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Abstract

We consider evolution (non-stationary) space-periodic solutions to the n-dimensional non-linear Navier-
Stokes equations of anisotropic fluids with the viscosity coefficient tensor variable in space and time and
satisfying the relaxed ellipticity condition. Employing the Galerkin algorithm with the basis constituted
by the eigenfunctions of the periodic Bessel-potential operator, we prove the existence of a global weak
solution.
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1 Introduction

Analysis of Stokes and Navier-Stokes equations is an established and active field of research in the applied
mathematical analysis, see, e.g., [5, 7, 14, 23, 26, 28, 29, 30] and references therein. In [9, 10, 11, 12, 19, 20]
this field has been extended to the transmission and boundary-value problems for stationary Stokes and
Navier-Stokes equations of anisotropic fluids, particularly, with relaxed ellipticity condition on the viscosity
tensor.

In this paper, we consider evolution (non-stationary) space-periodic solutions in Rn, n ≥ 2, to the Navier-
Stokes equations of anisotropic fluids with the viscosity coefficient tensor variable in space coordinates and
time and satisfying the relaxed ellipticity condition. By the Galerkin algorithm with the basis constituted by
the eigenfunctions of the periodic Bessel-potential operator, the solution existence is analysed in the spaces
of Banach-valued functions mapping a finite time interval to periodic Sobolev (Bessel-potential) spaces on
n-dimensional flat torus.

Anisotropic Stokes and Navier-Stokes PDE systems

Let n ≥ 2 be an integer, x ∈ Rn denote the space coordinate vector, and t ∈ R be time. Let L denote the
second-order differential operator represented in the component-wise divergence form as

(Lu)k := ∂α
(
aαβkj Ejβ(u)

)
, k = 1, . . . , n, (1.1)

where u = (u1, . . . , un)
⊤, Ejβ(u) :=

1
2(∂juβ + ∂βuj) are the entries of the symmetric part, E(u), of the

gradient, ∇u, in space coordinates, and aαβkj (x, t) are variable components of the tensor viscosity coefficient,
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cf. [6], A(x, t) =
{
aαβkj (x, t)

}
1≤i,j,α,β≤n

, depending on the space coordinate vector x and time t. We also

denoted ∂j =
∂

∂xj
, ∂t =

∂

∂t
. Here and further on, the Einstein convention on summation in repeated indices

from 1 to n is used unless stated otherwise.
The following symmetry conditions are assumed (see [21, (3.1),(3.3)]),

aαβkj (x, t) = akβαj (x, t) = aαjkβ(x, t). (1.2)

In addition, we require that tensor A satisfies the relaxed ellipticity condition in terms of all symmetric
matrices in Rn×n with zero matrix trace, see [10], [11]. Thus, we assume that there exists a constant CA > 0
such that,

CAa
αβ
kj (x, t)ζkαζjβ ≥ |ζ|2 , for a.e. x, t, (1.3)

∀ ζ = {ζkα}k,α=1,...,n ∈ Rn×n such that ζ = ζ⊤ and
n∑

k=1

ζkk = 0,

where |ζ| = |ζ|F := (ζkαζkα)
1/2 is the Frobenius matrix norm and the superscript ⊤ denotes the transpose

of a matrix. Note that in the more common, strong ellipticity condition, inequality (1.3) should be satisfied
for all matrices (not only symmetric with zero trace), which makes it much more restrictive.

We assume that aαβij ∈ L∞(Rn × [0, T ]), where [0, T ] is some finite time interval, and the tensor A is
endowed with the norm

‖A‖ := ‖A‖L∞(Rn×[0,T ]),F :=

∣∣∣∣
{
‖aαβij ‖L∞(T×[0,T ])

}n

α,β,i,j=1

∣∣∣∣
F

< ∞, (1.4)

where

∣∣∣∣
{
bαβij

}n

α,β,i,j=1

∣∣∣∣
F

:=
(
bαβij bαβij

)1/2
is the Frobenius norm of a 4-th order tensor.

Symmetry conditions (1.2) lead to the following equivalent form of the operator L

(Lu)k = ∂α
(
aαβkj ∂βuj

)
, k = 1, . . . , n. (1.5)

Let u(x, t) be an unknown vector velocity field, p(x, t) be an unknown (scalar) pressure field, and f(x, t)
be a given vector field Rn, where t ∈ R is the time variable. Then the linear PDE system

∂tu−Lu+∇p = f , div u = 0,

determines the anisotropic evolution incompressible Stokes system.
The nonlinear system

∂tu−Lu+∇p+ (u · ∇)u = f , divu = 0

is the evolution anisotropic incompressible Navier-Stokes system, where we use the notation (u ·∇) := uj∂j .
In the isotropic case, the tensor A reduces to

aαβkj (x, t) = λ(x, t)δkαδjβ + µ(x, t) (δαjδβk + δαβδkj) , 1 ≤ k, j, α, β ≤ n ,

where λ, µ ∈ L∞(Rn × [0, T ]), and c−1
µ ≤ µ(x, t) ≤ cµ for a.e. x and t, with some constant cµ > 0 (cf., e.g.,

Appendix III, Part I, Section 1 in [30]). Then it is immediate that condition (1.3) is fulfilled with CA = cµ/2
and thus our results apply also to the Stokes and Navier-Stokes systems in the isotropic case. Moreover,
(1.1) becomes

Lu = (λ+ µ)∇divu+ µ∆u+ (∇λ)divu+ 2(∇µ) · E(u).
Assuming λ = 0 and µ = 1 we arrive at the classical mathematical formulations of isotropic, constant-
coefficient Stokes and Navier-Stokes systems in the familiar form

∂tu−∆u+∇p+ (u · ∇)u = f , divu = 0.
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2 Periodic function spaces

Let us introduce some function spaces on torus, i.e., periodic function spaces (see, e.g., [1, p.26], [2], [17],
[25, Chapter 3], [23, Section 1.7.1] [29, Chapter 2], for more details).

Let n ≥ 1 be an integer and T be the n-dimensional flat torus that can be parametrized as the semi-open
cube T = Tn = [0, 1)n ⊂ Rn, cf. [31, p. 312]. In what follows, D(T) = C∞(T) denotes the (test) space of
infinitely smooth real or complex functions on the torus. As usual, N denotes the set of natural numbers,
N0 the set of natural numbers augmented by 0, and Z the set of integers.

Let ξ ∈ Zn denote the n-dimensional vector with integer components. We will further need also the set

Żn := Zn \ {0}.

Extending the torus parametrisation to Rn, it is often useful to identify T with the quotient space Rn \ Zn.
Then the space of functions C∞(T) on the torus can be identified with the space of T-periodic (1-periodic)
functions C∞

# = C∞
# (Rn) that consists of functions φ ∈ C∞(Rn) such that

φ(x+ ξ) = φ(x) ∀ ξ ∈ Zn. (2.1)

Similarly, the Lebesgue space on the torus Lp(T), 1 ≤ p ≤ ∞, can be identified with the periodic Lebesgue
space Lp# = Lp#(R

n) that consists of functions φ ∈ Lp,loc(R
n), which satisfy the periodicity condition (2.1)

for a.e. x.
The space dual to D(T), i.e., the space of linear bounded functionals on D(T), called the space of torus

distributions, is denoted by D′(T) and can be identified with the space of periodic distributions D′
# acting

on C∞
# .
The toroidal/periodic Fourier transform mapping a function g ∈ C∞

# to a set of its Fourier coefficients ĝ
is defined as (see, e.g., [25, Definition 3.1.8])

ĝ(ξ) = [FTg](ξ) :=

∫

T

e−2πix·ξg(x)dx, ξ ∈ Zn,

and can be generalised to the Fourier transform acting on a distribution g ∈ D′
#.

For any ξ ∈ Zn, let |ξ| := (
∑n

j=1 ξ
2
j )

1/2 be the Euclidean norm in Zn and let us denote

̺(ξ) := 2π(1 + |ξ|2)1/2.

Evidently,

1

2
̺(ξ)2 ≤ |2πξ|2 ≤ ̺(ξ)2 ∀ ξ ∈ Żn. (2.2)

Similar to [25, Definition 3.2.2], for s ∈ R we define the periodic/toroidal Sobolev (Bessel-potential) spaces
Hs

# := Hs
#(R

n) := Hs(T) that consist of the torus distributions g ∈ D′(T), for which the norm

‖g‖Hs
#
:= ‖̺sĝ‖ℓ2(Zn) :=


∑

ξ∈Zn

̺(ξ)2s|ĝ(ξ)|2



1/2

(2.3)

is finite, i.e., the series in (2.3) converges. Here ‖ · ‖ℓ2(Zn) is the standard norm in the space of square
summable sequences with indices in Zn. By [25, Proposition 3.2.6], Hs

# is the Hilbert space with the inner
(scalar) product in Hs

# defined as

(g, f)Hs
#
:=
∑

ξ∈Zn

̺(ξ)2sĝ(ξ)f̂(ξ), ∀ g, f ∈ Hs
#, s ∈ R, (2.4)

where the bar denotes complex conjugate. Evidently, H0
# = L2#.
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The dual product between g ∈ Hs
# and f ∈ H−s

# , s ∈ R, is defined (cf. [25, Definition 3.2.8]) as

〈g, f〉T :=
∑

ξ∈Zn

ĝ(ξ)f̂(−ξ). (2.5)

If s = 0, i.e., g, f ∈ L2#, then (2.4) and (2.5) reduce to

〈g, f〉T =

∫

T

g(x)f(x)dx = (g, f̄ )L2#
.

For real function g, f ∈ L2# we, of course, have 〈g, f〉T = (g, f)L2#
.

For any s ∈ R, the space H−s
# is Banach adjoint (dual) to Hs

#, i.e., H
−s
# = (Hs

#)
∗. Similar to, e.g., [18,

p.76] one can show that

‖g‖Hs
#
= sup

f∈H−s
# ,f 6=0

|〈g, f〉T|
‖f‖H−s

#

.

For g ∈ Hs
#, s ∈ R, and m ∈ N0, let us consider the partial sums

gm(x) =
∑

ξ∈Zn,|ξ|≤m

ĝ(ξ)e2πix·ξ.

Evidently, gm ∈ C∞
# , ĝm(ξ) = ĝ(ξ) if |ξ| ≤ m and ĝm(ξ) = 0 if |ξ| > m. This implies that ‖g − gm‖Hs

#
→ 0

as m → ∞ and hence we can write

g(x) =
∑

ξ∈Zn

ĝ(ξ)e2πix·ξ, (2.6)

where the Fourier series converges in the sense of norm (2.3). Moreover, since g is an arbitrary distribution
from Hs

#, this also implies that the space C∞
# is dense in Hs

# for any s ∈ R (cf. [25, Exercise 3.2.9]).

There holds the compact embedding Ht
# →֒ Hs

# if t > s, embeddings Hs
# ⊂ Cm

# if m ∈ N0, s > m+ n
2 ,

and moreover,
⋂

s∈RHs
# = C∞

# (cf. [25, Exercises 3.2.10, 3.2.10, and Corollary 3.2.11]).
Note that for each s, the periodic norm (2.3) is equivalent to the periodic norm that we used in [19, 20],

which is obtained from (2.3) by replacing there ̺(ξ) = 2π(1 + |ξ|2)1/2 with ρ(ξ) = (1 + |ξ|2)1/2. We employ
here the norm (2.3) to simplify some norm estimates further in the paper. Note also that the periodic norms
on Hs

# are equivalent to the corresponding standard (non-periodic) Bessel potential norms on T as a cubic
domain, see, e.g., [2, Section 13.8.1].

By (2.3), ‖g‖2Hs
#
= |ĝ(0)|2 + |g|2Hs

#
, where

|g|Hs
#
:= ‖̺sĝ‖ℓ2(Żn) :=


∑

ξ∈Żn

̺(ξ)2s|ĝ(ξ)|2



1/2

is the seminorm in Hs
#.

For any s ∈ R, let us also introduce the space

Ḣs
# := {g ∈ Hs

# : 〈g, 1〉T = 0}.

The definition implies that if g ∈ Ḣs
#, then ĝ(0) = 0 and

‖g‖Ḣs
#
= ‖g‖Hs

#
= |g|Hs

#
= ‖̺sĝ‖ℓ2(Żn) . (2.7)

The space Ḣs
# is the Hilbert space with inner product inherited from (2.4), that is,

(g1, g2)Ḣs
#
:=
∑

ξ∈Żn

̺(ξ)2sĝ1(ξ)ĝ2(ξ), ∀ g1, g2 ∈ Ḣs
#, s ∈ R. (2.8)
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Due to the Riesz representation theorem, the dual product between g1 ∈ Ḣs
# and f2 ∈ (Ḣs

#)
∗, s ∈ R, can

be represented as

〈g1, f2〉T :=
∑

ξ∈Żn

ĝ1(ξ)f̂2(−ξ) = (g1, g2)Ḣs
#
=
∑

ξ∈Żn

̺(ξ)2sĝ1(ξ)ĝ2(ξ).

where

f̂2(ξ) = ̺(ξ)2sĝ2(−ξ), ĝ2(ξ) = ̺(ξ)−2sf̂2(−ξ), ξ ∈ Żn

for some g2 ∈ Ḣs
#. This implies that

f2(x) =
(
Λ2s
# g2

)
(x), (2.9)

where Λr
# : Hs

# → Hs−r
# is the continuous periodic Bessel-potential operator of the order r ∈ R defined as

(
Λr
# g
)
(x) :=

∑

ξ∈Zn

̺(ξ)rĝ(ξ)e2πix·ξ ∀ g ∈ Hs
#, s ∈ R, (2.10)

see, e.g., [2, Section 13.8.1]. Note that (2.10) implies

(
Λ2
# g
)
(x) =

∑

ξ∈Zn

(2π)2(1 + |ξ|2)ĝ(ξ)e2πix·ξ = (2π)2g(x) −∆2g(x) ∀ g ∈ Hs
#, s ∈ R.

If ĝ(0) = 0 then (2.10) implies that Λ̂r
# g(0) = 0, and thus the operator

Λr
# : Ḣs

# → Ḣs−r
# (2.11)

is continuous as well. Hence by (2.9) we conclude that (Ḣs
#)

∗ = Ḣ−s
# .

Denoting Ċ∞
# := {g ∈ C∞

# : 〈g, 1〉T = 0}, then
⋂

s∈R Ḣs
# = Ċ∞

# .
The corresponding spaces of n-component vector functions/distributions are denoted as Lq# := (Lq#)

n,
Hs

# := (Hs
#)

n, etc.

Note that the norm ‖∇(·)‖
H

s−1
#

is an equivalent norm in Ḣs
#. Indeed, by (2.6)

∇g(x) = 2πi
∑

ξ∈Żn

ξe2πix·ξĝ(ξ), ∇̂g(ξ) = 2πiξĝ(ξ) ∀ g ∈ Ḣs
#,

and then (2.2) and (2.7) imply

1

2
|g|2Hs

#
≤ ‖∇g‖2

H
s−1
#

≤ |g|2Hs
#

∀ g ∈ Hs
#,

1

2
‖g‖2Hs

#
=

1

2
‖g‖2

Ḣs
#
=

1

2
|g|2Hs

#
≤ ‖∇g‖2

H
s−1
#

≤ |g|2Hs
#
= ‖g‖2

Ḣs
#
= ‖g‖2Hs

#
∀ g ∈ Ḣs

#. (2.12)

The vector counterpart of (2.12) takes form

1

2
‖v‖2

H
s
#
=

1

2
‖v‖2

Ḣs
#
≤ ‖∇v‖2

(Hs−1
# )n×n ≤ ‖v‖2

Ḣs
#
= ‖v‖2

H
s
#

∀v ∈ Ḣs
#. (2.13)

Note that the second inequalities in (2.12) and (2.13) are valid also in the more general cases, i.e., for g ∈ Hs
#

and v ∈ Hs
#, respectively.

We will further need the first Korn inequality

‖∇v‖2(L2#)n×n ≤ 2‖E(v)‖2(L2#)n×n ∀v ∈ H1
# (2.14)
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that can be easily proved by adapting, e.g., the proof in [18, Theorem 10.1] to the periodic Sobolev space;
cf. also [21, Theorem 2.8].

Let us also define the Sobolev spaces of divergence-free functions and distributions,

Ḣs
#σ :=

{
w ∈ Ḣs

# : divw = 0
}
, s ∈ R,

endowed with the same norm (2.3). Similarly, C∞
#σ and Lq#σ denote the subspaces of divergence-free

vector-functions from C∞
# and Lq#, respectively, etc.

The space Ḣs
#σ is the Hilbert space with inner product inherited from (2.4) and (2.8), that is,

(g1,g2)Ḣs
#σ

:=
∑

ξ∈Żn

̺(ξ)2sĝ1(ξ)ĝ2(ξ), ∀g1,g2 ∈ Ḣs
#σ, s ∈ R.

Due to the Riesz representation theorem, the dual product between g1 ∈ Ḣs
#σ and f2 ∈ (Ḣs

#σ)
∗, s ∈ R, can

be represented as

〈g1, f2〉T :=
∑

ξ∈Żn

ĝ1(ξ)f̂2(−ξ) = (g1,g2)Ḣs
#σ

=
∑

ξ∈Żn

̺(ξ)2sĝ1(ξ)ĝ2(ξ).

where

f̂2(ξ) = ̺(ξ)2sĝ2(−ξ), ξ ∈ Żn

for some g2 ∈ Ḣs
#σ. This implies that

f2(x) =
(
Λ2s
# g2

)
(x), (2.15)

where the operator

Λr
# : Ḣs

#σ → Ḣs−r
#σ (2.16)

defined as in (2.10) is continuous. Hence by (2.15) we conclude that

(Ḣs
#σ)

∗ = Ḣ−s
#σ.

Let us also introduce the space

Ḣs
#g :=

{
w = ∇q, q ∈ Ḣs+1

#

}
, s ∈ R,

endowed with the norm (2.3).
Let s ∈ R, w ∈ Ḣs

#g and v ∈ Ḣs
#σ By (2.4), for their inner product in Ḣs

# we obtain

(w,v)Hs
#
:=
∑

ξ∈Zn

̺(ξ)2sŵ(ξ) · v̂(ξ) =
∑

ξ∈Zn

̺(ξ)2s2πiξq̂(ξ) · v̂(ξ)

= −
∑

ξ∈Zn

̺(ξ)2sq̂(ξ)2πiξ · v̂(ξ) = −
∑

ξ∈Zn

̺(ξ)2sq̂(ξ)d̂iv v(ξ) = 0.

Hence Ḣs
#g and Ḣs

#σ are orthogonal subspaces of Ḣs
# in the sense of inner product.

On the other hand, if s ∈ R, w ∈ Ḣs
#g and v ∈ Ḣ−s

#σ, then for their dual product we obtain

〈w,v〉 = 〈∇q,v〉 = −〈q,divv〉 = 0.

Hence the spaces Ḣs
#g and Ḣ−s

#σ are orthogonal in the sense of dual product.
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For s ∈ R and F ∈ Ḣs
#, let us introduce the operators Pg and Pσ as follows,

(Pg F)(x) :=
∑

ξ∈Żn

ξ
ξ · F̂(ξ)
|ξ|2 e2πix·ξ,

(Pσ F)(x) :=
∑

ξ∈Żn

(
F̂(ξ)− ξ

ξ · F̂(ξ)
|ξ|2

)
e2πix·ξ.

Note that

F(x) = (Pσ F)(x) + (Pg F)(x) ∀F ∈ Ḣs
#, s ∈ R. (2.17)

Evidently

(Pg F)(x) = ∇q(x), where q(x) =
∑

ξ∈Żn

ξ · F̂(ξ)
2πi|ξ|2 e

2πix·ξ,

hence q ∈ Ḣs+1
# .

One can check that Pg(Pg F) = Pg F and thus Pg : Ḣs
# → Ḣs

#g is a bounded projector. On the other

hand, divPσ F = 0, Pσ(Pσ F) = Pσ F and hence Pσ : Ḣs
# → Ḣs

#σ is also a bounded projector. Since Ḣs
#g

and Ḣs
#σ are orthogonal subspaces of Ḣs

#, the projectors Pg and Pσ are orthogonal in Ḣs. The projector
Pσ is called the Leray projector (see, e.g., [23, Section 2.1]).

Decomposition (2.17) implies the representation Ḣs
# = Ḣs

#g ⊕ Ḣs
#σ called the Helmholtz-Weyl decom-

position. Note that the orthogonality of Ḣs
#g and Ḣs

#σ implies that for any F ∈ Ḣs
#, the representation

F = Fg + Fσ, where Fg ∈ Ḣs
#g and Fσ ∈ Ḣs

#σ, is unique and hence is given by (2.17).
Summarising the obtained results, we arrive at the following assertion (cf., e.g., [23, Theorem 2.6], where

a similar statement is proved for s = 0 and n = 3).

THEOREM 2.1. Let s ∈ R and n ≥ 2.
(a) The space Ḣs

# has the Helmholtz-Weyl decomposition, Ḣs
# = Ḣs

#g ⊕ Ḣs
#σ, that is, any F ∈ Ḣs

# can

be uniquely represented as F = Fg + Fσ, where Fg ∈ Ḣs
#g and Fσ ∈ Ḣs

#σ.

(b) The spaces Ḣs
#g and Ḣs

#σ are orthogonal subspaces of Ḣs
# in the sense of inner product, i.e.,

(w,v)Hs
#
= 0 for any w ∈ Ḣs

#g and v ∈ Ḣ−s
#σ.

(c) The spaces Ḣs
#g and Ḣ−s

#σ are orthogonal in the sense of dual product, i.e., 〈w,v〉 = 0 for any

w ∈ Ḣs
#g and v ∈ Ḣ−s

#σ.

(d) There exist the bounded orthogonal projector operators Pg : Ḣs
# → Ḣs

#g and Pσ : Ḣs
# → Ḣs

#σ (the

Leray projector), while F = PgF+ PσF for any F ∈ Ḣs
#.

For the evolution problems we will systematically use the spaces Lq(0, T ;H
s
#), s ∈ R, 1 ≤ q ≤ ∞,

0 < T < ∞, which consists of functions that map t ∈ (0, T ) to a function or distributions from Hs
#. For

1 ≤ q < ∞, the space Lq(0, T ;H
s
#) is endowed with the norm

‖h‖Lq(0,T ;Hs
#) =

(∫ T

0
‖h(·, t)‖qHs

#
dt

)1/q

=



∫ T

0


∑

ξ∈Zn

̺(ξ)2s|ĥ(ξ, t)|2


q/2

dt




1/q

< ∞,

and for q = ∞ with the norm

‖h‖L∞(0,T ;Hs
#) = ess supt∈(0,T )‖h(·, t)‖Hs

#
= ess supt∈(0,T )


∑

ξ∈Zn

̺(ξ)2s|ĥ(ξ, t)|2


1/2

< ∞.
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For a function (or distribution) h(x, t), we will use the notation h′(x, t) := ∂th(x, t) :=
∂

∂t
h(x, t) for the

partial derivative in the time variable t. Let X and Y be some Hilbert spaces. We will further need the
space

W 1(0, T ;X,Y ) := {u ∈ L2(0, T ;X) : u′ ∈ L2(0, T ;Y )}

endowed with the norm

‖u‖W 1(0,T ;X,Y ) = (‖u‖2L2(0,T ;X) + ‖u′‖2L2(0,T ;Y ))
1/2.

Spaces of such type are considered in [15, Chapter 1, Section 2.2]. We will particularly need the spaces
W 1(0, T ;Hs

#,H
s′

#) and their vector counterparts.
Unless stated otherwise, we will assume in this paper that all vector and scalar variables are real-valued

(however with complex-valued Fourier coefficients).

3 Weak formulation of the evolution spatially-periodic anisotropic Navier-

Stokes problem

Let us consider the following Navier-Stokes problem for the real-valued unknowns (u, p),

∂tu−Lu+∇p+ (u · ∇)u = f in T× (0, T ), (3.1)

divu = 0 in T× (0, T ), (3.2)

u(·, 0) = u0 in T, (3.3)

with given data f ∈ L2(0, T ; Ḣ
−1
# ), u0 ∈ Ḣ0

#σ. Note that the time-trace u(·, 0) for u solving the weak form
of (3.1)–(3.2) is well defined, see Definition 3.1 and Remark 3.3.

Let us introduce the bilinear form

aT(u,v) = aT(t;u,v) :=
〈
aαβij (·, t)Ejβ(u), Eiα(v)

〉
T

∀ u,v ∈ Ḣ1
#. (3.4)

By the boundedness condition (1.4) and inequality (2.13) we have

|aT(t;u,v)| ≤ ‖A‖‖E(u)‖Ln×n
2#

‖E(v)‖Ln×n
2#

≤ ‖A‖‖∇u‖Ln×n
2#

‖∇v‖Ln×n
2#

≤ ‖A‖‖u‖
Ḣ

1
#
‖v‖

Ḣ
1
#

∀ u,v ∈ Ḣ1
#. (3.5)

If the relaxed ellipticity condition (1.3) holds, taking into account the relation
∑n

i=1 Eii(w) = divw = 0 for
w ∈ Ḣ1

#σ, equivalence of the norm ‖∇(·)‖Ln×n
2#

to the norm ‖ · ‖
Ḣ

1
#σ

in Ḣ1
#σ, see (2.13), and the first Korn

inequality (2.14), we obtain

aT(t;w,w) =
〈
aαβij (·, t)Ejβ(w), Eiα(w)

〉
T
≥ C−1

A
‖E(w)‖2

Ln×n
2#

≥ 1

2
C−1
A

‖∇w‖2
Ln×n
2#

≥ 1

4
C−1
A

‖w‖2
Ḣ

1
#σ

∀w ∈ Ḣ1
#σ. (3.6)

Then (3.5) and (3.6) give

1

4
C−1
A

‖w‖2
Ḣ

1
#σ

≤ aT(t;w,w) ≤ ‖A‖‖w‖2
Ḣ

1
#σ

∀w ∈ Ḣ1
#σ. (3.7)

This inequality implies that
√

aT(t;w,w) is an equivalent norm in Ḣ1
#σ for almost any t and, moreover,

|||w|||L2(0,T ;Ḣ1
#) :=

(∫ T

0
aT(t;w(·, t),w(·, t))dt

)1/2

(3.8)
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is an equivalent norm in L2(0, T ; Ḣ
1
#σ).

We use the following definition of weak solution, that for n ∈ {2, 3, 4} reduces to the weak formulations
employed, e.g., in [14, Chapter 1, Problem 6.2], [5, Definition 8.5], [29, Problem 2.1], [30, Chapter 3,
Problem 3.1]. However the definition that we use is applicable also to higher dimensions (and allows for
those dimensions more general test functions than in [14, Chapter 1, Problem 6.2]).

DEFINITION 3.1. Let n ≥ 2, T > 0, f ∈ L2(0, T ; Ḣ
−1
# ) and u0 ∈ Ḣ0

#σ. A function u ∈ L∞(0, T ; Ḣ0
#σ)∩

L2(0, T ; Ḣ
1
#σ) is called a weak solution of the evolution space-periodic anisotropic Navier-Stokes initial value

problem (3.1)–(3.3) if it solves the initial-variational problem
〈
u′(·, t) + Pσ[(u(·, t) · ∇)u(·, t)],w

〉
T
+ aT(u(·, t),w) = 〈f(·, t),w〉T, for a.e. t ∈ (0, T ), ∀w ∈ Ḣ1

#σ, (3.9)

〈u(·, 0),w〉T = 〈u0,w〉T, ∀w ∈ Ḣ0
#σ. (3.10)

The associated pressure p is a distribution on T× (0, T ) satisfying (3.1) in the sense of distributions, i.e.,
〈
u′(·, t) + (u(·, t) · ∇)u(·, t),w

〉
T
+ aT(u(·, t),w) + 〈∇p(·, t),w〉T

= 〈f(·, t),w〉T, for a.e. t ∈ (0, T ), ∀w ∈ C∞
# . (3.11)

To justify the weak formulation (3.9), let us act on (3.1) by the Leray projector Pσ and taking into
account that Pσ∂tu = ∂tu and Pσ∇p = 0, we obtain

∂tu+ Pσ[(u · ∇)u]− PσLu = Pσf in T× (0, T ). (3.12)

Assuming that u ∈ L2(0, T ; Ḣ
1
#σ), a

αβ
ij ∈ L∞(0, T ;L∞#), by (1.5) we obtain that Lu ∈ L2(0, T ; Ḣ

−1
# ) and

due to the symmetry conditions (1.2), we get for any w ∈ Ḣ1
#σ and for a.e. t ∈ (0, T ),

−〈PσLu,w〉T = −〈Lu,w〉T = 〈aαβkj (·, t)Ejβ(u), ∂αwk〉T = 〈aαβkj (·, t)Ejβ(u), Ek,α(w)〉T = aT(u,w).

For f ∈ L2(0, T ; Ḣ
−1
# ), we also have 〈Pσf(·, t),w〉T = 〈f(·, t),w〉T. Hence taking the dual product of equation

(3.12) with w, we arrive at equation (3.9). The boundedness of the first dual product in (3.9) and the weak
initial condition (3.10) are justified in Lemma 3.2 and Remark 3.3 below. Equation (3.11) is deduced in a
similar way.

LEMMA 3.2. Let n ≥ 2, T > 0, aαβij ∈ L∞(0, T ;L∞#), f ∈ L2(0, T ; Ḣ
−1
# ) and u0 ∈ Ḣ0

#σ. Let u ∈
L∞(0, T ; Ḣ0

#σ) ∩ L2(0, T ; Ḣ
1
#σ) solve equation (3.9).

(i) Then

Du := u′ + Pσ[(u · ∇)u] ∈ L2(0, T ; Ḣ
−1
#σ) and Du(·, t) ∈ Ḣ−1

#σ for a.e. t ∈ [0, T ], (3.13)

while

(u · ∇)u ∈ L2(0, T ; Ḣ
−n/2
# ) and (u · ∇)u(·, t) ∈ Ḣ

−n/2
# for a.e. t ∈ [0, T ], (3.14)

u′ ∈ L2(0, T ; Ḣ
−n/2
#σ ) and u′(·, t) ∈ Ḣ

−n/2
#σ for a.e. t ∈ [0, T ], (3.15)

and hence u ∈ W 1(Ḣ1
#σ, Ḣ

−n/2
#σ ).

In addition,

∂t‖u‖2
Ḣ

−(n−2)/4
#σ

= 2〈Λ−n/2
# u′,Λ#u〉T = 2〈u′,Λ

1−n/2
# u〉T = 2〈Λ1−n/2

# u′,u〉T (3.16)

for a.e. t ∈ (0, T ) and also in the distribution sense on (0, T ).

(ii) Moreover, u is almost everywhere on [0, T ] equal to a function ũ ∈ C0([0, T ]; Ḣ
−(n−2)/4
#σ ), and ũ is

also Ḣ0
#σ-weakly continuous in time on [0, T ], that is,

lim
t→t0

〈ũ(·, t),w〉T = 〈ũ(·, t0),w〉T ∀w ∈ H0
#, ∀ t0 ∈ [0, T ].

(iii) There exists the associated pressure p ∈ L2(0, T ; Ḣ
−n/2+1
# ) that for the given u is the unique solution

of equation (3.1) in this space.
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Proof. (i) By (3.9) we obtain

|〈Du(·, t),w〉T| ≤ |aT(t;u,w)| + |〈f(·, t),w〉T|
≤ ‖A‖‖u(·, t)‖

H
1
#
‖w‖

H
1
#
+ ‖f(·, t)‖

H
−1
#
‖w‖

H
1
#
, for a.e. t ∈ (0, T ), ∀w ∈ Ḣ1

#σ.

In addition, divDu := divu′ + divPσ[(u · ∇)u] = 0. Hence ‖Du(·, t)‖
Ḣ

−1
#σ

≤ ‖A‖‖u(·, t)‖
H

1
#
+ ‖f(·, t)‖

H
−1
#

for a.e. t ∈ (0, T ) and thus

‖Du‖L2(0,T ;Ḣ−1
#σ)

≤ ‖A‖‖u‖L2(0,T ;H1
#) + ‖f‖L2(0,T ;H−1

# )

which implies inclusions (3.13).
By the multiplication Theorem 5.1 and the Sobolev interpolation inequality, we obtain

‖(u · ∇)u‖
Ḣ

−n/2
#

= ‖div(u⊗ u)‖
H

−n/2
#

≤ ‖u⊗ u‖
(H

1−n/2
# )n×n

≤ C∗(1/2, 1/2, n)‖u‖2
H

1/2
#

≤ C∗(1/2, 1/2, n)‖u‖H0
#
‖u‖

H
1
#
. (3.17)

Thus
‖(u · ∇)u‖

L2(0,T ;Ḣ
−n/2
# )

≤ C∗(1/2, 1/2, n)‖u‖L∞ (0,T ;H0
#)‖u‖L2(0,T ;H1

#),

which implies inclusions (3.14). Further,

‖Pσ[(u · ∇)u]‖
L2(0,T ;Ḣ

−n/2
#σ )

≤ ‖(u · ∇)u‖
L2(0,T ;Ḣ

−n/2
# )

≤ C∗(1/2, 1/2, n)‖u‖L∞ (0,T ;H0
#)‖u‖L2(0,T ;H1

#),

implying that Pσ[(u · ∇)u] ∈ L2(0, T ; Ḣ
−n/2
#σ ). Then the first inclusion in (3.13) leads to the inclusion

u′ ∈ L2(0, T ; Ḣ
−n/2
#σ ) and hence to inclusions (3.15).

(ii) Since u ∈ L2(0, T ; Ḣ
1
#σ) and u′ ∈ L2(0, T ; Ḣ

−n/2
#σ ), relations (3.16) are implied by Lemma 5.8(i).

Moreover, Theorem 5.7 implies that u is almost everywhere on [0, T ] equal to a function ũ ∈ C0([0, T ]; Ḣ
−(n−2)/4
#σ ).

We have that ũ ∈ L∞(0, T ; Ḣ0
#σ), ũ ∈ C0([0, T ]; Ḣ

−(n−2)/4
#σ ) and Ḣ0

#σ ⊂ Ḣ
−(n−2)/4
#σ with continuous

injection. Then Lemma 5.6 (taken from [30, Chapter 3, Lemma 1.4]) implies that ũ is Ḣ0
#σ-weakly continuous

in time.
(iii) The associated pressure p satisfies (3.1) that after applying the projector Pg can be re-written as

∇p = F, (3.18)

where

F := Pg[f − ∂tu+Lu− (u · ∇)u] = Pgf + PgLu− Pg[(u · ∇)u] ∈ L2(0, T ; Ḣ
−n/2
#g ) (3.19)

due to the first inclusion in (3.14). By Lemma 5.4 for gradient, with s = 1 − n/2, equation (3.18) has a

unique solution p in L2(0, T ; Ḣ
−n/2+1
# ).

Note that inclusions (3.13) do not generally imply that u′(·, t) and Pσ[(u · ∇)u](·, t) belong to Ḣ−1
#σ for

a.e. t ∈ [0, T ], but only that their sum does. This is why the first dual product in (3.9) is not written as the
sum of the two respective dual products.

REMARK 3.3. The initial condition (3.10) should be understood for the function u re-defined as the
function ũ that was introduced in Lemma 3.2(ii) and is H0

#-weakly continuous in time.
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4 Existence for evolution spatially-periodic anisotropic Navier-Stokes

problem

In this section, we prove solution existence for the evolution anisotropic incompressible Navier-Stokes sys-
tems, accommodating to anisotropy, variable coefficients and arbitrary n ≥ 2 the approaches presented, e.g.,
in [14, Chapter 1, Section 6.5], [5, Chapter 8], [29, Chapter 3], [30, Chapter 3, Section 3], [23, Section 4] for
the constant-coefficient isotropic Navier-Stokes equations.

THEOREM 4.1. Let n ≥ 2 and T > 0. Let aαβij ∈ L∞(0, T ;L∞#) and the relaxed ellipticity condition

(1.3) hold. Let f ∈ L2(0, T ; Ḣ
−1
# ), u0 ∈ Ḣ0

#σ.

(i) Then there exists a weak solution u ∈ L∞(0, T ; Ḣ0
#σ) ∩ L2(0, T ; Ḣ

1
#σ) of the anisotropic Navier-

Stokes initial value problem (3.1)–(3.3) in the sense of Definition 3.1. Particularly, limt→0〈u(·, t),v〉T =

〈u0,v〉T ∀v ∈ Ḣ0
#σ. There exists also the unique pressure p ∈ L2(0, T ; Ḣ

−n/2+1
# ) associated with the

obtained u, that is the solution of equation (3.1) in L2(0, T ; Ḣ
−n/2+1
# ).

(ii) Moreover, u satisfies the following (strong) energy inequality,

‖u(·, t)‖2
L2#

+ 2

∫ t

t0

aT(u(·, τ),u(·, τ))dτ ≤ ‖u(·, t0)‖2L2#
+ 2

∫ t

t0

〈f(·, τ),u(·, τ)〉Tdτ (4.1)

for any [t0, t] ⊂ [0, T ]. It particularly implies the standard energy inequality,

‖u(·, t)‖2L2#
+ 2

∫ t

0
aT(u(·, τ),u(·, τ))dτ ≤ ‖u0‖2L2#

+ 2

∫ t

0
〈f(·, τ),u(·, τ)〉T dτ ∀ t ∈ [0, T ]. (4.2)

Proof. We prove the solution existence using the Faedo-Galerkin algorithm, cf., e.g., [13, Chapt. 6, Sections
3, 6], [14, Chapter 1, Section 6.4], [29, Chapter 3, Section 3.3], [30, Chapter 3, Section 3], [23, Section 4].

(a) Let {wl} = w1,w2, . . . ,wl, . . . be the sequence of real orthonormal eigenfunctions of the Bessel poten-
tial operator Λ# in Ḣ0

#σ, see Appendix 5.3. This sequence constitutes an orthonormal basis in Ḣ0
#σ and

is similar to a periodic version of the special basis employed in [14, Chapter 1, Corollary 6.1]. It belongs
to Ċ∞

#σ and can be explicitly expressed in terms of the Fourier harmonics, see Remark 5.3. Such choice
of the linear independent functions particularly facilitates the proof of existence for arbitrary dimension
n ≥ 2. Another possible choice is given by the eigenfunctions of the isotropic Stokes operator in Ḣ0

#σ, cf.
[29, Section 2.2], [23, Theorem 2.24].

For each integer m ≥ 1, let us look for a solution

um(x, t) =
m∑

l=1

ηl,m(t)wl, ηl,m(t) ∈ R, (4.3)

of the following discrete analogue of the initial-variational problem (3.9)–(3.10),

〈u′
m,wk〉T + aT(um,wk) + 〈(um · ∇)um,wk〉T = 〈f ,wk〉T, a.e. t ∈ (0, T ), ∀ k ∈ {1, . . . ,m}, (4.4)

〈um,wk〉T(·, 0) = 〈u0,wk〉T, ∀ k ∈ {1, . . . ,m}. (4.5)

For a fixed m, equations (4.4)–(4.5) constitute an initial value problem for the nonlinear system of ordinary
differential equations for unknowns ηl,m(t), ℓ ∈ {1, . . . ,m},

m∑

l=1

〈wl,wk〉T ∂tηl,m(t) +

m∑

l=1

aT(t;wl,wk) ηl,m(t) +

m∑

l,j=1

〈(wl · ∇)wj,wk〉Tηl,m(t)ηj,m(t)

= 〈f ,wk〉T , a.e. t ∈ (0, T ), ∀ k ∈ {1, . . . ,m}, (4.6)
m∑

l=1

〈wl,wk〉T ηl,m(0) = 〈u0,wk〉T, ∀ k ∈ {1, . . . ,m}. (4.7)
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We have 〈f ,wk〉T ∈ L2(0, T ) and due to the orthonormality of the functions wl, we have 〈wl,wk〉T = δℓk.
Then by the Carathéodory existence theorem, see, e.g. [8, Theorem 5.1], the ODE initial value problem
(4.6)–(4.7) has an absolutely continuous solution ηl,m(t), l = 1, . . . ,m, on an interval [0, Tm], 0 < Tm ≤ T .

Multiplying equations (4.6) by ηk,m and summing them up over k ∈ {1, . . . ,m}, and also doing the same
with equations (4.7), we obtain

〈∂tum,um〉T + aT(um,um) + 〈(um · ∇)um,um〉T = 〈f ,um〉T, a.e. t ∈ (0, Tm), (4.8)

〈um(·, 0),um(·, 0)〉T = 〈u0,um(·, 0)〉T. (4.9)

By equality (5.4) for the trilinear term, equation (4.8) is reduced to

1

2
∂t‖um‖2

L2#
+ aT(um,um) = 〈f ,um〉T, a.e. t ∈ (0, Tm), (4.10)

Inequality (3.7) for the quadratic form aT and Yong’s inequality for the right hand side of (4.10) imply

∂t‖um‖2
L2#

+
1

2
C−1
A

‖um‖2
Ḣ

1
#
≤ ∂t‖um‖2

L2#
+ 2aT(um,um) = 2〈f ,um〉T ≤ 2‖f‖

Ḣ
−1
#
‖um‖

Ḣ
1
#

≤ 1

4
C−1
A

‖um‖2
Ḣ

1
#
+ 4CA‖f‖2

Ḣ
−1
#

, a.e. t ∈ (0, Tm). (4.11)

Equation (4.9) implies

‖um(·, 0)‖2
L2#

= 〈u0,um(·, 0)〉T ≤ ‖u0‖L2#
‖um(·, 0)‖L2#

. (4.12)

Hence (4.11) and (4.12) lead to

∂t‖um‖2
L2#

+
1

4
C−1
A

‖um‖2
Ḣ

1
#
≤ 4CA‖f‖2

Ḣ
−1
#

, a.e. t ∈ (0, Tm), (4.13)

‖um(·, 0)‖L2#
≤ ‖u0‖L2#

. (4.14)

Integrating (4.13), we get

‖um(·, t)‖2L2#
+

1

4
C−1
A

∫ t

0
‖um(·, τ)‖2

Ḣ
1
#
dτ ≤ ‖um(·, 0)‖2L2#

+ 4CA

∫ t

0
‖f(·, τ)‖2

Ḣ
−1
#
dτ

≤ ‖u0‖2L2#
+ 4CA‖f‖2L2(0,T ;Ḣ−1

# )
, t ∈ [0, Tm]. (4.15)

Estimate (4.15) particularly implies that the ODE initial value problem (4.6)–(4.7) has an absolutely con-
tinuous solution ηl,m(t), l = 1, . . . ,m, on the whole interval [0, T ], where the right hand side f is prescribed,
i.e., we can take Tm = T .

Hence from (4.15) we conclude that

‖um‖2L∞(0,T ;L2#) = sup
t∈[0,T ]

‖um(·, t)‖2L2#
≤ ‖u0‖2L2#

+ 4CA‖f‖2L2(0,T ;Ḣ−1
# )

, (4.16)

‖um‖2
L2(0,T ;Ḣ1

#)
≤ 4CA

(
‖u0‖2

L2#
+ 4CA‖f‖2L2(0,T ;Ḣ−1

# )

)
. (4.17)

Recall that ‖u‖L2#
= ‖u‖

H
0
#
, while ‖u‖Hs

#
= ‖u‖

Ḣ
s
#σ

for u ∈ Ḣs
#σ. Estimates (4.16) and (4.17) mean

that the sequence {um} is bounded in L∞(0, T ; Ḣ0
#σ)) and in L2(0, T ; Ḣ

1
#σ), implying that the sequence has a

subsequence still denoted as {um} that converges weakly in L2(0, T ; Ḣ
1
#σ) and weakly-star in L∞(0, T ; Ḣ0

#σ)

to a function u ∈ L∞(0, T ; Ḣ0
#σ) ∩ L2(0, T ; Ḣ

1
#σ). Note also that inequality (4.16) implies also that

‖u(·, t)‖2
Ḣ

0
#σ

≤ ‖u0‖2
Ḣ

0
#σ

+ 4CA‖f‖2L2(0,T ;Ḣ−1
# )

, a.e. t ∈ (0, T ).
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(b) Let us also prove that the sequence {u′
m} is bounded in L2(0, T ; Ḣ

−n/2
#σ ), cf. [14, Chapter 1, Section

6.4]. To this end, we multiply equations (4.4) by wk and sum them up over k ∈ {1, . . . ,m}, to obtain

u′
m − PmLum + Pm[(um · ∇)um] = Pmf , a.e. t ∈ (0, T ), (4.18)

where Pm is the projector operator from H
−n/2
#σ to Span{w1, . . . ,wm} defined in (5.10) and we took into

account that

Pmu′
m =

m∑

k=1

〈u′
m,wk〉Twk =

m∑

k=1

m∑

l=1

η′l,m(t)〈wl,wk〉Twk =
m∑

l=1

η′l,m(t)wl = u′
m.

Further, due to Theorem 5.2(iii), for any h ∈ Hr
#, r ∈ R, we have

‖Pmh‖2
Ḣ

r
#σ

≤ ‖h‖2
H

r
#
. (4.19)

By (4.19), (1.1) and (1.4) we have

‖PmLum‖2
Ḣ

−n/2
#σ

≤ ‖Lum‖2
Ḣ

−n/2
#σ

≤ ‖Lum‖2
H

−1
#

≤ ‖A‖2‖um‖2
H

1
#

and then by (4.17),

‖PmLum‖2
L2(0,T ;Ḣ

−n/2
#σ )

≤ ‖Lum‖2
L2(0,T ;Ḣ−1

#σ)
≤ ‖A‖2‖um‖2L2(0,T ;H1

#)

≤ 4‖A‖2CA

(
‖u0‖2

L2#
+ 4CA‖f‖2L2(0,T ;Ḣ−1

# )

)
. (4.20)

Next, by (4.19) we obtain

‖Pmf‖2
L2(0,T ;Ḣ

−n/2
#σ )

≤ ‖f‖2
L2(0,T ;Ḣ

−n/2
#σ )

≤ ‖f‖2
L2(0,T ;H−1

# )
. (4.21)

For any v1 ∈ H1
#σ, v2 ∈ H1

#, by Theorem 5.1(b) and the Sobolev interpolation inequality, we obtain

‖(v1 · ∇)v2‖2
Ḣ

−n/2
#

= ‖div(v1 ⊗ v2)‖2
H

−n/2
#

≤ ‖v1 ⊗ v2‖2(H1−n/2
# )n×n

≤ C2
∗ (1/2, 1/2, n)‖v1‖2

H
1/2
#

‖v2‖2
H

1/2
#

≤ C2
∗ (1/2, 1/2, n)‖v1‖H0

#
‖v1‖H1

#
‖v2‖H0

#
‖v2‖H1

#
.

Thus

‖Pm[(um · ∇)um]‖2
Ḣ

−n/2
#σ

≤ ‖(um · ∇)um‖2
H

−n/2
#

≤ C2
∗ (1/2, 1/2, n)‖u‖2H0

#
‖u‖2

H
1
#

and then by (4.16) and (4.17),

‖Pm[(um · ∇)um]‖2
L2(0,T ;Ḣ

−n/2
#σ )

≤ C2
∗ (1/2, 1/2, n)‖um‖2L∞(0,T ;H0

#)‖um‖2L2(0,T ;H1
#)

≤ 4C2
∗ (1/2, 1/2, n)CA

(
‖u0‖2

L2#
+ 4CA‖f‖2L2(0,T ;Ḣ−1

# )

)2

. (4.22)

Equation (4.18) and inequalities (4.20), (4.21) and (4.22) imply that the sequence {u′
m} is bounded in

L2(0, T ; Ḣ
−n/2
#σ ) and hence it has a subsequence converging to a function u† ∈ L2(0, T ; Ḣ

−n/2
#σ ) weakly in

this space.

Let us prove that u′ = u†. Indeed, for any φ ∈ C∞
c (0, T ) and w ∈ Ḣ

n/2
#σ , evidently, v := wφ ∈

L2(0, T ; Ḣ
n/2
#σ ) =

(
L2(0, T ; Ḣ

−n/2
#σ )

)∗
and we have
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∫ T

0
〈u†(·, t),w〉Tφ(t)dt =

∫ T

0
〈u†(·, t),v(·, t)〉Tdt

=

∫ T

0
〈u†(·, t)− u′

m(·, t),v(·, t)〉Tdt+
∫ T

0
〈u′

m(·, t),w〉Tφ(t)dt. (4.23)

The first integral in the right hand side of (4.23) tends to zero as m → ∞ due to the weak convergence of

u′
m to u† in L2(0, T ; Ḣ

n/2
#σ ). For the second integral in the right hand side of (4.23) we obtain,

∫ T

0
〈u′

m(·, t),w〉Tφ(t)dt = −
∫ T

0
〈um(·, t),w〉Tφ′(t)dt

=

∫ T

0
〈u(·, t) − um(·, t),w〉Tφ′(t)dt−

∫ T

0
〈u(·, t),w〉Tφ′(t)dt (4.24)

The first integral in the right hand side of (4.24) tends to zero as m → ∞ due to the weak convergence of
um to u in L2(0, T ; Ḣ

1
#σ). Hence, taking the limits of (4.23) and (4.24) as m → ∞, we obtain,

∫ T

0
〈u†(·, t),w〉Tφ(t)dt = −

∫ T

0
〈u(·, t),w〉Tφ′(t)dt =

∫ T

0
∂t〈u(·, t),w〉Tφ(t)dt,

which implies that 〈u†(·, t),w〉T is the distributional derivative in time of 〈u(·, t),w〉T and thus as in the
proof of Lemma (5.8)(ii) the time derivative commutates with the dual product over T, leading to

〈u′(·, t),w〉T = ∂t〈u(·, t),w〉T = 〈u†(·, t),w〉T

in the sense of distributions on (0, T ), for any w ∈ Ḣ
n/2
#σ . Since w is an arbitrary test function in Ḣ

n/2
#σ , this

implies that u′ = u† and hence u′ ∈ L2(0, T ; Ḣ
−n/2
#σ ).

Applying now Theorem 5.5 (the Aubin-Lions lemma) with G = Ḣ1
#σ, H = Ḣ0

#σ, K = Ḣ
−n/2
#σ and

p = q = 2, we conclude that the subsequence {um} can be chosen in such a way that it converges to
u ∈ L∞(0, T ; Ḣ0

#σ) ∩ L2(0, T ; Ḣ
1
#σ) also strongly in L2(0, T ; Ḣ

0
#σ).

Since u ∈ L2(0, T ; Ḣ
1
#σ) and u′ ∈ L2(0, T ; Ḣ

−n/2
#σ ), Theorem 5.7 implies that u is almost everywhere

on [0, T ] equal to a function belonging to C0([0, T ]; Ḣ
−(n−2)/4
#σ ). Further on, under u we will understand

the redefined (on a zero-measure set in [0, T ]) function belonging to C0([0, T ]; Ḣ
−(n−2)/4
#σ ), which also means

that ‖u(·, t) − u(·, 0)‖
Ḣ

−(n−2)/4
#σ

→ 0 as t → 0. Since u ∈ L∞(0, T ; Ḣ0
#σ) as well, Lemma 5.6 implies that u

is Ḣ0
#σ-weakly continuous in time on [0, T ] and hence limt→0〈u(·, t),v〉T = 〈u(·, 0),v〉T ∀v ∈ Ḣ0

#σ.

(c) Let us prove that the limit function u solves the initial-variational problem (3.9)–(3.10). First of all,
equality (4.18) and inequality (4.20) imply that

‖u′
m + Pm[(um · ∇)um]‖2

L2(0,T ;H−1
#σ)

≤ 2‖Pmf‖2
L2(0,T ;H−1

# )
+ 2‖PmLum‖2

L2(0,T ;H−1
# )

≤ 2‖f‖2
L2(0,T ;H−1

# )
+ 8‖A‖2CA

(
‖u0‖2

L2#
+ 4CA‖f‖2L2(0,T ;Ḣ−1

# )

)
.

Thus the sequence PmDum := u′
m + Pm[(um · ∇)um] is bounded in L2(0, T ; Ḣ

−1
#σ) and hence there exists a

subsequence of the sequence um such that the corresponding subsequence of the sequence PmDum weakly
converges in this space to a distribution U ∈ L2(0, T ; Ḣ

−1
#σ). Let us prove that U = Du := u′+Pσ[(u ·∇)u].

Indeed, for any φ ∈ L2(0, T ) and w ∈ Ḣ
n/2
#σ , evidently,

v := wφ ∈ L2(0, T ; Ḣ
n/2
#σ ) =

(
L2(0, T ; Ḣ

−n/2
#σ )

)∗
⊂ L2(0, T ; Ḣ

1
#σ) =

(
L2(0, T ; Ḣ

−1
#σ)
)∗

,
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and we have

∫ T

0
〈Du−U,v〉Tdt =

∫ T

0
〈Du− PmDum,v〉Tdt+

∫ T

0
〈PmDum −U,v〉Tdt

=

∫ T

0
〈u′ − u′

m,v〉Tdt+
∫ T

0
〈Pσ[(u · ∇)u]− Pm[(um · ∇)um],v〉Tdt+

∫ T

0
〈PmDum −U,v〉Tdt. (4.25)

The first and the last integrals in the right hand side of (4.25) tends to zero as m → ∞ due to the weak

convergence of u′
m to u′ in L2(0, T ; Ḣ

−n/2
#σ ) and of PmDum to U in L2(0, T ; Ḣ

−1
#σ). For the middle integral

in the right hand side of (4.25) we obtain, as in [14, Section 6.4.4], for any function wk ∈ Ċ∞
#σ from our

basis in Ḣ
n/2
#σ , for m ≥ k,

∫ T

0
〈Pm[(um · ∇)um],wk〉Tφ(t)dt =

∫ T

0
〈(um · ∇)um,wk〉Tφ(t)dt

= −
∫ T

0
〈um · ∇wk,um〉Tφ(t)dt = −

∫ T

0
〈Pσ[um · ∇wk],um〉Tφ(t)dt

→ −
∫ T

0
〈Pσ[u · ∇wk],u〉Tφ(t)dt =

∫ T

0
〈Pσ[(u · ∇)u],wk〉Tφ(t)dt, m → ∞ (4.26)

by the strong convergence of {um} to u in in L2(0, T ; Ḣ
0
#σ). Since Pσ[(u · ∇)u] belongs to L2(0, T ; Ḣ

−n/2
#σ ),

Pm[(um · ∇)um] is uniformly bounded in this space and {wk} is a basis in Ḣ
n/2
#σ , we conclude that the

convergence in (4.26) implies that

∫ T

0
〈Pm[(um · ∇)um],w〉Tφ(t)dt →

∫ T

0
〈Pσ[(u · ∇)u],w〉Tφ(t)dt, m → ∞

and thus

∫ T

0
〈Du−U,w〉Tφ(t)dt = 0 ∀φ ∈ L2(0, T ), ∀w ∈ Ḣ

n/2
#σ ,

implying that ‖〈Du −U,w〉T‖L2(0,T ) = 0 for any w ∈ Ḣ
n/2
#σ and thus 〈Du(·, t) −U(·, t),w〉T = 0 for a.e.

t ∈ (0, T ). Choosing w = Λn
#(Du −U), we conclude that ‖Du(·, t) −U(·, t)‖

Ḣ
−n/2
#σ

= 0 for a.e. t ∈ (0, T )

and hence ‖Du−U‖
L2(0,T ;Ḣ

−n/2
#σ )

= 0, i.e., Du = U ∈ L2(0, T ; Ḣ
−1
#σ).

Now we continue reasoning as, e.g., in [14, Chapter 1, Section 6.4.4] to conclude that the limit function
u solves the initial-variational problem (3.9)–(3.10). Indeed, let us multiply equation (4.4) by an arbitrary
φ ∈ L2(0, T ), integrate it in t to obtain.

∫ T

0

[ 〈
u′
m + Pσ[(um · ∇)um],wk

〉
T
+ aT(um,wk)− 〈f ,wk〉T

]
φ(t)dt = 0, ∀ k ∈ {1, 2, . . .}. (4.27)

To take the limit of (4.27) as m → ∞, we remark that the terms linearly depending on um tend to the
corresponding terms for u due to the weak convergences discussed before. For the nonlinear term, by (5.4)
we have

∫ T

0
〈Pσ[(um · ∇)um],wk〉T φ(t)dt =

∫ T

0
〈(um · ∇)um,wk〉T φ(t)dt = −

∫ T

0
〈(um · ∇)wk,um〉T φ(t)dt

→ −
∫ T

0
〈(u · ∇)wk,u〉T φ(t)dt =

∫ T

0
〈(u · ∇)u,wk〉T φ(t)dt =

∫ T

0
〈Pσ[(u · ∇)u],wk〉T φ(t)dt,
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where the limit is due to the strong convergence of um to u in L2(0, T ; Ḣ
0
#σ) and the smoothness of wk.

Thus, we obtain

∫ T

0

[ 〈
u′ + Pσ[(u · ∇)u],wk

〉
T
+ aT(u,wk)− 〈f ,wk〉T

]
φ(t)dt = 0, ∀ k ∈ {1, 2, . . .}. (4.28)

Since Du = u′ + Pσ[(u · ∇)u] ∈ L2(0, T ; Ḣ
−1
#σ) and {wk} is a basis in Ḣ1

#σ, equation (4.28) implies that

∫ T

0

[ 〈
u′ + Pσ[(u · ∇)u],w

〉
T
+ aT(u,w)− 〈f ,w〉T

]
φ(t)dt = 0, ∀φ ∈ L2(0, T ), ∀w ∈ Ḣ1

#σ. (4.29)

Equation (4.29) means that

∥∥〈u′ + Pσ[(u · ∇)u],w
〉
T
+ aT(u,w)− 〈f ,w〉T

∥∥
L2(0,T )

= 0 ∀w ∈ Ḣ1
#σ,

which implies (3.9).
To prove (3.10), let us employ in (4.27) an arbitrary φ ∈ C∞[0, T ] such that φ(T ) = 0, integrate the first

term by parts with account of (4.5) and take the limit as m → ∞ to obtain

∫ T

0

{
〈−u(·, t),wk〉T φ′(t) + 〈Pσ[(u(·, t) · ∇)u(·, t)]φ(t),wk〉T + aT(u(·, t),wk)φ(t)

− 〈f(·, t),wk〉Tφ(t)
}
dt = 〈u0,wk〉Tφ(0), ∀ k ∈ {1, 2, . . .}. (4.30)

Replacing in (4.30) u by its redefined version that is Ḣ0
#σ-weakly continuous in time (cf. the last paragraph

of the step (b)) and integrating by parts the first term in (4.30), we get

∫ T

0

{ 〈
u′(·, t) + Pσ[(u(·, t) · ∇)u(·, t)],wk

〉
T
+ aT(u(·, t),wk)

− 〈f(·, t),wk〉T
}
φ(t)dt = 〈u0,wk〉Tφ(0)− 〈u(·, 0),wk〉Tφ(0), ∀ k ∈ {1, 2, . . .}.

Comparing with (4.29) and taking into account that φ(0) is arbitrary, we obtain that 〈u0 − 〈u(·, 0),wk〉T,
and because wk is a basis in Ḣ0

#σ, we conclude that u0 = u(·, 0) thus proving the initial condition (3.10).

The existence and uniqueness of the associated pressure p ∈ L2(0, T ; Ḣ
−n/2+1
# ) follows from Lemma

3.2(iii).

(d) Let us prove the (strong) energy inequality (cf., [30, Chapter 3, Remark 4(ii)], [23, Theorem 4.6]
and references therein, for the isotropic constant-coefficient case). Here we will generalise the proof of [23,
Theorem 4.6]. To this end, let us consider again the subsequence {um} from the previous step, which still
satisfies equation (4.10). Let 0 ≤ t0 < t ≤ T . Multiplying (4.10) by 2 and integrating it time, we get

‖um(·, t)‖2
L2#

+ 2

∫ t

t0

aT(τ ;um(·, τ),um(·, τ))dτ = ‖um(·, t0)‖2L2#
+ 2

∫ t

t0

〈f(·, τ),um(·, τ)〉Tdτ. (4.31)

We would like to take limits of each term in (4.31) as m → ∞. First of all, since um converges to u strongly
in L2(0, T ; Ḣ

0
#σ), we obtain that

‖um(·, τ)‖2L2#
→ ‖u(·, τ)‖2L2#

, for a.e. τ ∈ [0, T ]. (4.32)

Further, since um converges to u weakly in L2(0, T ; Ḣ
1
#σ) and f ∈ L2(0, T ; Ḣ

−1
# ) ⊂ (L2(0, T ; Ḣ

1
#σ))

∗, we
have

∫ t

t0

〈f(·, τ),um(·, τ)〉Tdτ →
∫ t

t0

〈f(·, τ),u(·, τ)〉Tdτ, ∀ [t0, t] ⊂ [0, T ] (4.33)
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Finally, um converges to u weakly in L2(0, T ; Ḣ
1
#σ) and

|||w|||L2(t0,t;Ḣ1
#) :=

(∫ t

t0

aT(τ ;w(·, τ),w(·, τ))dτ
)1/2

is an equivalent norm in L2(t0, t; Ḣ
1
#σ), see (3.8). Since u is a weak limit of um in L2(t0, t; Ḣ

1
#), we have

(see, e.g., the Remark in Section 4.43 of [16]) that

|||u|||2
L2(t0,t;Ḣ1

#)
≤ lim inf

m→∞
|||um|||2

L2(t0,t;Ḣ1
#)
.

Hence

∫ t

t0

aT(τ ;u(·, τ),u(·, τ))dτ ≤ lim inf
m→∞

∫ t

t0

aT(τ ;um(·, τ),um(·, τ))dτ, ∀ [t0, t] ⊂ [0, T ]. (4.34)

Taking lim inf
m→∞

from both sides of (4.31), due to (4.32), (4.33) and (4.34), we obtain (4.1) for a.e. [t0, t] ⊂
[0, T ].

Similar to the reasoning in the proof of Theorem 4.6 in [23], let us now prove that the (strong) energy
inequality (4.1) holds also for any [t0, t] ⊂ [0, T ]. Let us take some t0 for which (4.1) holds for a.e. t′ > t0.
Let us now choose any t ∈ (t0, T ]. Then there exists a sequence t′i → t such that

‖u(·, t′i)‖2L2#
+ 2

∫ t′i

t0

aT(τ ;u(·, τ),u(·, τ))dτ ≤ ‖u(·, t0)‖2L2#
+ 2

∫ t′i

t0

〈f(·, τ),u(·, τ)〉Tdτ.

Since u ∈ L2(0, T ; Ḣ
1
#σ), we have

∫ t′i

t0

aT(τ ;u(·, τ),u(·, τ))dτ →
∫ t

t0

aT(τ ;u(·, τ),u(·, τ))dτ,
∫ t′i

t0

〈f(·, τ),u(·, τ)〉Tdτ →
∫ t

t0

〈f(·, τ),u(·, τ)〉Tdτ.

On the other hand, the L2#-weak continuity of u implies that

‖u(·, t)‖2
L2#

≤ lim inf
t′i→t

‖u(·, t′i)‖2L2#
.

Thus

‖u(·, t)‖2
L2#

+ 2

∫ t

t0

aT(τ ;u(·, τ),u(·, τ))dτ ≤ lim inf
t′i→t

(
‖u(·, t′i)‖2L2#

+ 2

∫ t′i

t0

aT(τ ;u(·, τ),u(·, τ))dτ
)

≤ lim inf
t′i→t

(
‖u(·, t0)‖2L2#

+ 2

∫ t′i

t0

〈f(·, τ),u(·, τ)〉Tdτ
)

= ‖u(·, t0)‖2L2#
+ 2

∫ t

t0

〈f(·, τ),u(·, τ)〉Tdτ

By a similar argument, we can take any t0.

5 Auxiliary results

5.1 Advection term properties

The divergence theorem and periodicity imply the following identity for any v1,v2,v3 ∈ C∞
# .

〈(v1 · ∇)v2,v3〉T =

∫

T

∇ · (v1(v2 · v3)) dx− 〈(∇ · v1)v3 + (v1 · ∇)v3,v2〉T
= −〈(v1 · ∇)v3,v2〉T − 〈(∇ · v1)v3,v2〉T (5.1)
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Hence for any v1,v2 ∈ C∞
# ,

〈(v1 · ∇)v2,v2〉T = −1

2
〈(∇ · v1)v2,v2〉T = −1

2

〈
divv1, |v2|2

〉
T
. (5.2)

In view of (5.1) we obtain the identity

〈(v1 · ∇)v2,v3〉T=−〈(v1 · ∇)v3,v2〉T ∀ v1 ∈ C∞
#σ, v2, v3 ∈ C∞

# , (5.3)

and hence the following well known formula for any v1 ∈ C∞
#σ, v2 ∈ C∞

# ,

〈(v1 · ∇)v2,v2〉T = 0. (5.4)

Equation (5.4) evidently holds also for v1 and v2 from the more general spaces, for which the left hand side
in (5.4) is bounded and to which C∞

#σ and C∞
# , respectively, are densely embedded.

5.2 Some point-wise multiplication results

Let us accommodated to the periodic function spaces in Rn, n ≥ 1, a particular case of a much more general
Theorem 1 in Section 4.6.1 of [24] about point-wise products of functions/distributions.

THEOREM 5.1. Assume n ≥ 1, s1 ≤ s2 and s1 + s2 > 0. Then there exists a constant C∗(s1, s2, n) > 0
such that for any f1 ∈ Hs1

# and f2 ∈ Hs1
# ,

(a) f1 · f2 ∈ Hs1
# and ‖f1 · f2‖Hs1

#
≤ C∗(s1, s2, n)‖f1‖Hs1

#
‖f2‖Hs2

#
if s2 > n/2;

(b) f1 · f2 ∈ H
s1+s2−n/2
# and ‖f1 · f2‖Hs1+s2−n/2

#

≤ C∗(s1, s2, n)‖f1‖Hs1
#

‖f2‖Hs2
#

if s2 < n/2.

Proof. Items (a) and (b) follow, respectively, from items (i) and (iii) of [24, Theorem 1 in Section 4.6.1]
when we take into account the norm equivalence in the standard and periodic Sobolev spaces.

5.3 Spectrum of the periodic Bessel potential operator

In this section we assume that vector-functions/distributions u are generally complex-valued and the Sobolev
spaces Ḣs

#σ are complex. Let us recall the definition

(
Λr
# u
)
(x) :=

∑

ξ∈Żn

̺(ξ)rû(ξ)e2πix·ξ ∀u ∈ Ḣs
#σ, s rinR. (5.5)

of the continuous periodic Bessel potential operator Λr
# : Ḣs

#σ → Ḣs−r
#σ , r ∈ R, see (2.10), (2.11), (2.16).

THEOREM 5.2. Let r ∈ R, r 6= 0.

(i) Then the operator Λr
# in Ḣ0

#σ possesses a (non-strictly) monotone sequence of real eigenvalues λ
(r)
j

and a real orthonormal sequence of associated eigenfunctions wj such that

Λr
#wj = λ

(r)
j wj, j ≥ 1, λ

(r)
j > 0, (5.6)

λ
(r)
j → +∞, j → +∞ if r > 0; λ

(r)
j → 0, j → +∞ if r < 0; (5.7)

wj ∈ Ċ∞
#σ, (wj,wk)Ḣ0

#σ
= δjk ∀ j, k > 0. (5.8)

(ii) Moreover, the sequence {wj} is an orthonormal basis in Ḣ0
#σ, that is

u =

∞∑

i=1

〈u,wj〉Twj (5.9)

where the series converges in Ḣ0
#σ for any u ∈ Ḣ0

#σ.
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(iii) In addition, the sequence {wj} is also an orthogonal basis in Ḣr
#σ with

(wj ,wk)Ḣr
#σ

= λ
(r)
j λ

(r)
k δjk ∀ j, k > 0.

and for any u ∈ Ḣr
#σ series (5.9) converges also in Ḣr

#σ, that is, the sequence of partial sums

Pmu :=

m∑

j=1

〈u,wj〉Twj (5.10)

converges to u in Ḣr
#σ as m → ∞. The operator Pm defined by (5.10) is for any r ∈ R the orthogonal

projector operator from Hr
# to Span{w1, . . . ,wm}.

Proof. Let first r > 0 and let us consider the continuous periodic Bessel potential operator Λ−r
# : Ḣ0

#σ →
Ḣr

#σ. Hence by the Rellich-Kondrachov theorem the operator Λ−r
# : Ḣ0

#σ → Ḣ0
#σ is compact. It is also

self-adjoint since for any u,v ∈ Ḣ0
#σ we have,

(Λ−r
# u,v)

Ḣ
0
#σ

= 〈Λ−r
# u, v̄〉T = 〈u,Λ−r

# v̄〉T = (u,Λ−r
# v)

Ḣ
0
#σ

.

Then the Hilbert-Schmidt theorem (see, e.g., [22, Theorem 8.94]) implies that there is a sequence of

nonzero real eigenvalues
{
λ
(−r)
j

}∞

i=1
of the operator Λ−r

# : Ḣ0
#σ → Ḣ0

#σ, such that the sequence
∣∣∣λ(−r)

j

∣∣∣
is monotone non-increasing and limi→∞ λ

(−r)
j = 0. Furthermore, if each eigenvalue of Λ−r

# is repeated in

the sequence according to its multiplicity, then there exists an orthonormal (in Ḣ0
#σ) set {wj}∞i=1 of the

corresponding eigenfunctions, i.e.,

Λ−r
# wj = λ

(−r)
j wj. (5.11)

Moreover, the sequence {wj}∞i=1 is an orthonormal basis in Ḣ0
#σ for Ḣr

#σ as a subset of Ḣ0
#σ.

In addition, since the eigenvalues are real, (5.11) implies that the eigenfunctions are either real or
appear for the same eigenvalue in complex-conjugate pairs and hence their real and imaginary parts are also
eigenfunctions. This means that we can choose the orthonormal basis consisting of real eigenfunctions only.

Since Ḣr
#σ is dense in Ḣ0

#σ, the sequence {wj}∞i=1 is an orthonormal basis for the entire space Ḣ0
#σ.

The operator Λ−r
# can be represented as

Λ−r
# v =

∞∑

i=1

λ
(−r)
j 〈v,wj〉Twj ∀v ∈ Ḣ0

#σ, (5.12)

where the series converges in Ḣ0
#σ.

Let us remark that for any v ∈ Ḣ0
#σ

(Λ−r
# v,v)

Ḣ0
#σ

= 〈Λ−r
# v, v̄〉T = 〈Λ−r/2

# v,Λ
−r/2
# v〉T = ‖Λ−r/2

# v‖2
Ḣ

0
#σ

= ‖v‖2
Ḣ

r/2
#σ

≥ ‖v‖2
Ḣ

0
#σ

,

that is, Λ−r
# is a positive-definite operator. To conclude that all λj are positive, we observe that for the unit

real eigenfunctions wj, (5.11) implies

λ
(−r)
j = λ

(−r)
j 〈wj ,wj〉T = 〈Λ−r

# wj,wj〉T = 〈Λ−r/2
# wj,Λ

−r/2
# wj〉T > 0.

Applying Λr to (5.11), we obtain

Λr
#wj = λ

(r)
j wj, where λ

(r)
j = 1/λ

(−r)
j (5.13)



S.E.Mikhailov 20

implying (5.6) with λ
(r)
j = 1/λ

(−r)
j and the coinciding eigenfunctions for the operators Λr

# and Λ−r
# .

Since wj ∈ Ḣ0
#σ and λj 6= 0, equation (5.11) implies wj ∈ Ḣr

#σ. Moreover, applying to (5.11) operator

Λ−r(k−1), with any integer k, and employing consecutively (5.13) or (5.11), we obtain

Λ−rk
# wj = (λ

(−r)
j )kwj ∀ k ∈ Z. (5.14)

and taking into account the continuity of the operator Λ−rk
# : Ḣ0

#σ → Ḣkr
#σ for any integer k, we conclude

that wj ∈ Ċ∞
#σ.

Finally, let us prove that the sequence {wj} is an orthogonal basis also in Ḣr
#σ. To this end, let u ∈ Ḣr

#σ.

We know that the series (5.9) converges in Ḣ0
#σ. Let us prove that it converges also in Ḣr

#σ, that is, the
sequence of its partial sums converges in this space. Indeed,

∑

j=1

〈u,wj〉Twj =
∑

j=1

〈u, λ(r)
j wj〉Tλ(−r)

j wj =
∑

j=1

〈u,Λr
#wj〉TΛ−r

# wj = Λ−r
#

∑

j=1

〈Λr
#u,wj〉Twj (5.15)

Since u ∈ Ḣr
#σ we have that Λr

#u ∈ Ḣ0
#σ implying that the sequence

∑
i=1〈Λr

#u,wj〉Twj converges in Ḣ0
#σ

to Λr
#u as m → ∞. The continuity of the operator Λ−r

# : Ḣ0
#σ → Ḣr

#σ then implies that the right hand

side of (5.15) converges in Ḣr
#σ to u together with the sequence of the partial sums in the left hand side.

This means that series (5.9) converges in Ḣr
#σ to u as well. Thus the set {wj} is complete in Ḣr

#σ.

The orthogonality of the set {wj} in Ḣr
#σ is implied by the relations

(wj,wk)Ḣr
#σ

= (Λr
#wj,Λ

r
#wk)Ḣ0

#σ
= (λ

(r)
j wj, λ

(r)
k wk)Ḣ0

#σ
= λ

(r)
j λ

(r)
k 〈wj ,wk〉T = λ

(r)
j λ

(r)
k δjk.

Hence the set {wj} is an orthogonal basis in Ḣr
#σ.

Although we started from r > 0, in the proof we covered the cases of both positive and negative r.

Similar to the reasoning at the end of Section 2.2 in [29], for the eigenvalues and eigenfunctions of the
isotropic Stokes operator in periodic setting, let us provide an explicit representation of the eigenvalues and
eigenfunctions of the operator Λr

# : Ḣ0
#σ → Ḣ0

#σ, r ∈ R, r 6= 0.
Employing representations (2.6) and (5.5) in (5.6), we obtain for a fixed j,

∑

ξ∈Żn

̺(ξ)rŵj(ξ)e
2πix·ξ = λ

(r)
j

∑

ξ∈Żn

ŵj(ξ)e
2πix·ξ, (5.16)

that is,
(
̺(ξ)r − λ

(r)
j

)
ŵj(ξ) = 0 ∀ ξ ∈ Żn. (5.17)

This implies that the eigenvalues and the corresponding eigenfunctions of the operator Λr can be explicitly

represented as {λ(r)
j } = {λ(r)

η,β}, {wj} = {wη,β}, where η ∈ Żn, β = {1, . . . , n − 1},

λ
(r)
η,β = ̺(η)r = (1 + |η|2)r/2, wη,β(x) = ẘη,βe

2πix·η. (5.18)

For a fixed η, the n − 1 orthonormal constant real vectors ẘη,β, β = {1, . . . , n − 1} are obtained by the
orthogonalisation in Rn of the real vector set

w̃η,α = eα − ηαη

|η|2 , α = {1, . . . , n},

where eα are canonical (coordinate) vectors in Rn. Note that (w̃η,α · η) = 0.

REMARK 5.3. Relations (5.18) particularly imply that λ
(r)
η,β = λr

η,β, where λη,β := λ
(1)
η,β = ̺(η) =

(1 + |η|2)1/2, i.e., λ
(r)
j = λr

j and the corresponding eigenfunctions coincide for any r ∈ R, r 6= 0. Since

the sequence of eigenfunctions {wj} corresponding to λ
(r)
j is the same for any r ∈ R, r 6= 0, Theorem 5.2

implies that the sequence constitutes a real orthogonal basis in any space Ḣr
#σ, r ∈ R.
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5.4 Isomorphism of divergence and gradient operators in periodic spaces

In the following assertion we provide for arbitrary s ∈ R and dimension n ≥ 2 the periodic version of
Bogovskii/deRham–type results well known for non-periodic domains and particular values of s, see, e.g.,
[4], [3] and references therein.

LEMMA 5.4. Let s ∈ R and n ≥ 2. The operators

div : Ḣs+1
#g → Ḣs

#, (5.19)

grad : Ḣs
# → Ḣs−1

#g (5.20)

are isomorphisms.

Proof. (i) Since Ḣs+1
#g ⊂ Ḣs+1

# , operator (5.19) is continuous. Let f ∈ Ḣs
# and let us consider the equation

divF = f (5.21)

for F ∈ Ḣs+1
#g . Calculating the Fourier coefficients of both sides of the equation, we obtain

2πiξ · F̂(ξ) = f̂(ξ), ξ ∈ Żn.

By inspection one can see that this equation has a solution in the form

F̂(ξ) =
ξf̂(ξ)

2πi|ξ|2 , ξ ∈ Żn, (5.22)

that is,

F̂(ξ) = 2πiξq̂ = ∇̂q, where q̂ = − f̂(ξ)

(2π)2|ξ|2 , ξ ∈ Żn.

By (5.22), (2.2) and (2.3), we obtain

‖F‖2
Ḣ

s+1
#

=
∑

ξ∈Żn

̺(ξ)2(s+1)|F̂(ξ)|2 =
∑

ξ∈Żn

̺(ξ)2s
̺(ξ)2

(2π)2|ξ|2 |f̂(ξ)|
2 ≤ 2

∑

ξ∈Żn

̺(ξ)2s|f̂(ξ)|2 = 2‖f‖2
Ḣs

#
.

Hence the solution F given by (5.22) belongs to Ḣs+1
#g and satisfies the estimate ‖F‖

Ḣ
s+1
#

≤
√
2‖f‖Ḣs

#
. There

are no other solutions in Ḣs+1
#g since otherwise the difference, F̃, of two solutions of equation (5.21) would

satisfy equation div F̃ = 0, and hence belong to Ḣs+1
#g ∩Ḣs+1

#σ = {0}. Thus operator (5.19) is an isomorphism.

(ii) By the definition of the space Ḣs−1
#g , operator (5.20) is continuous. Let F ∈ Ḣs−1

#g and let us consider
the equation

∇f = F (5.23)

for f ∈ Ḣs
#. Equation (5.23) has at most one solution since otherwise the difference of any two solutions,

f̃ , would satisfy the equation ∇f̃ = 0 implying that f̃ = const = 0 because f ∈ Ḣs
#. Taking into account

that F = ∇q for some q ∈ Ḣs
#, we conclude that there exists a solution of equation (5.23), namely f = q.

Let us calculate the norm estimate for this solution. Calculating the Fourier coefficients of both sides of
equation (5.23), we obtain

2πiξf̂(ξ) = F̂(ξ), ξ ∈ Żn. (5.24)

Then

f̂(ξ) =
ξ · F̂(ξ)
2πi|ξ|2 , ξ ∈ Żn. (5.25)
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By (5.25), (2.2) and (2.3), we obtain

‖f‖2
Ḣs

#
=
∑

ξ∈Żn

̺(ξ)2s|f̂(ξ)|2 =
∑

ξ∈Żn

̺(ξ)2s

(2π)2|ξ|4 |ξ · F̂(ξ)|2 ≤ 2
∑

ξ∈Żn

̺(ξ)2(s−1)|F̂(ξ)|2 = 2‖F‖2
Ḣ

s−1
#

.

Hence the solution f given by (5.25) belongs to Ḣs
# and satisfies the estimate ‖f‖Ḣs

#
≤

√
2‖F‖

Ḣ
s−1
#

. Thus

operator (5.20) is an isomorphism.

5.5 Some functional analysis results

The Aubin–Lions Lemma, see [14, Chapter 1, Theorem 5.1], has been generalised in [27]. We provide it in
the form of Theorem 4.12 in [23].

THEOREM 5.5 (Aubin–Lions Lemma). Suppose that G ⊂ H ⊂ K where G,H and K are reflexive Banach
spaces and the embedding G ⊂ H is compact. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. If the sequence un is bounded
in Lq(0, T ;G) and ∂tun is bounded in Lp(0, T ;K), then there exists a subsequence of un that is strongly
convergent in Lq(0, T ;H).

The following assertion is available in [30, Chapter 3, Lemma 1.4]

LEMMA 5.6. Let X and Y be two Banach spaces, such that X ⊂ Y with a continuous injection. If a
function v belongs to L∞(0, T ;X) and is weakly continuous with values in Y , then v is weakly continuous
with values in X.

Theorem 3.1 and Remark 3.2 in Chapter 1 of [15] imply the following assertion.

THEOREM 5.7. Let X and Y be separable Hilbert spaces and X ⊂ Y with continuous injection. Let
u ∈ W 1(0, T ;X,Y ). Than u almost everywhere on [0, T ] equals to a function ũ ∈ C0([0, T ];Z), where
Z = [X,Y ]1/2 is the intermediate space, Then the trace u(0) ∈ Z is defined as the corresponding value of
ũ ∈ C0([0, T ];Z) at t = 0.

Let us prove the following assertion inspired by Lemmas 1.2 and 1.3 in Chapter 3 of [30].

LEMMA 5.8. Let s, s′ ∈ R, s′ ≤ s and u ∈ W 1(0, T ;Hs
#,H

s′

#) be real-valued.
(i) Then

∂t‖u‖2
H

(s+s′)/2
#

= 2〈Λs′

#u
′,Λs

#u〉T = 2〈Λs′+s
# u′, u〉T (5.26)

for a.e. t ∈ (0, T ) and also in the distribution sense on t ∈ (0, T ).
(ii) Moreover, for any real v ∈ W 1(0, T ;H−s′

# ,H−s
# ) and t ∈ (0, T ],

∫ t

0

[
〈u′(τ), v(τ)〉T + 〈u(τ), v′(τ)〉T

]
dτ = 〈u(t), v(t)〉T − 〈u(0), v(0)〉T . (5.27)

Proof. (i) Since u ∈ W 1(0, T ;Hs
#,H

s′

#), there exists a sequence of infinitely differentiable functions {um}
from [0, T ] onto Hs

#, such that

um → u in W 1(0, T ;Hs
#,H

s′

#) as m → ∞. (5.28)

For each um, we have

∂t‖um(t)‖2
H

(s+s′)/2
#

= ∂t‖Λ(s+s′)/2
# um(t)‖2H0

#
= ∂t

〈
Λ
(s+s′)/2
# um(t),Λ

(s+s′)/2
# um(t)

〉
T

= 2Re
〈
Λ
(s+s′)/2
# u′m(t),Λ

(s+s′)/2
# um(t)

〉
T
= 2Re

〈
Λs′

#u
′
m(t),Λs

#um(t)
〉
T
. (5.29)
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By (5.28),

‖um‖2Hs
#
= ‖Λs

#um‖2L2#
→ ‖Λs

#u‖2L2#
= ‖u‖2Hs

#
in L1#(0, T ),

‖u′m‖2
Hs′

#

= ‖Λs′

#u
′
m‖2L2#

→ ‖Λs′

#u
′‖2L2#

= ‖u′‖2
Hs′

#

in L1#(0, T ).

Hence
〈
Λs′

#u
′
m,Λs

#um

〉
T
→
〈
Λs′

#u
′,Λs

#u
〉
T

in L1#(0, T ).

These convergences also hold for a.e. t ∈ (0, T ) and in the distribution sense; therefore we are allowed to
pass to the limit in (5.29) in the distribution sense, arriving at (5.26) in the limit.

(ii) Since u ∈ W 1(0, T ;Hs
#,H

s′

#) and v ∈ W 1(0, T ;H−s′

# ,H−s
# ), the dual products under the integral in

(5.27) are bounded in L1(0, T ) and hence the integral is well defined. On the other hand, Theorem 5.7

implies that u and v almost everywhere on [0, T ] equal to, respectively, functions ũ ∈ C0([0, T ];H
(s+s′)/2
# )

and ṽ ∈ C0([0, T ];H
−(s+s′)/2
# ). Then the traces u(t), v(t), u(0), v(0) are defined as the corresponding values

of ũ and ṽ, implying that the dual products in the last two terms in (5.27) are well defined. Further in the
proof we redefine u and v on a set of measure zero in [0, T ] as the functions ũ and ṽ, respectively.

There exists a sequence of infinitely differentiable functions {vk} from [0, T ] onto H−s′

# , such that vk →
v in W 1(0, T ;H−s′

# ,H−s
# ), k → ∞. For each um and vk, we have

〈
u′m(t), vk(t)

〉
T
+
〈
um(t), v′k(t)

〉
T
= ∂t〈um(t), vk(t)〉T,

which after the integration in t leads to

∫ t

0

[
〈u′m(τ), vk(τ)〉T + 〈um(τ), v′k(τ)〉T

]
dτ = 〈um(t), vk(t)〉T − 〈um(0), vk(0)〉T .

Taking the limits as m → ∞ and k → ∞, we get (5.27).
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1969.

[15] J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications, Vol. 1.
Springer, Berlin – Heidelberg – New York, 1972.

[16] L.A. Lusternik, V.J. Sobolev, Elements of Functional Analysis, Hindustan Publ., Delhi; Joht Willey &
Sons, New York, 1975.

[17] W. McLean, Local and global descriptions of periodic pseudodifferential operators. Math. Nachr. 150
(1991), 151–161.

[18] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press,
Cambridge, UK, 2000.

[19] S.E. Mikhailov, Periodic Solutions in Rn for Stationary Anisotropic Stokes and Navier-Stokes Sys-
tems. In: Integral Methods in Science and Engineering, C. Constanda et al. (eds), Springer Nature
Switzerland, Chapter 16 (2022), 227-243.

[20] S.E. Mikhailov, Stationary Anisotropic Stokes, Oseen and Navier-Stokes Systems: Periodic Solutions
in Rn. Math. Methods in Applied Sciences, 46 (2023), 10903–10928.

[21] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian, Mathematical Problems in Elasticity and Homogeniza-
tion. Horth-Holland, Amsterdam, 1992.

[22] M. Renardy, and R.C. Rogers, An Introduction to Partial Differential Equations. Springer, Berlin 2004.
[23] J.C. Robinson, J.L. Rodrigo, and W. Sadowski, The Three–Dimensional Navier–Stokes Equations.

Classical Theory. Cambridge University Press, 2016.
[24] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear

Partial Differential Equations, De Gruyter, Berlin, 1996.
[25] M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries: Background Analysis

and Advanced Topics, Birkhäuser, Basel, 2010.
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