result of the first step was the dataset, comprising 20
observations, later used to carry out the statistical analysis
in step 2). The dataset was then blinded by removing the la-
bels from its column, so that, for the analyzer, the measure-
ments do not refer to any particular construct. The blind
analyzers (i.e., authors BS and MS) received the blinded
dataset with a description of the variables (e.g., continuous,
ordinal), their ranges, and the description of the experimen-
tal design in which the names of the constructs, and tasks
were replaced with anonymous labels. The result of the sec-
ond step was a document, containing the statistical analysis,
upon which the results are based. Before making any infer-
ence on the results, the original labels were re-applied to
them. In Figure 1, we summarize the interactions between
the sites participating in this replication.

UNIBASOULU BRUNELUPM

Data Etraction

Data Analysis

Experiment
Design

Experiment
Execution

Blinding

Un-blinding

Results

Figure 1: Sites involved in the replication

4.9 Results
In this section we present a summary of the statistical

analysis process that led to the results.

4.9.1 Descriptive statistics
Table 5 presents the summary statistics for the dataset.

We have 40 observations (i.e., two observations for each
of the 20 valid participants) for the three DVs, TESTS,

QLTY , and PROD. It seems that the participants were
able to correctly complete a bit more than one-third of the
tasks (PROD = 39.81); however the quality of the portions
of the tasks implemented was acceptable (QLTY = 66.70).
It appears that the participants, on average, wrote less than
two unit tests per each user story7.

Table 5: Summary statistics for the UNIBAS dataset (n=40)

DV Mean St. Dev. Min Median Max

TESTS 10 6.58 0 10 26
QLTY 66.70 30.77 0.00 74.35 100
PROD 39.81 33.05 0.00 35.79 100

4.9.2 Comparison of treatments
Figure 2 shows the distributional characteristics of the two

treatments for each of the three DVs. The three research
hypotheses R1T , R1Q, and R1P were tested with α = .05
as in UOULU using a non-directional one-sample sign test:

H0: M(DV(TDD) −DV(TLD)) = 0
H1: M(DV(TDD) −DV(TLD)) 6= 0

where M is the median, andDV ∈ {TESTS, PROD,QLTY }.
The test results, reported in Table 6, show that none of
the null hypotheses could be rejected. Moreover, the effect
size [12]—reported as Cliff’s δ—is negligible for all the vari-
ables. We conclude that no difference between TDD and
TLD could be observed in terms of testing effort, external
code quality, and developers’ productivity. These results are
in line with those of UOULU.

Table 6: Results of One Sample Sign test, n = 20, no ties were
present

Hypotheses p-value Cliff’s δ (CI) Decision
R1T 1.00 0.07 (-0.41, 0.29) Failed to reject H0

R1Q 0.82 -0.07 (-0.29, 0.41) Failed to reject H0

R1P 0.82 0.14 (-0.22, 0.47) Failed to reject H0

4.9.3 Ordering Effects
The analysis included a second level of investigation initi-

ated by BRUNEL, in which the sequence of treatments was
conjectured to be a moderator variable. Hence, the question
of whether the DV median’s difference significantly varies
between the two sequences A and B was investigated. The
Kruskal-Wallis (K-W) test [43], i.e., a non-parametric tests
for assessing whether two or more samples originate from
the same distribution, was used. The hypotheses are:

H0: M(DV(TDD) −DV(TLD))A = M(DV(TDD) −DV(TLD))B
H1: M(DV(TDD) −DV(TLD))A 6= M(DV(TDD) −DV(TLD))B

Table 7 shows the hypotheses testing results. There is evi-
dence of a difference between the sequences in all three DVs.
We attribute this result to a carryover effect, or a bias in the
task. The next section analyzes possible carryover effects.

4.9.4 Carryover Effects
After acknowledging the results of the blind analysis re-

ported in Section 4.9.1-4.9.3, we suspected that a carryover

7Note that number of total user stories is different between
the two tasks (MRA=11, BSK=13).

Table 7: K-W tests for ordering effects (n=20, df=1)

DV K-W χ2 p-value Decision
TESTS 7.43 .64× 10−2 Reject H0

QLTY 8.69 .32× 10−2 Reject H0

PROD 9.14 .24× 10−2 Reject H0

might exist. A carryover effect takes place when the ef-
fect of the first treatment is still present when measuring
the second. In particular, we have reasons to believe that
there could be a carryover in the sequence B. In fact, ap-
plying TLD first might better prepare the participants for
the application of TDD. For example, by using TLD as first
treatment, the participants can focus on tackling small part
of the task without the burden of applying the counterin-
tuitive test-first approach at the same time. Conversely,
applying TDD as first treatment, might overload the partic-
ipants. Although the participants should be familiar with
both techniques, we proceed with a carryover analysis to
remove any doubts. When assessing the carryover effect,
we followed the method proposed in [44]—i.e., a carryover
is present when there is a statistically significant difference
between the sums of the DVs at different experimental con-
ditions with respect to the sequence. In order to assess such
differences, we used the same statistical test used during the
blind analysis:

H0: M(DV(TDD) +DV(TLD))A = M(DV(TDD) +DV(TLD))B
H1: M(DV(TDD) +DV(TLD))A 6= M(DV(TDD) +DV(TLD))B

where DV ∈ {TESTS, PROD,QLTY }.
The null-hypotheses were failed to reject (see Table 8); there-
fore we do not have strong evidence that our data exhibits
a carryover effect. However, at this stage we cannot be
sure whether the ordering effect showed is due to the task—
i.e., the particular sequence of tasks is biased towards (or
against) one sequence of treatments.

Table 8: K-W tests for carryover effect (n=20, df=1)

DV K-W χ2 p-value Decision
TESTS 1.22 .27 Failed to reject H0

QLTY .09 .76 Failed to reject H0

PROD .02 .88 Failed to reject H0

5. THREATS TO VALIDITY
We present and discuss threats that could affect our study.

Despite our efforts to mitigate as many threats as possible,
some of them are unavoidable. We discuss the threats to va-
lidity using the guidelines by Wohlin et al. [45]. Considering
that this study focuses on testing a theory, rather than as-
sess its generalizability, the threats to validity are prioritized
in decreasing order of importance [45].

5.1 Internal Validity
Selection-maturation interaction: the adopted experimen-

tal design might suffer from the presence of carryover. We
discussed it in Section 4.9.4. Diffusion or imitation of treat-
ments: this threat concerns information exchanged among
the participants within each trial. Experiment supervisors
monitored the participants to prevent their communication
to each another. As an additional measure to prevent diffu-
sion of material, we asked participants to return back mate-
rial at the end of each task. Selection: the effect of letting

(a) Difference in TEST (b) Difference in QLTY

(c) Difference in PROD

Figure 2: Boxplots comparing the DVs for the treatments in UNIBAS

volunteers take part in the experiment may influence the
results, since they are generally more motivated [45].

5.2 External Validity
Interaction of selection and treatment : the use of students

as participants may affect the generalizability of the results
with respect to practitioners [8, 20]. However, the tasks to
be performed did not require a high level of industrial expe-
rience, so we believe that the use of students as participants
could be considered appropriate, as suggested in [5]. Inter-
action of setting and treatment : In our study, the size and
the complexity of the selected application might affect ex-
ternal validity. The use of Eclipse might have threaten the
result validity; it could be possible that a few participants in
the experiment were more familiar with the tool than others.

5.3 Construct Validity
Interaction of different treatments: To mitigate this kind

of threat, we adopted the design shown in Table 3. Mono-
method bias: we acknowledge that this replication suffers
from such bias since the DVs were measured with a single
metric. However, we designed this replication to be as close
as possible to the baseline. Evaluation apprehension: we
mitigated this threat because the participants were not eval-
uated on the results they achieved during the experiment.
The participants were also unaware of the objectives and
the experimental hypotheses. Experimenters’ expectancies:
experimenters can bias results both consciously and uninten-
tionally based upon their expectations about the outcome of
the experiment. We mitigated this kind of threat by adopt-
ing a blind analysis procedure. Reliability of measures: we
used measures that limit the influence of the measurer. The
majority of the measures were automatized, and can be re-
peated with the same outcome. When human judgement
was necessary, we adopted a blind approach.

5.4 Conclusion Validity
Random heterogeneity of participants: our sample includes

participants with similar background—i.e., students in the
same university who completed similar courses, and had sim-
ilar experience. Fishing and the error rate: fishing has been
mitigated because we applied a blind data analysis proce-
dure. As for error rate, we chose an adequate significance
level while testing null hypotheses. Violated assumptions
of statistical tests: to perform certain tests some assump-
tions have to be verified (e.g., normality of data). Violating
the assumptions may lead to wrong conclusions. We used
robust, non-parametric statistics to test our hypotheses.

6. DISCUSSION AND COMPARISON
In this section we discuss and compare the results of the

UOULU experiment with the UNIBAS replication. We dis-
cuss the current state of knowledge about the effects of TDD
according to the changes that were made in the replication.
Regarding the three research questions driving this replica-
tion (RT1, RQ1, and RP1), the answer is that, given the
data collected during the experiment, there is no evidence
supporting the claim that TDD differs from a TLD approach
in terms of testing effort, external code quality, and devel-
opers’ productivity. This replication yielded only consistent
results [6], in similar settings, but a different design, and
with different experimenters. Thus, the baseline experiment
results are less likely to be a false negative, and less likely
to be due to a bias of the baseline experimenters. The mod-
ifications to the experiment have not changed the results;
therefore increasing the conclusion validity of the baseline
experiment. We discuss the following changes.
Crossover design: In the baseline experiment, the possible
impact of the difference between the participants in terms
of skills was considered a threat [29]. The replication design
decreases the possibility that the baseline experiment results
were due to an unobserved, unbalanced skills distribution.
Pair-programming : In the baseline experiment, pair pro-
gramming was used together with the treatments, and its
effects assessed; the operationalization of the constructs was

improved in this replication by removing pair-programming.
We are more confident that the baseline results were not due
to the interaction with the other practice.
Task : The crossover design required a new task. We added
a task of the same difficulty and with the same structure
of the baseline experiment task. Although we believed that
such change would not directly impact the baseline exper-
iment results, there is evidence that it might interact with
the sequence in which the treatments were applied.
Given the limitations presented in Section 5, it appears that
TDD does not improve, nor deteriorate the participants’
performance with respect to an iterative development tech-
nique in which unit tests are written after production code.
The same conclusion has been reached in the relevant litera-
ture [32,36,41]. We conjecture that the inconclusive findings
can be due to two factors:
Control treatment : the baseline experiment and its replica-
tion compared TDD to a really similar approach, labelled
as TLD. Under this circumstances, we might be focusing
on the incorrect part of development process (i.e., whether
write tests first or not), and disregard the part of the process
in which the a substantial effect might lie (i.e., the iterative-
ness of the process). Accordingly, the tasks used for both
experiments were designed to fit the iterative nature of both
treatments—i.e., isolate the process itself from the cognitive
effort required to break down a complex problem into sub-
problems. Pančur and Ciglarič [33] made a similar claim
reporting the inconclusive results of a similar experiment.
Tasks sequence: although the baseline experiment used a
single task, this replication included a second task deemed
of similar complexity. Since we showed a difference between
the sequences, but not a carryover effect, there is the pos-
sibility that the (fixed) sequence of the experimental tasks
interacts with one (or both) treatment sequence—for exam-
ple, the MRA task inherently suits TLD, while BSK tends
to be TDD’s sweet-spot, or vice versa. We are worried about
how experimental tasks should be chosen (or designed), not
only to be comparable, but also to limit their interaction
with the treatments, for crossover design studies [42].

7. CONCLUSION AND FUTURE WORK
In this paper we reported a replication of an experiment

[13] in which TDD was compared to a test-last approach.
The replication involved four institutions in four countries.
In particular, data extraction and analysis were conducted
by researchers unaware of the replication goals and hypothe-
ses. Despite adopting such countermeasures, aimed at re-
ducing researchers bias, we confirmed the baseline results:
TDD does not affect testing effort, software external quality,
and developers’ productivity. The changes introduced in the
replication did not affect the results—including the new de-
sign, crossover, for which no significant carryover effect was
found. However, we found that there is a difference between
the sequences in which the treatments were applied. We
made sure to select similar experimental objects; nonethe-
less, we suspect that they interact with the treatments. We
recommend future studies to survey the tasks used in ex-
periments evaluating TDD, and assess them with respect to
the treatments. Finally, in order to lower the cost of replica-
tion studies and reduce researchers’ bias, we encourage other
research groups to adopt the same multi-site approach de-
scribed in this paper.

Acknowledgments
This research is supported in part by the Academy of Fin-
land Project 278354.

8. REFERENCES
[1] M. Baker. Over half of psychology studies fail

reproducibility test. Nature News, 27, 2015.

[2] M. T. Baldassarre, J. Carver, O. Dieste, and
N. Juristo. Replication types: Towards a shared
taxonomy. In Proc. of International Conference on
Evaluation and Assessment in Software Engineering,
pages 18:1–18:4. ACM, 2014.

[3] V. Bebarta, D. Luyten, and K. Heard. Emergency
medicine animal research: does use of randomization
and blinding affect the results? Academic Emergency
Medicine, 10(6):684–687, 2003.

[4] K. Beck. Test-driven development: by example.
Addison-Wesley Professional, 2003.

[5] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Proceedings of International
Symposium on Software Metrics, pages 239–251, 2003.

[6] J. C. Carver. Towards reporting guidelines for
experimental replications: A proposal. Proceedings of
the 1st international workshop on replication in
software engineering (RESER), 2010.

[7] M. Ciolkowski. What do we know about
perspective-based reading? an approach for
quantitative aggregation in software engineering. In
Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement,
pages 133–144. IEEE Computer Society, 2009.

[8] M. Ciolkowski, D. Muthig, and J. Rech. Using
academic courses for empirical validation of software
development processes. EUROMICRO Conference,
pages 354–361, 2004.

[9] F. Q. B. da Silva, M. Suassuna, A. C. C. França,
A. M. Grubb, T. B. Gouveia, C. V. F. Monteiro, and
I. E. dos Santos. Replication of empirical studies in
software engineering research: a systematic mapping
study. Empirical Software Engineering, 19(3), 2014.

[10] H. Erdogmus, M. Morisio, and M. Torchiano. On the
effectiveness of the test-first approach to
programming. IEEE Transactions on Software
Engineering, 31(3):226–237, Mar. 2005.

[11] M. Fowler. Refactoring: improving the design of
existing code. Pearson Education India, 2009.

[12] C. O. Fritz, P. E. Morris, and J. J. Richler. Effect size
estimates: current use, calculations, and
interpretation. Journal of Experimental Psychology:
General, 141(1):2, 2012.

[13] D. Fucci and B. Turhan. A Replicated Experiment on
the Effectiveness of Test-First Development. In 2013
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM),
pages 103–112. IEEE, Oct. 2013.

[14] D. Fucci and B. Turhan. On the role of tests in
test-driven development: a differentiated and partial
replication. Empirical Software Engineering,
19(2):277–302, 2014.

[15] D. Fucci, B. Turhan, and M. Oivo. Conformance

factor in test-driven development: initial results from
an enhanced replication. In Proc. of the 18th
International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2014.

[16] D. Fucci, B. Turhan, and M. Oivo. Impact of process
conformance on the effects of test-driven development.
In the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurements,
pages 1–10. ACM Press, 2014.

[17] D. Fucci, B. Turhan, and M. Oivo. On the effects of
programming and testing skills on external quality
and productivity in a test-driven development context.
In Proc. of the 19th International Conference on
Evaluation and Assessment in Software Engineering,
EASE ’15. ACM, 2015.

[18] B. George and L. Williams. A structured experiment
of test-driven development. Information and Software
Technology, 46(5):337–342, 2004.

[19] O. S. Gómez, N. Juristo, and S. Vegas. Understanding
replication of experiments in software engineering: A
classification. Information and Software Technology,
56(8):1033–1048, Aug. 2014.

[20] J. Hannay and M. Jørgensen. The role of deliberate
artificial design elements in software engineering
experiments. IEEE Trans. on Soft. Eng., 34:242–259,
March 2008.

[21] T. P. Hettmansperger and J. W. McKean. Robust
nonparametric statistical methods. CRC Press, 2010.

[22] M. Ivarsson and T. Gorschek. A method for evaluating
rigor and industrial relevance of technology
evaluations. Empirical Software Engineering,
16(3):365–395, Oct. 2010.

[23] N. Juristo and S. Vegas. Using differences among
replications of software engineering experiments to
gain knowledge. In Empirical Software Engineering
and Measurement, 2013 ACM / IEEE International
Symposium on, pages 356–366. IEEE, 2009.

[24] N. Juristo, S. Vegas, M. N. Solari, and S. Abrahão. A
process for managing interaction between
experimenters to get useful similar replications.
Information and Software Systems Journal, 2013.

[25] B. Kitchenham. The role of replications in empirical
software engineering - a word of warning. Empirical
Software Engineering, 13(2):219–221, 2008.

[26] R. MacCoun and S. Perlmutter. Blind analysis: Hide
results to seek the truth. Nature, 526:187–189, 2015.

[27] L. Madeyski. The impact of test-first programming on
branch coverage and mutation score indicator of unit
tests: An experiment. Information and Software
Technology, 52(2):169–184, 2010.

[28] E. M. Maximilien and L. Williams. Assessing
test-driven development at ibm. In Proceedings of the
25th International Conference on Software
Engineering, ICSE ’03, pages 564–569, Washington,
DC, USA, 2003. IEEE Computer Society.

[29] S. E. Maxwell and H. D. Delaney. Designing
experiments and analyzing data: A model comparison
perspective, volume 1. Psychology Press, 2004.

[30] M. G. Mendonça, J. C. Maldonado, M. C. F.
de Oliveira, J. Carver, S. C. P. F. Fabbri, F. Shull,
G. H. Travassos, E. N. Höhn, and V. R. Basili. A
framework for software engineering experimental

replications. In Proc. of International Conference on
Engineering of Complex Computer Systems, pages
203–212. IEEE Computer Society, 2008.

[31] M. M. Müller and A. Höfer. The effect of experience
on the test-driven development process. Empirical
Software Engineering, 12(6):593–615, 2007.

[32] H. Munir, M. Moayyed, and K. Petersen. Considering
rigor and relevance when evaluating test driven
development: A systematic review. Information and
Software Technology, 2014.

[33] M. Pančur and M. Ciglarič. Impact of test-driven
development on productivity, code and tests: A
controlled experiment. Information and Software
Technology, 53(6):557–573, June 2011.

[34] K. Pearson. Note on regression and inheritance in the
case of two parents. Proceedings of the Royal Society
of London, 58:240–242, 1895.

[35] S. L. Pfleeger and W. Menezes. Marketing technology
to software practitioners. IEEE Software, 17(1):27–33.

[36] Y. Rafique and V. B. Misic. The Effects of
Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. Software Engineering,
IEEE Transactions on, 39(6):835–856, 2013.

[37] M. Shepperd, D. Bowes, and T. Hall. Researcher bias:
The use of machine learning in software defect
prediction. IEEE Transactions on Software
Engineering, 40(6):603–616, 2014.

[38] F. Shull, J. C. Carver, S. Vegas, and N. J. Juzgado.
The role of replications in empirical software
engineering. Empirical Software Engineering,
13(2):211–218, 2008.

[39] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep,
and H. Erdogmus. What Do We Know about
Test-Driven Development? IEEE Software,
27(6):16–19, 2010.

[40] B. Sigweni and M. Shepperd. Using blind analysis for
software engineering experiments. In Proceedings of
the 19th International Conference on Evaluation and
Assessment in Software Engineering, page 32, 2015.

[41] B. Turhan, L. Layman, M. Diep, H. Erdogmus, and
F. Shull. How effective is test-Driven Development.
Making Software: What Really Works, and Why We
Believe It, pages 207–217, 2010.

[42] S. Vegas, C. Apa, and N. Juristo. Crossover designs in
software engineering experiments: Benefits and perils.
IEEE Transactions on Software Engineering,
42(2):120–135, Feb 2016.

[43] E. Vonesh and V. M. Chinchilli. Linear and nonlinear
models for the analysis of repeated measurements.
CRC press, 1996.

[44] S. Wellek and M. Blettner. On the proper use of the
crossover design in clinical trials. Deutsches Arztebllatt
Intern, 109:276–281, 2012.

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering. Springer Science & Business
Media, 2012.

