Analysis of direct boundary-domain integral equations
for a mixed BVP with variable coefficient,
II: Solution regularity and asymptotics

O. Chkadua, S.E. Mikhailov, and D. Natroshvili

Abstract Mapping and invertibility properties of some parametrix-based surface and volume potentials are studied in Bessel-potential and Besov spaces. These results are then applied to derive regularity and asymptotics of the solution to a system of boundary-domain integral equations associated with a mixed BVP for a variable-coefficient PDE, in a vicinity of the curve of change of the boundary condition type.

Keywords: Partial Differential Equation, Variable coefficients, Mixed problem, Parametrix, Pseudo-differential equations, Boundary-Domain Integral Equations, Asymptotics

1 Introduction

This paper is the second part of the paper [6], where we analysed four versions of Boundary-Domain Integral Equation System (BDIES) to which a mixed (Dirichlet-Neumann) boundary value problem for the heat transfer equation with a variable heat conductivity coefficient can be reduced, and gave a full description of existence, uniqueness, and operator invertibility in appropriate Sobolev spaces.

*Corresponding author, Tel: +44(0)1895 267361, Fax: +44(0)1895 269732,
E-mail: sergey.mikhailov@brunel.ac.uk
In the present paper, we first discuss properties of surface and volume potentials, constituting the BDIES, in the Bessel potential spaces H^s_p and in the Besov spaces. Then we use these properties to analyse regularity and asymptotic behaviour of the BDIES solutions.

A motivation for analysis of boundary-domain integral equations, and used notations can be found in [6]. To simplify references, we will precede numbers of sections, equations and statements from [6] by I.

2 Boundary value problem with variable coefficient and parametrix-based potentials

Here we recall some necessary material from [6]. Let Ω^+ be a bounded open three–dimensional region of \mathbb{R}^3 and $\Omega^- := \mathbb{R}^3 \setminus \overline{\Omega^+}$. For simplicity, we assume that the boundary $S := \partial \Omega^+ = \partial \Omega^-$ is a simply connected, closed, infinitely smooth surface. Moreover, $S = S_D \cup S_N$ where S_D and S_N are nonempty, nonintersecting ($S_D \cap S_N = \emptyset$), simply connected sub–manifolds of S with infinitely smooth boundary curve $\ell := \partial S_D = \partial S_N \in C^\infty$.

In this paper we will continue investigation of the Boundary-Domain Integral Equation Systems (BDIESs) introduced in Part I, which are equivalent to the following mixed boundary value problem:

Find a function $u \in H^1_2(\Omega^+)$ satisfying the conditions

$$L(x, \partial_x) u(x) := \sum_{i=1}^3 \frac{\partial}{\partial x_i} \left(a(x) \frac{\partial u(x)}{\partial x_i} \right) = f \text{ in } \Omega^+, \quad (2.1)$$

$$r_{S_D}^+ u = \varphi_0 \text{ on } S_D, \quad (2.2)$$

$$r_{S_N}^+ T^+ u = \psi_0 \text{ on } S_N, \quad (2.3)$$

where r_M denotes the restriction operator on M; $\varphi_0 \in H^1_2(S_D)$, $\psi_0 \in H^{-\frac{3}{2}}_2(S_N)$ and $f \in L_2(\Omega^+)$; $a \in C^\infty(\mathbb{R}^3)$, $a(x) > 0$ for $x \in \mathbb{R}^3$; $(\cdot)^+$ denote the trace, and $T^+(x, n(x), \partial_x)$ is the co-normal derivative operator correctly defined in the functional sense (see Section I.2).

To investigate the regularity and asymptotics of the BDIES solutions we will need the following spaces: the Sobolev–Slobodetski spaces $W^r_p(\Omega^+)$, $W^r_{p,loc}(\Omega^-)$; the Bessel potential spaces $H^s_p(\Omega^+)$, $H^s_{p,loc}(\Omega^-)$, $H^s_p(S)$; and the Besov spaces $B^s_{p,q}(\Omega^+)$, $B^s_{p,q,loc}(\Omega^-)$, $B^s_{p,q}(S)$, where $r \geq 0$, $s \in \mathbb{R}$ and
1 < p, q < ∞ (see, e.g., [13], [20]). We recall that \(H^2_r = W^2_r = \mathcal{B}^2_r \) for \(r \geq 0 \), \(H^2_s = B^2_s \) for any \(s \in \mathbb{R} \), \(W^t_p = B^t_{p,p} \) and \(H^k_p = W^k_p \) for any positive and non-integer \(t \), for any non-negative integer \(k \) and for any \(p > 1 \).

For \(S_1 \subset S \), we will use the subspace \(\tilde{H}^s_p(S_1) = \{ g : g \in H^s_p(S), \text{ supp } g \subset S_1 \} \) of \(H^s_p(S) \), while \(H^s_p(S_1) = \{ r_{s_1} g : g \in H^s_p(S) \} \) denotes the space of restriction on \(S_1 \) of functions from \(H^s_p(S) \), where \(r_{s_1} \) denotes the restriction operator on \(S_1 \). The subspaces \(\tilde{B}^s_{p,q}(S_1) \) and \(B^s_{p,q}(S_1) \) of \(B^s_{p,q}(S) \) are defined similarly.

In Section I.4.1 we derived the following third Green identity for arbitrary function \(u \in H^1_2(\Omega^+; L) := \{ g \in H^1(\Omega) : L g \in L^2(\Omega) \} \),

\[
\begin{align*}
 u(y) + \mathcal{R} u(y) - V T^+ u(y) + W u^+(y) &= \mathcal{P} f(y), \quad y \in \Omega^+, \\
 \mathcal{G} u(y) := & \frac{1}{2} u^+(y) + \mathcal{R}^+ u(y) - V T^+ u(y) + W u^+(y) = [\mathcal{P} f]^+(y), \quad y \in S,
\end{align*}
\]

where

\[
 V g(y) := - \int_S P(x,y) g(x) dS_x, \quad y \notin S,
\]

\[
 W g(y) := - \int_S [T(x,n(x),\partial_x)] P(x,y) g(x) dS_x, \quad y \notin S,
\]

\[
 \mathcal{P} g(y) := \int_{\Omega^+} P(x,y) g(x) dx, \quad y \in \Omega^+,
\]

\[
 \mathcal{R} g(y) := \int_{\Omega^+} R(x,y) g(x) dx, \quad y \in \Omega^+,
\]

with

\[
 P(x,y) = \frac{-1}{4\pi a(y)|x-y|}, \quad x,y \in \mathbb{R}^3,
\]

\[
 R(x,y) = \sum_{i=1}^3 \frac{x_i-y_i}{4\pi a(y)|x-y|^3} \frac{\partial a(x)}{\partial x_i}, \quad x,y \in \mathbb{R}^3.
\]

If \(Lu = f \in L^2(\Omega^+) \), then (2.4) gives (see Section I.4)

\[
 u(y) + \mathcal{R} u(y) - V T^+ u(y) + W u^+(y) = \mathcal{P} f(y), \quad y \in \Omega^+,
\]

\[
 \mathcal{G} u(y) := \frac{1}{2} u^+(y) + \mathcal{R}^+ u(y) - V T^+ u(y) + W u^+(y) = [\mathcal{P} f]^+(y), \quad y \in S,
\]

3
\[Tu(y) := \frac{1}{2} T^+ u(y) + T^+ R u(y) - W' T^+ u(y) + \mathcal{L}^+ u(y) = T^+ \mathcal{P} f(y), \quad y \in S. \quad (2.13) \]

We recall that \(R^+ u(y) := [R u]^+(y), \)

\[V g(y) := - \int_S P(x, y) g(x) dS_x, \quad (2.14) \]
\[W g(y) := - \int_S \left[T(x, n(x), \partial_x) \right] P(x, y) g(x) dS_x, \quad (2.15) \]
\[W' g(y) := - \int_S \left[T(y, n(y), \partial_y) \right] P(x, y) g(x) dS_x, \quad (2.16) \]
\[\mathcal{L}^\pm g(y) := [T(y, n(y), \partial_y)] W g(y)]^\pm, \quad (2.17) \]

where \(y \in S. \)

As in Part I, from definitions (2.5)-(2.10) and (2.14)-(2.17) one can obtain representations of the parametrix-based surface potentials boundary operators in terms of their counterparts for \(a = 1, \) i.e. associated with the Laplace operator \(\Delta, \)

\[V g = \frac{1}{a} V_\Delta g, \quad W g = \frac{1}{a} W_\Delta (ag), \quad (2.18) \]
\[V g = \frac{1}{a} V_\Delta g, \quad W g = \frac{1}{a} W_\Delta (ag), \quad (2.19) \]
\[W' g = W'_\Delta g + a \frac{\partial}{\partial n} \left(\frac{1}{a} \right) V_\Delta g, \quad (2.20) \]
\[\mathcal{L}^\pm g = \mathcal{L}_\Delta (ag) + \left[a \frac{\partial}{\partial n} \left(\frac{1}{a} \right) \right] W^\pm_\Delta (ag) \quad (2.21) \]
\[\mathcal{P} g = \frac{1}{a} \mathcal{P}_\Delta g, \quad (2.22) \]
\[\mathcal{R} g = - \frac{1}{a} \sum_{j=1}^3 \partial_j \left[\mathcal{P}_\Delta (g \partial_j a) \right], \quad (2.23) \]

where the subscript \(\Delta \) (the Laplace operator) means that the corresponding surface potentials are constructed by means of the harmonic fundamental solution \(P_\Delta = -(4 \pi |x - y|)^{-1}. \)
3 Properties of the potentials in Bessel-potential and Besov spaces

3.1 Mapping properties of surface potentials

The mapping and jump properties of the potentials of type (2.5)-(2.8) and the corresponding boundary integral and pseudo–differential operators (3.7)-(3.3) in the Bessel potential \((H^s_p) \) and Besov \((B^s_{p,q}) \) spaces are well studied nowadays (for details see, e.g., [17], [7], [8], [16]; see also [14], [15], where the coerciveness properties of the boundary operators and also the case of Lipschitz domains are considered).

Theorems 3.1-3.2 below generalize their counterparts formulated in Part I for Sobolev spaces. They are well known (see e.g. the above references) for the case \(a = \text{const} \). Using (2.18)-(2.21), one can easily prove they hold true also for the variable positive coefficient \(a \in C^\infty(\mathbb{R}^3) \).

THEOREM 3.1 Let \(s \in \mathbb{R}, \ 1 < p < +\infty, \) and \(1 \leq q \leq +\infty. \) The following operators are continuous

\[
V : B^s_{p,p}(S) \to H^{s+1+\frac{1}{p}}_p(\Omega^+) \quad \left[B^s_{p,p}(S) \to H^{s+1+\frac{1}{p}}_{p,loc}(\Omega^-) \right],
\]

\[
: B^s_{p,q}(S) \to B^{s+1+\frac{1}{p}}_{p,q}(\Omega^+) \quad \left[B^s_{p,q}(S) \to B^{s+1+\frac{1}{p}}_{p,q,loc}(\Omega^-) \right];
\]

\[
W : B^s_{p,p}(S) \to H^{s+\frac{1}{p}}_p(\Omega^+) \quad \left[B^s_{p,p}(S) \to H^{s+\frac{1}{p}}_{p,loc}(\Omega^-) \right],
\]

\[
: B^s_{p,q}(S) \to B^{s+\frac{1}{p}}_{p,q}(\Omega^+) \quad \left[B^s_{p,q}(S) \to B^{s+\frac{1}{p}}_{p,q,loc}(\Omega^-) \right].
\]

THEOREM 3.2 Let \(s \in \mathbb{R}, \ 1 < p < +\infty, \) and \(1 \leq q \leq +\infty. \) The following pseudo–differential operators are continuous

\[
V : B^s_{p,q}(S) \to B^{s+1}_{p,q}(S);
\]

\[
W, W' : B^s_{p,q}(S) \to B^{s+1}_{p,q}(S);
\]

\[
\mathcal{L}^\pm : B^s_{p,q}(S) \to B^{s-1}_{p,q}(S).
\]
THEOREM 3.3 Let $s \in \mathbb{R}$, $1 < p < +\infty$, and $1 \leq q \leq +\infty$. Let S_1 and S_2 with $\partial S_1, \partial S_2 \in C^{\infty}$ be nonempty open sub-manifolds of S. The operators

\[r_{S_2} \mathcal{V} : \tilde{B}^s_{p,q}(S_1) \to B^s_{p,q}(S_2), \]

\[r_{S_2} \mathcal{W} : \tilde{B}^s_{p,q}(S_1) \to B^s_{p,q}(S_2), \]

\[r_{S_2} \mathcal{W}' : \tilde{B}^s_{p,q}(S_1) \to B^s_{p,q}(S_2) \]

are compact.

Proof. Theorem 3.2 implies that the operators \mathcal{V}, \mathcal{W} and \mathcal{W}' have the following mapping properties,

\[r_{S_2} \mathcal{V} : \tilde{B}^s_{p,q}(S_1) \to B^{s+1}_{p,q}(S_2), \]

\[r_{S_2} \mathcal{W} : \tilde{B}^s_{p,q}(S_1) \to B^{s+1}_{p,q}(S_2), \]

\[r_{S_2} \mathcal{W}' : \tilde{B}^s_{p,q}(S_1) \to B^{s+1}_{p,q}(S_2). \]

Since the embedding $B^{s+1}_{p,q}(S_2) \subset B^s_{p,q}(S_2)$ is compact, the proof follows. \hfill \Box

3.2 Fredholm properties and invertibility of some surface potentials

In our analysis we essentially apply the following assertion about elliptic pseudo-differential operators on manifolds with boundary (for general theory see, e.g. [1], [10], [12], [18], [3]).

LEMMA 3.4 Let $\overline{S}_1 \subset C^{\infty}$ be a compact, 2-dimensional, non-self-intersecting, two-sided surface with boundary $\partial S_1 \subset C^{\infty}$, and $s \in \mathbb{R}$, $1 < p < \infty$, $1 \leq q \leq \infty$. Further, let A be a strongly elliptic pseudo-differential operator of order $\alpha \in \mathbb{R}$ on S_1 having a uniformly positive principal homogeneous symbol, i.e., $\sigma(A; y, \xi) \geq c_0 > 0$ for $y \in \overline{S}_1$, $\xi \in \mathbb{R}^2$ with $|\xi| = 1$, where c_0 is a constant.

Then the operators

\[A : \tilde{H}^s_{p}(S_1) \to H^{s-\alpha}_{p}(S_1) \]

\[: \tilde{B}^s_{p,q}(S_1) \to B^{s-\alpha}_{p,q}(S_1) \]
are Fredholm operators of index zero if
\[
\frac{1}{p} - 1 < s - \frac{\alpha}{2} < \frac{1}{p}. \quad (3.6)
\]

Moreover, the null-spaces of operators (3.4), (3.5) are the same (for all values of the parameter \(q \in [1, +\infty] \)) provided \(p \) and \(s \) satisfy inequality (3.6).

This assertion is a particular case of a more general Theorem 2.19 in [18].

Now we can prove

THEOREM 3.5 Let \(S_1 \) be a nonempty, simply connected sub–manifold of \(S \) with infinitely smooth boundary curve, \(s \in \mathbb{R}, 1 < p < +\infty, 1 \leq q \leq +\infty \) and
\[
\frac{1}{p} - \frac{1}{2} < s < \frac{1}{p} + \frac{1}{2}.
\]

Then the pseudo–differential operators
\[
r_{S_1} \mathcal{V} : \tilde{H}^{s-1}_p(S_1) \rightarrow H^s_p(S_1) \quad (3.7)
\]
\[
r_{S_1} \mathcal{L}^\pm : \tilde{H}^s_p(S_1) \rightarrow \tilde{H}^{s-1}_p(S_1) \quad (3.9)
\]
have order \(-1\) and are invertible, while the pseudo–differential operators
\[
r_{S_1} \mathcal{L}^\pm : \tilde{B}^{s-1}_{p,q}(S_1) \rightarrow B^s_{p,q}(S_1) \quad (3.8)
\]
\[
r_{S_1} \mathcal{L}^\pm : \tilde{B}^s_{p,q}(S_1) \rightarrow \tilde{B}^{s-1}_{p,q}(S_1) \quad (3.10)
\]
have order \(+1\) and are Fredholm operators of index zero.

Proof. It is easy to show that
\[
\sigma(\mathcal{V}; y, \xi) = \frac{1}{2} |a(y)||\xi|^{-1}, \quad y \in S_1, \quad \xi = (\xi_1, \xi_2) \in \mathbb{R}^2,
\]
is the principal homogeneous symbol of the operator \(\mathcal{V} \), while the function
\[
\sigma(-\mathcal{L}^\pm; y, \xi) = \frac{1}{2} a(y)|\xi|, \quad y \in S_1, \quad \xi = (\xi_1, \xi_2) \in \mathbb{R}^2,
\]
is the principal homogeneous symbol of the operator \(-\mathcal{L}^\pm\).
Therefore, \(r_{S_1} V \) and \(r_{S_1} L^\pm \) are strongly elliptic pseudo–differential operators on the sub–manifold \(S_1 \) with positive homogeneous principal symbols of order \(-1\) and \(+1\), respectively. Due to Lemma 3.4 we conclude that the operators (3.7)-(3.10) are Fredholm operators of index zero.

Further, let us note that \(\langle a(y)r_{S_1} V g, g \rangle_{S_1} > 0 \) for arbitrary nonzero \(g \in \tilde{H}^{-\frac{1}{2}}(S_1) \). Therefore the operator (3.7) is invertible for \(s = \frac{1}{2}, p = 2 \). In turn this implies that the operator (3.7) is invertible for all \(s \in (\frac{1}{p} - \frac{1}{2}, \frac{1}{p} + \frac{1}{2}) \) due to Lemma 3.4.

Theorem 3.6 Let \(S_1 \) and \(S \setminus S_1 \) be nonempty, open simply connected sub–manifolds of \(S \) with an infinitely smooth boundary curve, \(1 < p < +\infty \), \(1 \leq q \leq +\infty \) and \(1/p - 1/2 < s < 1/p + 1/2 \). Then the pseudo–differential operators

\[
 r_{S_1} \hat{\mathcal{L}} : \tilde{H}^s_p(S_1) \to H^s_p(S_1) \tag{3.11}
\]

\[
 : \tilde{B}^s_{p,q}(S_1) \to B^s_{p,q}(S_1) \tag{3.12}
\]

where \(\hat{\mathcal{L}} := [\mathcal{L}^\pm + \frac{\partial a}{\partial n} \left(\mp \frac{1}{2} I + \mathcal{W} \right)] \) on \(S \),

are invertible, while the operators

\[
 r_{S_1}(\mathcal{L}^\pm - \hat{\mathcal{L}}) : \tilde{H}^s_p(S_1) \to H^s_p(S_1) \tag{3.14}
\]

\[
 : \tilde{B}^s_{p,q}(S_1) \to B^s_{p,q}(S_1)
\]

are bounded and the operators

\[
 r_{S_1}(\mathcal{L}^\pm - \hat{\mathcal{L}}) : \tilde{H}^s_p(S_1) \to H^{s-1}_p(S_1) \tag{3.15}
\]

\[
 : \tilde{B}^s_{p,q}(S_1) \to B^{s-1}_{p,q}(S_1)
\]

are compact.

Proof. By Theorem I.3.6,

\[
 \hat{\mathcal{L}} g = \mathcal{L}^+ g + \frac{\partial a}{\partial n} \left(-\frac{1}{2} I + \mathcal{W} \right) g = \mathcal{L}^- g + \frac{\partial a}{\partial n} \left(\frac{1}{2} I + \mathcal{W} \right) g, \tag{3.16}
\]

and the operator \(r_{S_1} \hat{\mathcal{L}} : \tilde{H}^\frac{1}{2}(S_1) \to H^{-\frac{1}{2}}(S_1) \) is invertible. Then Lemma 3.5 and (3.16) implies the invertibility of the operators (3.11), (3.12).
Since
\[\mathcal{L}^\pm - \hat{\mathcal{L}} = \frac{\partial u}{\partial n}(\pm \frac{1}{2} I + \mathcal{W}) , \]
the operators (3.14) are bounded due to Theorem 3.3. To prove the compactness of \(\mathcal{L}^\pm - \hat{\mathcal{L}} \), we remark that the imbeddings \(H^s_p(S_1) \subset H^{s-1}_p(S_1) \) and \(B^s_{p,q}(S_1) \subset B^{s-1}_{p,q}(S_1) \) are compact, which completes the proof.

\[\square \]

REMARK 3.7 By the same arguments as in the proof of Theorem 3.5 one can show that the operators
\[\mathcal{V} : H^{s-1}_p(S) \to H^s_p(S) \quad [B^{s-1}_{p,q}(S) \to B^s_{p,q}(S)] \]
are invertible for all \(s \in \mathbb{R}, 1 < p < \infty \), and \(1 \leq q \leq \infty \) (cf. [16]).

3.3 Mapping properties of volume potentials

THEOREM 3.8 Let \(\Omega^+ \) be a bounded open three–dimensional region of \(\mathbb{R}^3 \) with a simply connected, closed, infinitely smooth boundary \(S = \partial \Omega^+ \), and \(1 < p, q < \infty \). The following operators are continuous

\[\mathcal{P} : \tilde{H}^s_p(\Omega^+) \to H^{s+2/\gamma}_p(\Omega^+) \quad [\tilde{B}^s_{p,q}(\Omega^+) \to B^{s+2/\gamma}_{p,q}(\Omega^+)] , \quad s \in \mathbb{R} , \tag{3.17} \]
\[\mathcal{R} : \tilde{H}^s_p(\Omega^+) \to H^{s+1/\gamma}_p(\Omega^+) \quad [\tilde{B}^s_{p,q}(\Omega^+) \to B^{s+1/\gamma}_{p,q}(\Omega^+)] , \quad s \in \mathbb{R} , \tag{3.19} \]
\[\mathcal{P}^+ : \tilde{H}^s_p(\Omega^+) \to B^{s+2/\gamma}_{p,p}(S) \quad [\tilde{B}^s_{p,q}(\Omega^+) \to B^{s+2/\gamma}_{p,q}(S)] , \quad s > -2 + \frac{1}{\gamma} \tag{3.21} \]
\[\mathcal{R}^+ : \tilde{H}^s_p(\Omega^+) \to B^{s+1/\gamma}_{p,p}(S) \quad [\tilde{B}^s_{p,q}(\Omega^+) \to B^{s+1/\gamma}_{p,q}(S)] , \quad s > -1 + \frac{1}{\gamma} \tag{3.23} \]
\[T^+ \mathcal{P} : \tilde{H}^s_p(\Omega^+) \to B^{s+1/\gamma}_{p,p}(S) \quad [\tilde{B}^s_{p,q}(\Omega^+) \to B^{s+1/\gamma}_{p,q}(S)] , \quad s > -1 + \frac{1}{p} \tag{3.25} \]
\[T^+ \mathcal{R} : \tilde{\mathcal{H}}_p^s(\Omega^+) \to B^{-\frac{1}{p}}_{p,p}(S), \quad s > \frac{1}{p}, \quad (3.27) \]
\[: H^s_p(\Omega^+) \to B^{-\frac{1}{p}}_{p,p}(S), \quad s > \frac{1}{p}, \quad (3.28) \]

Proof. Similar to Theorem I.3.8, the continuity of the operators (3.17), (3.19), (3.21), (3.23), (3.25), (3.27) follows from (2.22), (2.23) and the corresponding properties of the operator \(\mathcal{P}_\Delta \) due to the mapping properties of pseudodifferential operators on \(\mathbb{R}^n \) (see, e.g., [10], [18]) and the trace theorems (see, e.g., [20]). Recall that if \(u \in H^s_p(\Omega^+) \) then \([u]^+ \in B^{-\frac{1}{p}}_{p,p}(S) \) for \(1 < p < \infty \) and \(s > \frac{1}{p} \).

To prove the remaining items of the theorem we consider in detail operator (3.18) on the scale of Bessel potential spaces (all arguments on the scale of Besov spaces are word for word). First let us assume that \(-1 + \frac{1}{p} < s < \frac{1}{p} \). In this case \(H^s_p(\Omega^+) = \tilde{\mathcal{H}}^s_p(\Omega^+) \) and the continuity of the operator (3.18) is evident due to the above arguments.

Let now \(\frac{1}{p} < s < 1 + \frac{1}{p} \). For \(g \in H^s_p(\Omega^+) \), clearly, \(\partial_j g \in H^{s-1}_p(\Omega^+) \) and \(g^+ \in B^{-\frac{1}{p}}_{p,p}(S) \), due to the continuity of the operator \(\partial_j : H^s_p(\Omega^+) \to H^{s-1}_p(\Omega^+) \) and the trace theorem (see, e.g., [11]). For the Newton potential of the Laplace operator we have the following representation

\[\partial_j \mathcal{P}_\Delta g(y) = \mathcal{P}_\Delta (\partial_j g)(y) + V_\Delta (n_j g^+)(y) \quad \text{for} \ y \in \Omega^+, \quad (3.29) \]

where \(n_j (j = 1, 2, 3) \) are the components of the outward unit normal vector to \(S \). Due to (3.29) and the mapping properties of the single layer potential (cf. Theorem 3.1) we conclude that \(\partial_j \mathcal{P}_\Delta : H^s_p(\Omega^+) \to H^{s+1}_p(\Omega^+) \) is continuous for \(j = 1, 2, 3 \), which along with formula (2.22) implies the continuity of operator (3.18) for \(\frac{1}{p} < s < 1 + \frac{1}{p} \).

Further, with the help of these results and the representation (3.29), we can easily verify by induction that the operator (3.18) is continuous for \(k - 1 + \frac{1}{p} < s < k + \frac{1}{p} \), where \(k \) is an arbitrary nonnegative integer. For the values \(s = k + \frac{1}{p} \) (with \(k = 0, 1, 2, \ldots \)) the continuity of the operator (3.18) then follows due to the complex interpolation property of Bessel potential and Besov function spaces (see, e.g., [20], Ch. 4).

It is evident that (3.22) and (3.26) are then the direct consequences of the trace theorem.

The word for word arguments show that the claims of the theorem concerning the operator \(\mathcal{R} \) hold as well, which completes the proof. \(\square \)
4 Regularity and asymptotic properties of solutions

In Section 4.1 below we will establish some regularity results for solutions of the mixed BVP and the BDIEs considered in Part I. In Section 4.2 we will apply these results (in particular, inclusions (4.14)) in the study of asymptotic behaviour of the solutions near the curve ℓ. Note that solution asymptotics for the boundary integral equations associated with the mixed BVP for constant-coefficient PDEs were considered in [19].

We will deal with the BDIES ($\mathcal{G}T$) introduced in Section I.5.1, for the unknowns $(u, \psi, \varphi) \in H^1(\Omega^+) \times \tilde{H}^{-\frac{1}{2}}(S_D) \times \tilde{H}^{\frac{1}{2}}(S_N)$:

\begin{align*}
 u + \mathcal{R}u - V\psi + W\varphi &= \mathcal{F}^T_1 \quad \text{in } \Omega^+, \\
 r_{s_D} \mathcal{R}^+u - r_{s_D} V\psi + r_{s_D} W\varphi &= \mathcal{F}^T_2 \quad \text{on } S_D, \\
 r_{s_N} T^+ \mathcal{R}u - r_{s_N} W^\prime \psi + r_{s_N} L^+ \varphi &= \mathcal{F}^T_3 \quad \text{on } S_N.
\end{align*}

(4.1) (4.2) (4.3)

Throughout this section we assume that the right hand side of BDIES (4.1)-(4.3) is more smooth than in Part I, namely,

\[\mathcal{F}^T = (\mathcal{F}^T_1, \mathcal{F}^T_2, \mathcal{F}^T_3)^\top \in H^3(\Omega^+) \times H^{\frac{5}{2}}(S_D) \times H^{\frac{3}{2}}(S_N). \]

By Theorems 3.1 and 3.8 it will be particularly the case if \mathcal{F}^T is generated by the right hand sides of BVP (2.1)-(2.3) as

\[\mathcal{F}^T := [F_0, r_{s_D} F_0^+ - \varphi_0, r_{s_N} T^+ F_0 - \psi_0]^\top, \]

(4.4)

cf. (I.5.5), where

\[F_0 := \mathcal{P} f + V\Psi_0 - W\Phi_0 \quad \text{in } \Omega^+, \]

(4.5)

Φ_0 is a fixed extension of φ_0 from the sub–manifold S_D to the whole of S, Ψ_0 is a fixed extension of ψ_0 from the sub–manifold S_N to the whole of S, and the following enhanced smoothness conditions are satisfied

\[f \in H^1_2(\Omega^+), \quad \varphi_0 \in H^{\frac{5}{2}}_2(S_D), \quad \psi_0 \in H^{\frac{3}{2}}_2(S_N), \]

\[\Phi_0 \in H^{\frac{5}{2}}_2(S), \quad \Psi_0 \in H^{\frac{3}{2}}_2(S). \]

(4.6)
4.1 Some auxiliary smoothness results

By Corollary I.5.4, the system of BDIEs (4.1)-(4.3) with the right hand side given by (4.6) has a unique solution

\[(u, \psi, \varphi) \in H^1_2(\Omega^+) \times \tilde{H}^{-\frac{1}{2}}_2(S_D) \times \tilde{H}^{\frac{1}{2}}_2(S_N). \]

(4.7)

From equation (4.2) it follows that

\[r_{SD} V(\psi) = \Psi \text{ on } S_D, \]

\[\Psi := -\mathcal{F}_2^{QT} + r_{SD} \left(\mathcal{R}^+ u + W\varphi \right) \in H^{\frac{3}{2}}_2(S_D) \]

(4.8)
due to Theorem 3.2 and mapping property (3.24).

Quite similarly, from equation (4.3) we get

\[r_{SN} \hat{L}\varphi = \Phi \text{ on } S_N, \]

\[\Phi := \mathcal{F}_3^{QT} + r_{SN} \left\{ -T^+ \mathcal{R} u + (\hat{L} - L^+)\varphi + W'\psi \right\} \in H^{\frac{1}{2}}_2(S_N), \]

(4.9)

where the operator \(\hat{L} \) is defined by (3.13).

Recall that (see [20], Theorem 4.6.2)

\[H^{\frac{3}{2}}_2(S_D) \subset B^{s}_{p,p}(S_D), \quad H^{\frac{1}{2}}_2(S_N) \subset B^{s-1}_{p,p}(S_N) \]

for \(s \leq \min\{\frac{3}{2}, \frac{1}{2} + \frac{2}{p}\} \), \(1 < p < +\infty \).

Applying Theorem 3.5 and Corollary 3.6 for \(s \in \left(\frac{1}{p} - \frac{1}{2}, \frac{1}{2} + \frac{1}{2}\right) \) and then extending the result for smaller \(s \) due to the embedding theorem, we derive that if \((\psi, \varphi) \in \tilde{H}^{-\frac{1}{2}}_2(S_D) \times \tilde{H}^{\frac{1}{2}}_2(S_N) \) satisfy equations (4.8) and (4.9), then

\[\psi \in \tilde{B}^{s-1}_{p,p}(S_D), \quad \varphi \in \tilde{B}^{s}_{p,p}(S_N) \]

for any \(p \) and \(s \) such that

\[1 < p < +\infty, \quad s < \frac{1}{p} + \frac{1}{2}. \]

(4.10)

By Theorem 3.1 we see that

\[V\psi \in H^{s+\frac{1}{p}}_{p}(\Omega^+), \quad W\varphi \in H^{s+\frac{1}{p}}_{p}(\Omega^+) \]

(4.11)
with s and p as in (4.10).

Since $Ru \in H^2_2(\Omega^+)$ for $u \in H^1_2(\Omega^+)$, then from equation (4.1) and inclusions (4.11) along with the embedding theorems for the Besov spaces (see [20], Section 4.6), we obtain the following H"older continuity of the solution to the mixed BVP,

$$u = \mathcal{F}_1^\Omega - Ru + V \psi - W \varphi \in H^{s+\frac{1}{p}}_p(\Omega^+) \subset C^{s-\frac{2}{p}}(\Omega^+), \quad (4.12)$$

where s and p satisfy conditions (4.10) and $s - \frac{2}{p} > 0$. If we take here p sufficiently large and s close to $\frac{1}{2}$ such that the above restrictions on the parameters p and s are satisfied, then we see that the inclusion $u \in C^{\frac{1}{2} - \delta}(\Omega^+)$ holds with arbitrarily small $\delta > 0$.

Further, from (4.12) due to (3.20) and the trace theorem it also follows that

$$Ru \in H^{s+1+\frac{1}{p}}_p(\Omega^+), \quad r_{S_D}^+ Ru \in B^{s+1}_p(S_D), \quad r_{S_N}^+ T^+Ru \in B^{s}_p(S_N),$$

where s and p satisfy conditions (4.10). Then from formulas (4.8) and (4.9) for Ψ and Φ we get the following inclusions

$$\Psi \in B^{s+1}_p(S_D), \quad \Phi \in B^{s}_p(S_N), \quad (4.13)$$

with s and p as in (4.10).

For any $\sigma < \frac{1}{2}$, one can find s satisfying (4.10) and $\varepsilon > 0$ such that $s = \frac{1}{p} + \sigma + \varepsilon$. Bearing in mind that $B^{1+\varepsilon}_p(S_D) \subset H^1_p(S_D)$ for all $t \in (-\infty, +\infty)$, $p \in (1, +\infty)$ and $\varepsilon > 0$, we arrive from (4.13) at the relation

$$\Psi \in H^{1+\frac{1}{p}+\sigma}_p(S_D), \quad \Phi \in H^{\frac{1}{2}+\sigma}_p(S_N), \quad (4.14)$$

where $\sigma < \frac{1}{2}$.

4.2 Asymptotics of solution

In what follows we derive asymptotic expansion formulas in local co–ordinates for the components of the solution vector (u, ψ, φ). To this end, in the normal plane $\Pi_{y'}$ to the curve $\ell := \partial S_D = \partial S_N$ we consider a local polar co–ordinate system (r, ϑ) such that $y = (y', r, \vartheta)$, $r \geq 0$, $\vartheta \in [0, \pi]$. The pole of the local co–ordinate system, $r = 0$, belongs to the curve ℓ; $\vartheta = \pi$ corresponds to the Dirichlet part of the boundary, while $\vartheta = 0$ corresponds to the Neumann part of the boundary.
Moreover, the interior domain corresponds locally to the interval $0 < \vartheta < \pi$. Actually, y' defines some parameterization of the curve ℓ.

Further, we apply the theory of asymptotic expansions of solutions to elliptic pseudo-differential equations on manifolds with boundary, developed in [10] (see also [2], [9], [5]).

Note that the principal homogeneous symbols

$$\sigma(\mathcal{V}; y', \xi) = \frac{1}{2} a(y') |\xi|^{-1} \quad \text{and} \quad \sigma(-\mathcal{L}^+; y', \xi) = \frac{1}{2} a(y') |\xi|,$$

corresponding to the operators \mathcal{V} and $-\mathcal{L}^+$, are positive and even functions in ξ for $|\xi| = 1$. Therefore, from (4.8) and (4.9) along with the embedding (4.14) we obtain similar to [9, Theorems 4.1 and 4.2],

$$\psi(y', r) = c_0(y') \chi(r) r^{-1/2} + \psi_1(y', r), \quad \varphi(y', r) = b_0(y') \chi(r) r^{1/2} + \varphi_1(y', r), \quad (4.15)$$

where $\chi \in C_0^\infty(\mathbb{R}^+) \text{ is a cut-off function with compact support and } \chi(r) = 1 \text{ for } 0 \leq r \leq \varepsilon \text{ with a suitable } \varepsilon > 0,$

while

$$c_0 \in H_p^{\sigma + \frac{1}{2}}(\ell), \quad \psi_1 \in \tilde{H}_p^{\sigma + \frac{1}{2}}(S_D), \quad b_0 \in H_p^{\sigma + \frac{3}{2}}(\ell), \quad \varphi_1 \in \tilde{H}_p^{\sigma + 1 + \frac{1}{2}}(S_N)$$

for any $2 < p < +\infty, \sigma < \frac{1}{2}$. More detailed analysis, based on the factorization technique, shows that (cf. [19, Theorem 4.9]),

$$c_0(y') = -\frac{a(y')}{2} b_0(y'). \quad (4.17)$$

Now, the asymptotic behaviour of u in a spatial vicinity of ℓ can be found from (4.12) with the help of formulas (4.15) and (4.16). In fact, we have

$$u = V \psi - W \varphi + G \text{ in } \Omega^+, \quad (4.18)$$

where ψ and φ have the structure given by (4.15) and (4.16), and

$$G := \mathcal{F}_1^\sigma - \mathcal{R} u \in H_p^{1+\sigma + \frac{2}{p}}(\Omega^+) \subset C^{1 + \sigma - \frac{1}{p}}(\overline{\Omega^+}) \quad (4.19)$$

with $2 < p < +\infty$ and $\frac{1}{p} - 1 < \sigma < \frac{1}{2}$.
Note that, for $t \in \mathbb{R}$ and $2 < p < +\infty$, we have the embedding (see [20, Theorem 4.6.1 (b)])
\[\tilde{H}^1_p(S_1) \subset H^1_p(S) \subset B^1_{p,p}(S) \]
for any subsurface S_1 of S. Therefore by Theorem 3.1,
\[V \psi_1 \in H^{1+\sigma+\frac{2}{p}}_p(\Omega^+), \quad W \varphi_1 \in H^{1+\sigma+\frac{2}{p}}_p(\Omega^+) \]
for $2 < p < +\infty$ and $\sigma < \frac{1}{2}$. Consequently
\[V \psi_1 \in C^{1+\sigma-rac{1}{p}}_p(\Omega^+), \quad W \varphi_1 \in C^{1+\sigma-rac{1}{p}}_p(\Omega^+). \] (4.20)
for any p, σ such that $2 < p < +\infty$ and $\frac{1}{p} - 1 < \sigma < \frac{1}{2}$.

Applying the results obtained by Chkadua and Duduchava (see [4], Theorem 2.2 and Remark 2.11) for potential type functions (4.18) with densities (4.15) and (4.16) whose asymptotic expansions are known, we arrive at the following representation near the curve ℓ due to (4.19) and (4.20)
\[u(y', r, \theta) = d_0(y', \theta) \chi(r) r^{1/2} + u_1(y', r, \theta), \] (4.21)
where
\[d_0(y', \theta) = d_1(y') \cos \frac{\theta}{2} + d_2(y') \sin \frac{\theta}{2}, \quad d_1, d_2 \in H^{\frac{1}{p}+\sigma}_p(\ell), \quad u_1 \in C^{\frac{1}{p}+\sigma-rac{1}{p}}_p(\Omega^+) \] (4.22)
for any p, σ such that $2 < p < +\infty$ and $\frac{1}{p} - 1 < \sigma < \frac{1}{2}$, and d_1 and d_2 are real.

Membership (4.22) implies $u_1 \in C^{1-\delta}_p(\Omega^+)$ for arbitrarily small $\delta > 0$, and we get from (4.21) the best regularity result for the solution of the mixed BVP, $u \in C^{\frac{1}{2}}_p(\Omega^+)$.

Subtracting (4.2) from the trace of (4.1) on S_D, we obtain,
\[r_{s_D} u^+ = r_{s_D}(\mathcal{F}^{GT}_1)^+ - \mathcal{F}^{GT}_2 \in H^{\frac{1}{2}}_p(S_D) \text{ on } S_D, \] (4.23)
Taking into account that $\theta = \pi$ on S_D near l, inclusion (4.23) implies $d_2(y') = 0$ in (4.22).

Moreover, if the BDIES right hand side \mathcal{F}^{GT} is generated by the BVP right hand side according to (4.4)-(4.6), then by Theorem I.5.2,
\[\psi = T^+ u - \Psi_0, \quad \varphi = u^+ - \Phi_0 \text{ on } S. \] (4.24)
Substituting in (4.24) asymptotics (4.15)-(4.17) and (4.21)-(4.22) with $d_2 = 0$ and comparing participating terms and their smoothness, we arrive at the following asymptotics of the BDIE solution,
\[u(y', r, \theta) = b_0(y') \cos \frac{\theta}{2} \chi(r) r^{1/2} + u_1(y', r, \theta), \] (4.25)
\[\psi(y', r) = -\frac{b_0(y')}{2} a(y') \chi(r) r^{-1/2} + \psi_1(y', r), \quad (4.26) \]

\[\varphi(y', r) = b_0(y') \chi(r) r^{1/2} + \varphi_1(y', r), \quad (4.27) \]

where

\[b_0 \in H^{\sigma + \frac{3}{2}}_p(\ell), \quad u_1 \in C^{\frac{1}{2} + \sigma - \frac{1}{p}(\Omega^+}), \quad \psi_1 \in \tilde{H}^{\sigma + \frac{1}{p}}_p(S_D), \quad \varphi_1 \in \tilde{H}^{\sigma + 1 + \frac{1}{p}}_p(S_N). \]

The smoothness and asymptotic results obtained above for BDIEs (4.1)-(4.3) with the right hand side associated with the BVP right hand sides as in (4.4)-(4.5), will hold true also for the other three BDIE systems considered in Part I (with their right hand sides associated with the same BVP), due to their equivalence to the BVP and thus to each other.

Acknowledgements

This work was supported by the International Joint Project Grant - 2005/R4 "Boundary-Domain Integral Equations: Formulation, Analysis, Localisation " of the Royal Society, UK.

References

