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ABSTRACT
We consider evolution (nonstationary) space-periodic solutions to the 𝑛-dimensional nonlinear Navier–Stokes equations of
anisotropic fluids with the viscosity coefficient tensor variable in space and time and satisfying the relaxed ellipticity condition.
Employing the Galerkin algorithm, we prove the existence of Serrin-type solutions, that is, the weak solutions with velocity in the
periodic space 𝐿2

(
0, 𝑇 ; Ḣ𝑛∕2

#𝜎

)
, 𝑛 ≥ 2. The solution uniqueness and regularity results are also discussed.

MSC2020 Classification: 35A1, 35B10, 35K45, 35Q30, 76D05

1 | Introduction

Analysis of Stokes and Navier–Stokes equations is an established
and active field of research in applied mathematical analysis;
see, for example, [1–11] and many other publications. These
works were mainly devoted to the flows of isotropic fluids with
constant-viscosity coefficient, and some of the employed methods
were heavily based on these properties.

On the other hand, in many cases, the fluid viscosity can vary in
time and spatial coordinates, for example, due to variable ambi-
ent temperature. Moreover, from the point of view of rational
mechanics of continuum, fluids can be anisotropic, and this fea-
ture is indeed observed in liquid crystals, electromagnetic fluids,
and so forth; see, for example, [12] and references therein. In
[13–18], the classical Navier–Stokes equations analysis has been
extended to the transmission and boundary-value problems for
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stationary Stokes and Navier–Stokes equations of anisotropic flu-
ids, particularly with relaxed ellipticity condition on the viscosity
tensor.

In Part I, [19], we considered evolution (nonstationary) spa-
tially periodic solutions in ℝ𝑛, 𝑛 ≥ 2, to the Navier–Stokes
equations of an anisotropic fluid with the viscosity coefficient
tensor variable in spatial coordinates and time and satisfying
the relaxed ellipticity condition. We implemented the Galerkin
algorithm but unlike the traditional approach, for example, in
[10, 11], where the Galerkin basis consisted of the eigenfunc-
tions of the corresponding isotropic constant-coefficient Stokes
operator, we employed the basis constituted by the eigenfunc-
tions of the periodic Bessel-potential operator having an advan-
tage that it is universal, that is, independent of the analyzed
anisotropic variable-coefficient Navier–Stokes operator. To ana-
lyze the solution in higher dimensions, the definition of the

Mathematical Methods in the Applied Sciences, 2025; 48:11592–11619
https://doi.org/10.1002/mma.10921

11592

https://doi.org/10.1002/mma.10921
https://orcid.org/0000-0002-3268-9290
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mma.10921
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.10921&domain=pdf&date_stamp=2025-06-04


weak solution was generalized to some extent. Then, the peri-
odic weak solution existence was considered in the spaces of
Banach-valued functions mapping a finite-time interval to peri-
odic Sobolev (Bessel-potential) spaces on 𝑛-dimensional flat
torus, 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩ 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
. The periodic setting is

interesting on its own, modeling fluid flow in periodic composite
structures, and is also a common element of homogenization the-
ories for inhomogeneous fluids and in the large eddy simulation.

In this paper, Part II, we prove the existence, uniqueness,
and regularity of the weak solutions that belongs to the space
𝐿2

(
0, 𝑇 ; Ḣ𝑛∕2

#𝜎

)
(we call them Serrin-type solutions). It is well

known that the regularity results available at the moment for evo-
lution Navier–Stokes equations are rather different for dimen-
sions 𝑛 = 2 and 𝑛 = 3, even for isotropic constant-viscosity flu-
ids. The weak solution global regularity under arbitrarily large
smooth input data for 𝑛 = 2 is proved and can be found, for
example, in [1–4, 6–11]. However, for 𝑛 = 3, it is still an open
question and constitutes one of the Clay Institute famous Millen-
nium problems. Our motivation for considering arbitrary 𝑛 ≥ 2 is
particularly to place the cases 𝑛 = 2 and 𝑛 = 3 in a more general
set and to see which of them is an exception.

The paper material is presented as follows. In Section 1.1,
we provide essentials on anisotropic Stokes and Navier–Stokes
equations. Section 1.2 gives an introduction to the periodic
Sobolev (Bessel-potential) functions spaces in spatial coordi-
nates on 𝑛-dimensional flat torus and to the corresponding
Banach-valued functions mapping a finite-time interval to these
periodic Sobolev spaces. In Section 2, we describe the existence
results for evolution spatially periodic anisotropic Navier–Stokes
problem available from Part I, [19]. Sections 3–5 contain the
main results of the paper. In Section 3, we define the Serrin-type
solutions and prove the energy equality for them and also their
uniqueness, for the 𝑛-dimensional periodic setting, 𝑛 ≥ 2. We also
remark on their relations with the strong solutions and show that
for 𝑛 = 2, any weak solution is a Serrin-type solution. In Section 4,
we analyze the Serrin-type solution existence and regularity for
constant anisotropic viscosity coefficients, while in Section 5, we
generalize these results to variable anisotropic viscosity coeffi-
cients. In Section 6, we collect some technical results used in the
main text of the paper, several of which might be new.

1.1 | Anisotropic Stokes and Navier–Stokes
PDE Systems

Let 𝑛 ≥ 2 be an integer, x ∈ ℝ𝑛 denote the space coordinate vec-
tor, and 𝑡 ∈ ℝ be time. Let 𝔏 denote the second-order differential
operator represented in the component-wise divergence form as

(𝔏u)
𝑘
∶= 𝜕

𝛼

(
𝑎
𝛼𝛽

𝑘𝑗
𝐸

𝑗𝛽
(u)

)
, 𝑘 = 1, … , 𝑛, (1.1)

where u = (𝑢1, … , 𝑢
𝑛
)⊤, 𝐸

𝑗𝛽
(u) ∶= 1

2
(𝜕

𝑗
𝑢
𝛽
+ 𝜕

𝛽
𝑢
𝑗
) are the

entries of the symmetric part, 𝔼(u), of the gradient, ∇u, in space
coordinates, and 𝑎

𝛼𝛽

𝑘𝑗
(x, 𝑡) are variable components of the tensor

viscosity coefficient, 𝔸(x, 𝑡) =
{
𝑎
𝛼𝛽

𝑘𝑗
(x, 𝑡)

}
1≤𝑖,𝑗,𝛼,𝛽≤𝑛

, depending

on the space coordinate vector x and on time 𝑡, cf. [12]. We
also denoted 𝜕

𝑗
= 𝜕

𝜕𝑥
𝑗

, 𝜕
𝑡
= 𝜕

𝜕𝑡

. Here and further on, the Einstein

convention on summation in repeated indices from 1 to 𝑛 is used
unless stated otherwise.

The following symmetry conditions are assumed (see [20, (3.1)
and (3.3)]), 𝑎𝛼𝛽

𝑘𝑗
(x, 𝑡) = 𝑎

𝑘𝛽

𝛼𝑗
(x, 𝑡) = 𝑎

𝛼𝑗

𝑘𝛽
(x, 𝑡). In addition, we require

that the tensor𝔸 satisfies the relaxed ellipticity condition in terms
of all symmetric matrices in ℝ𝑛×𝑛 with zero matrix trace; see [14,
15]. Thus, we assume that there exists a constant𝐶𝔸 > 0 such that

𝐶𝔸𝑎
𝛼𝛽

𝑘𝑗
(x, 𝑡)𝜁

𝑘𝛼
𝜁
𝑗𝛽
≥ |𝜻|2 , for a.e. x, 𝑡,

∀ 𝜻 = {𝜁
𝑘𝛼
}
𝑘,𝛼=1,… ,𝑛

∈ ℝ𝑛×𝑛 such that 𝜻 = 𝜻⊤ and
𝑛∑

𝑘=1
𝜁
𝑘𝑘
= 0,

(1.2)

where |𝜻| = |𝜻|
𝐹
∶= (𝜁

𝑘𝛼
𝜁
𝑘𝛼
)1∕2 is the Frobenius matrix norm and

the superscript ⊤ denotes the transpose of a matrix. Note that in
the more common, strong ellipticity condition (called S-ellipticity
condition in [21, Definition 4.1]), inequality (1.2) should be satis-
fied for all matrices (not only symmetric with zero trace), which
makes it much more restrictive (cf. also E-class in [20, Section
3.1], where condition (1.2) is assumed for all symmetric matri-
ces).

We assume that 𝑎𝛼𝛽
𝑖𝑗
∈ 𝐿∞(ℝ𝑛 × [0, 𝑇 ]), where [0, 𝑇 ] is some finite

time interval, and the tensor 𝔸 is endowed with the norm

||𝔸|| ∶= ||𝔸||
𝐿∞(ℝ𝑛×[0,𝑇 ]),𝐹 ∶=

||||
{
||𝑎𝛼𝛽

𝑖𝑗
||
𝐿∞(𝕋×[0,𝑇 ])

}
𝑛

𝛼,𝛽,𝑖,𝑗=1

||||𝐹 < ∞,

(1.3)

where
||||
{
𝑏
𝛼𝛽

𝑖𝑗

}
𝑛

𝛼,𝛽,𝑖,𝑗=1

||||𝐹 ∶=
(
𝑏
𝛼𝛽

𝑖𝑗
𝑏
𝛼𝛽

𝑖𝑗

)1∕2
is the Frobenius norm of

a fourth-order tensor.

Let u(x, 𝑡) be an unknown vector velocity field, 𝑝(x, 𝑡) be an
unknown (scalar) pressure field, and f(x, 𝑡) be a given vector field
ℝ𝑛, where 𝑡 ∈ ℝ is the time variable. The nonlinear system

𝜕
𝑡
u − 𝔏u + ∇𝑝 + (u ⋅ ∇)u = f , div u = 0

is the evolution anisotropic incompressible Navier–Stokes system,
the main object of the analysis in this paper. Here, we use the
notation (u ⋅ ∇) ∶= 𝑢

𝑗
𝜕
𝑗
.

1.2 | Periodic Function Spaces

Let us introduce some function spaces on torus, that is, periodic
function spaces (see, e.g., [22, p. 26], [23, 24], [25, Chapter 3],
[7, Section 1.7.1], [10, Chapter 2] for more details).

Let 𝑛 ≥ 1 be an integer and 𝕋 be the 𝑛-dimensional flat torus that
can be parametrized as the semiopen cube 𝕋 = 𝕋 𝑛 = [0, 1)𝑛 ⊂ ℝ𝑛;
compare [26, p. 312]. In what follows,(𝕋 ) = ∞(𝕋 ) denotes the
(test) space of infinitely smooth real or complex functions on the
torus. As usual, ℕ denotes the set of natural numbers, ℕ0 the set
of natural numbers augmented by 0, and ℤ the set of integers.

Let 𝝃 ∈ ℤ𝑛 denote the 𝑛-dimensional vector with integer compo-
nents. We will further need also the set ℤ̇𝑛 ∶= ℤ𝑛 ⧵ {𝟎}. Extend-
ing the torus parametrization to ℝ𝑛, it is often useful to identify
𝕋 with the quotient space ℝ𝑛 ⧵ ℤ𝑛. Then, the space of functions
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∞(𝕋 ) on the torus can be identified with the space of 𝕋 -periodic
(1-periodic) functions ∞# = ∞# (ℝ

𝑛) that consists of functions
𝜙 ∈ ∞(ℝ𝑛) such that

𝜙(x + 𝝃) = 𝜙(x) ∀ 𝝃 ∈ ℤ𝑛

. (1.4)

Similarly, the Lebesgue space on the torus 𝐿
𝑝
(𝕋 ), 1 ≤ 𝑝 ≤ ∞, can

be identified with the periodic Lebesgue space𝐿
𝑝# = 𝐿

𝑝#(ℝ𝑛) that
consists of functions 𝜙 ∈ 𝐿

𝑝,loc(ℝ𝑛), which satisfy the periodicity
condition (1.4) for a.e. x.

The space dual to(𝕋 ), that is, the space of linear bounded func-
tionals on(𝕋 ), called the space of torus distributions, is denoted
by ′(𝕋 ) and can be identified with the space of periodic distri-
butions′# acting on ∞# .

The toroidal/periodic Fourier transform mapping a function 𝑔 ∈

∞
# to a set of its Fourier coefficients 𝑔̂ is defined as (see, e.g., [25,

Definition 3.1.8])

𝑔̂(𝝃) = [𝕋 𝑔](𝝃) ∶=
∫𝕋

𝑒
−2𝜋𝑖x⋅𝝃

𝑔(x)𝑑x, 𝝃 ∈ ℤ𝑛

,

and can be generalized to the Fourier transform acting on a dis-
tribution 𝑔 ∈ ′#.

For any 𝝃 ∈ ℤ𝑛, let |𝝃| ∶=
(∑

𝑛

𝑗=1𝜉
2
𝑗

)1∕2
be the Euclidean norm in

ℤ𝑛 and let us denote 𝜚(𝝃) ∶= 2𝜋(1 + |𝝃|2)1∕2. Evidently, 1
2
𝜚(𝝃)2 ≤

|2𝜋𝝃|2 ≤ 𝜚(𝝃)2 ∀ 𝝃 ∈ ℤ̇𝑛.

Similar to [25, Definition 3.2.2], for 𝑠 ∈ ℝ we define the peri-
odic/toroidal Sobolev (Bessel-potential) spaces 𝐻𝑠

# ∶= 𝐻
𝑠

# (ℝ
𝑛) ∶=

𝐻
𝑠(𝕋 ) that consist of the torus distributions 𝑔 ∈ ′(𝕋 ), for which

the norm

||𝑔||
𝐻

𝑠

#
∶= ||𝜚𝑠𝑔||𝓵2(ℤ𝑛) ∶=

(∑
𝝃∈ℤ𝑛

𝜚(𝝃)2𝑠|𝑔(𝝃)|2
)1∕2

(1.5)

is finite, that is, the series in (1.5) converges. Here, || ⋅ ||𝓵2(ℤ𝑛) is the
standard norm in the space of square summable sequences with
indices in ℤ𝑛. Evidently, 𝐻0

# = 𝐿2#.

For 𝑔 ∈ 𝐻
𝑠

# , 𝑠 ∈ ℝ, we can write 𝑔(x) =
∑
𝝃∈ℤ𝑛 𝑔̂(𝝃)𝑒2𝜋𝑖x⋅𝝃 , where

the Fourier series converges in the sense of norm (1.5). Moreover,
because 𝑔 is an arbitrary distribution from 𝐻

𝑠

# , this also implies
that the space ∞# is dense in 𝐻

𝑠

# for any 𝑠 ∈ ℝ (cf. [25, Exercise
3.2.9]).

There holds the compact embedding 𝐻
𝑡

# → 𝐻
𝑠

# if 𝑡 > 𝑠, embed-
dings 𝐻𝑠

# ⊂ 
𝑚

# if 𝑚 ∈ ℕ0, 𝑠 > 𝑚 + 𝑛

2
, and moreover,

⋂
𝑠∈ℝ 𝐻

𝑠

# =

∞
# (cf. [25, Exercises 3.2.10 and 3.2.10, Corollary 3.2.11]). Note

that the periodic norms on 𝐻
𝑠

# are equivalent to the correspond-
ing standard (nonperiodic) Bessel-potential norms on 𝕋 as an
𝑛-cubic domain; see, for example, [23, Section 13.8.1].

Let (
Λ𝑟

# 𝑔
)
(x) ∶=

∑
𝝃∈ℤ𝑛

𝜚(𝝃)𝑟𝑔̂(𝝃)𝑒2𝜋𝑖x⋅𝝃 ∀ 𝑔 ∈ 𝐻
𝑠

# (1.6)

denote the periodic Bessel-potential operator of the order 𝑟 ∈ ℝ.
For any 𝑠 ∈ ℝ, the operator

Λ𝑟

# ∶ 𝐻
𝑠

# → 𝐻
𝑠−𝑟
# (1.7)

is continuous; see, for example, [23, Section 13.8.1].

By (1.5), ||𝑔||2
𝐻

𝑠

#
= |𝑔(𝟎)|2 + |𝑔|2

𝐻
𝑠

#
, where

|𝑔|
𝐻

𝑠

#
∶= ||𝜚𝑠𝑔||𝓵2(ℤ̇

𝑛) ∶=
(∑

𝝃∈ℤ̇𝑛
𝜚(𝝃)2𝑠|𝑔(𝝃)|2

)1∕2

is the seminorm in 𝐻
𝑠

# . For any 𝑠 ∈ ℝ, let us also introduce
the space 𝐻̇

𝑠

# ∶= {𝑔 ∈ 𝐻
𝑠

# ∶ ⟨𝑔, 1⟩𝕋 = 0}. The definition implies
that if 𝑔 ∈ 𝐻̇

𝑠

#, then 𝑔(𝟎) = 0 and ||𝑔||
𝐻̇

𝑠

#
= ||𝑔||

𝐻
𝑠

#
= |𝑔|

𝐻
𝑠

#
=

||𝜚𝑠𝑔||𝓵2(ℤ̇
𝑛). The dual product between 𝑔1 ∈ 𝐻̇

𝑠

# and 𝑓2 ∈ (𝐻̇
𝑠

#)
∗,

𝑠 ∈ ℝ, is represented as ⟨𝑔1, 𝑓2⟩𝕋 ∶=
∑
𝝃∈ℤ̇𝑛 𝑔̂1(𝝃)𝑓 2(−𝝃). If 𝑔̂(𝟎) =

0, then (1.6) implies that ̂Λ𝑟

# 𝑔(𝟎) = 0, and thus, the operator

Λ𝑟

# ∶ 𝐻̇
𝑠

# → 𝐻̇

𝑠−𝑟
# (1.8)

is continuous as well. Due to the Riesz representation theorem,
(𝐻̇𝑠

#)
∗ = 𝐻̇

−𝑠
# , as shown in [19, Section 2].

Denoting ̇∞# ∶= {𝑔 ∈ 
∞
# ∶ ⟨𝑔, 1⟩𝕋 = 0}, then

⋂
𝑠∈ℝ 𝐻̇

𝑠

# = ̇
∞
# .

The corresponding spaces of 𝑛-component vector func-
tions/distributions are denoted as L

𝑞# ∶= (𝐿𝑞#)𝑛, H𝑠

# ∶= (𝐻
𝑠

# )
𝑛,

and so forth.

Note that the norm ||∇(⋅)||H𝑠−1
#

is an equivalent norm in 𝐻̇

𝑠

#.
Indeed,

∇𝑔(x) = 2𝜋𝑖
∑
𝝃∈ℤ̇𝑛

𝝃𝑒2𝜋𝑖x⋅𝝃
𝑔̂(𝝃), ∇̂𝑔(𝝃) = 2𝜋𝑖𝝃𝑔̂(𝝃) ∀ 𝑔 ∈ 𝐻̇

𝑠

#,

and then,

1
2
|𝑔|2

𝐻
𝑠

#
≤ ||∇𝑔||2H𝑠−1

#
≤ |𝑔|2

𝐻
𝑠

#
∀ 𝑔 ∈ 𝐻

𝑠

# ,

1
2
||𝑔||2

𝐻
𝑠

#
= 1

2
||𝑔||2

𝐻̇

𝑠

#
= 1

2
|𝑔|2

𝐻
𝑠

#
≤ ||∇𝑔||2H𝑠−1

#
≤ |𝑔|2

𝐻
𝑠

#

= ||𝑔||2
𝐻̇

𝑠

#
= ||𝑔||2

𝐻
𝑠

#
∀ 𝑔 ∈ 𝐻̇

𝑠

#.

(1.9)

The vector counterpart of (1.9) takes form

1
2
||v||2H𝑠

#
= 1

2
||v||2

Ḣ𝑠

#
≤ ||∇v||2(𝐻𝑠−1

# )𝑛×𝑛 ≤ ||v||2
Ḣ𝑠

#

= ||v||2H𝑠

#
∀ v ∈ Ḣ𝑠

#.
(1.10)

Note that the second inequalities in (1.9) and (1.10) are valid also
in wider spaces, that is, for 𝑔 ∈ 𝐻

𝑠

# and v ∈ H𝑠

#, respectively.

Let us also define the Sobolev spaces of divergence-free functions
and distributions,

Ḣ𝑠

#𝜎 ∶=
{

w ∈ Ḣ𝑠

# ∶ div w = 0
}
, 𝑠 ∈ ℝ,

endowed with the same norm (1.5). Similarly, C∞
#𝜎 and L

𝑞#𝜎
denote the subspaces of divergence-free vector functions from C∞

#
and L

𝑞#, respectively.

In addition, see [19, Section 2], (Ḣ𝑠

#𝜎)
∗ = Ḣ−𝑠

#𝜎 . Note that for any
𝑟, 𝑠 ∈ ℝ, the operator

Λ𝑟

# ∶ Ḣ𝑠

#𝜎 → Ḣ𝑠−𝑟
#𝜎 (1.11)

defined as in (1.6) is continuous. Let us also introduce the space
Ḣ𝑠

#𝑔 ∶=
{

w = ∇𝑞, 𝑞 ∈ 𝐻̇

𝑠+1
#

}
, 𝑠 ∈ ℝ, endowed with the norm

(1.5).

Mathematical Methods in the Applied Sciences, 202511594
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The following assertion is produced in [19, Theorem 1].

Theorem 1.1. Let 𝑠 ∈ ℝ and 𝑛 ≥ 2.

a. The space Ḣ𝑠

# has the Helmholtz–Weyl decomposition, Ḣ𝑠

# =
Ḣ𝑠

#𝑔 ⊕ Ḣ𝑠

#𝜎 , that is, any F ∈ Ḣ𝑠

# can be uniquely represented
as F = F

𝑔
+ F

𝜎
, where F

𝑔
∈ Ḣ𝑠

#𝑔 and F
𝜎
∈ Ḣ𝑠

#𝜎 .

b. The spaces Ḣ𝑠

#𝑔 and Ḣ𝑠

#𝜎 are orthogonal subspaces of Ḣ𝑠

# in
the sense of inner product, that is, (w, v)

𝐻
𝑠

#
= 0 for any w ∈

Ḣ𝑠

#𝑔 and v ∈ Ḣ−𝑠
#𝜎 .

c. The spaces Ḣ𝑠

#𝑔 and Ḣ−𝑠
#𝜎 are orthogonal in the sense of dual

product, that is, ⟨w, v⟩ = 0 for any w ∈ Ḣ𝑠

#𝑔 and v ∈ Ḣ−𝑠
#𝜎 .

d. There exist the bounded orthogonal projector operators ℙ
𝑔
∶

Ḣ𝑠

# → Ḣ𝑠

#𝑔 and ℙ
𝜎
∶ Ḣ𝑠

# → Ḣ𝑠

#𝜎 (the Leray projector), while
F = ℙ

𝑔
F + ℙ

𝜎
F for any F ∈ Ḣ𝑠

#.

For the evolution problems, we will systematically use the spaces
𝐿
𝑞
(0, 𝑇 ;𝐻𝑠

# ), 𝑠 ∈ ℝ, 1 ≤ 𝑞 ≤∞, 0 < 𝑇 < ∞, which consist of
functions that map 𝑡 ∈ (0, 𝑇 ) to a function or distributions from
𝐻

𝑠

# . For 1 ≤ 𝑞 < ∞, the space 𝐿
𝑞
(0, 𝑇 ;𝐻𝑠

#) is endowed with
the norm

||ℎ||
𝐿
𝑞
(0,𝑇 ;𝐻𝑠

# )
=
(
∫

𝑇

0
||ℎ(⋅, 𝑡)||𝑞

𝐻
𝑠

#
𝑑𝑡

)1∕𝑞

=
⎛
⎜⎜⎝∫

𝑇

0

[∑
𝜉∈ℤ𝑛

𝜚(𝝃)2𝑠|ℎ̂(𝝃, 𝑡)|2
]
𝑞∕2

𝑑𝑡

⎞
⎟⎟⎠

1∕𝑞

< ∞,

and for 𝑞 = ∞ with the norm

||ℎ||
𝐿∞(0,𝑇 ;𝐻𝑠

# )
= ess sup

𝑡∈(0,𝑇 )||ℎ(⋅, 𝑡)||𝐻𝑠

#

= ess sup
𝑡∈(0,𝑇 )

[∑
𝜉∈ℤ𝑛

𝜚(𝝃)2𝑠|ℎ̂(𝝃, 𝑡)|2
]1∕2

< ∞.

For a function (or distribution) ℎ(x, 𝑡), we will use the notation

ℎ
′(x, 𝑡) ∶= 𝜕

𝑡
ℎ(x, 𝑡) ∶= 𝜕

𝜕𝑡

ℎ(x, 𝑡),

ℎ
(𝑗)(x, 𝑡) ∶= 𝜕

𝑗

𝑡
ℎ(x, 𝑡) ∶= 𝜕

𝑗

𝜕𝑡
𝑗

ℎ(x, 𝑡),

for the partial derivatives in the time variable 𝑡.

Let 𝑋 and 𝑌 be some Hilbert spaces. We will further need the
space

𝑊
1(0, 𝑇 ;𝑋, 𝑌 ) ∶= {𝑢 ∈ 𝐿2(0, 𝑇 ;𝑋) ∶ 𝑢′ ∈ 𝐿2(0, 𝑇 ; 𝑌 )}

endowed with the norm ||𝑢||
𝑊

1(0,𝑇 ;𝑋,𝑌 ) =
(||𝑢||2

𝐿2(0,𝑇 ;𝑋)
+ ||𝑢′||2

𝐿2(0,𝑇 ;𝑌 )
)1∕2

. Spaces of such type are con-
sidered in [27, Chapter 1, Section 2.2]. We will particularly need
the spaces 𝑊 1(0, 𝑇 ;𝐻𝑠

# ,𝐻
𝑠
′

# ) and their vector counterparts.

We will also employ the following spaces for 𝑘 ∈ ℕ; compare, for
example, [27, Chapter 1, Section 1.3, Remark 1.5],

𝑊
𝑘(0, 𝑇 ;𝑋) ∶= {𝑢 ∈ 𝐿2(0, 𝑇 ;𝑋) ∶ 𝜕

𝑗

𝑡
𝑢 ∈ 𝑋, 𝑗 = 1, … , 𝑘},

endowed with the norm ||𝑢||
𝑊

𝑘(0,𝑇 ;𝑋) =
(∑

𝑘

𝑗=0||𝜕𝑗𝑡 𝑢||2𝐿2(0,𝑇 ;𝑋)

)1∕2
.

Unless stated otherwise, we will assume in this paper that
all vector and scalar variables are real valued (however, with
complex-valued Fourier coefficients).

2 | Existence Results Available for Evolution
Spatially Periodic Anisotropic Navier–Stokes
Problem

Let us consider the following Navier–Stokes problem for the
real-valued unknowns (u, 𝑝),

u′ − 𝔏u + ∇𝑝 + (u ⋅ ∇)u = f in 𝕋 × (0, 𝑇 ), (2.1)

div u = 0 in 𝕋 × (0, 𝑇 ), (2.2)

u(⋅, 0) = u0 in 𝕋 , (2.3)

with given data f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), u0 ∈ Ḣ0

#𝜎 . Note that the
time-trace u(⋅, 0) for u solving the weak form of (2.1–2.2) is well
defined; see Definition 2.1 and Remark 2.3.

Let us introduce the bilinear form

𝑎𝕋 (u, v) = 𝑎𝕋 (𝑡;u, v) ∶=
⟨
𝑎
𝛼𝛽

𝑖𝑗
(⋅, 𝑡)𝐸

𝑗𝛽
(u), 𝐸

𝑖𝛼
(v)

⟩
𝕋
∀ u, v ∈ Ḣ1

#.

(2.4)
By the boundedness condition (1.3) and inequality (1.10),
we have

|𝑎𝕋 (𝑡;u, v)| ≤ ||𝔸||||𝔼(u)||
𝐿
𝑛×𝑛
2#
||𝔼(v)||

𝐿
𝑛×𝑛
2#

≤ ||𝔸||||∇u||
𝐿
𝑛×𝑛
2#
||∇v||

𝐿
𝑛×𝑛
2#

≤ ||𝔸||||u||Ḣ1
#
||v||Ḣ1

#
∀ u, v ∈ Ḣ1

#.

(2.5)

If the relaxed ellipticity condition (1.2) holds, taking into account
the relation

∑
𝑛

𝑖=1𝐸𝑖𝑖
(w) = div w = 0 for w ∈ Ḣ1

#𝜎 , equivalence of
the norm ||∇(⋅)||

𝐿
𝑛×𝑛
2#

to the norm || ⋅ ||Ḣ1
#𝜎

in Ḣ1
#𝜎 , see (1.10), and the

first Korn inequality (6.19), we obtain

𝑎𝕋 (𝑡;w,w) =
⟨
𝑎
𝛼𝛽

𝑖𝑗
(⋅, 𝑡)𝐸

𝑗𝛽
(w), 𝐸

𝑖𝛼
(w)

⟩
𝕋

≥ 𝐶
−1
𝔸 ||𝔼(w)||2

𝐿
𝑛×𝑛
2#

≥
1
2
𝐶
−1
𝔸 ||∇w||2

𝐿
𝑛×𝑛
2#
≥

1
4
𝐶
−1
𝔸 ||w||2

Ḣ1
#𝜎

∀ w ∈ Ḣ1
#𝜎.

(2.6)
Then, (2.5) and (2.6) give

1
4
𝐶
−1
𝔸 ||w||2

Ḣ1
#𝜎
≤ 𝑎𝕋 (𝑡;w,w) ≤ ||𝔸||||w||2

Ḣ1
#𝜎

∀ w ∈ Ḣ1
#𝜎. (2.7)

Let us denote
F ∶= f + 𝔏u − (u ⋅ ∇)u. (2.8)

Let u ∈ Ḣ1
#𝜎 . Acting on (2.1) by the Leray projector ℙ

𝜎
and taking

into account that ℙ
𝜎
u′ = u′ and ℙ

𝜎
∇𝑝 = 𝟎, we obtain

u′ = ℙ
𝜎
F = ℙ

𝜎
[f + 𝔏u − (u ⋅ ∇)u] in 𝕋 × (0, 𝑇 ). (2.9)
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On the other hand, acting on (2.1) by the projector ℙ
𝑔

and taking
into account that ℙ

𝑔
u′ = 0 and ℙ

𝑔
∇𝑝 = ∇𝑝, we obtain

∇𝑝 = ℙ
𝑔
F = ℙ

𝑔
[f + 𝔏u − (u ⋅ ∇)u] in 𝕋 × (0, 𝑇 ). (2.10)

We use the following definition of weak solution given in [19,
Definition 1].

Definition 2.1. Let 𝑛 ≥ 2, 𝑇 > 0, f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), and u0 ∈

Ḣ0
#𝜎 . A function u ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩ 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
is called

a weak solution of the evolution space-periodic anisotropic
Navier–Stokes initial value problem (2.1–2.3) if it solves the
initial-variational problem

⟨
u′(⋅, 𝑡) + ℙ

𝜎
[(u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡)],w

⟩
𝕋 + 𝑎𝕋 (u(⋅, 𝑡),w)

= ⟨f(⋅, 𝑡),w⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ), ∀ w ∈ Ḣ1
#𝜎,

(2.11)

⟨u(⋅, 0),w⟩𝕋 = ⟨u0
,w⟩𝕋 , ∀ w ∈ Ḣ0

#𝜎. (2.12)

The associated pressure 𝑝 is a distribution on 𝕋 × (0, 𝑇 ) satisfying
(2.1) in the sense of distributions, that is,
⟨

u′(⋅, 𝑡) + (u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡),w
⟩
𝕋 + 𝑎𝕋 (u(⋅, 𝑡),w) + ⟨∇𝑝(⋅, 𝑡),w⟩𝕋

= ⟨f(⋅, 𝑡),w⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ), ∀ w ∈ C∞
# .

The following assertion is proved in [19, Lemma 1].

Lemma 2.2. Let 𝑛 ≥ 2, 𝑇 > 0, 𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞(0, 𝑇 ;𝐿∞#),

f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ) and u0 ∈ Ḣ0

#𝜎 . Let u ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩

𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
solve Equation (2.11).

i. Then,

Du ∶= u′ + ℙ
𝜎
[(u ⋅ ∇)u] ∈ 𝐿2(0, 𝑇 ; Ḣ

−1
#𝜎 ) and

Du(⋅, 𝑡) ∈ Ḣ−1
#𝜎 for a.e. 𝑡 ∈ [0, 𝑇 ],

(2.13)

while

(u ⋅ ∇)u ∈ 𝐿2(0, 𝑇 ; Ḣ
−𝑛∕2
# ) and

(u ⋅ ∇)u(⋅, 𝑡) ∈ Ḣ−𝑛∕2
# for a.e. 𝑡 ∈ [0, 𝑇 ],

u′ ∈ 𝐿2(0, 𝑇 ; Ḣ
−𝑛∕2
#𝜎 ) and u′(⋅, 𝑡) ∈ Ḣ−𝑛∕2

#𝜎

for a.e. 𝑡 ∈ [0, 𝑇 ],

and hence, u ∈ 𝑊
1(Ḣ1

#𝜎, Ḣ
−𝑛∕2
#𝜎 ).

In addition, 𝜕
𝑡
||u||2

Ḣ−(𝑛−2)∕4
#𝜎

= 2⟨Λ−𝑛∕2
# u′,Λ#u⟩𝕋 =

2⟨u′,Λ1−𝑛∕2
# u⟩𝕋 = 2⟨Λ1−𝑛∕2

# u′,u⟩𝕋 for a.e. 𝑡 ∈ (0, 𝑇 ) and
also in the distribution sense on (0, 𝑇 ).

ii. Moreover, u is almost everywhere on [0, 𝑇 ] equal to a func-
tion ũ ∈ 0([0, 𝑇 ]; Ḣ−(𝑛−2)∕4

#𝜎 ), and ũ is also Ḣ0
#𝜎-weakly con-

tinuous in time on [0, 𝑇 ], that is, lim
𝑡→𝑡0

⟨ũ(⋅, 𝑡),w⟩𝕋 =
⟨ũ(⋅, 𝑡0),w⟩𝕋 ∀ w ∈ H0

#, ∀ 𝑡0 ∈ [0, 𝑇 ].

iii. There exists the associated pressure 𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻̇
−𝑛∕2+1
# )

that for the given u is the unique solution of Equation (2.1)
in this space.

Remark 2.3. The initial condition (2.12) should be understood
for the function u redefined as the function ũ that was introduced
in Lemma 2.2(ii) and is H0

#-weakly continuous in time.

The following existence theorem was proved in [19, Theorem 2].

Theorem 2.4. (Existence). Let 𝑛 ≥ 2 and 𝑇 > 0. Let 𝑎𝛼𝛽
𝑖𝑗
∈

𝐿∞(0, 𝑇 ;𝐿∞#) and the relaxed ellipticity condition (1.2) hold. Let
f ∈ 𝐿2(0, 𝑇 ; Ḣ

−1
# ), u0 ∈ Ḣ0

#𝜎 .

i. Then, there exists a weak solution u ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩

𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
of the anisotropic Navier–Stokes initial

value problem (2.1–2.3) in the sense of Definition 2.1.
Particularly, lim

𝑡→0 ⟨u(⋅, 𝑡), v⟩𝕋 = ⟨u0
, v⟩𝕋 ∀ v ∈ Ḣ0

#𝜎 .
There exists also the unique pressure 𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻̇

−𝑛∕2+1
# )

associated with the obtained u, that is the solution of
Equation (2.1) in 𝐿2(0, 𝑇 ; 𝐻̇

−𝑛∕2+1
# ).

ii. Moreover, u satisfies the following (strong) energy inequal-
ity,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

𝑡0

𝑎𝕋 (u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏

≤
1
2
||u(⋅, 𝑡0)||2L2#

+
∫

𝑡

𝑡0

⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏,

for any [𝑡0, 𝑡] ⊂ [0, 𝑇 ]. It particularly implies the standard
energy inequality,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

0
𝑎𝕋 (u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏

≤
1
2
||u0||2L2#

+
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 ∀ 𝑡 ∈ [0, 𝑇 ].

(2.14)

3 | Serrin-Type Solutions and Their Properties

For the isotropic constant-coefficient homogeneous
Navier–Stokes equations, it is well known that the weak
solution satisfying the famous Ladyzhenskaya–Prodi–Serrin
condition (accommodated here for the periodic setting)

u ∈ 𝐿
𝑞
(0, 𝑇 ; L̇#𝑞) (3.1)

for some 𝑞 and 𝑞 such that

2
𝑞

+ 𝑛

𝑞

= 1, 𝑛 < 𝑞 < ∞, (3.2)

is unique in the class of weak solutions satisfying the energy
inequality, for 𝑛 ≤ 4; the energy equality and the regularity
results are also proved under the Prodi–Serrin conditions; see, for
example, [28], [29], [6, Chapter 1, Theorem 6.9, and Remark 6.8],
[4, Section 14], [7, Section 8.5], [8, Theorem 7.17], [9, Section 1.5].

In this paper, we limit ourself to the𝐿2-based Sobolev spaces with
respect to the spatial variables and hence introduce a correspond-
ing particular counterpart of the class of solutions satisfying the
conditions close to (3.1) and (3.2) and leading to the Serrin-type
results.

Mathematical Methods in the Applied Sciences, 202511596
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3.1 | Serrin-Type Solutions and Their
Properties for 𝒏 ≥ 2

Definition 3.1. Let 𝑛 ≥ 2, 𝑇 > 0, f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), and

u0 ∈ Ḣ0
#𝜎 . If a solution u of the initial-variational problem

(2.11)–(2.12) belongs to𝐿2(0, 𝑇 ; Ḣ
𝑛∕2
#𝜎 ), we will call it a Serrin-type

solution.

The inclusion u ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2
#𝜎 ) can be considered as coun-

terpart of the Prodi–Serrin condition (3.1) in 𝐿2-based
Sobolev spaces. Indeed, by the Sobolev embedding theorem,
Theorem 6.6, we obtain that the following continuous embed-
dings hold, Ḣ𝑛∕2

#𝜎 ⊂ H𝑛∕2
# ⊂ L#𝑞 for any 𝑞 ∈ (2,∞). Hence, if

u ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2
#𝜎 ), then for any 𝜖 > 0, there exists 𝑞

𝜖
∈ (2,∞)

such that u ∈ 𝐿
𝑞
(0, 𝑇 ;L#𝑞

𝜖

) for 𝑞 = 2 and

2
𝑞

+ 𝑛

𝑞
𝜖

= 1 + 𝜖. (3.3)

Condition (3.3) is weaker than condition (3.2) by the arbitrarily
small 𝜖 > 0, but in spite of this, we will be able to show that the
inclusion u ∈ 𝐿2(0, 𝑇 ; Ḣ

𝑛∕2
#𝜎 ) for the weak solution is sufficient

to prove for it the Serrin-type results about the energy equality,
uniqueness, and regularity, which justifies the chosen Serrin-type
solution name. We will also prove the existence of such solutions,
under appropriate conditions.

Definition 3.2. Let 𝑛 ≥ 2, 𝑇 > 0, f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), and u0 ∈

Ḣ0
#𝜎 . If a solution u of the initial-variational problem (2.11) and

(2.12) belongs to 𝐿2(0, 𝑇 ; Ḣ
2
#𝜎), we will call it a a strong solution.

The above definition of the strong solution is a bit weaker than,
for example, in [7, Definition 6.1] or [6, Chapter 1, Section 6.7],
because it does not explicitly require the additional inclusion u ∈
𝐿∞

(
0, 𝑇 ; Ḣ1

#𝜎

)
or u′ ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
.

Remark 3.3. Definitions 3.1 and 3.2 imply that the strong solu-
tions are also Serrin-type solutions if 𝑛 ∈ {2, 3, 4}.

The Serrin-type solutions are also strong solutions if 𝑛 ≥ 4. Some
sufficient conditions for the Serrin-type solution existence are
provided in Section 5.2 further on in the paper.

If 𝑛 ∈ {2, 3}, then for a Serrin-type solution to be also a strong
solution, the Serrin-type solution should have an additional reg-
ularity and the sufficient conditions for this are provided by the
regularity theorems and corollaries in Sections 4 and 5, with the
parameter 𝑟 ≥ 1 there.

Lemma 3.4. Let 𝑛 ≥ 2, 𝑇 > 0, 𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞(0, 𝑇 ;𝐿∞#),

f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), and u0 ∈ Ḣ0

#𝜎 . Let u be a Serrin-type solu-
tion. Then, (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇 ;H−1

# ), u′ ∈ 𝐿2(0, 𝑇 ;H−1
#𝜎 ), and

hence, u ∈ 𝑊
1(Ḣ𝑛∕2

#𝜎 , Ḣ−1
#𝜎 ) and u ∈ 0([0, 𝑇 ]; Ḣ𝑛∕4−1∕2

#𝜎 ) ⊂
0([0, 𝑇 ]; Ḣ0

#𝜎). Moreover,
⟨

u′(⋅, 𝑡),w
⟩
𝕋 + ⟨(u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡),w⟩𝕋 + 𝑎𝕋 (𝑡;u,w)

= ⟨f(⋅, 𝑡),w⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ), ∀ w ∈ Ḣ1
#𝜎.

(3.4)

The unique pressure 𝑝 associated with the obtained u belongs to
𝐿2(0, 𝑇 ; 𝐻̇

0
#).

Proof. By relation (1.10), multiplication Theorem 6.1(b), and
the Sobolev interpolation inequality (6.16),

‖(u ⋅ ∇)u‖H−1
#
= ‖∇ ⋅ (u ⊗ u)‖H−1

#
≤ ‖u ⊗ u‖(𝐻0

# )𝑛×𝑛

≤ 𝐶∗𝑛||u||2H𝑛∕4
#
≤ 𝐶∗𝑛||u||H0

#
||u||H𝑛∕2

#
,

(3.5)

where 𝐶∗𝑛 = 𝐶∗(𝑛∕4, 𝑛∕4, 𝑛). Hence,

‖(u ⋅ ∇)u‖
𝐿2(0,𝑇 ;H−1

# )
≤ 𝐶∗𝑛||u||𝐿∞(0,𝑇 ;H0

#)
||u||

𝐿2(0,𝑇 ;H
𝑛∕2
# ), (3.6)

that is, (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇 ;H−1
# ) and (2.13) implies that u′ ∈

𝐿2(0, 𝑇 ;H−1
#𝜎 ). Hence, u ∈ 𝑊

1(Ḣ𝑛∕2
#𝜎 , Ḣ−1

#𝜎 ), and Theorem 6.8
implies that u ∈ 0([0, 𝑇 ]; Ḣ𝑛∕4−1∕2

#𝜎 ) ⊂ 0([0, 𝑇 ]; Ḣ0
#𝜎). Because of

this, Equation (2.11) for function u now reduces to (3.4).

To prove the lemma claim about the associated pressure 𝑝, we
remark that it satisfies (2.10), where F ∈ 𝐿2(0, 𝑇 ; Ḣ

−1
# ) due to the

lemma conditions and the inclusion (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇 ;H−1
# ). By

Lemma 6.5 for gradient, with 𝑠 = 0, Equation (2.10) has a unique
solution 𝑝 in 𝐿2(0, 𝑇 ; 𝐻̇

0
#). ◽

Let us prove, in the variable-coefficient anisotropic setting, the
energy equality and solution uniqueness for the Serrin-type
solutions.

Theorem 3.5. (Energy equality for Serrin-type solutions).
Let 𝑛 ≥ 2, 𝑇 > 0, 𝑎𝛼𝛽

𝑖𝑗
∈ 𝐿∞(0, 𝑇 ;𝐿∞#), f ∈ 𝐿2(0, 𝑇 ; Ḣ

−1
# ) and u0 ∈

Ḣ0
#𝜎 . If u is a Serrin-type solution of the initial-variational problem

(2.11) and (2.12), then the following energy equality holds for any
[𝑡0, 𝑡] ⊂ [0, 𝑇 ],

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

𝑡0

𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏 =

1
2
||u(⋅, 𝑡0)||2L2#

+
∫

𝑡

𝑡0

⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏.
(3.7)

It particularly implies the standard energy equality,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

0
𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏 =

1
2
||u0||2L2#

+
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 ∀ 𝑡 ∈ [0, 𝑇 ].

(3.8)

Proof. By Lemma 3.4, the function u satisfies Equation (3.4),
where for a.e. 𝑡 ∈ (0, 𝑇 ), we can employ u as w to obtain

⟨
u′(⋅, 𝑡),u(⋅, 𝑡)

⟩
𝕋 + ⟨(u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋 + 𝑎𝕋 (𝑡;u,u(⋅, 𝑡))

= ⟨f(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ).
(3.9)

Taking into account Lemma 6.9 with 𝑠 = 1, 𝑠′ = −1 for the first
dual product and relation (6.4) for the second dual product, we get

1
2
𝜕
𝑡
‖u(⋅, 𝑡)‖2

L2#
+ 𝑎𝕋 (𝑡;u(⋅, 𝑡),u(⋅, 𝑡))

= ⟨f(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ).
(3.10)
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By the inclusions obtained in Lemma 3.4, each dual product and
the bilinear form 𝑎𝕋 in (3.9) and hence in (3.10) are integrable in
𝑡. After integrating (3.10), we obtain (3.7) for a.e. 𝑡0.

By Lemma 3.4, u ∈ 0([0, 𝑇 ]; Ḣ0
#𝜎), while the integrals in (3.7) are

continuous in 𝑡0 as well. Then, we conclude that the energy equal-
ity (3.7) holds for any 𝑡0 ∈ [0, 𝑇 ), implying also (3.8). ◽

Theorem 3.6. (Uniqueness of Serrin-type solutions).
Let 𝑛 ≥ 2, 𝑇 > 0, 𝑎𝛼𝛽

𝑖𝑗
∈ 𝐿∞(0, 𝑇 ;𝐿∞#), f ∈ 𝐿2(0, 𝑇 ; Ḣ

−1
# ) and u0 ∈

Ḣ0
#𝜎 . Let u be a Serrin-type solution of the initial-variational

problem (2.11)–(2.12) on the interval [0, 𝑇 ] and v be any solution of
the initial-variational problem (2.11)–(2.12) satisfying the energy
inequality (2.14) on the interval [0, 𝑇 ]. Then, u = v on [0, 𝑇 ].

Proof. We will here generalize the proof of Theorem 6.10 in [7].

By Lemma 3.4, the function u satisfies Equation (3.4), where for
a.e. 𝑡 ∈ (0, 𝑇 ), we can employ v as w to obtain

⟨
u′(⋅, 𝑡), v(⋅, 𝑡)

⟩
𝕋 + ⟨(u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡), v(⋅, 𝑡)⟩𝕋
+ 𝑎𝕋 (𝑡;u(⋅, 𝑡), v(⋅, 𝑡)) = ⟨f(⋅, 𝑡), v(⋅, 𝑡)⟩𝕋 .

(3.11)

On the other hand, Equation (2.11) for v with u employed for w
can be written for a.e. 𝑡 as

⟨
v′(⋅, 𝑡),u(⋅, 𝑡)

⟩
𝕋 + ⟨(v(⋅, 𝑡) ⋅ ∇)v(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋
+ 𝑎𝕋 (𝑡; v(⋅, 𝑡),u(⋅, 𝑡)) = ⟨f(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋 ,

(3.12)

where we took into account that u(𝑡) ∈ Ḣ𝑛∕2
#𝜎 ⊂ Ḣ1

#𝜎 for a.e. 𝑡.
Adding Equations (3.11) and (3.12) and integrating in time, we
obtain

∫

𝑡

0

[⟨u′(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋 + ⟨v′(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
]
𝑑𝜏

+ 2
∫

𝑡

0
𝑎𝕋 (𝜏;u(⋅, 𝜏), v(⋅, 𝜏))𝑑𝑡

+
∫

𝑡

0

[⟨(u(⋅, 𝜏) ⋅ ∇)u(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋 + ⟨(v(⋅, 𝜏) ⋅ ∇)v(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
]
𝑑𝜏

=
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 +

∫

𝑡

0
⟨f(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋 𝑑𝜏.

(3.13)

By Lemma 2.2(i), v ∈ 𝑊
1(0, 𝑇 ; Ḣ1

#𝜎, Ḣ
−𝑛∕2
#𝜎 ), and hence, by

Lemma 6.8, the traces v(⋅, 0), v(⋅, 𝑡) ∈ Ḣ1∕2−𝑛∕4
#𝜎 are well defined.

On the other hand, by Lemma 3.4, u ∈ 𝑊
1(0, 𝑇 ; Ḣ𝑛∕2

#𝜎 , Ḣ−1
#𝜎 ), and

hence, by Lemma 6.8, the traces u(⋅, 0),u(⋅, 𝑡) ∈ Ḣ𝑛∕4−1∕2
#𝜎 are well

defined. Then, due to Lemma 6.9(ii) with 𝑠 = 𝑛∕2 and 𝑠
′ = −1,

∫

𝑡

0

[⟨u′(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋 + ⟨v′(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
]
𝑑𝜏

= ⟨u(⋅, 𝑡), v(⋅, 𝑡)⟩𝕋 − ⟨u(⋅, 0), v(⋅, 0)⟩𝕋 .
(3.14)

Let us denote w̃ ∶= u − v. Because u(⋅, 0) = v(⋅, 0) = u0 ∈ Ḣ0
#𝜎

and u, v, w̃ ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
, we obtain

⟨u(⋅, 0), v(⋅, 0)⟩𝕋 = ‖‖u0‖‖2
Ḣ0
#𝜎
= ‖‖v0‖‖2

Ḣ0
#𝜎
, (3.15)

⟨u(⋅, 𝑡), v(⋅, 𝑡)⟩𝕋 = 1
2
⟨u(⋅, 𝑡),u(⋅, 𝑡)⟩𝕋 + 1

2
⟨v(⋅, 𝑡), v(⋅, 𝑡)⟩𝕋

− 1
2
⟨

w̃(⋅, 𝑡), w̃(⋅, 𝑡)
⟩
𝕋

= 1
2
‖u(⋅, 𝑡)‖2

Ḣ0
#𝜎
+ 1

2
‖v(⋅, 𝑡)‖2

Ḣ0
#𝜎

− 1
2
‖‖w̃(⋅, 𝑡)‖‖2

Ḣ0
#𝜎

for a.e. 𝑡 ∈ (0, 𝑇 ).

(3.16)

Due to (2.4),

2𝑎𝕋 (𝜏;u(⋅, 𝜏), v(⋅, 𝜏)) = 𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))

+ 𝑎𝕋 (𝜏; v(⋅, 𝜏), v(⋅, 𝜏)) − 𝑎𝕋 (𝜏; w̃(⋅, 𝜏), w̃(⋅, 𝜏)).

By relations (6.3) and (6.4), we obtain

⟨(u(⋅, 𝜏) ⋅ ∇)u(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋 + ⟨(v(⋅, 𝜏) ⋅ ∇)v(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
= ⟨(v(⋅, 𝜏) ⋅ ∇)v(⋅, 𝜏) − (u(⋅, 𝜏) ⋅ ∇)v(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
= ⟨(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏) − (w̃(⋅, 𝜏) ⋅ ∇)u(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋
= ⟨(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 .

(3.17)

Substituting (3.14–3.17) into (3.13), we get

1
2
‖‖w̃(⋅, 𝑡)‖‖2

Ḣ0
#𝜎
+
∫

𝑡

0
𝑎𝕋 (𝜏; w̃(⋅, 𝜏), w̃(⋅, 𝜏))𝑑𝑡

−
∫

𝑡

0
⟨(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏

= 𝐴(u; 𝑡) + 𝐴(v; 𝑡)for a.e. 𝑡 ∈ (0, 𝑇 ).

(3.18)

Here,

𝐴(u) ∶= 1
2
‖u(⋅, 𝑡)‖2

Ḣ0
#𝜎
+
∫

𝑡

0
𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝑡

− 1
2
‖‖u0‖‖2

Ḣ0
#𝜎
−
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏 = 0

(3.19)

by the energy equality condition (3.8) for u, while

𝐴(v) ∶= 1
2
‖v(⋅, 𝑡)‖2

Ḣ0
#𝜎
+
∫

𝑡

0
𝑎𝕋 (𝜏; v(⋅, 𝜏), v(⋅, 𝜏))𝑑𝑡

− 1
2
‖‖v0‖‖2

Ḣ0
#𝜎
−
∫

𝑡

0
⟨f(⋅, 𝜏), v(⋅, 𝜏)⟩𝕋𝑑𝜏 ≤ 0

(3.20)

by the energy inequality condition (2.14) for v.

Taking into account inequality (2.6) for the quadratic form 𝑎,
(3.18–3.20) imply

1
2
‖‖w̃(⋅, 𝑡)‖‖2

Ḣ0
#𝜎
+ 1

4
𝐶
−1
𝔸 ∫

𝑡

0
||w̃(⋅, 𝜏)||2

Ḣ1
#𝜎
𝑑𝑡

≤
∫

𝑡

0

||⟨(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 ||𝑑𝜏.
(3.21)

Mathematical Methods in the Applied Sciences, 202511598
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By multiplication Theorem 6.1(b), the Sobolev interpolation
inequality (6.16), and Young’s inequality, we obtain

||⟨(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 ||
≤ ||(w̃(⋅, 𝜏) ⋅ ∇)w̃(⋅, 𝜏)||Ḣ−𝑛∕2

#𝜎
||u(⋅, 𝜏)||Ḣ𝑛∕2

#𝜎

≤ ||∇ ⋅ [w̃(⋅, 𝜏)⊗ w̃(⋅, 𝜏)]||Ḣ−𝑛∕2
#𝜎

||u(⋅, 𝜏)||Ḣ𝑛∕2
#𝜎

≤ ||w̃(⋅, 𝜏)⊗ w̃(⋅, 𝜏)]||(𝐻−𝑛∕2+1
# )𝑛×𝑛 ||u(⋅, 𝜏)||Ḣ𝑛∕2

#𝜎

≤ 𝐶∗||w̃(⋅, 𝜏)||2Ḣ1∕2
#𝜎

||u(⋅, 𝜏)||Ḣ𝑛∕2
#𝜎

≤ 𝐶∗||w̃(⋅, 𝜏)||Ḣ0
#𝜎
||w̃(⋅, 𝜏)||Ḣ1

#𝜎
||u(⋅, 𝜏)||Ḣ𝑛∕2

#𝜎

≤
1
4
𝐶
−1
𝔸 ||w̃(⋅, 𝜏)||2

Ḣ1
#𝜎
+ 𝐶𝔸𝐶

2
∗ ||w̃(⋅, 𝜏)||2Ḣ0

#𝜎
||u(⋅, 𝜏)||2

Ḣ𝑛∕2
#𝜎

,

(3.22)

where𝐶∗ ∶= 𝐶∗(1∕2, 1∕2, 𝑛) from Theorem 6.1(b). Implementing
(3.22) in (3.21), we obtain

1
2
‖‖w̃(⋅, 𝑡)‖‖2

Ḣ0
#𝜎
≤ 𝐶𝔸𝐶

2
∗ ∫

𝑡

0
||w̃(⋅, 𝜏)||2

Ḣ0
#𝜎
||u(⋅, 𝜏)||2

Ḣ𝑛∕2
#𝜎

𝑑𝜏. (3.23)

Because

∫

𝑇

0
||w̃(⋅, 𝜏)||2

Ḣ0
#𝜎
||u(⋅, 𝜏)||2

Ḣ𝑛∕2
#𝜎

𝑑𝜏

≤ ||w̃||2
𝐿∞

(
0,𝑇 ;Ḣ0

#𝜎

)||u||2
𝐿2(0,𝑇 ;Ḣ

𝑛∕2
#𝜎 )

< ∞,

we can employ to (3.23) the integral Gronwall’s inequality from
Lemma 6.14 to conclude that ||w̃(⋅, 𝜏)||Ḣ0

#𝜎
= 0. ◽

3.2 | Serrin-Type Property of the
Two-Dimensional Weak Solution

By Definitions 2.1 and 3.1, any weak solution of the evolution
space-periodic anisotropic Navier–Stokes initial value problem
(2.1–2.3) is a Serrin-type solution for 𝑛 = 2. Then, Lemmas 2.2
and 3.4 along with Theorems 3.5 and 3.6 lead to the following
results for any 𝑇 > 0 and arbitrarily large data (unlike the higher
dimensions discussed further on).

Theorem 3.7. Let 𝑛 = 2, 𝑇 > 0, 𝑎𝛼𝛽
𝑖𝑗
∈ 𝐿∞(0, 𝑇 ;𝐿∞#), and the

relaxed ellipticity condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
−1
# ), u0 ∈

Ḣ0
#𝜎 .

Then, the solution u ∈ 𝐿∞(0, 𝑇∗; Ḣ
0
#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ

1
#𝜎) of the

anisotropic Navier–Stokes initial value problem (2.1–2.3)
obtained in Theorem 2.4 is of Serrin type, and hence,
(u ⋅ ∇)u ∈ 𝐿2(0, 𝑇 ;H−1

# ), u ∈ 𝑊
1(Ḣ1

#𝜎, Ḣ
−1
#𝜎 ), u is almost every-

where on [0, 𝑇 ] equal to a function belonging to 0([0, 𝑇 ]; Ḣ0
#𝜎)

and
lim
𝑡→0

||u(⋅, 𝑡) − u0||Ḣ0
#𝜎
= 0.

In addition,

⟨
u′(⋅, 𝑡),w

⟩
𝕋 + ⟨(u(⋅, 𝑡) ⋅ ∇)u(⋅, 𝑡),w⟩𝕋 + 𝑎𝕋 (𝑡;u,w)

= ⟨f(⋅, 𝑡),w⟩𝕋 , for a.e. 𝑡 ∈ (0, 𝑇 ), ∀ w ∈ Ḣ1
#𝜎,

and the following energy equality holds,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

0
𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏

= 1
2
||u0||2L2#

+
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 ∀ 𝑡 ∈ [0, 𝑇 ].

Moreover, the solution u is unique in the class of solutions from
𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩ 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
satisfying the energy inequality

(2.14). The unique pressure 𝑝 associated with the obtained u
belongs to 𝐿2(0, 𝑇 ; 𝐻̇

0
#).

4 | Serrin-Type Solution Existence
and Regularity for Constant Anisotropic Viscosity
Coefficients

In this section, we analyze the existence and regularity
of Serrin-type solutions for any 𝑛 ≥ 2 in the anisotropic
constant-coefficient case. This gives a generalization of Theorem
10.1 in [7], where similar results were obtained for 𝑛 =
3, for the smoothness index 𝑟 = 1∕2, and for the isotropic
constant-viscosity coefficients.

4.1 | Vector Heat Equation

Let us first consider the spatially periodic Cauchy problem for the
(vector) heat equation,

𝜕
𝑡
v − Δv = 𝟎 in 𝕋 × (0,∞), (4.1)

v(⋅, 0) = u0 in 𝕋 . (4.2)

Calculating the Fourier coefficients of the both sides of
Equations (4.1) and (4.2) and solving the obtained ODE problem,
the periodic solution of the Cauchy problem (4.1)–(4.2) can be
written as

v(x, 𝑡) = (𝐾u0)(x, 𝑡) ∶=
∑
𝝃∈ℤ𝑛

û0(𝝃)𝑒−(2𝜋|𝝃|)2𝑡+2𝜋𝑖x⋅𝝃
. (4.3)

If div u0(x) = 0, then div v(x, 𝑡) = 0. If û0(𝟎) = 𝟎, then v̂(𝟎, 𝑡) = 𝟎.
Particularly, let us assume that u0 ∈ Ḣ𝑟

#𝜎 for some 𝑟 ∈ ℝ. Then,
taking dual product of the both sides of Equation (4.1) with Λ2𝑟

# v
gives

⟨𝜕
𝑡
Λ𝑟

#v,Λ
𝑟

#v⟩𝕋 + ⟨∇Λ𝑟

#v,∇Λ
𝑟

#v⟩𝕋 = 𝟎,

implying
1
2
𝑑

𝑑𝑡

‖v‖2
H𝑟

#
+ ||∇v||2(𝐻𝑟

# )𝑛×𝑛
= 0.

After integration, this gives the energy-type equality

1
2
‖v(⋅, 𝑡)‖2

H𝑟

#
+
∫

𝑡

0
||∇v(⋅, 𝜏)||2(𝐻𝑟

#)𝑛×𝑛
𝑑𝜏 = 1

2
‖‖u0‖‖2

H𝑟

#
, 𝑡 ≥ 0. (4.4)

The solution representation (4.3) and the norm definition (1.5)
imply that

‖v(⋅, 𝑡)‖2
H𝑟

#
≤ ‖‖u0‖‖2

H𝑟

#
𝑡 ≥ 0. (4.5)
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On the other hand, (1.10) and (4.4) lead to

∫

𝑡

0

‖‖𝐾u0‖‖2
Ḣ𝑟+1
#
𝑑𝜏 =

∫

𝑡

0
||v||2

Ḣ𝑟+1
#
𝑑𝜏 ≤ 2

∫

𝑡

0
||∇v||2(𝐻𝑟

#)𝑛×𝑛
𝑑𝜏

≤ ‖‖u0‖‖2
H𝑟

#
, 𝑡 ≥ 0.

(4.6)

Estimates (4.5) and (4.6) mean that v ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟

#𝜎) ∪
𝐿2(0, 𝑇 ; Ḣ

𝑟+1
#𝜎 ) for any 𝑇 > 0 and

‖v‖2
𝐿∞(0,𝑇 ;H𝑟

#)
= ‖‖𝐾u0‖‖2

𝐿∞(0,𝑇 ;H𝑟

#)
≤ ‖‖u0‖‖2

H𝑟

#
, (4.7)

||v||2
𝐿2(0,𝑇 ;H𝑟+1

# ) =
‖‖𝐾u0‖‖2

𝐿2(0,𝑇 ;H𝑟+1
# ) ≤

‖‖u0‖‖2
H𝑟

#
, ∀ 𝑇 > 0. (4.8)

This implies that the operator 𝐾 ∶ Ḣ𝑟

#𝜎 → 𝐿∞(0,∞; Ḣ
𝑟

#𝜎) ∪
𝐿2(0,∞; Ḣ

𝑟+1
#𝜎 ) is continuous.

4.2 | Preliminary Results for Constant
Anisotropic Viscosity Coefficients

For some 𝑛 ≥ 2, 𝑟 ≥ 𝑛∕2 − 1, and 𝑇 > 0, let the coefficients 𝑎𝛼𝛽
𝑖𝑗

be
constant and the relaxed ellipticity condition (1.2) hold. Let also
f ∈ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 .

Let us employ, as usual, the Galerkin approximation, with the
sequence {w𝓁} ⊂ Ċ∞

#𝜎 of eigenfunctions of the Bessel-potential
operator Λ# in Ḣ0

#𝜎 , corresponding to eigenvalues 𝜆𝓁 and con-
stituting an orthonormal basis in Ḣ0

#𝜎 ; see Section 6.3. They also
constitute an orthogonal basis in Ḣ𝑟

#𝜎 and Ḣ𝑟+1
#𝜎 ; see Theorem 6.4.

Let us construct the 𝑚-term approximation to u0,

u0
m ∶= 𝑃

𝑚
u0

m =
𝑚∑
𝓁=1

⟨u0
,w𝓁⟩𝕋 w𝓁 ,

where 𝑃
𝑚

is the orthogonal projector from H𝑟

#𝜎 to
Span{w1, … ,w

𝑚
}, compare (6.13), that converges in Ḣ0

#𝜎
and Ḣ𝑟

#𝜎 , as 𝑚 → ∞. Due to the basis orthogonality, we have the
inequalities

||u0
m||Ḣ0

#𝜎
≤ ||u0||Ḣ0

#𝜎
, ||u0

m||Ḣ𝑟

#𝜎
≤ ||u0||Ḣ𝑟

#𝜎
.

Let {u
𝑚
} be the sequence employed to prove Theorem 2 in

[19], given here as Theorem 2.4. The sequence {u
𝑚
} con-

verges to a solution u ∈ 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
∩ 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
of

the initial-variational problem (2.11) and (2.12) weakly in
𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
, weakly star in 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
, and strongly in

𝐿2

(
0, 𝑇 ; Ḣ0

#𝜎

)
. Particularly, u

𝑚
(x, 𝑡) =

∑
𝑚

𝓁=1𝜂𝓁,𝑚(𝑡)w𝓁 and solves
the following nonlinear ODE problem from Theorem 2 in [19]:

⟨𝜕
𝑡
u
𝑚
,w

𝑘
⟩𝕋 + 𝑎𝕋 (𝑡;u𝑚

,w
𝑘
) + ⟨(u

𝑚
⋅ ∇)u

𝑚
,w

𝑘
⟩𝕋

= ⟨f,w
𝑘
⟩𝕋 , a.e. 𝑡 ∈ (0, 𝑇 ), ∀ 𝑘 ∈ {1, … , 𝑚},

(4.9)

⟨u
𝑚
,w

𝑘
⟩𝕋 (⋅, 0) = ⟨u0

,w
𝑘
⟩𝕋 , ∀ 𝑘 ∈ {1, … , 𝑚}. (4.10)

Similarly to the proof of Theorem 10.1 in [7], let us define
v
𝑚
(x, 𝑡) ∶= 𝑃

𝑚
v =

∑
𝑚

𝑘=1⟨v,w𝑘
⟩𝕋 w

𝑘
for v given by (4.3). Acting by

the projector 𝑃
𝑚

on (4.1) and (4.2) and then taking the dual prod-
uct with w

𝑘
, we obtain that for any 𝑚 > 1, v

𝑚
solves the initial

value ODE problem

⟨𝜕
𝑡
v
𝑚
,w

𝑘
⟩𝕋 + ⟨∇v

𝑚
,∇w

𝑘
⟩𝕋 = 𝟎, ∀ 𝑡 ∈ (0, 𝑇 ), ∀ 𝑘 ∈ {1, … , 𝑚},

(4.11)

⟨v
𝑚
,w

𝑘
⟩𝕋 (⋅, 0) = ⟨u0

,w
𝑘
⟩𝕋 , ∀ 𝑘 ∈ {1, … , 𝑚}, (4.12)

and by (4.7) satisfies the estimates

‖‖v
𝑚

‖‖2
𝐿∞(0,𝑇 ;H𝑟

#)
≤ ‖v‖2

𝐿∞(0,𝑇 ;H𝑟

#)
≤ ‖‖u0‖‖2

H𝑟

#
, ∀ 𝑇 > 0, (4.13)

||v
𝑚
||2
𝐿2(0,𝑇 ;H𝑟+1

# ) ≤ ||v||2
𝐿2(0,𝑇 ;H𝑟+1

# ) ≤
‖‖u0‖‖2

H𝑟

#
, ∀ 𝑇 > 0. (4.14)

To reduce the problem (4.9)–(4.10) to the one with zero initial
conditions, let us represent u

𝑚
= v

𝑚
+ ũ

𝑚
. Then, due to (4.9) and

(4.10), the auxiliary function ũ
𝑚
(x, 𝑡) =

∑
𝑚

𝓁=1𝜂̃𝓁,𝑚(𝑡)w𝓁 satisfies
the ODE problem

⟨𝜕
𝑡
ũ
𝑚
,w

𝑘
⟩𝕋 + 𝑎𝕋 (𝑡; ũ𝑚

,w
𝑘
) + ⟨(u

𝑚
⋅ ∇)u

𝑚
,w

𝑘
⟩𝕋

= ⟨f,w
𝑘
⟩𝕋 + ⟨∇v

𝑚
,∇w

𝑘
⟩𝕋 − 𝑎𝕋 (𝑡; v𝑚

,w
𝑘
), ∀ 𝑘 ∈ {1, … , 𝑚},

(4.15)

⟨ũ
𝑚
,w

𝑘
⟩𝕋 (⋅, 0) = 𝟎, ∀ 𝑘 ∈ {1, … , 𝑚}. (4.16)

After multiplying by 𝜆
2𝑟
𝑘

and taking into account the property
Λ2𝑟
# w

𝑘
= 𝜆

2𝑟
𝑘

w
𝑘
, relation (2.4), and that the operator Λ𝑟

# commu-
tate with operators ∇ and 𝐸

𝑗𝛽
, Equation (4.15) leads to

⟨𝜕
𝑡
𝒖̃
𝑚
,Λ2𝑟

# w
𝑘
⟩𝕋 + ⟨𝐸

𝑗𝛽
(ũ

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#w𝑘
)⟩𝕋

+ ⟨(u
𝑚
⋅ ∇)u

𝑚
,Λ2𝑟

# w
𝑘
⟩𝕋

= ⟨f,Λ2𝑟
# w

𝑘
⟩𝕋 + ⟨∇v

𝑚
,Λ𝑟

#∇Λ
𝑟

#w𝑘
⟩𝕋

−
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#w𝑘
)
⟩
𝕋
, ∀ 𝑘 ∈ {1, … , 𝑚}.

(4.17)

These equations can be rewritten as

⟨𝜕
𝑡
Λ𝑟

#𝒖̃𝑚,Λ
𝑟

#w𝑘
⟩𝕋 +

⟨
𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑗𝛽
(Λ𝑟

#ũ𝑚
), 𝐸

𝑖𝛼
(Λ𝑟

#w𝑘
)
⟩
𝕋

+ ⟨Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
],Λ𝑟+1

# w
𝑘
⟩𝕋

= ⟨Λ𝑟−1
# f,Λ𝑟+1

# w
𝑘
⟩𝕋 + ⟨∇Λ𝑟

#v𝑚
,∇Λ𝑟

#w𝑘
⟩𝕋

−
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#w𝑘
)
⟩
𝕋

∀ 𝑘 ∈ {1, … , 𝑚}.

(4.18)

Multiplying equations in (4.18) by 𝜂̃
𝑘,𝑚
(𝑡) and summing them up

over 𝑘 ∈ {1, … , 𝑚}, we obtain

1
2
𝜕
𝑡

‖‖Λ𝑟

#ũ𝑚

‖‖2
H0
#
+ 𝑎𝕋 (Λ𝑟

#ũ𝑚
,Λ𝑟

#ũ𝑚
) = ⟨Λ𝑟−1

# f,Λ𝑟+1
# ũ

𝑚
⟩𝕋

+ ⟨∇Λ𝑟

#v𝑚
,∇Λ𝑟

#ũ𝑚
⟩𝕋

−
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)
⟩
𝕋

− ⟨Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
],Λ𝑟+1

# ũ
𝑚
⟩𝕋 .

(4.19)

From (2.7), we have

𝑎𝕋 (Λ𝑟

#ũ𝑚
,Λ𝑟

#ũ𝑚
) ≥ 1

4
𝐶
−1
𝔸 ||Λ𝑟

#ũ𝑚
||2

Ḣ1
#𝜎
= 1

4
𝐶
−1
𝔸 ||ũ

𝑚
||2

Ḣ𝑟+1
#𝜎
. (4.20)

Mathematical Methods in the Applied Sciences, 202511600
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Let us now estimate the terms in the right-hand side of (4.19).
First,

⟨Λ𝑟−1
# f,Λ𝑟+1

# ũ
𝑚
⟩𝕋 ≤ ||Λ𝑟−1

# f||Ḣ0
#
||Λ𝑟+1

# ũ
𝑚
||Ḣ0

#
≤ ||f||Ḣ𝑟−1

#
||ũ

𝑚
||Ḣ𝑟+1

#
.

(4.21)
Next, inequality (1.10) implies

⟨∇Λ𝑟

#v𝑚
,∇Λ𝑟

#ũ𝑚
⟩𝕋 ≤ ||∇Λ𝑟

#v𝑚
||
𝐿
𝑛×𝑛
2#
||∇Λ𝑟

#ũ𝑚
||
𝐿
𝑛×𝑛
2#

≤ ||Λ𝑟

#v𝑚
||Ḣ1

#
||Λ𝑟

#ũ𝑚
||Ḣ1

#
≤ ||v

𝑚
||Ḣ𝑟+1

#
||ũ

𝑚
||Ḣ𝑟+1

#
.

(4.22)
Further, we obtain by inequality (1.10),

||||
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)
⟩
𝕋

||||
≤ ||𝐸

𝑗𝛽
(v

𝑚
)||(𝐻𝑟

# )𝑛×𝑛
||𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)||(𝐻−𝑟

# )𝑛×𝑛

≤ |𝔸|||v
𝑚
||Ḣ𝑟+1

#
||ũ

𝑚
||Ḣ𝑟+1

#
,

(4.23)

where |𝔸| ∶= ||||
{
𝑎
𝛼𝛽

𝑖𝑗

}
𝑛

𝛼,𝛽,𝑖,𝑗=1

||||𝐹 . Finally,

||⟨Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
],Λ𝑟+1

# ũ
𝑚
⟩𝕋 ||

≤ ||Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
]||Ḣ0

#
||Λ𝑟+1

# ũ
𝑚
||Ḣ0

#

≤ ||(u
𝑚
⋅ ∇)u

𝑚
||Ḣ𝑟−1

#
||ũ

𝑚
||Ḣ𝑟+1

#
.

(4.24)

Implementing (4.20–4.24) in (4.19) and using Young’s inequality,
we obtain

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑟

#
+ 1

2
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#

≤ 2
(
||f||H𝑟−1

#
+ [|𝔸| + 1]||v

𝑚
||Ḣ𝑟+1

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖H𝑟−1
#

)
||ũ

𝑚
||H𝑟+1

#

≤ 4𝐶𝔸

(
||f||H𝑟−1

#
+ [|𝔸| + 1]||v

𝑚
||Ḣ𝑟+1

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖H𝑟−1
#

)2

+ 1
4
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#
.

Hence, by the inequality (
∑

𝑘

𝑖=1𝑎𝑖)
2 ≤ 𝑘

∑
𝑘

𝑖=1𝑎
2
𝑖

(following from
the Cauchy–Schwarz inequality),

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#
≤

16𝐶𝔸

(
||f||2H𝑟−1

#
+
[|𝔸|2 + 1

]||v
𝑚
||2

Ḣ𝑟+1
#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖2
H𝑟−1
#

)
.

(4.25)
Note that by the similar reasoning, but without employing in (4.9)
and (4.10) the function v, we obtain that u

𝑚
satisfies the differen-

tial inequality

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#

≤ 8𝐶𝔸

(
||f||2H𝑟−1

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖2
H𝑟−1
#

)
.

(4.26)

Let us also estimate the last term in (4.25) and (4.26) for
the case 𝑛∕2 − 1 ≤ 𝑟 < 𝑛∕2. By relation (1.10), multiplication
Theorem 6.1(b), and the Sobolev interpolation inequality (6.16),
we obtain

‖‖(u𝑚
⋅ ∇)u

𝑚

‖‖2
H𝑟−1
#
= ‖‖∇ ⋅ (u𝑚

⊗ u
𝑚
)‖‖2

H𝑟−1
#

≤ ‖‖u
𝑚
⊗ u

𝑚
)‖‖2
(𝐻𝑟

#)𝑛×𝑛

≤ 𝐶
2
∗𝑟𝑛||u𝑚

||4
H𝑟∕2+𝑛∕4
#

≤ 𝐶
2
∗𝑟𝑛||u𝑚

||2H𝑟

#
||u

𝑚
||2

H𝑛∕2
#
,

(4.27)

where 𝐶∗𝑟𝑛 = 𝐶∗(𝑟∕2 + 𝑛∕4, 𝑟∕2 + 𝑛∕4, 𝑛).

4.3 | Serrin-Type Solution Existence
for Constant Anisotropic Viscosity Coefficients

Employing the results from Section 4.2 for 𝑟 = 𝑛∕2 − 1, we are
now in the position to prove the existence of Serrin-type solutions.

Theorem 4.1. Let 𝑛 ≥ 2 and 𝑇 > 0. Let the coefficients 𝑎𝛼𝛽
𝑖𝑗

be
constant and the relaxed ellipticity condition (1.2) hold. Let f ∈
𝐿2(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 .

i. Then, there exist constants 𝐴1 ≥ 0, 𝐴2 ≥ 0, and 𝐴3 > 0 that
are independent of f and u0 but may depend on 𝑛, |𝔸| and
𝐶𝔸, such that if f, u0 and 𝑇∗ ∈ (0, 𝑇 ] satisfy the inequality

∫

𝑇∗

0
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

𝑑𝑡 +

(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)
∫

𝑇∗

0
||(𝐾u0)(⋅, 𝑡)||2

Ḣ𝑛∕2
#

𝑑𝑡 < 𝐴3.

(4.28)
where 𝐾 is the operator defined in (4.3), then there exists
a solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) in 𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ),

which is thus a Serrin-type solution.

ii. In addition, u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑛∕2−1
#𝜎 ),

lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑛∕2−1

#𝜎
= 0, and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇

𝑛∕2−1
# ).

iii. Moreover, u satisfies the following energy equality for any
[𝑡0, 𝑡] ⊂ [0, 𝑇∗],

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

𝑡0

𝑎𝕋 (u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏 =

1
2
||u(⋅, 𝑡0)||2L2#

+
∫

𝑡

𝑡0

⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏.
(4.29)

It particularly implies the standard energy equality,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

0
𝑎𝕋 (u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏 =

1
2
||u0||2L2#

+
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 ∀ 𝑡 ∈ [0, 𝑇∗].

(4.30)

iv. The solution u is unique in the class of solutions from
𝐿∞(0, 𝑇∗; Ḣ

0
#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ

1
#𝜎) satisfying the energy

inequality (2.14) on the interval [0, 𝑇∗].

Proof.

i. Let 𝑟 = 𝑛∕2 − 1. Estimate (4.27) implies

‖‖(u𝑚
⋅ ∇)u

𝑚

‖‖2
H𝑟−1
#

≤ 𝐶
2
∗𝑟𝑛||u𝑚

||4
H𝑟∕2+𝑛∕4
#

≤ 8𝐶2
∗𝑟𝑛(||ũ𝑚

||4
H𝑟∕2+𝑛∕4
#

+ ||v
𝑚
||4

H𝑟∕2+𝑛∕4
#

)

≤ 8𝐶2
∗𝑟𝑛||ũ𝑚

||2H𝑟

#
||ũ

𝑚
||2

H𝑛∕2
#
+ 8𝐶2

∗𝑟𝑛||v𝑚
||2H𝑟

#
||v

𝑚
||2

H𝑛∕2
#

= 8𝐶2
∗𝑟𝑛||ũ𝑚

||2
H𝑛∕2−1
#

||ũ
𝑚
||2

H𝑛∕2
#
+ 8𝐶2

∗𝑟𝑛||v𝑚
||2

H𝑛∕2−1
#

||v
𝑚
||2

H𝑛∕2
#
,

(4.31)
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where𝐶2
∗𝑟𝑛 ∶= 𝐶∗𝑛∕2−1,𝑛 = 𝐶∗(𝑛∕2 − 1∕2, 𝑛∕2 − 1∕2, 𝑛). Then,

by (4.31), we obtain from (4.25),

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑛∕2−1
#

+ 1
4
𝐶
−1
𝔸 ||ũ

𝑚
||2

H𝑛∕2
#
≤ 128𝐶2

∗𝑟𝑛𝐶𝔸||ũ𝑚
||2

H𝑛∕2
#
||ũ

𝑚
||2

Ḣ𝑛∕2−1
#

+ 16𝐶𝔸

(
||f||2

H𝑛∕2−2
#

+ 8𝐶2
∗𝑟𝑛||v𝑚

||2
H𝑛∕2−1
#

||v
𝑚
||2

H𝑛∕2
#
+
[|𝔸|2 + 1

]||v
𝑚
||2

Ḣ𝑛∕2
#

)
.

(4.32)
Let us now apply to (4.32) Lemma 6.12 with

𝜂 = ‖‖ũ
𝑚

‖‖2
H𝑛∕2−1
#

, 𝜂0 = 0,

𝑦 = ||ũ
𝑚
||2

H𝑛∕2
#
, 𝑏 = 1

4
𝐶
−1
𝔸 , 𝑐 = 128𝐶2

∗𝑟𝑛𝐶𝔸,

𝜓 = 16𝐶𝔸

(
||f||2

H𝑛∕2−2
#

+8𝐶2
∗𝑟𝑛||v𝑚

||2
H𝑛∕2−1
#

||v
𝑚
||2

H𝑛∕2
#
+
[|𝔸|2+1

]||v
𝑚
||2

Ḣ𝑛∕2
#

)
,

to conclude that if 𝑇∗ is such that

∫

𝑇∗

0

(
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

+
(

8𝐶2
∗𝑟𝑛||v𝑚

(⋅, 𝑡)||2
H𝑛∕2−1
#

+
[|𝔸|2 + 1

])||v
𝑚
(⋅, 𝑡)||2

Ḣ𝑛∕2
#

)
𝑑𝑡

<

(
512𝑒𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1

,

(4.33)

then
||ũ

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 )

≤
(
512𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1

,

||ũ
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
≤
(
128𝐶𝔸𝐶

2
∗𝑟𝑛
)−1

,

and hence,

||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 ) ≤ ||ũ

𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 ) + ||v

𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 )

≤

(
16
√

2𝐶𝔸𝐶∗𝑟𝑛

)−1
+ ‖‖u0‖‖Ḣ𝑛∕2−1

#𝜎
,

(4.34)

||u
𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
≤ ||ũ

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
+ ||v

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

≤

(
8
√

2𝐶𝔸𝐶∗𝑟𝑛

)−1
+ ‖‖u0‖‖Ḣ𝑛∕2−1

#𝜎
.

(4.35)

Estimates (4.13) and (4.14) were taken into account in (4.34)
and (4.35).
Taking into account inequalities (4.13) and (4.14) again, we
obtain that condition (4.33) is satisfied if 𝑇∗ is such that

∫

𝑇∗

0
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

𝑑𝑡+

(
8𝐶2

∗𝑟𝑛||u0||2
H𝑛∕2−1
#

+
[|𝔸|2 + 1

])
∫

𝑇∗

0
||v(⋅, 𝑡)||2

Ḣ𝑛∕2
#

𝑑𝑡

<

(
512𝑒𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1

.

(4.36)

Note that condition (4.36) gives condition (4.28) with

𝐴1 = 8𝐶2
∗𝑟𝑛, 𝐴2 = |𝔸|2 + 1, 𝐴3 =

(
512𝑒𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1

.

Inequalities (4.34) and (4.35) imply that there exists a
subsequence of {u

𝑚
} converging weakly in 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 )

and weakly star in 𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) to a function u† ∈

𝐿2(0, 𝑇∗; Ḣ
𝑛∕2
#𝜎 ) ∪ 𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ). Then, the subsequence

converges to u† also weakly in 𝐿2(0, 𝑇∗; Ḣ
1
#𝜎) and weakly

star in 𝐿∞(0, 𝑇∗; Ḣ
0
#𝜎). Because {u

𝑚
} is the subsequence of

the sequence that converges weakly in 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
and

weakly star in 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
to the weak solution, u, of

problem (2.1–2.3) on
[
0, 𝑇∗

]
, we conclude that u = u† ∈

𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) ∪ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ).

This implies that u is a Serrin-type solution on the interval
[0, 𝑇∗], and we thus proved item (i) of the theorem.

ii. Repeating for u the reasoning related to inequality (4.27), we
obtain

‖(u ⋅ ∇)u‖2
H𝑛∕2−2
#
≤ 𝐶

2
∗𝑟𝑛||u||2H𝑛∕2−1

#
||u||2

H𝑛∕2
#
.

Hence,

‖(u ⋅ ∇)u‖
𝐿2(0,𝑇∗;H

𝑛∕2−2
# ) ≤ 𝐶∗𝑟𝑛||u||𝐿∞(0,𝑇∗;H𝑛∕2−1

# )||u||𝐿2(0,𝑇∗;H
𝑛∕2
# ),

(4.37)

that is, (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
# ). By (1.1) and (1.3),

we have

‖𝔏u‖2
H𝑛∕2−2
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||(𝐻𝑛∕2−1

# )𝑛×𝑛 ≤ |𝔸|2||u||2
H𝑛∕2
#
,

and thus,

||𝔏u||2
𝐿2(0,𝑇∗;Ḣ

𝑛∕2−2
# )

≤ |𝔸|2||u||2
𝐿2(0,𝑇∗;H

𝑛∕2
# )

,

that is, 𝔏u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ). We also have f ∈

𝐿2(0, 𝑇 ; Ḣ
𝑛∕2−2
# ).

Then, (2.9) implies that u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ), and hence, by

Theorem 6.8, we obtain that u ∈ 0([0, 𝑇∗]; Ḣ
𝑛∕2−1
#𝜎 ), which

also means that ||u(⋅, 𝑡) − u0||Ḣ𝑛∕2−1
#𝜎

→ 0 as 𝑡 → 0. To prove
the theorem claim about the associated pressure 𝑝, we
remark that it satisfies (2.10), where F ∈ 𝐿2(0, 𝑇 ; Ḣ

𝑛∕2−2
# )

due to the theorem conditions and the inclusion (u ⋅
∇)u ∈ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2−2
# ). By Lemma 6.5 for gradient, with

𝑠 = 𝑛∕2 − 1, Equation (2.10) has a unique solution 𝑝 in
𝐿2(0, 𝑇∗; 𝐻̇

𝑛∕2−1
# ).

iii. The energy equalities (4.29) and (4.30) immediately follow
from Theorem 3.5.

iv. The solution uniqueness follows from Theorem 3.6. ◽

Remark 4.2. Because ||f(⋅, 𝑡)||2
Ḣ𝑛∕2−2
#

is integrable on (0, 𝑇 ] by the

theorem condition and ||(𝐾u0)(⋅, 𝑡)||2
Ḣ𝑛∕2
#

is integrable on (0,∞)
by inequality (4.6), we conclude that due to the absolute con-
tinuity of the Lebesgue integrals, for arbitrarily large data f ∈
𝐿2(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 , there exists 𝑇∗ > 0 such that
condition (4.28) holds.

Estimating the integrand in the second integral in (4.28) accord-
ing to (4.5), we arrive at the following assertion allowing
an explicit estimate of 𝑇∗ for arbitrarily large data if f ∈
𝐿∞(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2

#𝜎 .

Corollary 4.3. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Let 𝑛 ≥ 2 and 𝑇 > 0. Let

Mathematical Methods in the Applied Sciences, 202511602

 10991476, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10921 by T

est, W
iley O

nline L
ibrary on [10/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the coefficients 𝑎𝛼𝛽
𝑖𝑗

be constant and the relaxed ellipticity condition
(1.2) hold. Let f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2

#𝜎 .

Then, there exist constants 𝐴1, 𝐴2, 𝐴3 > 0 that are independent of f
and u0 but may depend on 𝑇 , 𝑛, |𝔸| and𝐶𝔸, such that if 𝑇∗ ∈ (0, 𝑇 ]
satisfies the inequality

𝑇∗

[
||f||2

𝐿∞(0,𝑇 ;Ḣ
𝑛∕2−2
# )

+
(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)
||u0||2

H𝑛∕2
#

]
< 𝐴3,

(4.38)

then there exists a Serrin-type solution u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) ∩

𝐿2(0, 𝑇∗; Ḣ
𝑛∕2
#𝜎 ) of the anisotropic Navier–Stokes initial value

problem. This solution satisfies items (ii)–(iv) in Theorem 4.1.

Estimating the second integral in (4.28) according to (4.8), we
arrive at the following assertion.

Corollary 4.4. (Existence of Serrin-type solution for arbi-
trary time but small data). Let 𝑛 ≥ 2 and 𝑇 > 0. Let the coef-
ficients 𝑎

𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition (1.2)

hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 .

Then, there exist constants 𝐴1, 𝐴2, 𝐴3 > 0 that are independent of
f and u0 but may depend on 𝑛, |𝔸|, and 𝐶𝔸, such that if f and u0

satisfy the inequality

||f||2
𝐿2(0,𝑇 ;Ḣ

𝑛∕2−2
# )

+
(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)
||u0||2

H𝑛∕2−1
#

< 𝐴3, (4.39)

then there exists a Serrin-type solution u ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑛∕2−1
#𝜎 ) ∩

𝐿2(0, 𝑇 ; Ḣ
𝑛∕2
#𝜎 ) of the anisotropic Navier–Stokes initial value

problem. This solution satisfies items (ii)–(iv) in Theorem 4.1 with
𝑇∗ = 𝑇 .

4.4 | Spatial Regularity of Serrin-Type Solutions
for Constant Anisotropic Viscosity Coefficients

Theorem 4.5. (Spatial regularity of Serrin-type solution
for arbitrarily large data). Let 𝑛 ≥ 2, 𝑟 > 𝑛∕2 − 1, and 𝑇 >

0. Let the coefficients 𝑎
𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity

condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 , while f,
u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs
to 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Proof. The existence of the Serrin-type solution u ∈
𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ) is proved in Theorem 4.1(i),

and we will prove that it has a higher smoothness. We will
employ the same Galerkin approximation used in Section 4.2
and in the proof of Theorem 4.1(i).

Step a. Let us estimate the last term in (4.26) for the case 𝑛∕2 −
1 < 𝑟 < 𝑛∕2. By (4.27), we obtain from (4.26),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#

≤ 8𝐶𝔸𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2
#
||u

𝑚
||2

Ḣ𝑟

#
+ 8𝐶𝔸||f||2H𝑟−1

#
,

(4.40)

implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
≤ 8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2
#
||u

𝑚
||2

Ḣ𝑟

#
+ 8𝐶𝔸||f||2H𝑟−1

#
.

(4.41)

By Gronwall’s inequality (6.22), we obtain from
(4.41) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
≤ exp

(
8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2
# )

)

×
[
||u

𝑚
(⋅, 0)||2H𝑟

#
+ 8𝐶𝔸||f||2

𝐿2(0,𝑇∗;H𝑟−1
# )

]
.

(4.42)

We have ||u
𝑚
(⋅, 0)||H𝑟

#
≤ ||u0||H𝑟

#
, and by (4.35), the

sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2
# ) is bounded. Then, (4.42)

implies that the sequence ||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
is bounded as

well. Integrating (4.40), we conclude that

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
≤ 32𝐶2

𝔸𝐶
2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2
# )
||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2H𝑟

#
+ 32𝐶2

𝔸||f||2𝐿2(0,𝑇∗;H𝑟−1
# ).

(4.43)

Inequalities (4.42) and (4.43) mean that the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑛∕2 − 1 < 𝑟 < 𝑛∕2.
(4.44)

Step b. Let now 𝑟 = 𝑛∕2. Then, by multiplication
Theorem 6.1(a) and relation (1.10),

‖‖(u𝑚
⋅ ∇)u

𝑚

‖‖2
H𝑛∕2−1
#

= ‖‖∇ ⋅ (u𝑚
⊗ u

𝑚
)‖‖2

H𝑛∕2−1
#

≤ ‖‖u
𝑚
⊗ u

𝑚
)‖‖2
(𝐻𝑛∕2

# )𝑛×𝑛

≤ 𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2
#
||u

𝑚
||2

H𝑛∕2+1∕2
#

,

(4.45)

where 𝐶∗𝑟𝑛 = 𝐶∗(𝑛∕2, 𝑛∕2 + 1∕2, 𝑛).
Then, by (4.45), we obtain from (4.26),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑛∕2
#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2

H𝑛∕2+1
#
≤

8𝐶𝔸𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2+1∕2
#

||u
𝑚
||2

Ḣ𝑛∕2
#

+ 8𝐶𝔸||f||2H𝑛∕2−1
#

(4.46)

implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑛∕2
#
≤ 8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2+1∕2
#

||u
𝑚
||2

Ḣ𝑛∕2
#

+ 8𝐶𝔸||f||2H𝑛∕2−1
#

.

(4.47)

By Gronwall’s inequality (6.22), we obtain from
(4.47) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
≤ exp

(
8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# )

)

×
[
||u

𝑚
(⋅, 0)||2

H𝑛∕2
#
+ 8𝐶𝔸||f||2

𝐿2(0,𝑇∗;H
𝑛∕2−1
# )

]
.

(4.48)
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We have ||u
𝑚
(⋅, 0)||H𝑛∕2

#
≤ ||u0||H𝑛∕2

#
, and by (4.44), the

sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# ) is bounded as well. Then,

(4.48) implies that the sequence ||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

is also

bounded. Integrating (4.46), we conclude that

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑛∕2+1
#𝜎 )

≤

32𝐶2
𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# )

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2

H𝑛∕2
#
+ 32𝐶2

𝔸||f||2
𝐿2(0,𝑇∗;H

𝑛∕2−1
# )

≤ 𝐶 < ∞.

(4.49)

Inequalities (4.48) and (4.49) mean that the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑟 = 𝑛∕2.
(4.50)

Step c. Let now 𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2, 𝑘 = 1, 2, 3, … By mul-
tiplication Theorem 6.1(a) and relation (1.10),

||(u
𝑚
⋅ ∇)u

𝑚
||2H𝑟−1

#
≤ 𝐶

2
∗𝑟𝑛||u𝑚

||2H𝑟

#
||∇u

𝑚
||2(𝐻𝑟−1

# )𝑛×𝑛

≤ 𝐶
2
∗𝑟𝑛||u𝑚

||2H𝑟

#
||u

𝑚
||2H𝑟

#
.

(4.51)

where 𝐶∗𝑟𝑛 = 𝐶∗(𝑟 − 1, 𝑟, 𝑛).
Then, by (4.51), we obtain from (4.26),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#
≤

8𝐶𝔸𝐶
2
∗𝑟𝑛||u𝑚

||2H𝑟

#
||u

𝑚
||2

Ḣ𝑟

#
+ 8𝐶𝔸||f||2H𝑟−1

#
,

(4.52)

implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
≤ 8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2H𝑟

#
||u

𝑚
||2

Ḣ𝑟

#
+ 8𝐶𝔸||f||2H𝑟−1

#
.

(4.53)

By Gronwall’s inequality (6.22), we obtain from
(4.53) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
≤ exp

(
8𝐶𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H𝑟

#)

)

×
[
||u

𝑚
(⋅, 0)||2H𝑟

#
+ 8𝐶𝔸||f||2

𝐿2(0,𝑇∗;H𝑟−1
# )

]
,

(4.54)
where ||u

𝑚
(⋅, 0)||H𝑟

#
≤ ||u0||H𝑟

#
.

If 𝑘 = 1, then the sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H𝑟

#)
in (4.54) is

bounded due to (4.44) and (4.50). Then, (4.54) implies
that the sequence ||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
is bounded as well.

Integrating (4.52), we also conclude that for 𝑘 = 1,

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
≤

32𝐶2
𝔸𝐶

2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H𝑟

#)
||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2H𝑟

#
+ 32𝐶2

𝔸||f||2𝐿2(0,𝑇∗;H𝑟−1
# ),

𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2.

(4.55)

Inequalities (4.54) and (4.55) mean that for 𝑘 = 1, the
sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1𝑎𝑛𝑑{||u𝑚

||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2.
(4.56)

If we assume that properties (4.56) hold for some inte-
ger 𝑘 ≥ 1, then by the similar argument, properties
(4.56) hold with 𝑘 replaced by 𝑘 + 1, and thus, by
induction, they hold for any integer 𝑘. Hence, collecting
properties (4.44), (4.50), and (4.56), we conclude that
the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑛∕2 − 1 < 𝑟.

(4.57)
Properties (4.57) imply that there exists a subse-
quence of {u

𝑚
} converging weakly in 𝐿2(0, 𝑇∗; Ḣ

𝑟+1
#𝜎 )

and weakly star in 𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎) to a function
u† ∈ 𝐿2(0, 𝑇∗; Ḣ

𝑟+1
#𝜎 ) ∪ 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎). Then, the subse-
quence converges to u† also weakly in 𝐿2(0, 𝑇∗; Ḣ

1
#𝜎)

and weakly star in 𝐿∞(0, 𝑇∗; Ḣ
0
#𝜎). Because {u

𝑚
} is the

subsequence of the sequence that converges weakly
in 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
and weakly star in 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)

to the weak solution, u, of problem (2.1–2.3) on[
0, 𝑇∗

]
, we conclude that u = u† ∈ 𝐿2(0, 𝑇∗; Ḣ

𝑟+1
#𝜎 ) ∪

𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎), for any 𝑟 > 𝑛∕2 − 1, and we thus fin-
ished proving that

u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). (4.58)

Step d. Repeating for u the reasoning related to inequalities
(4.27), (4.45), and (4.51), corresponding to the consid-
ered 𝑟, we obtain

‖(u ⋅ ∇)u‖2
H𝑟−1
#
≤ 𝐶

2
∗𝑟𝑛||u||2H𝑟

#
||u||2H𝑟+1

#
.

Hence,

‖(u ⋅ ∇)u‖
𝐿2(0,𝑇 ;H𝑟−1

# ) ≤ 𝐶∗𝑟𝑛||u||𝐿∞(0,𝑇∗;H𝑟

#)
||u||

𝐿2(0,𝑇∗;H𝑟+1
# ).

(4.59)

Due to (4.58), then (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇∗;H𝑟−1
# ). By (1.1)

and (1.3), we have

‖𝔏u‖2
H𝑟−1
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||2(𝐻𝑟

# )𝑛×𝑛
≤ |𝔸|2||u||2H𝑟+1

#

for a.e. 𝑡 ∈ (0, 𝑇 ),

and thus,

||𝔏u||2
𝐿2(0,𝑇∗;Ḣ

𝑟−1
# )
≤ |𝔸|2||u||2

𝐿2(0,𝑇∗;H𝑟+1
# ),

that is, 𝔏u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
# ). We also have

f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ). Thus, F defined by (2.8)

belongs to 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ). Then, (2.9) implies that

u′ ∈ 𝐿2(0, 𝑇∗;H𝑟−1
#𝜎 ), and because u ∈ 𝐿2(0, 𝑇∗;H𝑟+1

#𝜎 ),
we obtain by Theorem 6.8 that u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎),
which also means that ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
→ 0 as 𝑡 → 0.

To prove the theorem claim about the associated pres-
sure 𝑝, we remark that 𝑝 satisfies (2.10). By Lemma 6.5
for gradient, with 𝑠 = 𝑟, Equation (2.10) has a unique
solution 𝑝 in 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#). ◽
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As in Corollaries 4.3 and 4.4, condition (4.28) in Theorem 4.5
can be replaced by simpler conditions for particular cases, which
leads to the following two assertions.

Corollary 4.6. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Let 𝑛 ≥ 2 and 𝑇 > 0. Let
the coefficients 𝑎𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition

(1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) ∩ 𝐿∞(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈

Ḣ𝑟

#𝜎 ∩ Ḣ𝑛∕2
#𝜎 , 𝑟 > 𝑛∕2 − 1. Let 𝑇∗ ∈ (0, 𝑇 ) satisfies inequality (4.38)

in Corollary 4.3.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs
to 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Corollary 4.7. (Serrin-type solution for arbitrary time but
small data). Let 𝑛 ≥ 2, 𝑟 ≥ 𝑛∕2 − 1, and 𝑇 > 0. Let the coef-
ficients 𝑎

𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition (1.2)

hold. Let the data f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 satisfy inequal-
ity (4.39) in Corollary 4.4.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs to
𝐿∞(0, 𝑇 ; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇 ; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
#𝜎 ),

u ∈ 0([0, 𝑇 ]; Ḣ𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0, and 𝑝 ∈ 𝐿2

(0, 𝑇 ; 𝐻̇𝑟

#).

Theorem 4.5 leads also to the following infinite regularity
assertion.

Corollary 4.8. Let 𝑇 > 0 and 𝑛 ≥ 2. Let the coefficients 𝑎
𝛼𝛽

𝑖𝑗

be constant and the relaxed ellipticity condition (1.2) hold. Let
f ∈ 𝐿2(0, 𝑇 ; Ċ

∞
# ) and u0 ∈ Ċ∞

#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy
inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u ∈ 0([0, 𝑇∗]; Ċ

∞
#𝜎),

u′ ∈ 𝐿2(0, 𝑇∗; Ċ
∞
#𝜎), and 𝑝 ∈ 𝐿2(0, 𝑇∗; ̇

∞
# ).

Proof. Taking into account that Ċ∞
# =

⋂
𝑟∈ℝ Ḣ𝑟

#𝜎 ,
Theorem 4.5 implies that u ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
# ),

u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), 𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟

#), ∀ 𝑟 ∈ ℝ. Hence,
u ∈ 0([0, 𝑇∗]; Ċ

∞
#𝜎), u′ ∈ 𝐿2(0, 𝑇∗; Ċ

∞
#𝜎), and 𝑝 ∈ 𝐿2(0, 𝑇∗; ̇

∞
# ). ◽

4.5 | Spatial-Temporal Regularity
of Serrin-Type Solutions for Constant Anisotropic
Viscosity Coefficients

Theorem 4.9. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑟 ≥ 𝑛∕2 − 1 if 𝑛 ≥ 3,
while 𝑟 > 𝑛∕2 − 1 if 𝑛 = 2. Let the coefficients 𝑎𝛼𝛽

𝑖𝑗
be constant and

the relaxed ellipticity condition (1.2) hold. Let f ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2
# ) ∩

𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy
inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u′ ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2
#𝜎 ) ∪

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), while 𝑝 ∈ 𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#).

Proof. By Theorems 4.1 and 4.5, we have the inclusions u ∈
𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎), u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#). Then,
we only need to prove the inclusions u′ ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2
#𝜎 ) and

𝑝 ∈ 𝐿∞(0, 𝑇∗; 𝐻̇
𝑟−1
# ).

Let, first, 𝑛∕2 − 1 ≤ 𝑟 < 𝑛∕2 + 1 (and also 0 < 𝑟 if 𝑛 = 2). By rela-
tion (1.10) and multiplication Theorem 6.1(b), we have

‖(u ⋅ ∇)u‖H𝑟−2
#
= ‖∇ ⋅ (u ⊗ u)‖H𝑟−2

#
≤ ‖u ⊗ u)‖(𝐻𝑟−1

# )𝑛×𝑛

≤ 𝐶
′
∗𝑟𝑛||u||2H𝑟∕2+𝑛∕4−1∕2

#
≤ 𝐶

′
∗𝑟𝑛||u||2H𝑟

#
,

where 𝐶
′
∗𝑟𝑛 = 𝐶∗(𝑟∕2 + 𝑛∕4, 𝑟∕2 + 𝑛∕4, 𝑛).

Let now 𝑟 ≥ 𝑛∕2 + 1. Again, by relation (1.10) and by multiplica-
tion Theorem 6.1(a), we have

‖(u ⋅ ∇)u‖H𝑟−2
#
= ‖∇ ⋅ (u ⊗ u)‖H𝑟−2

#
≤ ‖u ⊗ u)‖(𝐻𝑟−1

# )𝑛×𝑛

≤ 𝐶
′′
∗𝑟𝑛||u||H𝑟−1

#
||u||H𝑟

#
≤ 𝐶

′′
∗𝑟𝑛||u||2H𝑟

#
,

where 𝐶
′′
∗𝑟𝑛 = 𝐶∗(𝑟 − 1, 𝑟, 𝑛). Hence, in both cases,

‖(u ⋅ ∇)u‖
𝐿∞(0,𝑇∗;H𝑟−2

# ) ≤ 𝐶∗𝑟𝑛||u||2𝐿∞(0,𝑇∗;H𝑟

#)
, (4.60)

where 𝐶∗𝑟𝑛 is 𝐶 ′
∗𝑟𝑛 or 𝐶 ′′

∗𝑟𝑛, respectively.

By (1.1) and (1.3), we have

‖𝔏u‖H𝑟−2
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||(𝐻𝑟−1

# )𝑛×𝑛 ≤ |𝔸|||u||H𝑟

#
.

Thus,
||𝔏u||

𝐿∞(0,𝑇∗;Ḣ
𝑟−2
# ) ≤ |𝔸|||u||

𝐿∞(0,𝑇∗;H𝑟

#)
,

that is, 𝔏u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟−2
# ). We also have f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2
# ).

Then, (2.9) implies that u′ ∈ 𝐿∞(0, 𝑇∗;H𝑟−2
#𝜎 ), while (2.10)

and Lemma 6.5 for gradient, with 𝑠 = 𝑟 − 1, imply that 𝑝 ∈
𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1
# ). ◽

Theorem 4.10. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑟 > 𝑛∕2 − 1.
Let the coefficients 𝑎

𝛼𝛽

𝑖𝑗
be constant and the relaxed elliptic-

ity condition (1.2) hold. Let 𝑘 ∈ [1, 𝑟 + 1) be an integer. Let
f(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2−2𝑙
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1−2𝑙
# ), 𝑙 = 0, 1, … , 𝑘 − 1,

and u0 ∈ Ḣ𝑟

#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (4.28)
from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) is such that
u(𝑙) ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2𝑙
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑟+1−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘, while

𝑝
(𝑙) ∈ 𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1−2𝑙
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1.

Proof. Some parts of the following proof are inspired by [30,
Theorem 3.1] and [11, Chapter 3, Section 3.6], see also [7,
Section 7.2].

We will employ the mathematical induction argument in the
proof. We first remark that by Theorems 4.1, 4.5, and 4.9,
if f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
# ), then u ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩
𝐿2(0, 𝑇∗; Ḣ

𝑟+1
#𝜎 ), u′ ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑟−1
#𝜎 ), while 𝑝 ∈

11605
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𝐿∞(0, 𝑇∗; 𝐻̇
𝑟−1
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#). This means that the theorem
holds true for 𝑘 = 1.

Let us assume that the theorem holds true for some 𝑘
′ = 𝑘 − 1 ∈

[1, 𝑟), that is,

u(𝑙) ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟−2𝑙
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑟+1−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1,

(4.61)

and prove that it holds also for 𝑙 = 𝑘. To this end, let us differen-
tiate Equation (2.9) 𝑘 − 1 times in 𝑡 (in the distribution sense) to
obtain

u(𝑘) = ℙ
𝜎
F(𝑘−1) in 𝕋 × (0, 𝑇 ), (4.62)

where

F(𝑙) ∶= f(𝑙) + 𝜕
𝑙

𝑡
𝔏u − 𝜕

𝑙

𝑡
[(u ⋅ ∇)u] ∀ 𝑙 ∈ ℕ. (4.63)

Let us denote 𝑠
𝑙1 ∶= 𝑟 − 2 max{(𝑘 − 1 − 𝑙), 𝑙}, 𝑠

𝑙2 ∶=
𝑟 − 2 min{(𝑘 − 1 − 𝑙), 𝑙}. Then,

𝑠
𝑙1 ≤ 𝑟 − 𝑘 + 1 ≤ 𝑠

𝑙2,

𝑠
𝑙1 + 𝑠

𝑙2 = 𝑟 − 2(𝑘 − 1 − 𝑙) + 𝑟 −2𝑙 = 2(𝑟 − 𝑘+1), ∀ 𝑙 = 0, … , 𝑘 − 1.

The theorem condition 𝑟 − 𝑘 + 1 > 0 implies 𝑠
𝑙1 + 𝑠

𝑙2 > 0.

Step 1. Convection term.

𝜕
𝑘−1
𝑡
[(u ⋅ ∇)u] =

𝑘−1∑
𝑙=0

𝐶
𝑙

𝑘−1(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙), (4.64)

where 𝐶
𝑙

𝑘−1 are the binomial coefficients.

Case A. Let 0 ≤ 𝑙 ≤ (𝑘 − 1)∕2.
Then, 𝑠

𝑙1 = 𝑟 − 2(𝑘 − 1 − 𝑙), 𝑠
𝑙2 = 𝑟 − 2𝑙.

Subcase A1. Let 𝑛∕2 − 1 < 𝑟 ≤ 𝑛∕2 + 2𝑙. Then, 𝑠
𝑙2 =

𝑟 − 2𝑙 ≤ 𝑛∕2. By the theorem conditions, 𝑟 + 1 −
𝑛∕2 > 0 and 𝑟 − 𝑘 + 1 > 0, and hence, there exists
𝜖 ∈ (0,min{𝑟 + 1 − 𝑛∕2, 2(𝑟 − 𝑘 + 1)}), and thus,

(𝑟 + 1 − 𝑛∕2) − 𝜖 > 0, 𝑠
𝑙1 − 𝜖∕2 ≤ 𝑠

𝑙2 − 𝜖∕2 < 𝑛∕2,

𝑠
𝑙1 + 𝑠

𝑙2 − 𝜖 = 2(𝑟 − 𝑘 + 1) − 𝜖 > 0.

By relation (1.10) and multiplication
Theorem 6.1(b), we have

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟−2𝑘

#

= ‖‖‖∇ ⋅ (u
(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖H𝑟−2𝑘
#

≤
‖‖‖u(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖(𝐻𝑟+1−2𝑘
# )𝑛×𝑛

≤
‖‖‖u(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖(𝐻𝑟+1−2𝑘+(𝑟+1−𝑛∕2)−𝜖
# )𝑛×𝑛

= ‖‖‖u(𝑘−1−𝑙)
⊗ u(𝑙))‖‖‖(𝐻𝑠

𝑙1+𝑠𝑙2−𝜖−𝑛∕2
# )𝑛×𝑛

≤ 𝐶
′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑠

𝑙1−𝜖∕2
#

‖‖‖u(𝑙))‖‖‖H𝑠
𝑙2−𝜖∕2
#

≤ 𝐶
′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙)‖‖‖H𝑟−2𝑙
#

,

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟+1−2𝑘

#

≤
‖‖‖(u

(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟+1−2𝑘+(𝑟+1−𝑛∕2)−𝜖
#

= ‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑠

𝑙1+𝑠𝑙2−𝜖−𝑛∕2
#

≤ 𝐶
′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑠

𝑙1−𝜖∕2
#

‖‖‖∇u(𝑙))‖‖‖(𝐻𝑠
𝑙2−𝜖∕2
# )𝑛×𝑛

≤ 𝐶
′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙)‖‖‖H𝑟+1−2𝑙
#

,

where 𝐶
′
∗𝑟𝑛 = 𝐶∗(𝑠𝑙1 − 𝜖∕2, 𝑠

𝑙2 − 𝜖∕2, 𝑛).

Subcase A2. Let 𝑟 > 𝑛∕2 + 2𝑙.
Then, 𝑠

𝑙2 = 𝑟 − 2𝑙 > 𝑛∕2. Hence, by relation (1.10)
and multiplication Theorem 6.1(a), we have

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟−2𝑘

#

= ‖‖‖∇ ⋅ (u
(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖H𝑟−2𝑘
#

≤
‖‖‖u(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖(𝐻𝑟+1−2𝑘
# )𝑛×𝑛

≤
‖‖‖u(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖(𝐻𝑟−2(𝑘−1−𝑙)
# )𝑛×𝑛

≤ 𝐶
′′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙))‖‖‖H𝑟−2𝑙
#

,

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟+1−2𝑘

#

≤
‖‖‖(u

(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)
#

≤ 𝐶
′′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖∇u(𝑙))‖‖‖H𝑟−2𝑙
#

≤ 𝐶
′′
∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙))‖‖‖H𝑟+1−2𝑙
#

,

where 𝐶
′′
∗𝑟𝑛 = 𝐶∗(𝑠𝑙1, 𝑠𝑙2, 𝑛).

Thus, combining Cases (A1) and (A2), we obtain
that for any 𝑟 > 𝑛∕2 − 1 and for 0 ≤ 𝑙 ≤ (𝑘 − 1)∕2,

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟−2𝑘

#

≤ 𝐶∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙)‖‖‖H𝑟−2𝑙
#

,

(4.65)

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟+1−2𝑘

#

≤ 𝐶∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖H𝑟−2(𝑘−1−𝑙)

#

‖‖‖u(𝑙))‖‖‖H𝑟+1−2𝑙
#

,

(4.66)

where 𝐶∗𝑟𝑛 is 𝐶 ′
∗𝑟𝑛 or 𝐶 ′′

∗𝑟𝑛, respectively.
Case B. Let (𝑘 − 1)∕2 ≤ 𝑙 ≤ 𝑘 − 1. Then, taking into

account that

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖H𝑟−2𝑘

#

= ‖‖‖∇ ⋅ (u
(𝑘−1−𝑙)

⊗ u(𝑙))‖‖‖H𝑟−2𝑘
#

= ‖‖‖(u
(𝑙) ⋅ ∇)u(𝑘−1−𝑙)‖‖‖H𝑟−2𝑘

#

,

we arrive at Case (A) for 𝑙′ = 𝑘 − 1 − 𝑙 and finally to the
same estimates (4.65) and (4.66).

Mathematical Methods in the Applied Sciences, 202511606
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Thus, for any 𝑟 > 𝑛∕2 − 1 and any integer 𝑙 ∈ [0, 𝑘 − 1],
we obtain the estimates

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖𝐿∞(0,𝑇∗;H𝑟−2𝑘

# )

≤ 𝐶∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖𝐿∞(0,𝑇∗;H𝑟−2(𝑘−1−𝑙)

# )
‖‖‖u(𝑙)‖‖‖𝐿∞(0,𝑇∗;H𝑟−2𝑙

# )
,

‖‖‖(u
(𝑘−1−𝑙) ⋅ ∇)u(𝑙)‖‖‖𝐿2(0,𝑇∗;H𝑟+1−2𝑘

# )

≤ 𝐶∗𝑟𝑛
‖‖‖u(𝑘−1−𝑙)‖‖‖𝐿∞(0,𝑇∗;H𝑟−2(𝑘−1−𝑙)

# )
‖‖‖u(𝑙)‖‖‖𝐿2(0,𝑇∗;H𝑟+1−2𝑙

# )
.

Hence, by (4.64) and (4.61),

𝜕
𝑘−1
𝑡
[(u ⋅ ∇)u] ∈ 𝐿∞(0, 𝑇∗;H𝑟−2𝑘

# ) ∩ 𝐿2(0, 𝑇∗;H𝑟+1−2𝑘
# ).

(4.67)

Step 2. Linear terms and right-hand side.
Due to (4.61),

𝜕
𝑘−1
𝑡
𝔏u = 𝔏u(𝑘−1) ∈ 𝐿∞(0, 𝑇∗;H𝑟−2𝑘

# ) ∩ 𝐿2(0, 𝑇∗;H𝑟+1−2𝑘
# ).
(4.68)

We also have f(𝑘−1) ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2𝑘
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟+1−2𝑘
# ).

Then, (4.63), (4.67), and (4.68) imply that

F(𝑘−1) ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2𝑘
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟+1−2𝑘
# ). (4.69)

Thus, by (4.62), u(𝑘) ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟−2𝑘
#𝜎 ) ∩

𝐿2(0, 𝑇∗; Ḣ
𝑟+1−2𝑘
# ).

Step 3. Pressure.
The associated pressure 𝑝 satisfies (2.10). Differentiating
it in time, we obtain

∇𝑝(𝑙) = ℙ
𝑔
F(𝑙) in 𝕋 × (0, 𝑇 ), 𝑙 = 0, 1, … , 𝑘 − 1.

(4.70)
By the same reasoning as in the proof of (4.69), the similar
inclusions for junior derivatives also hold:

F(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2−2𝑙
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1−2𝑙
# ),

𝑙 = 0, 1, … , 𝑘 − 1.

By Lemma 6.5 for gradient, with 𝑠 = 𝑟 − 1 − 2𝑙 and 𝑠 =
𝑟 − 2𝑙, respectively, Equation (4.70) implies that 𝑝

(𝑙) ∈
𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1−2𝑙
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟−2𝑙
# ). ◽

Corollary 4.11. Let 𝑇 > 0 and 𝑛 ≥ 2. Let the coefficients 𝑎
𝛼𝛽

𝑖𝑗

be constant and the relaxed ellipticity condition (1.2) hold. Let
f ∈ ∞(0, 𝑇 ; Ċ∞

# ) and u0 ∈ Ċ∞
#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy

inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u ∈ ∞(0, 𝑇∗; Ċ

∞
#𝜎), 𝑝 ∈

∞(0, 𝑇∗; ̇
∞
# ).

Proof. Taking into account that Ċ∞
# =

⋂
𝑟∈ℝ Ḣ𝑟

#𝜎 , Theorem 4.10
implies that for any integer 𝑘 ≥ 0, u(𝑘) ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2𝑘
#𝜎 ) ∩

𝐿2(0, 𝑇∗; Ḣ
𝑟+1−2𝑘
# ), 𝑝

(𝑘) ∈ 𝐿∞(0, 𝑇∗; 𝐻̇
𝑟−1−2𝑘
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟−2𝑘
#𝜎 ),

for any 𝑟 ∈ ℝ. Hence, u ∈ ∞(0, 𝑇∗; Ċ
∞
#𝜎), 𝑝 ∈ 

∞(0, 𝑇∗; ̇
∞
# ). ◽

4.6 | Regularity of Two-Dimensional Weak
Solution for Constant-Viscosity Coefficients

The regularity results of Sections 4.4 and 4.5 hold for 𝑛 = 2, but as
for the isotropic constant-coefficient case (cf., e.g., [11, Chapter
3, Sections 3.3 and 3.5.1], [7, Section 6.5]), these results can be
essentially improved for 𝑛 = 2 also in the anisotropic setting with
constant coefficients.

Let us give a counterpart of Theorem 4.5 that for 𝑛 = 2, it is valid
on any time interval [0, 𝑇 ] (and not only on its special subinterval
[0, 𝑇∗]).

Theorem 4.12. (Spatial regularity of solution for arbitrar-
ily large data). Let 𝑛 = 2, 𝑟 > 0, and 𝑇 > 0. Let the coefficients
𝑎
𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition (1.2) hold. Let

f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type
and belongs to 𝐿∞(0, 𝑇 ; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇 ; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇 ; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇 ]; Ḣ𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Proof. The proof coincides word for word with the proof of
Theorem 4.5 if we take there 𝑛 = 2 while replacing 𝑇∗ by 𝑇

and the reference to (4.35) for the boundedness of the sequence
||u

𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2
# ) for 𝑛 = 2 by the reference to the corresponding

inequality

||u
𝑚
||2
𝐿2(0,𝑇 ;Ḣ

1
#)
≤ 4𝐶𝔸

(
||u0||2L2#

+ 4𝐶𝔸||f||2
𝐿2(0,𝑇 ;Ḣ

−1
# )

)
.

obtained as inequality (59) in our paper [19]. ◽

The following assertion can be proved similarly to Corollary 4.8.

Corollary 4.13. Let 𝑇 > 0 and 𝑛 = 2. Let the coefficients 𝑎
𝛼𝛽

𝑖𝑗

be constant and the relaxed ellipticity condition (1.2) hold. Let f ∈
𝐿2(0, 𝑇 ; Ċ

∞
# ) and u0 ∈ Ċ∞

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type
and is such that u ∈ 0([0, 𝑇 ]; Ċ∞

#𝜎), u′ ∈ 𝐿2(0, 𝑇 ; Ċ
∞
#𝜎), and 𝑝 ∈

𝐿2(0, 𝑇 ; ̇
∞
# ).

The next three assertions on spatial-temporal regularity for 𝑛 =
2 are the corresponding counterparts of Theorems 4.9 and 4.10
and Corollary 4.11 and are proved in a similar way after replacing
there 𝑇∗ by 𝑇 .

Theorem 4.14. Let 𝑇 > 0, 𝑛 = 2, and 𝑟 > 0. Let the coefficients
𝑎
𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition (1.2) hold. Let

f ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial
value problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin
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type and is such that u′ ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2
#𝜎 ) ∪ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
#𝜎 ), 𝑝 ∈

𝐿∞(0, 𝑇 ; 𝐻̇
𝑟−1
# ) ∩ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟

#).

Theorem 4.15. Let 𝑇 > 0, 𝑛 = 2, and 𝑟 > 0. Let the coeffi-
cients 𝑎

𝛼𝛽

𝑖𝑗
be constant and the relaxed ellipticity condition (1.2)

hold. Let 𝑘 ∈ [1, 𝑟 + 1) be an integer. Let f(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑟−2−2𝑙
# ) ∩

𝐿2(0, 𝑇 ; Ḣ
𝑟−1−2𝑙
# ), 𝑙 = 0, 1, … , 𝑘 − 1, and u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type and is
such that u(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2𝑙
#𝜎 ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟+1−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘;

𝑝
(𝑙) ∈ 𝐿∞(0, 𝑇 ; 𝐻̇

𝑟−1−2𝑙
# ) ∩ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1.

Corollary 4.16. Let 𝑇 > 0 and 𝑛 = 2. Let the coefficients 𝑎
𝛼𝛽

𝑖𝑗

be constant and the relaxed ellipticity condition (1.2) hold. Let f ∈
∞(0, 𝑇 ; Ċ∞

# ) and u0 ∈ Ċ∞
#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type and is
such that u ∈ ∞(0, 𝑇 ; Ċ∞

#𝜎), 𝑝 ∈ 
∞(0, 𝑇 ; ̇∞# ).

5 | Serrin-Type Solution Existence
and Regularity for Variable Anisotropic Viscosity
Coefficients

In this section, we generalize to the anisotropic variable viscos-
ity coefficients the analysis of the existence and regularity of
Serrin-type solutions for any 𝑛 ≥ 2 given in Section 4 for the
anisotropic constant-viscosity coefficients.

5.1 | Preliminary Results for Variable
Anisotropic Viscosity Coefficients

For some 𝑛 ≥ 2, 𝑟 ≥ 𝑛∕2 − 1, and 𝑇 > 0, let 𝑎
𝛼𝛽

𝑖𝑗
∈

𝐿∞([0, 𝑇 ];𝐻𝜎̃+1
# ), 𝜎̃ >

𝑛

2
+max{|𝑟 − 1|, |𝑛∕2 − 2|}, and the

relaxed ellipticity condition (1.2) hold. Let also f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# )

and u0 ∈ Ḣ𝑟

#𝜎 .

We employ the Galerkin approximation as in Section 4.2 and
repeating the same arguments arrive at the same Equation (4.17)
but now with the variable coefficients 𝑎𝛼𝛽

𝑖𝑗
(x, 𝑡). These equations

can be now rewritten as

⟨𝜕
𝑡
Λ𝑟

#𝒖̃𝑚,Λ
𝑟

#w𝑘
⟩𝕋 +

⟨
𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑗𝛽
(Λ𝑟

#ũ𝑚
), 𝐸

𝑖𝛼
(Λ𝑟

#w𝑘
)
⟩
𝕋

+ ⟨Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
],Λ𝑟+1

# w
𝑘
⟩𝕋

= ⟨Λ𝑟−1
# f,Λ𝑟+1

# w
𝑘
⟩𝕋 + ⟨∇Λ𝑟

#v𝑚
,∇Λ𝑟

#w𝑘
⟩𝕋

−
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#w𝑘
)
⟩
𝕋

−
⟨
𝐸

𝑗𝛽
(ũ

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#w𝑘
) − Λ𝑟

#[𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(Λ𝑟

#w𝑘
)]
⟩
𝕋

∀ 𝑘 ∈ {1, … , 𝑚}.

(5.1)

Multiplying equations in (5.1) by 𝜂̃
𝑘,𝑚
(𝑡) and summing them up

over 𝑘 ∈ {1, … , 𝑚}, we obtain

1
2
𝜕
𝑡

‖‖Λ𝑟

#ũ𝑚

‖‖2
H0
#
+ 𝑎𝕋 (𝑡; Λ𝑟

#ũ𝑚
,Λ𝑟

#ũ𝑚
)

= ⟨Λ𝑟−1
# f,Λ𝑟+1

# ũ
𝑚
⟩𝕋 + ⟨∇Λ𝑟

#v𝑚
,∇Λ𝑟

#ũ𝑚
⟩𝕋

−
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)
⟩
𝕋

−
⟨
𝐸

𝑗𝛽
(ũ

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
) − Λ𝑟

#[𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(Λ𝑟

#ũ𝑚
)]
⟩
𝕋

− ⟨Λ𝑟−1
# [(u

𝑚
⋅ ∇)u

𝑚
],Λ𝑟+1

# ũ
𝑚
⟩𝕋 .

(5.2)

From (2.7), we have

𝑎𝕋 (𝑡; Λ𝑟

#ũ𝑚
,Λ𝑟

#ũ𝑚
) ≥ 1

4
𝐶
−1
𝔸 ||Λ𝑟

#ũ𝑚
||2

Ḣ1
#𝜎
= 1

4
𝐶
−1
𝔸 ||ũ

𝑚
||2

Ḣ𝑟+1
#𝜎
. (5.3)

Let us now estimate the terms in the right-hand side of (5.2). For
the first two terms and for the last one, estimates (4.21), (4.22),
and (4.24) still hold.

Further, because 𝜎̃ + 1 > 𝑛∕2, we obtain by Theorem 6.1(a) and
inequality (1.10),

||||
⟨
𝐸

𝑗𝛽
(v

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)
⟩
𝕋

||||
≤ ||𝐸

𝑗𝛽
(v

𝑚
)||(𝐻𝑟

#)𝑛×𝑛
||𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)||(𝐻−𝑟

# )𝑛×𝑛

≤ ||𝐸
𝑗𝛽
(v

𝑚
)||(𝐻𝑟

#)𝑛×𝑛
𝐶∗𝜎̃𝑟𝑛||𝑎𝛼𝛽𝑖𝑗 ||𝐻𝜎̃+1

#
||Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)||(𝐻−𝑟

# )𝑛×𝑛

≤ 𝐶∗𝜎̃𝑟𝑛||𝔸||𝐻𝜎̃+1
# ,𝐹

||v
𝑚
||Ḣ𝑟+1

#
||ũ

𝑚
||Ḣ𝑟+1

#
,

(5.4)

where 𝐶∗𝜎̃𝑟𝑛 ∶= 𝐶∗(−𝑟, 𝜎̃ + 1, 𝑛),

||𝔸(⋅, 𝑡)||
𝐻

𝜎̃+1
# ,𝐹

∶=
||||
{
||𝑎𝛼𝛽

𝑖𝑗
(⋅, 𝑡)||

𝐻
𝜎̃+1
#

}
𝑛

𝛼,𝛽,𝑖,𝑗=1

||||𝐹 .

By Theorem 6.3 with 𝜃 = 𝑟, 𝑠 = 0,

||||
⟨
𝐸

𝑗𝛽
(ũ

𝑚
), 𝑎𝛼𝛽

𝑖𝑗
Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
) − Λ𝑟

#[𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(Λ𝑟

#ũ𝑚
)]
⟩
𝕋

||||
≤ ||𝐸

𝑗𝛽
(ũ

𝑚
)||(𝐻𝑟−1

# )𝑛×𝑛 ||𝑎𝛼𝛽𝑖𝑗 Λ𝑟

#𝐸𝑖𝛼
(Λ𝑟

#ũ𝑚
)

− Λ𝑟

#[𝑎
𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(Λ𝑟

#ũ𝑚
)]||(𝐻−𝑟+1

# )𝑛×𝑛

≤ 𝐶0,𝑟,𝜎̃||𝐸𝑗𝛽
(ũ

𝑚
)||(𝐻𝑟−1

# )𝑛×𝑛 |𝑎𝛼𝛽𝑖𝑗 |𝐻𝜎̃+1
#
||𝐸

𝑖𝛼
(Λ𝑟

#ũ𝑚
)||(𝐻0

# ))𝑛×𝑛

≤ 𝐶0,𝑟,𝜎̃|𝔸|𝐻𝜎̃+1
# ,𝐹

||ũ
𝑚
||Ḣ𝑟

#
||ũ

𝑚
||Ḣ𝑟+1

#
,

(5.5)

where
|𝔸(⋅, 𝑡)|

𝐻
𝜎̃+1
# ,𝐹

∶=
||||
{
|𝑎𝛼𝛽

𝑖𝑗
(⋅, 𝑡)|

𝐻
𝜎̃+1
#

}
𝑛

𝛼,𝛽,𝑖,𝑗=1

||||𝐹 ≤ ||𝔸(⋅, 𝑡)||
𝐻

𝜎̃+1
# ,𝐹

.

Implementing estimates (4.21), (4.22), (4.24), (5.3), (5.4), and
(5.5) in (5.2) and using Young’s inequality, we obtain

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑟

#
+ 1

2
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#

≤ 2(||f||H𝑟−1
#
+
[
𝐶∗𝜎̃𝑟𝑛||𝔸||𝐻𝜎̃+1

# ,𝐹
+ 1

]
||v

𝑚
||Ḣ𝑟+1

#

+ 𝐶0,𝑟,𝜎̃|𝔸|𝐻𝜎̃+1
# ,𝐹

||ũ
𝑚
||Ḣ𝑟

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖H𝑟−1
#
)||ũ

𝑚
||H𝑟+1

#

≤ 4𝐶𝔸(||f||H𝑟−1
#
+
[
𝐶∗𝜎̃𝑟𝑛||𝔸||𝐻𝜎̃+1

# ,𝐹
+ 1

]
||v

𝑚
||Ḣ𝑟+1

#

+ 𝐶0,𝑟,𝜎̃|𝔸|𝐻𝜎̃+1
# ,𝐹

||ũ
𝑚
||Ḣ𝑟

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖H𝑟−1
#
)2

+ 1
4
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#
.
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Hence, by the inequality
(∑

𝑘

𝑖=1𝑎𝑖

)2
≤ 𝑘

∑
𝑘

𝑖=1𝑎
2
𝑖

(following from
the Cauchy–Schwarz inequality),

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||ũ

𝑚
||2H𝑟+1

#

≤ 20𝐶𝔸

(
||f||2H𝑟−1

#
+
[
𝐶

2
∗𝜎̃𝑟𝑛||𝔸||2𝐻𝜎̃+1

# ,𝐹

+ 1
]
||v

𝑚
||2

Ḣ𝑟+1
#

+ 𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

||ũ
𝑚
||2

Ḣ𝑟

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖2
H𝑟−1
#

)
.

(5.6)

Note that by the similar reasoning, but without employing in (4.9)
and (4.10) the function v, we obtain that u

𝑚
satisfies the differen-

tial inequality

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#

≤ 12𝐶𝔸

(
||f||2H𝑟−1

#
+ 𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

||u
𝑚
||2

Ḣ𝑟

#
+ ‖‖(u𝑚

⋅ ∇)u
𝑚

‖‖2
H𝑟−1
#

)
.

(5.7)

5.2 | Serrin-Type Solution Existence
for Variable Anisotropic Viscosity Coefficients

Employing the results from Section 5.1 for 𝑟 = 𝑛∕2 − 1, we are
now in the position to prove the existence of Serrin-type solutions.

Theorem 5.1. Let 𝑛 ≥ 2 and 𝑇 > 0. Let 𝑎
𝛼𝛽

𝑖𝑗
∈

𝐿∞([0, 𝑇 ];𝐻𝜎̃+1
# ), 𝜎̃ >

𝑛

2
+ |𝑛∕2 − 2|, and the relaxed ellipticity

condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 .

i. Then, there exist constants 𝐴1 ≥ 0, 𝐴2 ≥ 0, and 𝐴3 > 0 that
are independent of f and u0 but may depend on 𝑇 , 𝑛, ||𝔸||,
and𝐶𝔸, such that if f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy the inequal-
ity

∫

𝑇∗

0
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

𝑑𝑡 +
(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)

∫

𝑇∗

0
||(𝐾u0)(⋅, 𝑡)||2

Ḣ𝑛∕2
#

𝑑𝑡 < 𝐴3,

(5.8)

where 𝐾 is the operator defined in (4.3), then there exists
a solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) in 𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ),

which is thus a Serrin-type solution.

ii. In addition, u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑛∕2−1
#𝜎 ),

lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑛∕2−1

#𝜎
= 0, and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇

𝑛∕2−1
# ).

iii. Moreover, u satisfies the following energy equality for any
[𝑡0, 𝑡] ⊂ [0, 𝑇∗],

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

𝑡0

𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏

= 1
2
||u(⋅, 𝑡0)||2L2#

+
∫

𝑡

𝑡0

⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋𝑑𝜏,
(5.9)

It particularly implies the standard energy equality,

1
2
||u(⋅, 𝑡)||2L2#

+
∫

𝑡

0
𝑎𝕋 (𝜏;u(⋅, 𝜏),u(⋅, 𝜏))𝑑𝜏

= 1
2
||u0||2L2#

+
∫

𝑡

0
⟨f(⋅, 𝜏),u(⋅, 𝜏)⟩𝕋 𝑑𝜏 ∀ 𝑡 ∈ [0, 𝑇∗].

(5.10)

iv. The solution u is unique in the class of solutions from
𝐿∞(0, 𝑇∗; Ḣ

0
#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ

1
#𝜎) satisfying the energy

inequality (2.14) on the interval [0, 𝑇∗].

Proof.

i. Let 𝑟 = 𝑛∕2 − 1. The estimate (4.27) still holds. Let us fix any
small 𝜎̃

𝑛
such that 𝜎̃ ≥ 𝜎̃

𝑛
> 𝑛∕2 + |𝑛∕2 − 2| = max{2, 𝑛 −

2}. Then, by (4.31), we obtain from (5.6),

𝑑

𝑑𝑡

‖‖ũ
𝑚

‖‖2
H𝑛∕2−1
#

+ 1
4
𝐶
−1
𝔸 ||ũ

𝑚
||2

H𝑛∕2
#

≤

(
160𝐶2

∗𝑟𝑛𝐶𝔸||ũ𝑚
||2

H𝑛∕2
#
+ 20𝐶𝔸𝐶

2
𝑛
|𝔸|2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

)
||ũ

𝑚
||2

Ḣ𝑛∕2−1
#

+ 20𝐶𝔸

(
||f||2

H𝑛∕2−2
#

+ 8𝐶2
∗𝑟𝑛||v𝑚

||2
H𝑛∕2−1
#

||v
𝑚
||2

H𝑛∕2
#

+
[
𝐶̃

2
∗𝑛||𝔸||2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

+ 1
]
||v

𝑚
||2

Ḣ𝑛∕2
#

)
,

(5.11)
where 𝐶

𝑛
∶= 𝐶0,𝑛∕2−1,𝜎̃

𝑛

, 𝐶̃∗𝑛 ∶= 𝐶∗𝜎̃
𝑛
,𝑛∕2−1,𝑛 = 𝐶∗(−𝑛∕2 +

1, 𝜎̃
𝑛
+ 1, 𝑛).

Let us now apply to (5.11) Lemma 6.13 with

𝜂 = ‖‖ũ
𝑚

‖‖2
H𝑛∕2−1
#

, 𝜂0 = 0, 𝑦 = ||ũ
𝑚
||2

H𝑛∕2
#
, 𝑏 = 1

4
𝐶
−1
𝔸 ,

𝑐 = 160𝐶2
∗𝑟𝑛𝐶𝔸, 𝜙 = 20𝐶𝔸𝐶

2
𝑛
|𝔸|2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

,

𝜓 = 20𝐶𝔸

(
||f||2

H𝑛∕2−2
#

+ 8𝐶2
∗𝑟𝑛||v𝑚

||2
H𝑛∕2−1
#

||v
𝑚
||2

H𝑛∕2
#

+
[
𝐶̃

2
∗𝑛||𝔸||2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

+ 1
]
||v

𝑚
||2

Ḣ𝑛∕2
#

)
,

to conclude that if 𝑇∗ is such that

∫

𝑇∗

0
𝑒
Φ(𝑇∗)−Φ(𝑡)

(
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

+
(

8𝐶2
∗𝑟𝑛||v𝑚

(⋅, 𝑡)||2
H𝑛∕2−1
#

+
[
𝐶̃

2
∗𝑛||𝔸||2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

+ 1
])

||v
𝑚
(⋅, 𝑡)||2

Ḣ𝑛∕2
#

)
𝑑𝑡

<

(
640𝑒𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1

,

(5.12)
where

Φ(𝑠) ∶=
∫

𝑠

0
𝜙(𝜏)𝑑𝜏 = 20𝐶𝔸𝐶

2
𝑛 ∫

𝑠

0
|𝔸(⋅, 𝜏)|2

𝐻
𝜎̃
𝑛
+1

# ,𝐹

𝑑𝜏,

then

||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 ) ≤ ||ũ

𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 ) + ||v

𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2−1
#𝜎 )

≤

(
8
√

10𝐶𝔸𝐶∗𝑟𝑛

)−1
+ ‖‖u0‖‖Ḣ𝑛∕2−1

#𝜎
,

(5.13)
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||u
𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
≤ ||ũ

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
+ ||v

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

≤

(
4
√

10𝐶𝔸𝐶∗𝑟𝑛

)−1
+ ‖‖u0‖‖Ḣ𝑛∕2−1

#𝜎
.

(5.14)

Estimates (4.13) and (4.14) were taken into account in
(5.13) and (5.14).
Taking into account inequality (4.13), we obtain that
condition (5.12) is satisfied if 𝑇∗ is such that

∫

𝑇∗

0
||f(⋅, 𝑡)||2

H𝑛∕2−2
#

𝑑𝑡 +
(

8𝐶2
∗𝑟𝑛||u0||2

H𝑛∕2−1
#

+
[
𝐶̃

2
∗𝑛||𝔸||2

𝐿∞(0,𝑇 ;𝐻
𝜎̃
𝑛
+1

# ),𝐹
+ 1

])
∫

𝑇∗

0
||v(⋅, 𝑡)||2

Ḣ𝑛∕2
#

𝑑𝑡

<

(
640𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1 exp

(
−1 − 20𝐶𝔸𝐶

2
𝑛
||𝔸||2

𝐿∞(0,𝑇 ;𝐻
𝜎̃
𝑛
+1

# ),𝐹
𝑇

)
.

(5.15)

Note that condition (5.15) gives condition (5.8) with

𝐴1 = 8𝐶2
∗𝑟𝑛, 𝐴2 = 𝐶̃

2
∗𝑛||𝔸||2

𝐿∞(0,𝑇 ;𝐻
𝜎̃
𝑛
+1

# ),𝐹
+ 1,

𝐴3 =
(
640𝐶2

𝔸𝐶
2
∗𝑟𝑛
)−1 exp

(
−1 − 20𝐶𝔸𝐶

2
𝑛
||𝔸||2

𝐿∞(0,𝑇 ;𝐻𝜎̃+1
# ),𝐹 𝑇

)
.

Inequalities (5.13) and (5.14) imply that there exists a
subsequence of {u

𝑚
} converging weakly in 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 )

and weakly star in 𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) to a function u† ∈

𝐿2(0, 𝑇∗; Ḣ
𝑛∕2
#𝜎 ) ∪ 𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ). Then, the subsequence

converges to u† also weakly in 𝐿2(0, 𝑇∗; Ḣ
1
#𝜎) and weakly

star in 𝐿∞(0, 𝑇∗; Ḣ
0
#𝜎). Because{u

𝑚
} is the subsequence of

the sequence that converges weakly in 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
and

weakly star in 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
to the weak solution, u, of

problem (2.1–2.3) on
[
0, 𝑇∗

]
, we conclude that u = u† ∈

𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) ∪ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ).

This implies that u is a Serrin-type solution on the interval
[0, 𝑇∗], and we thus proved item (i) of the theorem.

ii. As in step (ii) of the proof of Theorem 5.1, estimate (4.37)
implies that (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2−2
# ). By (1.1) and (1.3),

we have

‖𝔏u‖2
H𝑛∕2−2
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||(𝐻𝑛∕2−1

# )𝑛×𝑛 ≤ ||𝔸||2
𝐻

𝜎̃+1
# ,𝐹

||u||2
H𝑛∕2
#
,

and thus,

||𝔏u||2
𝐿2(0,𝑇∗;Ḣ

𝑛∕2−2
# )

≤ ||𝔸||2
𝐿∞(0,𝑇∗;𝐻𝜎̃+1

# ),𝐹 ||u||2𝐿2(0,𝑇∗;H
𝑛∕2
# )

,

that is, 𝔏u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ). We also have

f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2−2
# ).

Then, (2.9) implies that u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
#𝜎 ), and hence,

by Theorem 6.8, we obtain that u ∈ 0([0, 𝑇∗]; Ḣ
𝑛∕2−1
#𝜎 ),

which also means that ||u(⋅, 𝑡) − u0||Ḣ𝑛∕2−1
#𝜎

→ 0 as 𝑡 → 0.
To prove the theorem claim about the associated pres-
sure 𝑝, we remark that it satisfies (2.10), where F ∈
𝐿2(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) due to the theorem conditions and the

inclusion (u ⋅ ∇)u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑛∕2−2
# ). By Lemma 6.5 for

gradient, with 𝑠 = 𝑛∕2 − 1, Equation (2.10) has a unique
solution 𝑝 in 𝐿2(0, 𝑇∗; 𝐻̇

𝑛∕2−1
# ).

iii. The energy equalities (5.9) and (5.10) immediately follow
from Theorem 3.5.

iv. The solution uniqueness follows from Theorem 3.6. ◽

Remark 5.2. Note that by the Sobolev embedding theorem,
the condition 𝑎

𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑛∕2 − 2| + 𝑛

2
, in

Theorem 5.1 and further on implies 𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];0

# ) ⊂
𝐿∞([0, 𝑇 ];𝐿∞#).

Remark 5.3. Because ||f(⋅, 𝑡)||2
Ḣ𝑛∕2−2
#

is integrable on (0, 𝑇 ] by the

theorem condition and ||(𝐾u0)(⋅, 𝑡)||2
Ḣ𝑛∕2
#

is integrable on (0,∞) by
the inequality (4.5), we conclude that due to the absolute con-
tinuity of the Lebesgue integrals, for arbitrarily large data f ∈
𝐿2(0, 𝑇 ; Ḣ

𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 , there exists 𝑇∗ > 0 such that
condition (5.8) holds.

Estimating the integrand in the second integral in (5.8) according
to (4.5), we arrive at the following assertion allowing an explicit
estimate of 𝑇∗ for arbitrarily large data if f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑛∕2−2
# ).

Corollary 5.4. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Let 𝑛 ≥ 2 and 𝑇 > 0. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑛∕2 − 2| + 𝑛

2
, and the relaxed ellip-

ticity condition (1.2) hold. Let f ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2

#𝜎 .

Then, there exist constants 𝐴1, 𝐴2, 𝐴3 > 0 that are independent of
f and u0 but may depend on 𝑇 , 𝑛, ||𝔸||, and 𝐶𝔸, such that if 𝑇∗ ∈
(0, 𝑇 ] satisfies the inequality

𝑇∗

[
||f||2

𝐿∞(0,𝑇 ;Ḣ
𝑛∕2−2
# )

+
(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)
||u0||2

H𝑛∕2
#

]
< 𝐴3,

(5.16)

then there exists a Serrin-type solution u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑛∕2−1
#𝜎 ) ∩

𝐿2(0, 𝑇∗; Ḣ
𝑛∕2
#𝜎 ) of the anisotropic Navier–Stokes initial value

problem. This solution satisfies items (ii)–(iv) in Theorem 5.1.

Estimating the second integral in (5.8) according to (4.8), we
arrive at the following assertion.

Corollary 5.5. (Existence of Serrin-type solution for arbi-
trary time but small data). Let 𝑛 ≥ 2 and 𝑇 > 0. Let 𝑎𝛼𝛽

𝑖𝑗
∈

𝐿∞([0, 𝑇 ];𝐻𝜎̃+1
# ), 𝜎̃ > |𝑛∕2 − 2| + 𝑛

2
, and the relaxed ellipticity

condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑛∕2−2
# ) and u0 ∈ Ḣ𝑛∕2−1

#𝜎 .

Then, there exist constants 𝐴1, 𝐴2, 𝐴3 > 0 that are independent of
f and u0 but may depend on 𝑇 , 𝑛, ||𝔸||, and 𝐶𝔸, such that if f and
u0 satisfy the inequality

||f||2
𝐿2(0,𝑇 ;Ḣ

𝑛∕2−2
# )

+
(
𝐴1||u0||2

H𝑛∕2−1
#

+ 𝐴2

)
||u0||2

H𝑛∕2−1
#

< 𝐴3, (5.17)

then there exists a Serrin-type solution u ∈ 𝐿∞(0, 𝑇 ; Ḣ
𝑛∕2−1
#𝜎 ) ∩

𝐿2(0, 𝑇 ; Ḣ
𝑛∕2
#𝜎 ) of the anisotropic Navier–Stokes initial value

problem. This solution satisfies items (ii)–(iv) in Theorem 5.1 with
𝑇∗ = 𝑇 .
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5.3 | Spatial Regularity of Serrin-Type Solutions
for Variable Anisotropic Viscosity Coefficients

Theorem 5.6. (Spatial regularity of Serrin-type solution
for arbitrarily large data). Let 𝑛 ≥ 2, 𝑟 > 𝑛∕2 − 1, and 𝑇 > 0.
Let 𝑎𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ >
𝑛

2
+max{|𝑟 − 1|, |𝑛∕2 − 2|}, and

the relaxed ellipticity condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# )

and u0 ∈ Ḣ𝑟

#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (5.8)
from Theorem 5.1.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs
to 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Proof. The existence of the Serrin-type solution u ∈
𝐿∞(0, 𝑇∗; Ḣ

𝑛∕2−1
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑛∕2
#𝜎 ) is proved in Theorem 5.1(i),

and we will prove that it has a higher smoothness. We will
employ the same Galerkin approximation used in Section 5.1
and in the proof of Theorem 5.1(i).

Step a. Let us estimate the last term in (5.7) for the case 𝑛∕2 − 1 <

𝑟 < 𝑛∕2. By (4.27), we obtain from (5.7),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#
≤

12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2
#

)
||u

𝑚
||2

Ḣ𝑟

#
+ 12𝐶𝔸||f||2H𝑟−1

#
,

(5.18)

implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
≤

12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2
#

)
||u

𝑚
||2

Ḣ𝑟

#
+ 12𝐶𝔸||f||2H𝑟−1

#
.

(5.19)

By Gronwall’s inequality (6.22), we obtain from
(5.19) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
≤ exp

[
12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+𝐶2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2
# )

)]

×
[
||u

𝑚
(⋅, 0)||2H𝑟

#
+ 12𝐶𝔸||f||2

𝐿2(0,𝑇∗;H𝑟−1
# )

]
.

(5.20)

We have ||u
𝑚
(⋅, 0)||H𝑟

#
≤ ||u0||H𝑟

#
and by (5.14), the

sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2
# ) is bounded. Then, (5.20)

implies that the sequence ||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
is bounded as

well. Integrating (5.18), we conclude that

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
≤ 48𝐶2

𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+𝐶2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2
# )

)
||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2H𝑟

#
+ 48𝐶2

𝔸||f||2𝐿2(0,𝑇∗;H𝑟−1
# ).

(5.21)

Inequalities (5.20) and (5.21) mean that the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑛∕2 − 1 < 𝑟 < 𝑛∕2.
(5.22)

Step b. Let now 𝑟 = 𝑛∕2. By (4.45), we obtain from (5.7),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑛∕2
#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2

H𝑛∕2+1
#
≤

12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2+1∕2
#

)
||u

𝑚
||2

Ḣ𝑛∕2
#

+ 12𝐶𝔸||f||2H𝑛∕2−1
#

,

(5.23)
implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑛∕2
#
≤ 12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
H𝑛∕2+1∕2
#

)

× ||u
𝑚
||2

Ḣ𝑛∕2
#

+ 12𝐶𝔸||f||2H𝑛∕2−1
#

.

(5.24)

By Gronwall’s inequality (6.22), we obtain from
(5.24) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )
≤ exp

[
12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# )

)]

×
[
||u

𝑚
(⋅, 0)||2

H𝑛∕2
#
+ 12𝐶𝔸||f||2

𝐿2(0,𝑇∗;H
𝑛∕2−1
# )

]
.

(5.25)

We have ||u
𝑚
(⋅, 0)||H𝑛∕2

#
≤ ||u0||H𝑛∕2

#
, and by (5.22), the

sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# ) is bounded as well. Then,

(5.25) implies that the sequence ||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

is also
bounded. Integrating (5.23), we conclude that

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑛∕2+1
#𝜎 )

≤ 48𝐶2
𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H

𝑛∕2+1∕2
# )

)
||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑛∕2
#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2

H𝑛∕2
#
+ 48𝐶2

𝔸||f||2
𝐿2(0,𝑇∗;H

𝑛∕2−1
# )

≤ 𝐶 < ∞.

(5.26)

Inequalities (5.25) and (5.26) mean that the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑟 = 𝑛∕2.
(5.27)

Step c. Let now 𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2, 𝑘 = 1, 2, 3, … By (4.51),
we obtain from (5.7),

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
+ 1

4
𝐶
−1
𝔸 ||u

𝑚
||2H𝑟+1

#

≤ 12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2H𝑟

#

)
||u

𝑚
||2

Ḣ𝑟

#

+ 12𝐶𝔸||f||2H𝑟−1
#
,

(5.28)

11611

 10991476, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10921 by T

est, W
iley O

nline L
ibrary on [10/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



implying

𝑑

𝑑𝑡

‖‖u
𝑚

‖‖2
H𝑟

#
≤ 12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃|𝔸|2𝐻𝜎̃+1

# ,𝐹

+ 𝐶
2
∗𝑟𝑛||u𝑚

||2H𝑟

#

)
||u

𝑚
||2

Ḣ𝑟

#

+ 12𝐶𝔸||f||2H𝑟−1
#
.

(5.29)
By Gronwall’s inequality (6.22), we obtain from
(5.29) that

||u
𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
≤ exp

[
12𝐶𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+𝐶2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H𝑟

#)

)]

×
[
||u

𝑚
(⋅, 0)||2H𝑟

#
+ 12𝐶𝔸||f||2

𝐿2(0,𝑇∗;H𝑟−1
# )

]
,

(5.30)

where ||u
𝑚
(⋅, 0)||H𝑟

#
≤ ||u0||H𝑟

#
.

If 𝑘 = 1, then the sequence ||u
𝑚
||
𝐿2(0,𝑇∗;H𝑟

#)
in (5.30) is

bounded due to (5.22) and (5.27). Then, (5.30) implies
that the sequence ||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
is bounded as well.

Integrating (5.28), we also conclude that for 𝑘 = 1,

||u
𝑚
||2
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
≤ 48𝐶2

𝔸

(
𝐶

2
0,𝑟,𝜎̃𝑇∗|||𝔸|𝐻𝜎̃+1

# ,𝐹
||2
𝐿∞(0,𝑇∗)

+𝐶2
∗𝑟𝑛||u𝑚

||2
𝐿2(0,𝑇∗;H𝑟

#)

)
||u

𝑚
||2
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )

+ 4𝐶𝔸||u𝑚
(⋅, 0)||2H𝑟

#
+ 48𝐶2

𝔸||f||2𝐿2(0,𝑇∗;H𝑟−1
# ),

𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2.
(5.31)

Inequalities (5.30) and (5.31) mean that for 𝑘 = 1, the
sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑘𝑛∕2 < 𝑟 ≤ (𝑘 + 1)𝑛∕2.
(5.32)

If we assume that properties (5.32) hold for some inte-
ger 𝑘 ≥ 1, then by the similar argument, properties (5.32)
hold with 𝑘 replaced by 𝑘 + 1, and thus, by induction,
they hold for any integer 𝑘. Hence, collecting properties
(5.22), (5.27), and (5.32), we conclude that the sequences

{||u
𝑚
||
𝐿∞(0,𝑇∗;Ḣ

𝑟

#𝜎 )
}∞
𝑚=1 and {||u

𝑚
||
𝐿2(0,𝑇∗;Ḣ

𝑟+1
#𝜎 )
}∞
𝑚=1

are bounded for 𝑛∕2 − 1 < 𝑟.

(5.33)

Properties (5.33) imply that there exists a subsequence
of {u

𝑚
} converging weakly in 𝐿2(0, 𝑇∗; Ḣ

𝑟+1
#𝜎 ) and weakly

star in 𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎) to a function u† ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ) ∪

𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎). Then, the subsequence converges to
u† also weakly in 𝐿2(0, 𝑇∗; Ḣ

1
#𝜎) and weakly star in

𝐿∞(0, 𝑇∗; Ḣ
0
#𝜎). Because {u

𝑚
} is the subsequence of the

sequence that converges weakly in 𝐿2

(
0, 𝑇 ; Ḣ1

#𝜎

)
and

weakly star in 𝐿∞

(
0, 𝑇 ; Ḣ0

#𝜎

)
to the weak solution, u, of

problem (2.1–2.3) on
[
0, 𝑇∗

]
, we conclude that u = u† ∈

𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ) ∪ 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎), for any 𝑟 > 𝑛∕2 − 1, and
we thus finished proving that

u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). (5.34)

Step d. Estimate (4.59) and inclusion (5.34) imply that (u ⋅ ∇)u ∈
𝐿2(0, 𝑇∗;H𝑟−1

# ). By (1.1) and (1.3), we have

‖𝔏u‖2
H𝑟−1
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||2(𝐻𝑟

#)𝑛×𝑛

≤ ||𝔸||2
𝐻

𝜎̃+1
# ,𝐹

||u||2H𝑟+1
#

for a.e. 𝑡 ∈ (0, 𝑇 ),

and thus,

||𝔏u||2
𝐿2(0,𝑇∗;Ḣ

𝑟−1
# )
≤ ||𝔸||2

𝐿∞(0,𝑇∗;𝐻𝜎̃+1
# ),𝐹 ||u||2𝐿2(0,𝑇∗;H𝑟+1

# ),

that is, 𝔏u ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
# ). We also have

f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ). Thus, F defined by (2.8)

belongs to 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ). Then, (2.9) implies that

u′ ∈ 𝐿2(0, 𝑇∗;H𝑟−1
#𝜎 ), and because u ∈ 𝐿2(0, 𝑇∗;H𝑟+1

#𝜎 ), we
obtain by Theorem 6.8 that u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎), which
also means that ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
→ 0 as 𝑡 → 0.

To prove the theorem claim about the associated pressure
𝑝, we remark that 𝑝 satisfies (2.10). By Lemma 6.5 for gra-
dient, with 𝑠 = 𝑟, Equation (2.10) has a unique solution 𝑝

in 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#). ◽

As in Corollaries 5.4 and 5.5, condition (5.8) in Theorem 5.6
can be replaced by simpler conditions for particular cases, which
leads to the following two assertions.

Corollary 5.7. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Let 𝑛 ≥ 2 and 𝑇 > 0. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑟 − 1| + 𝑛

2
, and the relaxed elliptic-

ity condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) ∩ 𝐿∞(0, 𝑇 ; Ḣ

𝑛∕2−2
# )

and u0 ∈ Ḣ𝑟

#𝜎 ∩ Ḣ𝑛∕2
#𝜎 , 𝑟 > 𝑛∕2 − 1. Let 𝑇∗ ∈ (0, 𝑇 ) satisfy inequal-

ity (5.16) in Corollary 5.4.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs
to 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇∗]; Ḣ

𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Corollary 5.8. (Serrin-type solution for arbitrary time
but small data). Let 𝑛 ≥ 2, 𝑟 ≥ 𝑛∕2 − 1, and 𝑇 > 0. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑟 − 1| + 𝑛

2
, and the relaxed ellipticity

condition (1.2) hold. Let the data f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎
satisfy inequality (5.17) in Corollary 5.5.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) belongs to
𝐿∞(0, 𝑇 ; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇 ; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
#𝜎 ),

u ∈ 0([0, 𝑇 ]; Ḣ𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0, and 𝑝 ∈ 𝐿2

(0, 𝑇 ; 𝐻̇𝑟

#).

Theorem 5.6 leads also to the following infinite regularity
assertion.

Corollary 5.9. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑎𝛼𝛽
𝑖𝑗
∈ ∞([0, 𝑇 ];𝐶∞

# )
and the relaxed ellipticity condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ċ

∞
# )

and u0 ∈ Ċ∞
#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (5.8)

from Theorem 5.1.
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Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u ∈ 0([0, 𝑇∗]; Ċ

∞
#𝜎),

u′ ∈ 𝐿2(0, 𝑇∗; Ċ
∞
#𝜎), and 𝑝 ∈ 𝐿2(0, 𝑇∗; ̇

∞
# ).

Proof. Taking into account that Ċ∞
# =

⋂
𝑟∈ℝ Ḣ𝑟

#𝜎 ,
Theorem 5.6 implies that u ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇∗; Ḣ
𝑟+1
# ),

u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), 𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟

#), ∀ 𝑟 ∈ ℝ. Hence,
u ∈ 0([0, 𝑇∗]; Ċ

∞
#𝜎), u′ ∈ 𝐿2(0, 𝑇∗; Ċ

∞
#𝜎) and 𝑝 ∈ 𝐿2(0, 𝑇∗; ̇

∞
# ). ◽

5.4 | Spatial-Temporal Regularity
of Serrin-Type Solutions for Variable Anisotropic
Viscosity Coefficients

Theorem 5.10. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑟 ≥ 𝑛∕2 − 1 if 𝑛 ≥ 3,
while 𝑟 > 𝑛∕2 − 1 if 𝑛 = 2. Let 𝑎

𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑟 −
1| + 𝑛

2
, and the relaxed ellipticity condition (1.2) hold. Let f ∈

𝐿∞(0, 𝑇 ; Ḣ
𝑟−2
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 , while f, u0, and
𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (5.8) from Theorem 5.1.

Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u′ ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2
#𝜎 ) ∪

𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), while 𝑝 ∈ 𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#).

Proof. By Theorems 5.1 and 5.6, we have the inclusions u ∈
𝐿∞(0, 𝑇∗; Ḣ

𝑟

#𝜎), u′ ∈ 𝐿2(0, 𝑇∗; Ḣ
𝑟−1
#𝜎 ), and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟

#). Then,
we only need to prove the inclusions u′ ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2
#𝜎 ) and

𝑝 ∈ 𝐿∞(0, 𝑇∗; 𝐻̇
𝑟−1
# ).

As in the proof of Theorem 5.10, we arrive at estimate (4.60).

By (1.1), (1.3), and multiplication Theorem 6.1(a), we have

‖𝔏u‖H𝑟−2
#
≤ ||𝑎𝛼𝛽

𝑖𝑗
𝐸

𝑖𝛼
(u)||(𝐻𝑟−1

# )𝑛×𝑛

≤ 𝐶∗(𝑟 − 1, 𝜎̃ + 1, 𝑛)||𝔸||
𝐻

𝜎̃+1
# ,𝐹

||u||H𝑟

#
,

where we took into account that 𝜎̃ + 1 > 𝑛∕2 and 𝜎̃ + 1 > 𝑟. Thus,

||𝔏u||
𝐿∞(0,𝑇∗;Ḣ

𝑟−2
# ) ≤ 𝐶∗(𝑟 − 1, 𝜎̃ + 1, 𝑛)||𝔸||

𝐿∞(0,𝑇∗;𝐻𝜎̃+1
# ),𝐹 ||u||𝐿∞(0,𝑇∗;H𝑟

#)
,

that is, 𝔏u ∈ 𝐿∞(0, 𝑇∗; Ḣ
𝑟−2
# ). We also have f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2
# ).

Then, (2.9) implies that u′ ∈ 𝐿∞(0, 𝑇∗;H𝑟−2
#𝜎 ), while (2.10)

and Lemma 6.5 for gradient, with 𝑠 = 𝑟 − 1, imply that 𝑝 ∈
𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1
# ). ◽

To simplify the following two assertions we assume there that
the viscosity coefficients are infinitely smooth it time and in the
space coordinates. This smoothness condition can be relaxed if
we instead assume that all the norms of these coefficients encoun-
tered in the proof are bounded.

Theorem 5.11. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑟 > 𝑛∕2 − 1. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ ∞([0, 𝑇 ];𝐶∞

# ) and the relaxed ellipticity condition (1.2)
hold. Let 𝑘 ∈ [1, 𝑟 + 1) be an integer. Let f(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2−2𝑙
# ) ∩

𝐿2(0, 𝑇 ; Ḣ
𝑟−1−2𝑙
# ), 𝑙 = 0, 1, … , 𝑘 − 1, and u0 ∈ Ḣ𝑟

#𝜎 , while f, u0,
and 𝑇∗ ∈ (0, 𝑇 ] satisfy inequality (5.8) from Theorem 5.1.

Then, the Serrin-type solution u of the anisotropic
Navier–Stokes initial value problem (2.1–2.3) is such that
u(𝑙) ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2𝑙
#𝜎 ) ∩ 𝐿2(0, 𝑇∗; Ḣ

𝑟+1−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘, while

𝑝
(𝑙) ∈ 𝐿∞(0, 𝑇∗; 𝐻̇

𝑟−1−2𝑙
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1.

Proof. The proof coincide with the proof of the corresponding
constant-coefficient Theorem (4.10), except the proof of inclusion
(4.68) in Step 2, that for the variable coefficients is replaced by the
following argument.

𝜕
𝑘−1
𝑡
𝔏u =

𝑘−1∑
𝑙=0

𝐶
𝑙

𝑘−1∇ ⋅ [𝔸
(𝑘−1−𝑙)𝔼(u(𝑙))]. (5.35)

By (1.1), (1.3), and Theorem 6.1(a), we have

||∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))]||Ḣ𝑟−2𝑘
#𝜎

≤ ||𝔸(𝑘−1−𝑙)𝔼(u(𝑙))||(𝐻𝑟+1−2𝑘
# )𝑛×𝑛

≤ ||𝔸(𝑘−1−𝑙)𝔼(u(𝑙))||(𝐻𝑟−1−2𝑙
# )𝑛×𝑛

≤ 𝐶∗𝑙1||𝔸(𝑘−1−𝑙)||
𝐻

𝜎̃
𝑙1

# ,𝐹
||𝔼(u(𝑙))||(𝐻𝑟−1−2𝑙

# )𝑛×𝑛

≤ 𝐶∗𝑙1||𝔸(𝑘−1−𝑙)||
𝐻

𝜎̃
𝑙1

# ,𝐹
||u(𝑙)||H𝑟−2𝑙

#
,

where 𝜎̃
𝑙1 > max{𝑛∕2, 2𝑙 + 1 − 𝑟}, 𝐶∗𝑙1 = 𝐶∗(𝑟 − 1 − 2𝑙, 𝜎̃

𝑙1, 𝑛).
Thus,

||∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))]||
𝐿∞(0,𝑇∗;Ḣ

𝑟−2𝑘
#𝜎 )

≤ 𝐶∗𝑙1||𝔸(𝑘−1−𝑙)||
𝐿∞(0,𝑇∗;𝐻

𝜎̃
𝑙1

# ),𝐹 ||u(𝑙)||𝐿∞(0,𝑇∗;H𝑟−2𝑙
# ),

that is, due to (4.61), ∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))] ∈
𝐿∞(0, 𝑇∗; Ḣ

𝑟−2𝑘
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1.

On the other hand, by (1.1), (1.3), and Theorem 6.1(a), we have

||∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))]||Ḣ𝑟+1−2𝑘
#𝜎

≤ ||𝔸(𝑘−1−𝑙)𝔼(u(𝑙))||(𝐻𝑟+2−2𝑘
# )𝑛×𝑛

≤ ||𝔸(𝑘−1−𝑙)𝔼(u(𝑙))||(𝐻𝑟−2𝑙
# )𝑛×𝑛

≤ 𝐶∗𝑙2||𝔸(𝑘−1−𝑙)||
𝐻

𝜎̃
𝑙2

# ,𝐹
||𝔼(u(𝑙))||(𝐻𝑟−2𝑙

# )𝑛×𝑛

≤ 𝐶∗𝑙2||𝔸(𝑘−1−𝑙)||
𝐻

𝜎̃
𝑙2

# ,𝐹
||u(𝑙)||H𝑟+1−2𝑙

#
,

where 𝜎̃
𝑙2 > max{𝑛∕2, 2𝑙 − 𝑟}, 𝐶∗𝑙2 = 𝐶∗(𝑟 − 2𝑙, 𝜎̃

𝑙2, 𝑛). Thus,

||∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))]||
𝐿∞(0,𝑇∗;Ḣ

𝑟+1−2𝑘
#𝜎 )

≤ 𝐶∗𝑙2||𝔸(𝑘−1−𝑙)||
𝐿∞(0,𝑇∗;𝐻

𝜎̃
𝑙2

# ),𝐹 ||u(𝑙)||𝐿2(0,𝑇∗;H𝑟+1−2𝑙
# ),

that is, due to (4.61), ∇ ⋅ [𝔸(𝑘−1−𝑙)𝔼(u(𝑙))] ∈
𝐿2(0, 𝑇∗; Ḣ

𝑟+1−2𝑘
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1. Hence, by (5.35),

𝜕
𝑘−1
𝑡
𝔏u ∈ 𝐿∞(0, 𝑇∗;H𝑟−2𝑘

# ) ∩ 𝐿2(0, 𝑇∗;H𝑟+1−2𝑘
# ). (5.36)

◽

Corollary 5.12. Let 𝑇 > 0 and 𝑛 ≥ 2. Let 𝑎
𝛼𝛽

𝑖𝑗
∈

∞([0, 𝑇 ];𝐶∞
# ) and the relaxed ellipticity condition (1.2) hold.

Let f ∈ ∞(0, 𝑇 ; Ċ∞
# ), and u0 ∈ Ċ∞

#𝜎 , while f, u0, and 𝑇∗ ∈ (0, 𝑇 ]
satisfy inequality (5.8) from Theorem 5.1.
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Then, the Serrin-type solution u of the anisotropic Navier–Stokes
initial value problem (2.1–2.3) is such that u ∈ ∞(0, 𝑇∗; Ċ

∞
#𝜎), 𝑝 ∈

∞(0, 𝑇∗; ̇
∞
# ).

Proof. Taking into account that Ċ∞
# =

⋂
𝑟∈ℝ Ḣ𝑟

#𝜎 , Theorem 5.11
implies that for any integer 𝑘 ≥ 0, u(𝑘) ∈ 𝐿∞(0, 𝑇∗; Ḣ

𝑟−2𝑘
#𝜎 ) ∩

𝐿2(0, 𝑇∗; Ḣ
𝑟+1−2𝑘
# ), 𝑝

(𝑘) ∈ 𝐿∞(0, 𝑇∗; 𝐻̇
𝑟−1−2𝑘
# ) ∩ 𝐿2(0, 𝑇∗; 𝐻̇

𝑟−2𝑘
#𝜎 ),

for any 𝑟 ∈ ℝ. Hence, u ∈ ∞(0, 𝑇∗; Ċ
∞
#𝜎), 𝑝 ∈ 

∞(0, 𝑇∗; ̇
∞
# ). ◽

5.5 | Regularity of Two-Dimensional Weak
Solution for Variable Anisotropic Viscosity
Coefficients

Here, we provide a counterpart of Section 4.6 generalized to vari-
able viscosity coefficients.

Theorem 5.13. (Spatial regularity of solution for arbi-
trarily large data). Let 𝑛 = 2, 𝑟 > 0, and 𝑇 > 0. Let 𝑎

𝛼𝛽

𝑖𝑗
∈

𝐿∞([0, 𝑇 ];𝐻𝜎̃+1
# ), 𝜎̃ > 1 +max{|𝑟 − 1|, 1}, and the relaxed elliptic-

ity condition (1.2) hold. Let f ∈ 𝐿2(0, 𝑇 ; Ḣ
𝑟−1
# ) and u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial
value problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type
and belongs to 𝐿∞(0, 𝑇 ; Ḣ

𝑟

#𝜎) ∩ 𝐿2(0, 𝑇 ; Ḣ
𝑟+1
#𝜎 ). In addition, u′ ∈

𝐿2(0, 𝑇 ; Ḣ
𝑟−1
#𝜎 ), u ∈ 0([0, 𝑇 ]; Ḣ𝑟

#𝜎), lim
𝑡→0 ||u(⋅, 𝑡) − u0||Ḣ𝑟

#𝜎
= 0,

and 𝑝 ∈ 𝐿2(0, 𝑇∗; 𝐻̇
𝑟

#).

Proof. The proof coincides word for word with the proof of
Theorem 5.6 if we take there 𝑛 = 2 while replacing 𝑇∗ by 𝑇

and the reference to (5.14) for the boundedness of the sequence
||u

𝑚
||
𝐿2(0,𝑇∗;H

𝑛∕2
# ) for 𝑛 = 2 by the reference to the corresponding

inequality

||u
𝑚
||2
𝐿2(0,𝑇 ;Ḣ

1
#)
≤ 4𝐶𝔸

(
||u0||2L2#

+ 4𝐶𝔸||f||2
𝐿2(0,𝑇 ;Ḣ

−1
# )

)
.

obtained as inequality (59) in our paper [19]. ◽

The following assertion is proved similar to Corollary 5.9.

Corollary 5.14. Let 𝑇 > 0 and 𝑛 = 2. Let 𝑎
𝛼𝛽

𝑖𝑗
∈

∞([0, 𝑇 ];𝐶∞
# ) and the relaxed ellipticity condition (1.2) hold. Let

f ∈ 𝐿2(0, 𝑇 ; Ċ
∞
# ) and u0 ∈ Ċ∞

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type
and is such that u ∈ 0([0, 𝑇 ]; Ċ∞

#𝜎), u′ ∈ 𝐿2(0, 𝑇 ; Ċ
∞
#𝜎), and 𝑝 ∈

𝐿2(0, 𝑇 ; ̇
∞
# ).

The next three assertions on spatial-temporal regularity for 𝑛 =
2 are the corresponding counterparts of Theorems 5.10 and 5.11
and Corollary 5.12 and are proved in a similar way after replacing
there 𝑇∗ by 𝑇 .

Theorem 5.15. Let 𝑇 > 0, 𝑛 ≥ 2, and 𝑟 > 0. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ 𝐿∞([0, 𝑇 ];𝐻𝜎̃+1

# ), 𝜎̃ > |𝑟 − 1| + 1, and the relaxed ellipticity
condition (1.2) hold. Let f ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
# ) and

u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial
value problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin
type and is such that u′ ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2
#𝜎 ) ∪ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1
#𝜎 ), 𝑝 ∈

𝐿∞(0, 𝑇 ; 𝐻̇
𝑟−1
# ) ∩ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟

#).

Theorem 5.16. Let 𝑇 > 0, 𝑛 = 2, and 𝑟 > 0. Let
𝑎
𝛼𝛽

𝑖𝑗
∈ ∞([0, 𝑇 ];𝐶∞

# ) and the relaxed ellipticity condition
(1.2) hold. Let 𝑘 ∈ [1, 𝑟 + 1) be an integer. Let f(𝑙) ∈
𝐿∞(0, 𝑇 ; Ḣ

𝑟−2−2𝑙
# ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟−1−2𝑙
# ), 𝑙 = 0, 1, … , 𝑘 − 1, and

u0 ∈ Ḣ𝑟

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type and is
such that u(𝑙) ∈ 𝐿∞(0, 𝑇 ; Ḣ

𝑟−2𝑙
#𝜎 ) ∩ 𝐿2(0, 𝑇 ; Ḣ

𝑟+1−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘;

𝑝
(𝑙) ∈ 𝐿∞(0, 𝑇 ; 𝐻̇

𝑟−1−2𝑙
# ) ∩ 𝐿2(0, 𝑇 ; 𝐻̇

𝑟−2𝑙
#𝜎 ), 𝑙 = 0, … , 𝑘 − 1.

Corollary 5.17. Let 𝑇 > 0 and 𝑛 = 2. Let 𝑎
𝛼𝛽

𝑖𝑗
∈

∞([0, 𝑇 ];𝐶∞
# ) and the relaxed ellipticity condition (1.2) hold. Let

f ∈ ∞(0, 𝑇 ; Ċ∞
# ) and u0 ∈ Ċ∞

#𝜎 .

Then, the solution u of the anisotropic Navier–Stokes initial value
problem (2.1–2.3) obtained in Theorem 2.4 is of Serrin type and is
such that u ∈ ∞(0, 𝑇 ; Ċ∞

#𝜎), 𝑝 ∈ 
∞(0, 𝑇 ; ̇∞# ).

6 | Auxiliary Results

6.1 | Advection Term Properties

The divergence theorem and periodicity imply the following
identity for any v1, v2, v3 ∈ C∞

# .

⟨(v1 ⋅ ∇)v2, v3⟩𝕋 = ∫𝕋 ∇ ⋅
(
v1(v2 ⋅ v3)

)
𝑑x

− ⟨(∇ ⋅ v1)v3 + (v1 ⋅ ∇)v3, v2⟩𝕋
= −⟨(v1 ⋅ ∇)v3, v2⟩𝕋 − ⟨(∇ ⋅ v1)v3, v2⟩𝕋 .

(6.1)

Hence, for any v1, v2 ∈ C∞
# ,

⟨(v1 ⋅ ∇)v2, v2⟩𝕋 = −1
2
⟨(∇ ⋅ v1)v2, v2⟩𝕋 = −1

2
⟨

div v1, |v2|2
⟩
𝕋 .

(6.2)

In view of (6.1), we obtain the identity

⟨(v1 ⋅ ∇)v2, v3⟩𝕋 = −⟨(v1 ⋅ ∇)v3, v2⟩𝕋 ∀ v1 ∈ C∞
#𝜎, v2, v3 ∈ C∞

#
(6.3)

and hence, the following well-known formula for any v1 ∈ C∞
#𝜎 ,

v2 ∈ C∞
# ,

⟨(v1 ⋅ ∇)v2, v2⟩𝕋 = 0. (6.4)

Equations (6.3) and (6.4) evidently hold also for v1, v2, and v3
from the more general spaces, for which the dual products in (6.3)
and (6.4) are bounded and in which C∞

#𝜎 and C∞
# , respectively, are

densely embedded.

Mathematical Methods in the Applied Sciences, 202511614
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6.2 | Some Point-Wise Multiplication Results

Let us accommodate to the periodic function spaces in ℝ𝑛, 𝑛 ≥ 1,
a particular case of a much more general Theorem 1 in Section
4.6.1 of [31] about point-wise products of functions/distributions.

Theorem 6.1. Assume 𝑛 ≥ 1, 𝑠1 ≤ 𝑠2, and 𝑠1 + 𝑠2 > 0. Then,
there exists a constant 𝐶∗(𝑠1, 𝑠2, 𝑛) > 0 such that for any 𝑓1 ∈ 𝐻

𝑠2
#

and 𝑓2 ∈ 𝐻
𝑠1
# ,

a. 𝑓1 ⋅ 𝑓2 ∈ 𝐻
𝑠1
# and

||𝑓1 ⋅ 𝑓2||𝐻𝑠1
#
≤ 𝐶∗(𝑠1, 𝑠2, 𝑛)||𝑓1||𝐻𝑠1

#
||𝑓2||𝐻𝑠2

#
if 𝑠2 > 𝑛∕2;

b. 𝑓1 ⋅ 𝑓2 ∈ 𝐻
𝑠1+𝑠2−𝑛∕2
# and

||𝑓1 ⋅ 𝑓2||𝐻𝑠1+𝑠2−𝑛∕2
#

≤ 𝐶∗(𝑠1, 𝑠2, 𝑛)||𝑓1||𝐻𝑠1
#
||𝑓2||𝐻𝑠2

#

if 𝑠2 < 𝑛∕2.

Proof. Items (a) and (b) follow, respectively, from items (i)
and (iii) of [31, Theorem 1 in Section 4.6.1] when we take
into account the norm equivalence in the standard and periodic
Sobolev spaces. ◽

Let
(𝑢 ⋆ 𝑣)(𝝃) ∶=

∑
𝜼∈ℤ𝑛

𝑢(𝜼)𝑣(𝝃 − 𝜼), 𝝃 ∈ ℤ𝑛

,

be the convolution in ℤ𝑛. We will need the following Young’s
inequality for discrete convolution of sequences in ℤ𝑛. For other
choices of parameters, see, for example, [32, p. 316] and refer-
ences therein.

Lemma 6.2. Let 𝑛 ∈ ℕ, 1 ≤ 𝑞 ≤ ∞. Then, the convolution of
sequences 𝑢 ∈ 𝓁1(ℤ𝑛) and 𝑣 ∈ 𝓁

𝑞
(ℤ𝑛) belongs to 𝓁

𝑞
(ℤ𝑛) and

||𝑢 ⋆ 𝑣||𝓁
𝑞
(ℤ𝑛) ≤ ||𝑢||𝓁1(ℤ𝑛)||𝑣||𝓁

𝑞
(ℤ𝑛). (6.5)

Proof. By the triangle inequality, we obtain

||𝑢 ⋆ 𝑣||𝓁
𝑞
(ℤ𝑛) =

‖‖‖‖‖‖

∑
𝜼∈ℤ𝑛

𝑢(𝜼)𝑣(⋅ − 𝜼)
‖‖‖‖‖‖𝓁

𝑞

≤

∑
𝜼∈ℤ𝑛

||𝑢(𝜼)𝑣(⋅ − 𝜼)||𝓁
𝑞

=
∑
𝜼∈ℤ𝑛

|𝑢(𝜼)|||𝑣||𝓁
𝑞

= ||𝑢||𝓁1(ℤ𝑛)||𝑣||𝓁
𝑞
(ℤ𝑛).

◽

Theorem 6.3. Assume 𝑛 ≥ 1. Let 𝑠, 𝜃 ∈ ℝ,𝑤 ∈ 𝐻
𝑠

# , 𝑔 ∈ 𝐻
𝜎̃+1
# ,

𝜎̃ > max{|𝑠|, |𝑠 − 𝜃 + 1|} + 𝑛

2
= |𝑠 − 𝜃−1

2
| + | 𝜃−1

2
| + 𝑛

2
. Then,

Λ𝜃

#(𝑔𝑤) − 𝑔Λ𝜃

#𝑤 ∈ 𝐻
𝑠−𝜃+1
# and

||Λ𝜃

#(𝑔𝑤) − 𝑔Λ𝜃

#𝑤||𝐻𝑠−𝜃+1
#

≤ 𝐶
𝑠,𝜃,𝜎̃

|𝑔|
𝐻

𝜎̃+1
#
||𝑤||

𝐻
𝑠

#
,

where the constant𝐶
𝑠,𝜃,𝜎̃

does not depend on 𝑔 or 𝑤 but may depend
on 𝑠, 𝜃, and 𝜎̃.

Proof. By (1.6), we have

𝐾(𝝃) ∶= 𝕋 [Λ𝜃

#(𝑔𝑤) − 𝑔Λ𝜃

#𝑤](𝝃)

= (2𝜋)𝜃(1 + |𝝃|2)𝜃∕2(𝑔 ⋆ 𝑤̂)(𝝃) − (𝑔 ⋆ 𝕋 [Λ𝜃

#𝑤])(𝝃)

= (2𝜋)𝜃
∑
𝜼∈ℤ𝑛

[(1 + |𝝃|2)𝜃∕2 − (1 + |𝝃 − 𝜼|2)𝜃∕2]𝑔(𝜼)𝑤̂(𝝃 − 𝜼)

= (2𝜋)2
∑
𝜼∈ℤ𝑛

[(𝜼 ⋅ 𝝃 + 𝜼 ⋅ (𝝃 − 𝜼)]𝑓
𝜃
(𝝃, 𝝃 − 𝜼)𝑔(𝜼)𝑤̂(𝝃 − 𝜼)

= 2𝜋
𝑖

∑
𝜼∈ℤ𝑛

∇̂𝑔(𝜼) ⋅ (𝝃 + 𝝃 − 𝜼)𝑓
𝜃
(𝝃, 𝝃 − 𝜼)𝑤̂(𝝃 − 𝜼).

Here,

𝑓
𝜃
(𝝃, 𝝃 − 𝜼) ∶= (2𝜋)𝜃−2 (1 + |𝝃|2)𝜃∕2 − (1 + |𝝃 − 𝜼|2)𝜃∕2

|𝝃|2 − |𝝃 − 𝜼|2

=
𝜚
𝜃(𝝃) − 𝜚

𝜃(𝝃 − 𝜼)
𝜚

2(𝝃) − 𝜚
2(𝝃 − 𝜼)

,

and we took into account that |𝝃|2 − |𝝃 − 𝜼|2 = 𝜼 ⋅ 𝝃 + 𝜼 ⋅ (𝝃 − 𝜼).
Because the inequality |𝑐𝛽1 − 𝑐

𝛽

2 | ≤ |𝛽||𝑐1 − 𝑐2|(𝑐𝛽−1
1 + 𝑐

𝛽−1
2 ) holds

for any 𝑐1, 𝑐2 > 0, 𝛽 ∈ ℝ, we have

|𝑓
𝜃
(𝝃, 𝝃 − 𝜼)| ≤ |𝜚𝜃−1(𝝃) + 𝜚

𝜃−1(𝝃 − 𝜼)|
|𝜚(𝝃) + 𝜚(𝝃 − 𝜼)| .

Hence,

2𝜋|(𝝃 + 𝝃 − 𝜼)𝑓
𝜃
(𝝃, 𝝃 − 𝜼)|

≤ 2𝜋(|𝝃| + |𝝃 − 𝜼|)|𝑓
𝜃
(𝝃, 𝝃 − 𝜼)|

≤ 2𝜋|𝜃|[𝜚𝜃−1(𝝃) + 𝜚
𝜃−1(𝝃 − 𝜼)

] |𝝃| + |𝝃 − 𝜼|
𝜚(𝝃) + 𝜚(𝝃 − 𝜼)

≤ |𝜃|[𝜚𝜃−1(𝝃) + 𝜚
𝜃−1(𝝃 − 𝜼)

]
,

for any 𝜃 ∈ ℝ. Then,

|𝐾(𝝃)| ≤ |𝜃|∑
𝜼∈ℤ𝑛

[
𝜚
𝜃−1(𝝃) + 𝜚

𝜃−1(𝝃 − 𝜼)
]|∇̂𝑔(𝜼)𝑤̂(𝝃 − 𝜼)|

= |𝜃|∑
𝜼∈ℤ𝑛

[
𝜚
𝜃−1(𝝃)|∇̂𝑔(𝜼)𝑤̂(𝝃 − 𝜼)| + |∇̂𝑔(𝜼)𝜚𝜃−1(𝝃 − 𝜼)𝑤̂(𝝃 − 𝜼)|

]

= |𝜃|
[
𝜚
𝜃−1(𝝃){|∇̂𝑔| ⋆ |𝑤̂|}(𝝃) + {|∇̂𝑔| ⋆ |𝜚𝜃−1

𝑤̂|}(𝝃)
]
.

Taking into account Petree’s inequality

𝜚
𝑠(𝝃) ≤ 2|𝑠|∕2

(2𝜋)|𝑠|
𝜚
|𝑠|(𝜼)𝜚𝑠(𝝃 − 𝜼) ∀ 𝝃, 𝜼 ∈ ℤ𝑛

, ∀ 𝑠 ∈ ℝ,

and the discrete Young’s inequality (6.5) for convolutions with
𝑞 = 2, we obtain

||Λ𝜃

#(𝑔𝑤) − 𝑔Λ𝜃

#𝑤||𝐻𝑠−𝜃+1
#

= ||𝜚𝑠−𝜃+1
𝐾||𝓵2

≤ |𝜃|‖‖‖𝜚
𝑠{|∇̂𝑔| ⋆ |𝑤̂|} + 𝜚

𝑠−𝜃+1{|∇̂𝑔| ⋆ |𝜚𝜃−1
𝑤̂|}‖‖‖𝓵2

≤
2|𝑠|∕2|𝜃|
(2𝜋)|𝑠|

‖‖‖|𝜚
|𝑠|∇̂𝑔| ⋆ |𝜚𝑠𝑤̂| + |𝜚|𝑠−𝜃+1|∇̂𝑔| ⋆ |𝜚𝑠𝑤̂|‖‖‖𝓵2

≤
2|𝑠|∕2|𝜃|

2𝜋

(
||𝜚|𝑠|∇̂𝑔||𝓵1

+ ||𝜚|𝑠−𝜃+1|∇̂𝑔||𝓵1

)
||𝜚𝑠𝑤̂||𝓵2

.
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By the Schwarz inequality for any 𝜎̃ > |𝑠| + 𝑛∕2, we have

||𝜚|𝑠|∇̂𝑔||𝓵1
=
∑
𝝃∈ℤ𝑛

𝜚
|𝑠|(𝝃)|∇̂𝑔(𝝃)|

≤

[∑
𝝃∈ℤ𝑛

𝜚
2𝜎̃(𝝃)|∇̂𝑔(𝝃)|2

]1∕2[∑
𝝃∈ℤ𝑛

𝜚
2|𝑠|−2𝜎̃(𝝃)

]1∕2

.

(6.6)

Similarly, for any 𝜎̃ > |𝑠 − 𝜃 + 1| + 𝑛∕2, we have

||𝜚|𝑠−𝜃+1|∇̂𝑔||𝓵1
≤

[∑
𝝃∈ℤ𝑛

𝜚
2𝜎̃(𝝃)|∇̂𝑔(𝝃)|2

]1∕2[∑
𝝃∈ℤ𝑛

𝜚
2|𝑠−𝜃+1|−2𝜎̃(𝝃)

]1∕2

.

(6.7)

Then, for 𝜎̃ > 𝜎̃0 ∶= max{|𝑠| + 𝑛

2
, |𝑠 − 𝜃 + 1| + 𝑛

2
} = |||𝑠 −

𝜃−1
2
||| +|||

𝜃−1
2
||| +

𝑛

2
, we obtain

||Λ𝜃

#(𝑔𝑤) − 𝑔Λ𝜃

#𝑤||𝐻𝑠−𝜃+1
#

≤ 𝐶
𝑠,𝜃,𝜎̃

||∇𝑔||
𝐻

𝜎̃

#
||𝑤̂||

𝐻
𝑠

#

≤ 𝐶
𝑠,𝜃,𝜎̃

|𝑔|
𝐻

𝜎̃+1
#
||𝑤̂||

𝐻
𝑠

#
,

where

𝐶
𝑠,𝜃,𝜎̃

∶= 2|𝑠|∕2

2𝜋
|𝜃|

[∑
𝝃∈ℤ𝑛

𝜚
2𝜎̃0−𝑛−2𝜎̃(𝝃)

]1∕2

,

and (1.9) is taken into account. ◽

6.3 | Spectrum of the Periodic Bessel-Potential
Operator

In this section, we assume that vector functions/distributions u
are generally complex valued and the Sobolev spaces Ḣ𝑠

#𝜎 are
complex. Let us recall the definition

(
Λ𝑟

# u
)
(x) ∶=

∑
𝝃∈ℤ̇𝑛

𝜚(𝝃)𝑟û(𝝃)𝑒2𝜋𝑖x⋅𝝃 ∀ u ∈ Ḣ𝑠

#𝜎, 𝑠, 𝑟 ∈ ℝ (6.8)

of the continuous periodic Bessel-potential operator Λ𝑟

# ∶ Ḣ𝑠

#𝜎 →
Ḣ𝑠−𝑟
#𝜎 , 𝑟 ∈ ℝ; see (1.6), (1.8), and (1.11).

The following assertion is given in [19, Theorem 4, Remark 2].

Theorem 6.4. Let 𝑟 ∈ ℝ, 𝑟 ≠ 0.

i. Then, the operator Λ𝑟

# in Ḣ0
#𝜎 possesses a (nonstrictly)

monotone sequence of real eigenvalues 𝜆(𝑟)
𝑗
= 𝜆

𝑟

𝑗
and a real

orthonormal sequence of associated eigenfunctions w
𝑗

such
that

Λ𝑟

#w𝑗
= 𝜆

𝑟

𝑗
w

𝑗
, 𝑗 ≥ 1, 𝜆

𝑗
> 0, (6.9)

𝜆
𝑗
→ +∞, 𝑗 → +∞, (6.10)

w
𝑗
∈ Ċ∞

#𝜎, (w
𝑗
,w

𝑘
)Ḣ0

#𝜎
= 𝛿

𝑗𝑘
∀ 𝑗, 𝑘 > 0. (6.11)

ii. Moreover, the sequence {w
𝑗
} is an orthonormal basis in

Ḣ0
#𝜎 , that is,

u =
∞∑
𝑖=1

⟨u,w
𝑗
⟩𝕋 w

𝑗
, (6.12)

where the series converges in Ḣ0
#𝜎 for any u ∈ Ḣ0

#𝜎 .

iii. In addition, the sequence {w
𝑗
} is also an orthogonal basis

in Ḣ𝑟

#𝜎 with

(w
𝑗
,w

𝑘
)Ḣ𝑟

#𝜎
= 𝜆

𝑟

𝑗
𝜆
𝑟

𝑘
𝛿
𝑗𝑘

∀ 𝑗, 𝑘 > 0,

and for any u ∈ Ḣ𝑟

#𝜎 series (6.12) converges also in Ḣ𝑟

#𝜎 ,
that is, the sequence of partial sums

𝑃
𝑚

u ∶=
𝑚∑
𝑗=1

⟨u,w
𝑗
⟩𝕋 w

𝑗
(6.13)

converges to u in Ḣ𝑟

#𝜎 as 𝑚 → ∞. The operator 𝑃
𝑚

defined
by (6.13) is for any 𝑟 ∈ ℝ the orthogonal projector operator
from H𝑟

# to Span{w1, … ,w
𝑚
}.

6.4 | Isomorphism of Divergence and Gradient
Operators in Periodic Spaces

The following assertion proved in [19, Lemma 2] provides
for arbitrary 𝑠 ∈ ℝ and dimension 𝑛 ≥ 2 the periodic version
of Bogovskii/deRham-type results well known for nonperiodic
domains and particular values of 𝑠; see, for example, [33, 34] and
references therein.

Lemma 6.5. Let 𝑠 ∈ ℝ and 𝑛 ≥ 2. The following operators are
isomorphisms,

div ∶ Ḣ𝑠+1
#𝑔 → 𝐻̇

𝑠

#, (6.14)

grad ∶ 𝐻̇𝑠

# → Ḣ𝑠−1
#𝑔 . (6.15)

6.5 | Some Functional Analysis Results

Let us provide the Sobolev embedding theorem that can be con-
sidered, for example, as a particular case of [31, Section 2.2.4,
Corollary 2] adapted to the periodic spaces.

Theorem 6.6. Let 𝑛 ∈ ℕ be the dimension, 𝑞0 ≤ 𝑞1 <∞ and
𝑞1 ≥ 1. The periodic Bessel-potential space 𝐻

𝑠

#𝑞0
is continuously

embedded in 𝐿#𝑞1
if and only if 𝑠

𝑛

≥
1
𝑞0
− 1

𝑞1
.

The following version of the Sobolev interpolation inequal-
ity without a multiplicative constant, generalized also to
any real (including negative) smoothness indices, on periodic
Bessel-potential spaces was given in [19, Theorem 5].

Theorem 6.7. Let 𝑠, 𝑠1, 𝑠2, 𝜃1, 𝜃2 be real numbers such that
0 ≤ 𝜃1, 𝜃2 ≤ 1, 𝜃1 + 𝜃2 = 1 and 𝑠 = 𝜃1𝑠1 + 𝜃2𝑠2. Then, for any 𝑔 ∈
𝐻

𝑠1
# ∩𝐻

𝑠2
# ,

||𝑔||
𝐻

𝑠

#
≤ ||𝑔||𝜃1

𝐻
𝑠1
#
||𝑔||𝜃2

𝐻

𝑠2
#
. (6.16)

Theorem 3.1 and Remark 3.2 in Chapter 1 of [27] imply the fol-
lowing assertion.

Mathematical Methods in the Applied Sciences, 202511616
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Theorem 6.8. Let 𝑋 and 𝑌 be separable Hilbert spaces and
𝑋 ⊂ 𝑌 with continuous injection. Let 𝑢 ∈ 𝑊

1(0, 𝑇 ;𝑋, 𝑌 ). Then, 𝑢
almost everywhere on [0, 𝑇 ] equals to a function 𝑢̃ ∈ 0([0, 𝑇 ];𝑍),
where 𝑍 = [𝑋, 𝑌 ]1∕2 is the intermediate space. Moreover, the
trace 𝑢(0) ∈ 𝑍 is well defined as the corresponding value of 𝑢̃ ∈
0([0, 𝑇 ];𝑍) at 𝑡 = 0.

The following assertion was proved in [19, Lemma 4].

Lemma 6.9. Let 𝑠, 𝑠′ ∈ ℝ, 𝑠′ ≤ 𝑠, and 𝑢 ∈ 𝑊
1(0, 𝑇 ;𝐻𝑠

# ,𝐻
𝑠
′

# )
be real valued.

i. Then,

𝜕
𝑡
||𝑢||2

𝐻
(𝑠+𝑠′ )∕2
#

= 2⟨Λ𝑠
′

# 𝑢
′
,Λ𝑠

#𝑢⟩𝕋 = 2⟨Λ𝑠
′+𝑠
# 𝑢

′
, 𝑢⟩𝕋 (6.17)

for a.e. 𝑡 ∈ (0, 𝑇 ) and also in the distribution sense on 𝑡 ∈
(0, 𝑇 ).

ii. Moreover, for any real-valued 𝑣 ∈ 𝑊
1(0, 𝑇 ;𝐻−𝑠′

# ,𝐻
−𝑠
# )

and 𝑡 ∈ (0, 𝑇 ],

∫

𝑡

0

[⟨𝑢′(𝜏), 𝑣(𝜏)⟩𝕋 + ⟨𝑢(𝜏), 𝑣′(𝜏)⟩𝕋
]
𝑑𝜏

= ⟨𝑢(𝑡), 𝑣(𝑡)⟩𝕋 − ⟨𝑢(0), 𝑣(0)⟩𝕋 .
(6.18)

Let us now prove the first Korn inequality for the periodic Sobolev
spaces by adapting the proof available for the standard Sobolev
spaces, for example, in [35, Theorem 10.1]; compare also [20,
Theorem 2.8].

Theorem 6.10. Let v ∈ H𝑠

#, 𝑠 ∈ ℝ. Then,

||∇v||2(𝐻𝑠−1
# )𝑛×𝑛 ≤ 2||𝔼(v)||2(𝐻𝑠−1

# )𝑛×𝑛 . (6.19)

Proof. By the norm definition (1.5), we obtain

||𝔼(v)||2(𝐻𝑠−1
# )𝑛×𝑛 =

∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)|𝕋 (𝔼(v))(𝝃)|2𝐹

=
∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)
𝕋 (𝐸𝑗𝑘

(v))(𝝃) ⋅ 𝕋 (𝐸𝑗𝑘
(v))(𝝃)

=
∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)(𝜋𝑖)
(
𝜉
𝑗
v̂
𝑘
+ 𝜉

𝑘
v̂
𝑗

)
⋅ (𝜋𝑖)

(
𝜉
𝑗
v̂
𝑘
+ 𝜉

𝑘
v̂
𝑗

)

=
∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)2𝜋2(|𝜉|2|v̂|2 + |𝜉 ⋅ v̂|2)

≥
1
2
∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)|2𝜋𝜉|2|v̂|2

= 1
2
∑
𝝃∈ℤ𝑛

𝜚(𝝃)2(𝑠−1)|∇̂v|2
𝐹
= 1

2
||∇v||2(𝐻𝑠−1

# )𝑛×𝑛 .

◽

6.6 | Gronwall’s Inequalities

Gronwall’s inequality is well known and can be found, for
example, in [36, Appendix B.2.j], [7, Lemma A.24]. Here, we pro-
vide its slightly more general version valid also for arbitrary-sign
coefficients.

Lemma 6.11. Let 𝜂 ∶ [0, 𝑇 ]→ ℝ be an absolutely continuous
function that satisfies the differential inequality

𝜂
′(𝑡) ≤ 𝜙(𝑡)𝜂(𝑡) + 𝜓(𝑡) for a.e. 𝑡 ∈ [0, 𝑇 ], (6.20)

where 𝜙 and 𝜓 are real integrable functions.

a. Then,

𝜂(𝑡) ≤ 𝑒
∫

𝑡

0 𝜙(𝑟)𝑑𝑟[𝜂(0) +
∫

𝑡

0
𝑒
− ∫ 𝑠

0 𝜙(𝜌)𝑑𝜌𝜓(𝑠)𝑑𝑠] ∀ 𝑡 ∈ [0, 𝑇 ].

(6.21)

b. Moreover, for nonnegative 𝜙 and 𝜓 , (6.21) implies

𝜂(𝑡) ≤ 𝑒
∫

𝑡

0 𝜙(𝑟)𝑑𝑟[𝜂(0) +
∫

𝑡

0
𝜓(𝑠)𝑑𝑠] ∀ 𝑡 ∈ [0, 𝑇 ]. (6.22)

c. In particular, if 𝜂 is nonnegative, while 𝜓 ≡ 0 on [0, 𝑇 ] and
𝜂(0) = 0, then 𝜂 ≡ 0 on [0, 𝑇 ].

Proof. Multiplying (6.20) by

𝑎(𝑡) ∶= 𝑒
− ∫ 𝑡

0 𝜙(𝑟)𝑑𝑟 > 0,

we obtain
𝑑

𝑑𝑡

[𝑎(𝑡)𝜂(𝑡)] ≤ 𝑎(𝑡)𝜓(𝑡).

Integration gives

𝑎(𝑡)𝜂(𝑡) ≤ 𝑎(0)𝜂(0) +
∫

𝑡

0
𝑎(𝑠)𝜓(𝑠)𝑑𝑠.

Dividing by 𝑎(𝑡), we arrive at

𝜂(𝑡) ≤ 1
𝑎(𝑡)

[𝜂(0) +
∫

𝑡

0
𝑎(𝑠)𝜓(𝑠)𝑑𝑠] ∀ 𝑡 ∈ [0, 𝑇 ],

giving (6.21) and thus proving item (a). Items (b) and (c) follow
from (6.21). ◽

Let us slightly generalize and give an alternative proof of [7,
Lemma 10.3].

Lemma 6.12. Let 𝜂 ∶ [0, 𝑇 ] → [0,∞) be an absolutely contin-
uous function that satisfies the differential inequality

𝜂
′(𝑡) + 𝑏𝑦(𝑡) ≤ 𝑐𝑦(𝑡)𝜂(𝑡) + 𝜓(𝑡), for a.e. 𝑡 ∈ [0, 𝑇 ]; 𝜂(0) = 𝜂0,

(6.23)
where𝜓, 𝑦 ≥ 0 are integrable real functions, while 𝑏, 𝑐 > 0 and 𝜂0 ≥

0 are real constants.

If

𝐷 ∶= 𝜂0 +
∫

𝑇

0
𝜓(𝜏)𝑑𝜏 <

𝑏

𝑒𝑐

(6.24)

then

sup
0≤𝜏≤𝑇

𝜂(𝜏) < 𝐷𝑒 <

𝑏

𝑐

and
∫

𝑇

0
𝑦(𝜏)𝑑𝜏 <

1
𝑐

. (6.25)
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Proof. By Lemma 6.11(a), inequality (6.23) and condition
(6.24) lead to

𝑎(𝑡)𝜂(𝑡) + 𝑏

∫

𝑡

0
𝑎(𝑠)𝑦(𝑠)𝑑𝑠 ≤ 𝜂0 +

∫

𝑡

0
𝑎(𝑠)𝜓(𝑠)𝑑𝑠 ≤ 𝐷, (6.26)

where 𝑎(𝑠) ∶= 𝑒
−𝑐𝑌 (𝑠)

> 0 and 𝑌 (𝑠) ∶= ∫ 𝑠

0 𝑦(𝜏)𝑑𝜏. Inequality
(6.26) implies

𝑏𝑒
−𝑐𝑌 (𝑡)

𝑌 (𝑡) ≤ 𝑏

∫

𝑡

0
𝑎(𝑠)𝑦(𝑠)𝑑𝑠 ≤ 𝐷 <

𝑏

𝑒𝑐

∀ 𝑡 ∈ [0, 𝑇 ]. (6.27)

Let us consider the function 𝑓 (𝑌 ) ∶= 𝑒
−𝑐𝑌

𝑌 on the interval
0 ≤ 𝑌 <∞. One can elementary obtain that max0≤𝑌 <∞ 𝑓 (𝑌 ) is
reached at 𝑌 = 1∕𝑐 and equals to 1∕(𝑒𝑐). But due to (6.27), this
maximum for 𝑒−𝑐𝑌 (𝑡)𝑌 (𝑡) is not reached for 𝑡 ∈ [0, 𝑇 ], and hence,
𝑌 (𝑇 ) < 1∕𝑐, giving the second inequality in (6.25).

Further, (6.26) implies that

𝜂(𝑡) ≤ 𝐷

𝑎(𝑡)
= 𝐷𝑒

𝑐𝑌 (𝑡)
< 𝐷𝑒 <

𝑏

𝑐

∀ 𝑡 ∈ [0, 𝑇 ],

thus giving the first inequality in (6.25). ◽

Let us give a generalization of [7, Lemma 10.3] and of
Lemma 6.12.

Lemma 6.13. Let 𝜂 ∶ [0, 𝑇 ]→ [0,∞) be an absolutely contin-
uous function that satisfies the differential inequality

𝜂
′(𝑡) + 𝑏𝑦(𝑡) ≤ [𝑐𝑦(𝑡) + 𝜙(𝑡)]𝜂(𝑡) + 𝜓(𝑡), for a.e. 𝑡 ∈ [0, 𝑇 ];

𝜂(0) = 𝜂0,
(6.28)

where 𝜙, 𝜓, 𝑦 ≥ 0 are integrable real functions, while 𝑏, 𝑐 > 0 and
𝜂0 ≥ 0 are real constants.

If

𝐷 ∶= 𝜂0 +
∫

𝑇

0
𝑒
−Φ(𝜏)

𝜓(𝜏)𝑑𝜏 <

𝑏

𝑐

𝑒
−1−Φ(𝑇 )

, (6.29)

where Φ(𝑠) ∶= ∫ 𝑠

0 𝜙(𝜏)𝑑𝜏 , then

sup
0≤𝜏≤𝑇

𝜂(𝜏) < 𝑏

𝑐

and
∫

𝑇

0
𝑦(𝜏)𝑑𝜏 <

1
𝑐

. (6.30)

Proof. By Lemma 6.11(a), inequality (6.28) and condition
(6.29) lead to

𝑎(𝑡)𝜂(𝑡) + 𝑏

∫

𝑡

0
𝑎(𝑠)𝑦(𝑠)𝑑𝑠 ≤ 𝜂0 +

∫

𝑡

0
𝑎(𝑠)𝜓(𝑠)𝑑𝑠 ≤ 𝐷, (6.31)

where 𝑎(𝑠) ∶= 𝑒
−𝑐𝑌 (𝑠)−Φ(𝑠)

> 0 and 𝑌 (𝑠) ∶= ∫ 𝑠

0 𝑦(𝜏)𝑑𝜏. Inequality
(6.31) implies

𝑏𝑒
−Φ(𝑇 )

𝑒
−𝑐𝑌 (𝑡)

𝑌 (𝑡) ≤ 𝑏

∫

𝑡

0
𝑎(𝑠)𝑦(𝑠)𝑑𝑠 ≤ 𝐷 <

𝑏

𝑐

𝑒
−1−Φ(𝑇 ) ∀ 𝑡 ∈ [0, 𝑇 ].

(6.32)
Let us consider the function 𝑓 (𝑌 ) ∶= 𝑒

−𝑐𝑌
𝑌 on the interval

0 ≤ 𝑌 <∞. One can elementary obtain that max0≤𝑌 <∞ 𝑓 (𝑌 ) is
reached at 𝑌 = 1∕𝑐 and equals to 1∕(𝑒𝑐). But due to (6.32), this

maximum of 𝑒−𝑐𝑌 (𝑡)𝑌 (𝑡) is not reached for 𝑡 ∈ [0, 𝑇 ], and hence,
𝑌 (𝑇 ) < 1∕𝑐, giving the second inequality in (6.30).

Further, (6.31) implies that

𝜂(𝑡) ≤ 𝐷

𝑎(𝑡)
= 𝐷𝑒

𝑐𝑌 (𝑡)+Φ(𝑡)
< 𝐷𝑒

1+Φ(𝑇 )
<

𝑏

𝑐

∀ 𝑡 ∈ [0, 𝑇 ],

thus giving the first inequality in (6.30). ◽

Let us give a version of integral Gronwall’s inequality implied, for
example, by Theorem 1.3 and Remark 1.5 in [37].

Lemma 6.14. Let 𝑢, 𝑏, and 𝑎 be measurable functions in 𝐽 =
[𝛼, 𝛽], such that 𝑏𝑢, 𝑏𝑎 ∈ 𝐿1(𝐽 ). Suppose that 𝑏(𝑡) is nonnegative
a.e. on 𝐽 . Suppose

𝑢(𝑡) ≤ 𝑎(𝑡) +
∫

𝑡

𝛼

𝑏(𝑠)𝑢(𝑠)𝑑𝑠, for a.e. 𝑡 ∈ 𝐽 .

Then,

𝑢(𝑡) ≤ 𝑎(𝑡) +
∫

𝑡

𝛼

𝑎(𝑠)𝑏(𝑠) exp
(
∫

𝑡

𝑠

𝑏(𝜏)𝑑𝜏
)
𝑑𝑠, for a.e. 𝑡 ∈ 𝐽 .
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