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1 Introduction: Solonnikov Parabolicity 

In this section, we present a generalised notion of parabolicity for PDE systems 
introduced by Solonnikov in [7, Section 1] (see also [5, Chapter VII, Section 8, 
Definition 4], [2, Definition I.4]). It can be considered as a parabolic counterpart of 
the Agmon-Douglis-Nirenberg ellipticity for PDE systems. 

Following [5, Chapter VII, Section 8], we will begin with the Petrovskii 
definition of a scalar parabolic equation. Let .L(x, t, ∂/∂x, ∂/∂t) be a scalar linear 
partial differential operator of arbitrary order with complex coefficients depending 
on . x and t . Let .ξ ∈ R

n be an n-dimensional vector and .ϱ ∈ C be a scalar. It is clear 
that at any point .(x, t), the function .L(x, t, iξ , ϱ) is a polynomial in . ξj and . ϱ. Let  b 
be some positive integer and let the degree of the polynomial .L(x, t, iξλ, ϱλ2b) in 
. λ be equal to 2br , where r is a positive integer. We denote by . L0 the principal part 
of the polynomial L, i.e., the sum of those terms of L, for  which  

.L0(x, t, iξλ, ϱλ2b) = λ2brL0(x, t, iξ , ϱ). (1.1) 
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Definition 1.1 A scalar partial differential operator L is said to be parabolic (2b-
parabolic) at a point .(x, t) if for any real vector . ξ the roots, . ϱs , of the principal part, 
.L0(x, t, iξ , ϱ), of the polynomial L in variable . ϱ satisfy the condition 

.Re ϱs ≤ −δ|ξ |2b (1.2) 

for some constant .δ > 0. 

Definition 1.2 Let .m ≥ 2 be a positive integer. A matrix differential operator 
.L(x, t, ∂x, ∂t ) with elements .Lkj (x, t, ∂x, ∂t ), .(k, j = 1, . . . , m) will be called 
parabolic at point .(x, t) in the sense of Solonnikov if: 

(i) the operator 

. L(x, t, ∂/∂x, ∂/∂t) = detL(x, t, ∂x, ∂t )

is 2b-parabolic in the sense of Definition 1.1 for some positive integer b; 
(ii) there exist integers . s𝓁 and . t𝓁, .𝓁 = 1, . . . , m such that the degree of the 

polynomial .L𝓁j (x, t, iξλ, ϱλ2b) in . λ does not exceed .s𝓁 + tj (if .s𝓁 + tj < 0 then 
.L𝓁j = 0) and, in addition, 

. 

m⎲

𝓁=1

(s𝓁 + t𝓁) = 2br,

where r is the degree of the polynomial .L(x, t, iξ , ϱ) in the variable . ϱ. 

2 Anisotropic Stokes and Oseen PDE Systems 

Let .n ≥ 2 be an integer, .x ∈ R
n denote the space coordinate vector, and .t ∈ R be 

time variable. Let . L denote the second-order differential operator represented in the 
component-wise divergence form as 

.(Lu)k := ∂α

(
a

αβ
kj Ejβ(u)

)
, k = 1, . . . , n, (2.1) 

where .u = (u1, . . . , un)
T, .Ejβ(u) := 1

2 (∂juβ + ∂βuj ) are the entries of the 

symmetric part .E(u) of the gradient, . ∇u, of  . u in space coordinates, and . aαβ
kj (x, t)

are variable components of the tensor viscosity coefficient, cf. [1], . A(x, t) ={
a

αβ
kj (x, t)

}n

i,j,α,β=1
depending on the space coordinate vector . x and time t . We  

also denoted .∂j = ∂

∂xj

. Here and further on, the Einstein convention on summation 

in repeated indices from 1 to n is used unless stated otherwise.
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The following symmetry conditions are assumed (cf. [6, Eq. (3.1), (3.3)]), 

.a
αβ
kj (x, t) = a

kβ
αj (x, t) = a

αj
kβ (x, t). (2.2) 

In addition, we require that the tensor . A satisfies the relaxed ellipticity condition 
in terms of all symmetric matrices in .R

n×n with zero matrix trace, see  [3, 4]. Thus, 
we assume that there exists a constant .CA > 0 such that, 

.a
αβ
kj (x, t)ζkαζjβ ≥ C−1

A
|ζ |2 , for a.e. x, t, (2.3) 

∀ ζ = {ζkα}k,α=1,...,n ∈ Rn×n such that ζ = ζT and 
n⎲

k=1 

ζkk = 0, 

where .|ζ |2 = ζkαζkα , and the superscript . T denotes the transpose of a matrix. Note 
that in the more common, strong ellipticity condition, inequality (2.3) should be 
satisfied for all matrices (not only symmetric with zero trace), which makes it much 
more restrictive. 

We assume that .aαβ
ij ∈ L∞(Rn ×[0, T ]), where .[0, T ] is some time interval, and 

the tensor . A is endowed with the norm 

.‖A‖ := max
⎾
‖aαβ

ij ‖L∞(Rn×[0,T ]) : k, j, α, β ∈ {1 . . . , n}
⏋

< ∞. (2.4) 

Symmetry conditions (2.2) lead to the following equivalent form of the operator . L

. (Lu)k = ∂α

(
a

αβ
kj ∂βuj

)
, k = 1, . . . , n. (2.5) 

Let .u(x, t) be an unknown vector velocity field, .p(x, t) be an unknown (scalar) 
pressure field, .f(x, t) be a given vector field and .g(x, t) be a given scalar field defined 
in . Rn, where .t ∈ R is the time variable. Then the linear PDE system 

.∂tu(x, t) − Lu(x, t) + ∇p(x, t) = f(x, t), . (2.6) 

divu(x, t)  = g(x, t). (2.7) 

determines the anisotropic evolution Stokes system in a compressible framework. 
A more general linear system 

.∂tu(x, t) − Lu(x, t) + ∇p(x, t) + (U(x, t) · ∇)u(x, t) = f(x, t), . (2.8) 

divu(x, t)  = g(x, t), (2.9) 

where .U(x, t) is a given vector field defined at a.e. .(x, t), is the (generalised) 
evolution Oseen system. 

If .g = 0 in (2.7) and (2.9), then systems (2.6)–(2.7) and (2.8)–(2.9) are reduced 
to the evolution incompressible anisotropic Stokes and Oseen systems, respectively.
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In the isotropic case, the tensor . A reduces to 

. a
αβ
kj (x, t) = λ(x, t)δkαδjβ + μ(x, t)

(
δαj δβk + δαβδkj

)
, 1 ≤ k, j, α, β ≤ n ,

(2.10) 

where .λ,μ ∈ L∞(Rn × [0, T ]), and .c−1
μ ≤ μ(x, t) ≤ cμ for a.e. . x and t , with 

some constant .cμ > 0 (cf., e.g., Appendix III, Part I, Section 1 in [8]). Then it 
is immediate that condition (2.3) is fulfilled with .CA = cμ/2 and thus our results 
apply also to the Stokes and Oseen systems in the isotropic case. Moreover, (2.1) 
becomes 

.Lu = (λ + μ)∇div u + μΔu + (∇λ)divu + 2(∇μ) · E(u) (2.11) 

Assuming .λ = 0 and .μ = 1 we arrive at the classical mathematical formulations of 
isotropic, constant-coefficient Stokes and Oseen systems. 

3 Classification of the Evolution Anisotropic Stokes and 
Oseen Systems 

Let us consider the Oseen system (2.8)–(2.9). It can be re-written as 

.ΛU

⎛
u
p

⎞
=

⎛
f
g

⎞
, (3.1) 

where the operator .ΛU = ΛU(x, t, ∂x, ∂t ) is defined as 

.ΛU

⎛
u
p

⎞
:=

⎛
∂tu − Lu + (U · ∇)u + ∇p

div u

⎞
. (3.2) 

If .U ≡ 0, the evolution Oseen system (2.8)–(2.9) reduces to the evolution Stokes 
system (2.6)–(2.7) that can be re-written as 

.Λ

⎛
u
p

⎞
=

⎛
f
g

⎞
, (3.3) 

where the operator .Λ = Λ(x, t, ∂x, ∂t ) is defined as 

.Λ

⎛
u
p

⎞
=

⎛
∂tu − Lu + ∇p

div u

⎞
. (3.4) 

Let us classify the operator . Λ and the PDE system (2.6)–(2.7). Since Eq. (2.7) 
does not include the time derivative, . ∂t , PDE system (2.6)–(2.7) and the operator
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. Λ are not parabolic in the sense of Petrovskii or in the sense of Shirota (see the 
corresponding definition, e.g., in [5, Chapter VII, Section 8, Definitions 2 and 3], 
[2, Definitions I.2 and I.5]). However we will prove that under the condition (2.3) 
of relaxed ellipticity for the viscosity tensor, the operator . Λ is parabolic in the sense 
of Solonnikov. 

To this end, we first need to prove several auxiliary results. Replacing in the 
operator . Λ arguments . ∂j by .iξj and . ∂t by . ρ we express its matrix entries as 
polynomials in .ρ ∈ C and .ξ ∈ R

n, i.e., 

.Λ𝓁j (x, t, iξ , ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρδ𝓁j + ξαa
αβ
𝓁j ξβ, 𝓁, j = 1, . . . , n;

−iξ𝓁, 𝓁 = 1, . . . , n, j = n + 1;
−iξj , 𝓁 = n + 1, j = 1, . . . , n;
0, 𝓁 = j = n + 1.

(3.5) 

Here .a
αβ
𝓁j = a

αβ
𝓁j (x, t). 

Lemma 3.1 Let .n ≥ 2 and the relaxed ellipticity condition (2.3) hold at a point 
.(x, t). Let .ρ ∈ C and .ξ ∈ R

n. If .detΛ(x, t, iξ , ρ) = 0, then 

.Re ρ ≤ −1

2
C−1
A

|ξ |2. (3.6) 

Proof Let us assume that .detΛ(x, t, iξ , ρ) = 0. If  .ξ = 0, then from (3.5) we have 
.ρ = 0 implying that inequality (3.6) is satisfied. 

Let us now consider the case .ξ /= 0. Then there should exist a non-trivial vector 
.(w, q) ∈ C

n × C solving the homogeneous algebraic system 

.Λ(x, t, iξ , ρ)

⎛
w
q

⎞
=

⎛
0
0

⎞
. (3.7) 

If we assume .w = 0, then the first n equations of (3.7) imply that .ξq = 0, and since 
.ξ /= 0, this means .q = 0, that is, the vector .(w, q) is trivial. Then we further assume 
that .w /= 0. The last equation of the system implies 

.w · ξ = wjξj = 0. (3.8) 

After the scalar multiplication of the system (3.7) by the vector .(w, 0), where the 
bar means complex conjugate, we have, 

.w𝓁[Λ𝓁j (x, t, iξ, ρ)wj − iξ𝓁q] = ρ|w|2 + a0(w,w) = 0, (3.9)
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where 

. a0(w,w) := w𝓁ξαa
αβ
𝓁j ξβwj = a

αβ
𝓁j (w ⊗ ξ)𝓁α(w ⊗ ξ)βj

= a
αβ
𝓁j (w ⊗ ξ)s𝓁α(w ⊗ ξ)sβj . (3.10) 

due to the symmetry conditions (2.2). Here  .(w ⊗ ξ)s is the symmetric part of the 
matrix .w ⊗ ξ , i.e., 

.(w ⊗ ξ)s𝓁α := 1

2
(w𝓁ξα + wαξ𝓁) , 𝓁, α = 1, . . . , n . (3.11) 

By (3.8) and the ellipticity condition (2.3), Eq.  (3.9) implies 

. − Re ρ|w|2 = Re a0(w,w)

= a
αβ
𝓁j (Rew ⊗ ξ)s𝓁α(Rew ⊗ ξ)sβj + a

αβ
𝓁j (Imw ⊗ ξ)s𝓁α(Imw ⊗ ξ)sβj

≥ C−1
A

(|(Rew ⊗ ξ)s |2 + |(Imw ⊗ ξ)s |2)

= 1

2
C−1
A

(|Rew|2|ξ |2 + |Imw|2|ξ |2) = 1

2
C−1
A

|w|2|ξ |2,

which leads to (3.6). ⨅⨆
Let us introduce the differential operator .L(x, t, ∂x, ∂t ) = detΛ(x, t, ∂x, ∂t ). 

Then .L(x, t, iξ , ρ) = detΛ(x, t, iξ , ρ) is a polynomial in .ρ ∈ C and . ξ ∈ R
n

and moreover, 

.L(x, t, iξλ, ρλ2) = λ2nL(x, t, iξ , ρ). (3.12) 

Theorem 3.2 Let .n ≥ 2 and the relaxed ellipticity condition (2.3) hold at a point 
.(x, t). Then at this point the evolution anisotropic Stokes operator . Λ defined by (3.4) 
is parabolic in the sense of Solonnikov, i.e., satisfies Definition 1.2. 

Proof We can choose .m = n + 1 in Definition 1.2. By  (3.12), the scalar operator 
.L(x, t, ∂x, ∂t ) = detΛ(x, t, ∂x, ∂t ) satisfies (1.1) with .L0 = L, .b = 1, and .r = n. 
Due to Lemma 3.1, then the operator .detΛ(x, t, ∂x, ∂t ) satisfies Definition 1.1 with 
.δ = 1

2C
−1
A

. Hence it is 2-parabolic and item (i) in Definition 1.2 is satisfied. 
Due to (3.5), item (ii) in Definition 1.2 is satisfied for .s𝓁 = t𝓁 = 1, . 𝓁 = 1, . . . , n

and .sn+1 = tn+1 = 0. Note that another choice, e.g., .s𝓁 = 0, .t𝓁 = 2, . 𝓁 = 1, . . . , n
and .sn+1 = −1, .tn+1 = 1 is also possible. ⨅⨆

It is easy to see that the principal part of the Oseen operator (3.2) is obtained by 
taking .U ≡ 0, that is, it is given by the corresponding Stokes operator, which leads 
to the following assertion implied by Theorem 3.2.
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Corollary 3.3 Let .n ≥ 2, the relaxed ellipticity condition (2.3) hold at a point 
.(x, t) and the function .U(x, t) be defined at .(x, t). Then at this point the evolution 
anisotropic Oseen operator .ΛU defined by (3.2) is parabolic in the sense of 
Solonnikov, i.e., satisfies Definition 1.2. 

The classification of the evolution anisotropic Stokes and Oseen operators as 
parabolic in the sense of Solonnikov allows to apply to them some well-posedness 
results available for initial-boundary value problems for the Solonnikov parabolic 
systems, see, e.g., [7], [5, Chapter VII, Section 10], [2, Section VI.3.6], [9]. 
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