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For many years in evolutionary science, the consensus view has been that while reciprocal altruism can

evolve in dyadic interactions, it is unlikely to evolve in sizable groups. This view had been based on

studies which have assumed cooperation to be discrete rather than continuous (i.e., individuals can

either fully cooperate or else fully defect, but they cannot continuously vary their level of cooperation).

In real world cooperation, however, cooperation is often continuous. In this paper, we re-examine the

evolution of reciprocity in sizable groups by presenting a model of the n-person prisoner’s dilemma that

assumes continuous rather than discrete cooperation. This model shows that continuous reciprocity has

a dramatically wider basin of attraction than discrete reciprocity, and that this basin’s size increases

with efficiency of cooperation (marginal per capita return). Further, we find that assortative interaction

interacts synergistically with continuous reciprocity to a much greater extent than it does with discrete

reciprocity. These results suggest that previous models may have underestimated reciprocity’s

adaptiveness in groups. However, we also find that the invasion of continuous reciprocators into a

population of unconditional defectors becomes realistic only within a narrow parameter space in which

the efficiency of cooperation is close to its maximum bound. Therefore our model suggests that

continuous reciprocity can evolve in large groups more easily than discrete reciprocity only under

unusual circumstances.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Direct reciprocity has long been regarded as a plausible route
for the evolution of cooperation in genetically unrelated dyads
(Axelrod and Hamilton, 1981; Trivers, 1971), particularly in
humans. However, human sociality extends far beyond dyadic
cooperation, and is characterized by collective action (Olson,
1965), i.e., a large group of unrelated members involved in the
joint production of a shared resource. Based on the pessimistic
results of models of the evolution of reciprocity in large groups
(Bendor and Mookherjee, 1987; Boyd and Richerson, 1988; Joshi,
1987; Taylor, 1976), the standard view in biology has for years
been that reciprocity is unlikely to evolve in groups much larger
than dyads (e.g. Boyd et al., 2003; Fehr, 2004; Fehr and
Fischbacher, 2003; Gächter and Herrmann, 2009; Hagen and
Hammerstein, 2006; Hauert et al., 2002; Henrich, 2004, 2006;
Kurzban and Houser, 2005; Sigmund and Nowak, 2000; Suzuki
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and Akiyama, 2005). This view has led many theorists to suggest
alternative routes for the evolution of group cooperation, for
example genetic or cultural group selection (Boyd et al., 2003;
Gintis, 2000; Henrich, 2004; Wilson and Sober, 1994), costly
signalling (Gintis et al., 2001), opting out of a group (Hauert et al.,
2007), and indirect reciprocity (Panchanathan and Boyd, 2004).

Reciprocity in dyads is traditionally modelled as the tit-for-tat

strategy (Axelrod and Hamilton, 1981) that continues cooperating as
long as the partner cooperates, but stops cooperating if the partner
did not cooperate in the previous round. Tit-for-tat is a discrete
strategy that contributes either fully or not at all. Models of
reciprocity in groups have defined reciprocity as a discrete strategy
that continues cooperating as long as all other group members
cooperate, but stops cooperating if one or more co-members defect
(Bendor and Mookherjee, 1987; Boyd and Richerson, 1988; Joshi,
1987; Taylor, 1976). However, the evidence that people actually
engage in a discrete all-or-nothing strategy—also called a trigger
strategy—is weak (Ostrom et al., 1994; Watabe, 1992; Watabe and
Yamagishi, 1994). Furthermore, many instances of real-world
cooperation seem to be better modelled as continuous rather than
discrete, because individuals continuously vary their degree of
cooperation from full defection to full cooperation. Bshary and
Bronstein (2004), for example, review real world examples of
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
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interspecific mutualism and find many instances of continuous
cooperation. Continuous cooperation is also common in human
groups: members tend to modulate their contribution levels in order
to approximately match the mean co-member contribution (Croson,
2007; Croson et al., 2005; Fischbacher et al., 2001; Kurzban and
Houser, 2005; Kurzban et al., 2001).

The representation of reciprocity as a discrete strategy could be
regarded as a trivial or inevitable simplification of a complex reality,
of the kind that is often required in formal models. However, we
found that replacing discrete reciprocity with continuous mean-
matching reciprocity effected significant changes in model results. In
Section 2 below, we first review a model of discrete reciprocity
in the n-person prisoner’s dilemma (Boyd and Richerson, 1988) that
is widely cited as having shown the difficulty of the evolution of
(discrete) reciprocity in large groups. We then compare this model
with a new model that replaces discrete reciprocity with continuous
reciprocity. We find that like discrete reciprocity, continuous
reciprocity can be evolutionarily stable against an unconditional
defection strategy, while unconditional defection can also be
evolutionarily stable against both reciprocity strategies. The most
important finding is that the basin of attraction for continuous
reciprocity gets wider as cooperation gets more efficient, while the
basin of attraction for discrete reciprocity remains quite small even
when cooperation is extremely efficient. We also investigate the
influence of assortative interaction and find it to have a strong
synergic effect with continuous reciprocity but not with discrete
reciprocity. These results hold even when an unconditional
cooperation strategy exists in the population.

However, we find that the advantage of continuous reciprocity
is strictly constrained by the efficiency of cooperation; the
invasion of continuous reciprocity into a population of defectors
becomes realistic only when cooperation is extremely efficient,
i.e. when a contribution from a single individual produces a very
large benefit for the entire group. Because conditions of such
efficiency are probably relatively rare, this finding suggests that in
a population divided up into large groups, continuous reciprocity
could invade only under unusual circumstances. In Section 3, we
demonstrate the robustness of continuous reciprocity in highly
efficient public goods situations by extending the strategy space
from one in which continuous reciprocators can only match the
mean partner contribution to one in which they can contribute
above or below this mean.
2. Discrete versus continuous reciprocity

2.1. Repeated n-person prisoner’s dilemma game

To model the evolution of cooperation in sizable groups, we
considered a large population subdivided into randomly-formed
groups of size n which play repeated n-person prisoner’s dilemma
games. Every round, individual members decide whether to
contribute c to their group, in order to create the benefit Bc

which is divided equally among all n group members. B is
assumed to be smaller than n, so a member’s private return is
always less than that member’s contribution (Bc/noc), and
groups are thus public good-producing collective actions char-
acterized by social dilemmas. The game is repeated with the
probability w.
1 Throughout this paper, we manipulate the value of B/n as a model parameter

instead of independently varying the values of B and n. B/n is frequently used as an

index of efficiency of cooperation; in order for the game to be a public goods

dilemma, its value needs to lie between 0 and c (=1 in our model). Differences

between the two reciprocal strategies were exhibited mainly when this index’s

value was close to its upper limit. Note that the value of B, the amount of benefit

produced from one unit of contribution, varies with the increase of the group size,

n, even when the efficiency of cooperation index remains constant.
2.2. The evolution of discrete reciprocity

First, let us consider two classes of strategies: unconditional
defector (D) and discrete reciprocator (Ta). D never contributes,
while Ta contributes fully (c=1) in the first round and continues
Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
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contributing fully as long as a or more group co-members also
contribute fully. Let V(x|y) be the payoff to an individual with a
strategy x in a group with y reciprocators (in this section, Ta).
When D is common, the expected payoff to D is V(D|0)=0 while
the payoff to a rare Ta is V(Ta|1)=B/n�1 when a=n�1, and
(B/n�1)/(1�w) when aon�1. In both cases, the payoff to Ta is
smaller than 0 and thus a rare Ta cannot invade a population when
D is common. When Ta is common, the expected payoff to Ta is
V(Ta|n)=(B�1)/(1�w). The expected payoff to a rare D is V(D|n–
1)=(B(n�1)/n)/(1�w) when aon�1. As V(Ta|n)oV(D|n–1) when
n42, Ta cannot prevent the intrusion of D. On the other hand,
when a=n�1, the expected payoff to D is V(D|n–1)=B (n—1)/n
and this is smaller than the expected payoff to Tn�1 when w is
sufficiently large (Boyd and Richerson, 1988). Thus, Tn�1 is an
evolutionary stable strategy that prevents the intrusion of rare D

when interactions are sufficiently iterated. In the following, we
will consider only Tn�1 (hereafter referred to simply as T).

It is proved that, when T is evolutionarily stable, there is a
unique unstable internal equilibrium (Boyd and Richerson, 1988).
However, the basin of attraction for a pure T equilibrium gets
smaller quickly as group size increases. The proportion of T at an
internal equilibrium is

p¼
1�B=n

wðB�1Þ=ð1�wÞ

� �1=n

:

Fig. 1a illustrates how this proportion of T changes as a function of
the efficiency of cooperation B/n (marginal per capita return) and
w when group size is 100.1 The upper two lines in Fig. 1a show
that T cannot increase its share in a population unless it already
composes a large majority of that population; if the proportion of
T falls below 85–90%, D increases its share.

2.3. The evolution of continuous reciprocity

We now replace the discrete strategy T with a simple
continuous reciprocal strategy R. Like T, R contributes fully in
the first round. R then matches the average contribution made by
the other n�1 players in the previous round. When D is common,
the expected payoff to D is V(D|0)=0. The expected payoff to
rare R is V(R|1)=B/n�1 because R contributes fully only in the
first round and contributes nothing from the second round.
As V(R|1)oV(D|0), D is evolutionarily stable. On the other hand,
when R is common, it is proved that the expected payoff to R,
V(R|n)=(B�1)/(1�w), is larger than D’s expected payoff,
V(D|n�1), and R is evolutionarily stable when

B�1

1�w
4

Bðn�1Þ=n

1�wðn�2Þ=ðn�1Þ

(see Appendix A). Because the condition for T to be an ESS is
ðB�1Þ=ð1�wÞ4Bðn�1Þ=n and 1–w(n–2)/(n�1) is always smaller
than 1, R can avoid an invasion of D in a narrower range of
conditions than can T.

The basin of attraction for R is drastically larger than that for T,
however. Fig. 1a shows the minimum proportion of R and T that
must exist in a population in order to prevent the intrusion of D

(i.e., the proportion of R and T at an unstable internal equilibrium).
In contrast to T, the proportion of R is generally small, especially
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
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Fig. 1. The minimum proportion of discrete (T) and continuous (R) reciprocity strategies necessary to invade a population of unconditional defectors (D). For both (a) and

(b) the group size is set to 100; the horizontal axis is the probability w of interaction continuation, and the vertical axis is the proportion of the reciprocity strategy that

must compose the population in order to successfully invade; and the two upper lines represent the discrete strategy T, while the two lower lines represent the continuous

strategy R. For (a) groups are formed randomly; the two circle-studded lines show that when efficiency of cooperation (B/n) is moderate, T can invade only when very

common, while R can invade when less common, especially as w increases; the two triangle-studded lines show that when efficiency is high, T can again invade only when

very common, while R can invade when much less common. For (b) groups are formed assortatively; triangle-studded lines show R’s advantage in invasion ability when

assortation (r) is fairly weak and efficiency is very low, while circle-studded lines show this advantage when assortation is very weak and efficiency is fairly low. For both

(c) and (d) the horizontal axis is the size B of the benefit to the group, the three dotted lines represent T, and the three solid lines represent R. Group size n is 20, 50 and 100

for each strategy, while continuation probability w is set to 0.99. For (c) groups are formed randomly and B is truncated at the maximum value minus 1 for each group size.

For (d) groups are formed assortatively (r=1/16) and B is truncated at the integer value that is smaller and closest to n/{(n–1)r+1}.
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when the efficiency of cooperation, B/n, is high. For instance, when
n=100 and B/n is 0.95 (so 1 unit of cooperation [c=1] produces 95
units of benefit [B=95]), R can proliferate even when its initial
proportion is only 10% or less. This is markedly different from T,
which must compose 85–95% of the population in order to evolve.
We increased group size in increments of 100 from 100 to 500,
and confirmed that this advantage of R over T holds across all
these group sizes. Fig. 1c shows how the basin of attraction for T
Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
in the repeated n-person prisoner’s dilemma. J. Theor. Biol. (2010),
and R changes in response to the size of benefit of cooperation (B)
and group size (n); the basin of attraction for R changes almost
linearly as benefit of cooperation approaches the maximum size
(i.e., as B approaches n). For all three group sizes (n=20, 50 and
100), the proportion of R at internal equilibrium gets lower than
10% when the efficiency of cooperation (B/n) is larger than about
0.9 (i.e., BE18, 45 and 90 for n=25, 50 and 100, respectively)
which indicates that the invasion of R becomes realistic only in a
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
doi:10.1016/j.jtbi.2010.01.028
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narrow range of B that is close to B’s maximum value. On the
other hand, the basin of attraction for T is less sensitive to the size
of B as group size increases.
2.4. Synergic effect between continuous reciprocity and assortative

interaction

In dyadic cooperation, a strong synergic effect between
reciprocity and assortative interaction is known to exist (Axelrod
and Hamilton, 1981); rare reciprocators can invade a population
of unconditional defectors much more easily if reciprocators can
preferentially interact with other reciprocators and thus decrease
the risk of being exploited by defectors. On the other hand, a
model of discrete group reciprocity (Boyd and Richerson, 1988)
found that assortative group formation does not facilitate the
invasion of rare reciprocators very much.

Fig. 2 shows the threshold number of interactions that must be
exceeded in order for a rare reciprocator strategy, T or R, to invade
a population of unconditional defectors given a specific group size
and level of assortative interaction (r) (see Appendix B). The figure
illustrates that both T and R can invade when group size is very
small (n=3 or 5) and when groups continue to interact for a very
long time. The threshold value for number of interactions is
slightly smaller for R than T, implying that R can more readily
evolve, although this difference is minor. As group size gets larger,
it quickly gets much tougher or even impossible for both T and R

to invade (see also Boyd and Richerson, 1988).
We also investigated the synergic effect of reciprocity and

assortative interaction by considering the size of the basin of
attraction for reciprocators. We did find a strong synergic effect,
but only for R: with assortative interaction, the basin of attraction
for R remains large even when cooperation is relatively inefficient.
Fig. 1b shows the minimum proportion of discrete reciprocators,
T, necessary for T to increase its share when assortative
interaction is fairly low (r=1/16) and very low (r=1/64), and
suggests that assortation does not help T very much: in both
cases, T cannot prevent the invasion of D if its proportion in a
population is smaller than around 85–95%. In contrast, a small
degree of assortative interaction drastically decreases the value of
efficiency of cooperation (B/n) that is necessary for R to evolve.
Fig. 2. Minimum number of interactions that must be exceeded for rare reciprocators

group formation. T and R are represented by solid and broken lines, respectively. Thinne

efficiency of cooperation (B/n) and vertical axis represents logarithm of expected num

Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
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When r=1/16, a small proportion of R can proliferate even when
cooperation is relatively inefficient (B/n=0.13). Again, similar
results are obtained even when group size is increased from 100
to 500, in increments of 100. Fig. 1d shows how the basin of
attraction for T and R changes in response to the size of benefit of
cooperation (B) and the group size (n) when r=1/16. As when
there is no assortative interaction existing (i.e., Fig. 1c), the basin
of attraction for R changes almost linearly as B increases to its
maximum value (i.e., n/{(n–1)r+1}; if B is larger than this point,
even a rare unconditional cooperator can increase its share in the
population of unconditional defectors).

Where does the synergic effect between assortative interaction
and continuous reciprocity come from? First, T gains the benefits
of mutual cooperation only when all of its co-members are also T;
the introduction of just one D co-member induces the collapse of
cooperation. The introduction of one or more D also results in the
collapse of cooperation when D and R coexist in the same group.
However, R gains some benefit from mutual cooperation because
of its gradual decrease of cooperation. As the number of D co-
members increases, R stops cooperating more quickly and thus
minimizes the extent of its own exploitation. R is thus able to
reduce cooperation when interacting with too many Ds, and to
maintain a moderately high level of cooperation with fewer Ds.
As a result, payoffs to D and R marginally increase as the number
of reciprocators increases, while payoffs to D and T mostly linearly
increase. This non-linearity advantages R, especially when
assortative interaction exists (see Fig. 3).
2.5. The third strategy: unconditional cooperators

So far we have investigated interactions between only two
strategies (D and either R or T) at one time. Do results change
when a third strategy—unconditional cooperation (C)—is added?
When D is completely absent, C receives the same benefit as T or
R, and C can drift into the populations composed of reciprocators
(T or R). However, C is easy prey to D, and after drifting onto a
population, C may even help D to beat a reciprocal strategy. In
order to examine the influence of unconditional cooperators, we
extended the model by adding C and examined the evolutionary
dynamics of the system. Appendix C discusses the payoffs and
(T and R) to invade a population of unconditional defectors (D) under assortative

r lines indicate r=1/64 and thicker lines indicate r=1/16. Horizontal axis represents

ber of interactions (i.e., 1/1–w). For (a) n=3; (b) n=5.

olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
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Fig. 3. Payoff to defectors (D) and discrete (T) and continuous (R) reciprocity strategies as a function of the number of reciprocators in the group. For both (a) and (b):

parameter values are n=100, B/n=0.50, and w=0.95; the circle-studded and x-studded lines represent payoffs to D and to reciprocators (T in (a) and R in (b)), respectively.

Solid arrows in (a) and (b) represent expected numbers of reciprocators in one’s group when p is 0.50 and when one is a D (left arrow) or when one is a reciprocator (right

arrow). Both (a) and (b) show that a reciprocator’s payoff in a group of 50 reciprocators is smaller than a D’s payoff in a group of 49 reciprocators, so both (a) and (b) suggest

that reciprocity cannot evolve under this parameter setting when there is no assortative interaction. When groups are assortatively formed, reciprocators will find more

reciprocators and D will find fewer reciprocators in their groups, so the arrows will move apart from each other. The dotted arrows in (a) and (b) represent expected

numbers of reciprocators in one’s group when one is a D (left arrow) or a reciprocator (right arrow) and when p is 0.50 and assortation (r) is 1/16. The payoff advantage for

reciprocators over D increases at a much greater rate for R (b) then for T (a), indicating that assortative interaction benefits continuous reciprocators more than discrete

reciprocators.

Fig. 4. Evolutionary dynamics of unconditional cooperators (C), unconditional defectors (D) and discrete (T) and continuous (R) reciprocity strategies. An all-D population is

evolutionarily stable, and an all-R or all-T population is neutrally stable, as C can receive the same payoff as R or T when D is absent from the population. In both (a) and (b),

the line QC separates two regions. Within DQC, the system evolves towards a non-cooperative equilibrium (point D). Within QCR or QCT, the system evolves towards a

point on the line CR or CT (i.e., a mix of strategies C and R or T). On the line QR or QT, the system evolves towards an all-reciprocator equilibrium (point R or point T). When R

is present in the population (a) the basin of attraction of cooperative strategies C and R is much larger than that of D; however when T is present (b) the basin of attraction

of cooperative strategies C and T is much smaller than that of D. For both (a) and (b) the parameter values are n=100, B/n=0.13, w=0.95, and r=1/16.
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Fig. 4 illustrates the dynamics of three strategies, C, D and either T

(Fig. 4a) or R (Fig. 4b), when n=100. In both figures, any points on
the line QC are unstable internal equilibria and the area above the
line QC (including the point C but excluding the point Q) is the
basin of attraction for D. Any points on the line TC or RC other
than the point C are neutrally stable fixed points, and the area
Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
in the repeated n-person prisoner’s dilemma. J. Theor. Biol. (2010),
below the line QC is the basin of attraction for a mixture of
cooperative strategies. We found that D’s basin of attraction
composes a large majority of the triangular area when it coexists
with C and T, but only a small minority of this area when it
coexists with C and R. Again, similar results were obtained when
group size was increased incrementally to 500.
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
doi:10.1016/j.jtbi.2010.01.028
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3. Extending the strategy space to allow below- and above-
mean continuous reciprocity

We next investigated the stability of the continuous mean
matching strategy against other variants of continuous recipro-
city, such as those who give above or below the mean. Following
Le and Boyd (2007), we modelled the strategy space of continuous
reciprocal strategies using a parameter, r, which ranges from 0 to
2. When r=1, it is identical with the R mean matching strategy. As
r gets larger, a player gets more generous than R and contributes
more than the mean contribution. When r=2, it is identical with
unconditional cooperation. As r gets smaller than 1 it gets less
generous, and when r=0 it is identical with unconditional
defection. Contribution at the round t (a1) is rut�1 when
0rrr1 and ut�1+(r�1)(1�ut�1) when 1orr2 where ut�1 is
the mean contribution made by the other players at round t�1.
For simplicity, we assumed that all strategies other than D (r=0)
contribute fully in the first round. As we could not find a closed
form expression of the payoffs, we conducted a numerical
simulation by fixing a number of interactions instead of using a
continuation probability of interactions.

3.1. Numerical analysis

We first assumed that the population consists of a single
strategy, rk, and checked if a rare single strategy, rr, could invade
this population. Fig. 5 is the payoff map of various combinations
of rk and rr that shows local dynamics of the system. This system
has one non-cooperative attractor, rk=0: when the common
strategy rk is below the threshold value q, a more generous
strategy (rr4rk) cannot invade the population. When the
common strategy is more generous than this threshold line q

but less generous than the mean matching strategy (i.e.,
qorko1), a more generous strategy (rr4rk) can invade the
population. Remember that strategies 1rrkoq0 are neutrally
stable against any invading strategy rrZ1, as neither perception
nor implementation error exists in the model and both the
common and invading strategies receive the same fitness value. If
a population becomes too generous (rk4q0), any strategy that is
less generous than the mean matching strategy (rko1) can
invade the population. We found that the basin of attraction for
rk=0 is rather small as long as efficiency of cooperation remains
high.
Fig. 5. Comparisons of payoffs of common strategy rk and rare invading strategy

rr. Vertical axis represents a common strategy in a population and horizontal axis

represents a rare invading strategy. Equality and inequalities inside of the

rectangle indicate relative size of payoffs. For instance, in the area denoted k4r,

common strategies receive higher payoffs than invading strategies. Both strategies

receive the same payoffs on the thick lines (k=r). Parameter values are set to

n=100, B/n=0.95 and maximum number of rounds=10 (Ew=0.9). The parameters

q and q0 are strongly influenced by the efficiency of cooperation. For instance,

when B/n is decreased to 0.65, q increases to 0.36–0.41 and q0 decreases to 1.61.

Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
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3.2. Agent-based simulations

We then conducted agent-based simulations to further
investigate global dynamics of the system and the stability of
cooperative states in a heterogeneous population where agents’
strategy r can take any value ranging from 0 to 2. At the first
generation, the entire population was occupied by r=1. At the
end of each generation, each individual produced a number of
offspring that was proportional to the payoff that the individual
received in that generation, and Gaussian error mutation
e�Nð0; SDÞ was added to each individual’s strategy. Fig. 6
shows the results of simulations of 5000 agents that were
randomly subdivided into 50 groups of 100 agents at the
beginning of each generation and that played 20 rounds
(Ew=0.95) of the repeated n-person prisoner’s dilemma game
with B/n=0.9 for 5000 generations under several mutation sizes
(SD of Gaussian mutation: 0.002, 0.02, 0.05 and 0.07).

As the mutation size increased, the system fluctuated more
frequently. In general, however, the system exhibited cooperative
polymorphism: the average of r fluctuated between cooperative
(r41) and less cooperative values (rE0.2–1) across generations
but never arrived or stayed at a non-cooperative equilibrium
(r=0).
4. Discussion

This model investigated reciprocity under rather specific condi-
tions, where new groups were formed and dismissed in each
generation, in the absence of errors of perception and implementa-
tion. We intentionally chose those settings so that our model would
be directly comparable to a very influential study (Boyd and
Richerson, 1988) that is often cited for suggesting that (discrete)
reciprocity is unlikely to have played a very important role in the
evolution of group cooperation (e.g. Boyd et al., 2003; Fehr 2004;
Fehr and Fischbacher, 2003; Gächter and Herrmann, 2009; Hagen
and Hammerstein, 2006; Hauert et al., 2002; Henrich, 2004, 2006;
Kurzban and Houser, 2005; Sigmund and Nowak, 2000; Suzuki and
Akiyama, 2005). Our results suggest that models which represent
reciprocity as discrete rather than continuous may underestimate
the adaptiveness of reciprocity in groups.

Although some real world group cooperation surely involves all-
or-nothing discrete decisions, continuous cooperation has been
observed in numerous species (Bshary and Bronstein, 2004). The
disregard of reciprocity’s role in the evolution of collective action is
surprising, given that (continuous) reciprocity is the most com-
monly-observed strategy pursued by subjects in n-person coopera-
tion experiments (Croson, 2007; Croson et al., 2005; Fischbacher
et al., 2001; Kurzban and Houser, 2005; Kurzban et al., 2001;
Yamagishi, 1986; Yamagishi and Sato, 1986). In this study, we
pointed out the difference between the discrete reciprocity that has
prevailed in past modelling efforts, and the continuous reciprocity
that has been observed in these experiments. While the difference
between discrete and continuous reciprocity may at first glance
seem trivial, it affected model results significantly: compared to
discrete reciprocity, the continuous mean matching strategy greatly
enlarged the basin of attraction where reciprocity can evolve.
However, this advantage of continuous reciprocity was heavily
constrained by the size of the benefit from cooperation; the basin of
attraction for continuous reciprocators increased almost linearly as
the benefit from cooperation (B) increased. In the absence of
assortative interaction, when the efficiency of cooperation (B/n)
approached around 0.9 (i.e., B=18, 45 and 90 for groups of 20, 50 and
100 individuals, respectively), the proportion of continuous recipro-
cators necessary for invading a population of defectors dropped to
below 10% (Fig. 1c). When groups were assortatively formed, the
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
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represents an independent replication of simulations.
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value of B required for continuous reciprocity to invade the
population fell significantly (Fig. 1d). For instance, when degree of
assortative group formation was fairly weak (r=1/16), the propor-
tion of continuous reciprocators necessary for invading the popula-
tion dropped below 10% when the values of B were around 8, 11, and
12.5 for groups of size 20, 50 and 100, respectively. In both cases
with and without assortative interaction, invasion of continuous
reciprocity seems to be realistic only in narrow range where the size
of the benefit from cooperation comes close to its maximum bound.
When the value of the benefit from cooperation was sufficiently
large, continuous reciprocity was stable even in a heterogeneous
population where strategy space was extended to allow for below-
and above-mean reciprocity.

It is important to remember that the value of B indicates the
extent to which one unit of contribution by one member benefits
the member’s entire group. For example, if B=20, this means that
when one member expends one unit of effort, it produces 20 units
of public good for the group. Cooperation may under some
extreme circumstances lead to extraordinarily efficient public
good provisioning—for example, contributing to the discovery of
a new food source during a time of starvation, or helping to build
a higher wall in order to defend a village against a large-scale
attack. Further, with some public goods, for example public
buildings or roads, B tends to increase as n increases, because the
total benefit produced often increases with the number of people
Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
in the repeated n-person prisoner’s dilemma. J. Theor. Biol. (2010),
who utilize the good. However, it is not clear that such efficient
public goods production would have been a realistic aspect of the
societies in which human adaptations for reciprocity evolved.

The model presented suggests that continuous reciprocity can
evolve in large groups only under a narrow range of circum-
stances involving unusually high productive efficiency. In this
sense, the puzzle of the evolution of large-scale cooperation still
remains to be solved. On the other hand, the overall effects of
replacing discrete with continuous reciprocity were significant.
Future models of the evolution of cooperation should incorporate
real-world behavioral regularities that are observed in the context
of both cooperation and punishment (e.g., Carpenter, 2007), while
still keeping models as simple as possible.
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Appendix A. When reciprocity is continuous

When more than one R coexists with D in a group, R gradually
decreases its contribution because it matches the average
contribution made by other group members. When there are m

continuous reciprocators and n�m defectors in a group, the
contribution made by any R in round i is zi=vi�1 where v=(m�1)/
(n�1). Thus in this group, in round i the payoff to R is B � zi �

m=n�zi and the payoff to D is B � zi �m=n. The expected payoff to D

in a group of m R players is VðDjmÞ ¼
P1

i ¼ 1 wi�1 � B � zi �m=n.
V(R|n) is strictly larger than V(D|n�1) when the following
condition is satisfied:

B�1

1�w
4

Bðn�1Þ=n

1�wðn�2Þ=ðn�1Þ

because

X1
i ¼ 1

wi�1 � zi ¼
1

1�wv
:

The expected payoff to R in a group of m R players and n�m D

players is

VðRjmÞ ¼
X1
i ¼ 1

wi�1 � B � zi �m=n�
X1
i ¼ 1

wi�1 � zi:

Assuming random group formation, the average payoff to R at the
population level is

WðRÞ ¼W0þ
Xn�1

x ¼ 0

pðxÞ � VðRjm¼ xþ1Þ ¼W0þ
Xn�1

x ¼ 0

pðxÞ
ðxþ1ÞB=n�1

1�w � x=ðn�1Þ
;

where W0 is the baseline fitness, p(x) is the probability for a focal
player to find himself in a group of x other R players and n�x�1
other D players given that the proportion of R in a population is
pm;

pðxÞ ¼
n�1

x

� �
px

mð1�pmÞ
n�1�x:

The average payoff to D is

WðDÞ ¼W0þ
Xn�1

x ¼ 0

pðxÞ � VðDjm¼ xÞ

¼W0þ
Xn�1

x ¼ 0

pðxÞ
x � B=n

1�wðx�1Þ=ðn�1Þ
:

The proportion of R at an internal equilibrium, p�m is numerically
derived by calculating the value of pm in the equation,
W(D)=W(R). Fig. 1a in the paper illustrates how this value
changes as a function of B/n and w when group size is 100.
Appendix B. When groups are assortatively formed

Consider two strategies existing in a population and let p(x) be
the probability that a focal player will find himself in a group of x

players of the same strategy and n�x�1 players of the other
strategy. When the proportion of a focal strategy in a population
is p,

pðxÞ ¼
n�1

x

� �
ðrþð1�rÞpÞxfð1�rÞð1�pÞgn�1�x:

In this equation, r is a parameter, ranging from zero to one,
determining the degree of assortative interaction; groups
are randomly formed when r=0. Here, r plays the same role
as Hamilton’s kinship coefficient (Hamilton, 1964) and even
unconditional cooperation can evolve when {(n�1)r+1}B/n4c,
which is called the inclusive fitness effect (Hamilton, 1975). When
r40, of particular interest is the situation in which this equation
Please cite this article as: Takezawa, M., Price, M.E., Revisiting ‘‘The Ev
in the repeated n-person prisoner’s dilemma. J. Theor. Biol. (2010),
does not hold, and unconditional cooperation can therefore not
evolve.

We analyzed the influence of the assortative interactions in
two different ways: invasion analysis and basin of attraction
analysis. First, we investigated a situation where an invading
strategy is very rare. Assume that p is the proportion of a rare
invading strategy in a population. As p approaches 0, the above
mentioned probability p(x) approaches to and is approximated by

n�1

x

� �
rxð1�rÞn�1�x:

When D is common in the population, the fitness of a rare
invading R is obtained by recalculating W(R) in the Appendix A
after replacing p(x) with the new value derived in this section. As
the average fitness of the common strategy D is equal to the
baseline population fitness W0, R can invade the population when
W(R)4W0. The threshold value of the number of interactions that
must be exceeded by R in Fig. 2 in the paper was derived by
numerically solving this equation given that the other parameters
were fixed. The threshold value for T was calculated in the same
manner given that WðTÞ ¼W0þ

Pn�1
x ¼ 0 pðxÞ � VðTjm¼ xþ1Þ where

VðTjm¼ xþ1Þ is ðxþ1ÞB=n�1 when xon–1 and ððxþ1ÞB=n�1Þ=
ð1�wÞ when x=n�1.

Second, we investigated a situation in which the proportion p

of an invading strategy takes any value other than zero. Fig. 1b
and 1d in the paper show the results of this analysis.
Appendix C. When an unconditional cooperator (C) exists

When the three strategies R, C and D coexist in a group, the
contribution made by any R player in round i is

zi ¼ vi�1þs �
Xi�1

j ¼ 1

vj�1 ¼ vi�1þsð1�vi�1Þ=ð1�rÞ

where v=(m�1)/(n�1), s=k/(n�1), and m and k are the number
of R and C players in the group, respectively. Thus, the average
payoff to R in a group of m R and k C is

VðRjm; kÞ ¼
X1
i ¼ 1

wi�1 � B � zi �m=nþ
X1
i ¼ 1

wi�1 � B � k=n�
X1
i ¼ 1

wi�1 � zi:

Likewise, the average payoffs to C and D in the same group are

VðCjm; kÞ ¼
X1
i ¼ 1

wi�1 � B � zi �m=nþ
X1
i ¼ 1

wi�1 � B � k=n�
X1
i ¼ 1

wi�1;

and

VðDjm; kÞ ¼
X1
i ¼ 1

wi�1 � B � zi �m=nþ
X1
i ¼ 1

wi�1 � B � k=n;

respectively. Hence, the average payoffs to R, C, and D in a
population are

WðRÞ ¼W0þ
Xn�1

x ¼ 0

Xn�1�x

y ¼ 0

pðx; yÞ � VðRjm¼ xþ1; k¼ yÞ;

WðCÞ ¼W0þ
Xn�1

x ¼ 0

Xn�1�x

y ¼ 0

pðx; yÞ � VðCjm¼ x; k¼ yþ1Þ;

and

WðDÞ ¼W0þ
Xn�1

x ¼ 0

Xn�1�x

y ¼ 0

pðx; yÞ � VðDjm¼ x; k¼ yÞ;

where p(x,y) is the probability of finding x R and y=n�1�x C in a
group given that the proportion of R and C in a population is pm

and pk, respectively. In general, the probability that a focal player
olution of Reciprocity in Sizable Groups’’: Continuous reciprocity
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of a strategy s1 will find himself in a group of j s1 players, k s2

players and n–x–1 s3 players is pðj; kÞ ¼ ðj; k;n�1Þ!ðrþð1�rÞp1Þ
j

fð1�rÞp2g
kfð1�rÞð1�p1�p2Þg

n�1�j�k given that the proportion of s1

and s2 in a population are p1 and p2 and that the degree of
assortative interaction is r.

When reciprocity is discrete (Tn�1), the average payoffs to
Tn�1, C and D in a group of x Tn�1 and y C are

VðTn�1jm; kÞ ¼
X1
i ¼ 1

wi�1 B � ðmþkÞ

n
�1

� �
; when n¼mþk;

VðTn�1jm; kÞ ¼
B � ðmþkÞ

n
�1þ

X1
i ¼ 2

wi�1 B � k

n
; when n4mþk;

VðCjm; kÞ ¼
X1
i ¼ 1

wi�1 B � ðmþkÞ

n
�1

� �
; when n¼mþk;

VðCjm; kÞ ¼
B � ðmþkÞ

n
�1þ

X1
i ¼ 2

wi�1 B � k

n
�1

� �
; when n4mþk;

and

VðDjm; kÞ ¼
B � ðmþkÞ

n
þ
X1
i ¼ 2

wi�1 B � k

n
;

respectively. The average payoffs to the three strategies in a
population are derived in the same manner as when reciprocity is
continuous.
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